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1. INTRODUCTION AND MAIN RESULTS

Let Ω ⊂ IRN be a bounded domain with a smooth boundary ∂Ω := Γ0 ∪ Γ1 where Γ0

and Γ1 are open and closed sets and Γ1 ∩ Γ0 = ∅. Consider





Lu = f(x, u) in Ω,

u = 0 on Γ0,

Bu = h(x, u) on Γ1,

(1)

where f : Ω× IR 7→ IR and h : Γ1 × IR 7→ IR are regular functions,

Bu :=
∂u

∂n
+ b(x)u,

with n the outward normal direction to ∂Ω, b ∈ C1,α(Γ1), α ∈ (0, 1) and L is a second

order uniformly elliptic operator of the form

Lu := −
N∑

i,j=1

aijDiju +
N∑

i=1

biDiu + c(x)u

with aij ∈ C1,α(Ω), bi, c ∈ Cα(Ω), aij = aji and 0 < α < 1.

We present three results of uniqueness of solution of (1). Before stating our main

results, we need some notations. Denote by

Bu :=





u on Γ0,

Bu on Γ1,



and by σ1[L, B] the principal eigenvalue (see for example Amann [3] and Cano-

Casanova and López-Gómez [7]) of the problem




Lu = λu in Ω,

Bu = 0 on ∂Ω.
(2)

Our first result is:

Theorem 1 Assume σ1[L,B] > 0. If u 7→ f(x, u), h(x, u) are non-increasing, then

there exists at most a solution of (1).

This result is well-known when c ≥ 0, Γ0 = ∅ and Bu := β0u + δ
∂u

∂β
(β an

outward pointing vector field on ∂Ω) with either β0 = 1 and δ = 0 (Dirichlet case),

δ = 1 and β0 = 0 (Neumann case) or δ = 1 and β0 > 0 (regular oblique derivative

boundary operator), see Amann [1] and Serrin [13]. In this paper, we generalize the

result allowing more general boundary conditions and b and c could change sign.

Now, consider the uniqueness of positive solution. We denote by

P := {u ∈ C1(Ω) : Bu = 0, u(x) ≥ 0, u 6= 0 in Ω ∪ Γ1},

whose interior is

int(P ) = {u ∈ P : u(x) > 0 for all x ∈ Ω ∪ Γ1, ∂u/∂n < 0 on Γ0.}

We say that u is a positive solution of (1) if u ∈ P , and that is strictly positive, and

we write u À 0, if u ∈ int(P ). Our second result is:

Theorem 2 Assume that

u 7→ f(x, u)

u
,

h(x, u)

u
, are non-increasing in (0,∞), (3)

with one of them decreasing. Then there exists at most a positive solution of (1).

This result generalizes the classical one under homogeneous Dirichlet bound-

ary condition (although the proof can be extended easily to the Robin case), which

assures that if for a. e. x ∈ Ω the map

u 7→ f(x, u)

u
is decreasing in (0,∞) (4)

then, there exists at most a positive solution of (1), see for instance Brezis and Kamin

[4], Brezis and Oswald [5] and Hess [10].

Under condition (3), Theorem 2 was proved by Pao [12], Theorem 4.6.3,

when Γ0 = ∅, L self-adjoint, b ≥ 0 and assuming the existence of a ordered pair of



sub-supersolution, see also Umezu [14] for a related result under the more restrictive

condition f/g decreasing.

Finally, in Delgado and Suárez [8] an extension to the classical result under

condition (4) was given, and it was shown that the result complements and improves

the above one. In this paper we generalize the result to nonlinear boundary conditions.

Theorem 3 Assume σ1[L,B] > 0 and there exists g ∈ C1(0, +∞) ∩ C0([0, +∞)),

g(t) > 0 for t > 0 and g′ non-increasing, such that

u 7→ f(x, u)

g(u)
,

h(x, u)

g(u)
are non-increasing in (0,∞). (5)

If:

1. ∫ r

0

1

g(t)
dt < ∞, for some r > 0, (6)

then there exists at most a positive solution of (1).

2.

lim
s→0

s

g(s)
= 0, (7)

then there exists at most a strictly positive solution of (1).

In the following section we prove Theorems 1 and 3. For that, we use appro-

priate changes of variables. We also show that the condition σ1[L,B] > 0 is optimal

in Theorem 1. In the third section we prove Theorem 2. Finally, in the last sec-

tion we prove the existence and uniqueness of positive solution of the linear problem

associated to (1).

2. PROOF OF THEOREMS 1 AND 3

2.1. AN IMPORTANT CHANGE OF VARIABLE

Since σ1[L,B] > 0, there exists e À 0 (in fact e(x) > 0 for all x ∈ Ω) the unique

solution of (see Section 4 ) 



Le = 0 in Ω,

e = 1 on Γ0,

Be = 0 on Γ1.

(8)

We make the change of variable

u := ev,



which transforms (1) into




L1v = f1(x, v) in Ω,

v = 0 on Γ0,
∂v

∂n
= h1(x, v) on Γ1,

(9)

where

L1v := −
N∑

i,j=1

aijDijv +
N∑

i=1

b1
i Div, (10)

with

b1
i :=


bi − 2

e

N∑

j=1

aijDje


 ,

and

f1(x, v) :=
f(x, ev)

e
, h1(x, v) :=

h(x, ev)

e
. (11)

Moreover, under the same change of variable, the problem (2) transforms into



L1v = λv in Ω,

N v = 0 on ∂Ω,
(12)

where

N v :=





v on Γ0,
∂v

∂n
on Γ1,

and so,

σ1[L1,N ] = σ1[L,B] > 0.

From now on, we focus our attention on problem (9).

2.2. PROOF OF THEOREM 1

First observe that if f and h satisfy the conditions of Theorem 1, then the functions

f1 and h1 defined in (11) are also non-increasing in v.

Take v1 6= v2 two solutions of (9) and denote by

Ω1 := {x ∈ Ω : v1(x) > v2(x)}, and w := v1 − v2.

Then, 



L1w ≤ 0 in Ω1,

w = 0 on ∂Ω1 ∩ (Ω ∪ Γ0),
∂w

∂n
≤ 0 on ∂Ω1 ∩ Γ1.

(13)

It follows by the maximum principle (see for instance Theorem 3.5 in Gilbarg and

Trudinger [9]) that the maximum of w has to be attained on ∂Ω1 ∩ Γ1 and that in

such point ∂w/∂n > 0 (see Lemma 3.4 in Gilbarg and Trudinger [9]), which is a

contradiction with ∂w/∂n ≤ 0. 2



Remark 4 Theorem 1 is not true if σ1[L,B] < 0. Indeed, consider the logistic equa-

tion 


Lu = λu− up en Ω,

Bu = 0 en ∂Ω,
(14)

where p > 1 and λ ∈ IR. It is well-known (see Cano-Casanova [6]) that (14) possesses

the trivial solution u ≡ 0 for all λ ∈ IR and for λ > σ1[L,B] possesses another positive

solution. Observe that (14) can be written as

(L − λ)u = −up.

In this case f(x, u) = −up is decreasing and σ1[L − λ,B] = σ1[L,B] − λ < 0 if

λ > σ1[L,B].

2.3. PROOF OF THEOREM 3

Observe again that if f and g satisfy conditions of Theorem 3, then there exists a

function g1 ∈ C1(0, +∞)∩C0([0, +∞)) such that f1, h1 and g1 satisfy also conditions

of Theorem 3.

1. Assume (6) and let v a positive solution of (9). The change of variable

w :=
∫ v

0

1

g1(t)
dt (15)

transforms (9) into




L1w =
f1(x, k(w))

g1(k(w))
+ g′1(k(w))

N∑

i,j=1

aijDiwDjw in Ω,

w = 0 on Γ0,
∂w

∂n
=

h1(x, k(w))

g1(k(w))
on Γ1,

(16)

where

v = k(w), (17)

and k satisfies, from (15), that k′(t) = g1(k(t)).

Assume that there exist two positive solutions v1 6= v2 of (9). Denote

Ω1 := {x ∈ Ω : v1(x) > v2(x)} and Φ := w1 − w2,

where vi = k(wi) i = 1, 2. Observe that Φ > 0 in Ω1 thanks to the monotony

of k. We have that in Ω1

L1Φ =

(
f1(x, k(w1))

g1(k(w1))
− f1(x, k(w2))

g1(k(w2))

)
+

+


g′1(k(w1))

N∑

i,j=1

aijDiw1Djw1 − g′1(k(w2))
N∑

i,j=1

aijDiw2Djw2


 ,

(18)



Φ = 0 on ∂Ω1 ∩ (Ω ∪ Γ0), (19)

and
∂Φ

∂n
=

h1(x, k(w1))

g1(k(w1))
− h1(x, k(w2))

g1(k(w2))
on ∂Ω1 ∩ Γ1. (20)

Observe that,

g′1(k(w1))
N∑

i,j=1

aijDiw1Djw1 − g′1(k(w2))
N∑

i,j=1

aijDiw2Djw2 =

g′1(k(w1))
N∑

i,j=1

aijDj(w1 + w2)DiΦ + [g′1(k(w1))− g′1(k(w2))]
N∑

i,j=1

aijDiw2Djw2.

Moreover, thanks to that g′1 is non-increasing and that L is uniformly elliptic,

it follows that

[g′1(k(w1))− g′1(k(w2))]
N∑

i,j=1

aijDiw2Djw2 ≤ 0.

Thus, we get from (18)− (20) that




L2Φ ≤ 0 in Ω1,

Φ = 0 on ∂Ω1 ∩ (Ω ∪ Γ0),
∂Φ

∂n
≤ 0 on ∂Ω1 ∩ Γ1,

(21)

where

L2Φ := −
N∑

i,j=1

aijDijΦ +
N∑

i=1


b1

i − g′(k(w1))
N∑

j=1

aijDj(w1 + w2)


 DiΦ.

It suffices to apply again the strong maximum principle.

2. Assume now (7) and that there exist two strictly positive solutions v1 6= v2 of

(9) with vi ∈ int(P ), i = 1, 2 . Let Ω1 := {x ∈ Ω : v1(x) > v2(x)}. We define

now for x ∈ Ω1

Φ(x) :=
∫ v1(x)

v2(x)

1

g1(t)
dt.

First, observe that

Φ = 0 on ∂Ω1 ∩ (Ω ∪ Γ0).

Indeed, for x ∈ ∂Ω1 ∩ Ω it is clear that Φ(x) = 0. For x ∈ Ω1 we have that for

some ξ(x) with v2(x) ≤ ξ(x) ≤ v1(x)

Φ(x) =
v1(x)− v2(x)

g1(ξ(x))
≤ Cdist(x)

g1(ξ(x))
→ 0,

as dist(x) → 0, where dist(x) = dist(x, ∂Ω) thanks to (7). Hence Φ = 0 on

∂Ω1 ∩Γ0. Now, the proof follows as the case a) (see Proposition 2.2 in Delgado

and Suárez [8]). 2



3. PROOF OF THEOREM 2

First, observe that if u is a positive solution of (1) then u is strictly positive. Indeed,

since u ≤ ‖u‖∞, it follows that

f(x, u)

u
≥ f(x, ‖u‖∞)

‖u‖∞ := −K1,
h(x, u)

u
≥ h(x, ‖u‖∞)

‖u‖∞ := −K2.

Take M > max{0, K1, K2,−σ1[L,B]}. Then, (1) is equivalent to

Lu + Mu = f(x, u) + Mu > 0 in Ω, Bu + Mu = h(x, u) + Mu > 0 in ∂Ω.

Moreover, thanks to the monotonicity properties of the principal eigenvalue (see

Proposition 3.5 in Cano-Casanova and López-Gómez [7]), we get that

σ1[L+ M,B + M ] > σ1[L+ M,B] = M + σ1[L,B] > 0,

and so, the strong maximum principle (for instance Theorem 2.1 in Cano-Casanova

and López-Gómez [7]) concludes that u À 0.

Take two positive solutions u1 6= u2 of (1) and define

w := u1 − u2.

Since u1 is a strictly positive solution of (1), then

σ1[L − f(x, u1)

u1

,B − h(x, u1)

u1

] = 0. (22)

It is not hard to show that

Lw − F (x)w = 0 in Ω, Bw −H(x)w = 0 on ∂Ω, (23)

where

F (x) :=





f(x, u1)− f(x, u2)

u1 − u2

u1 6= u2,

D2f(x, u1) u1 = u2,
H(x) :=





h(x, u1)− h(x, u2)

u1 − u2

u1 6= u2,

D2h(x, u1) u1 = u2.

Hence, from (23) it follows that 0 is an eigenvalue of the operator L − F under

homogeneous boundary condition B −H, that is

0 = σj[L − F,B −H], for some j ≥ 1.

On the other hand, thanks to (3), it follows that

F (x) ≤ f(x, u1)

u1

and H(x) ≤ h(x, u1)

u1

,

and one of the inequalities strict. Thus,

0 = Re(σj[L − F,B −H]) ≥ σ1[L − F,B −H] > σ1[L − f(x, u1)

u1

,B − h(x, u1)

u1

] = 0,

a contradiction. 2



Remark 5 If instead of (3), we assume that both maps are non-decreasing, we can

conclude that if u1 and u2 are ordered, then u1 = u2.

4. THE LINEAR PROBLEM

In this section we give a result of existence and uniqueness of a linear problem.

Proposition 6 Assume that σ1[L,B] > 0, (f, g, h) ∈ Cα(Ω) × C1,α(Γ0) × C1,α(Γ1),

such that f, g, h ≥ 0 and some of the inequalities strict. Then, there exists a unique

strictly positive solution of the linear problem




Lu = f(x) in Ω,

u = g(x) on Γ0,

Bu = h(x) on Γ1.

(24)

Proof: Since Ω is smooth, there exists (see López-Gómez [11], Proposition 3.4) ψ ∈
C2,α(Ω) and a constant γ > 0 such that

∂ψ

∂n
≥ γ > 0 on Γ1. (25)

We make the following change of variable

u := eMψv. (26)

Under this change, (24) transforms into





LMv = fM(x) in Ω,

v = gM(x) on Γ0,

BMv = hM(x) on Γ1,

(27)

where

fM = fe−Mψ, gM = ge−Mψ, hM = he−Mψ,

LMv := −
N∑

i,j=1

aijDijv +
N∑

i=1

bM
i Div + cM(x)v, BMv :=

∂v

∂n
+ bM(x)v,

and

bM
i :=


bi − 2M

N∑

j=1

aijDjψ


 , bM := (b(x) + M

∂ψ

∂n
),

cM := c(x) + M
N∑

i=1

biDiψ −M
N∑

i,j=1

aijDijψ −M2
N∑

i,j=1

aijDiψDjψ.

On the other hand, (2) transforms into



LMv = λv in Ω,

BMv = 0 on ∂Ω,
(28)



and so,

σ1[L,B] = σ1[LM ,BM ].

Thanks to (25), we can take M > 0 large enough such that

bM ≥ 0.

Now, we focus our attention on solving (27). Take a regular function K(x) such that

K(x) > max{cM(x), 0}

and consider the unique positive solution (which exists because bM , K ≥ 0, see Gilbarg

and Trudinger [9], Theorem 6.1) of




(L0 + K(x))w = fM(x) in Ω,

w = gM(x) on Γ0,

BMw = hM(x) on Γ1,

(29)

where

L0w := −
N∑

i,j=1

aijDijw +
N∑

i=1

bM
i Diw.

Now, it is evident that a solution v of (27) can be written as v = z+w with z solution

of 



LMz = f1(x) := [K(x)− cM(x)]w > 0 in Ω,

z = 0 on Γ0,

BMz = 0 on Γ1.

(30)

So, it remains to show that (30) possesses a unique positive solution, for that we are

going to use the classical Riesz Theory. Observe that LMz = f1(x) is equivalent to

(LM +R)z−Rz = f1(x) ⇐⇒ 1

R
z− (LM +R)−1z = f2(x) := (LM +R)−1(

f1(x)

R
) ≥ 0,

where R is a positive constant sufficiently large so that σ1[LM + R,BM ] > 0, and

so there exists the inverse of LM + R under homogeneous boundary condition BM .

Denoting r(T ) the spectral radius of a linear operator T , we get that

1

R
> r((LM + R)−1) =

1

σ1[LM + R,BM ]
=

1

σ1[LM ,BM ] + R
,

thanks to σ1[LM ,BM ] > 0. It now suffices to apply Theorem 3.2 of Amann [2] and

the result concludes. 2
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