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0 ON IRREGULAR BINOMIAL D–MODULES

MARÍA-CRUZ FERNÁNDEZ-FERNÁNDEZ AND FRANCISCO-JEŚUS CASTRO-JIḾENEZ

Tuesday 18th June, 2013

ABSTRACT. We prove that a holonomic binomialD–moduleMA(I, β) is regular if and only if
certain associated primes ofI determined by the parameter vectorβ ∈ Cd are homogeneous.
We further describe the slopes ofMA(I, β) along a coordinate subspace in terms of the known
slopes of some related hypergeometricD–modules that also depend onβ. When the parameter
β is generic, we also compute the dimension of the generic stalk of the irregularity ofMA(I, β)
along a coordinate hyperplane and provide some remarks about the construction of its Gevrey
solutions.

1. INTRODUCTION

BinomialD-modules have been introduced by A. Dickenstein, L.F. Matusevich and E. Miller in
[DMM10]. These objects generalize both GKZ hypergeometricD-modules [GGZ87, GZK89]
and (binomial) Horn systems, as treated in [DMM10] and [Sai02].
HereD stands for the complex Weyl algebra of ordern, wheren ≥ 0 is an integer. Elements in
D are linear partial differential operators; such an operator P can be written as a finite sum

P =
∑

α,γ

pαγx
α∂γ

wherepαγ ∈ C, α = (α1, . . . , αn), γ = (γ1, . . . , γn) ∈ Nn and xα = xα1

1 · · ·xαn
n , ∂γ =

∂γ1
1 · · ·∂γn

n . The partial derivative∂
∂xi

is just denoted by∂i.
Our input is a pair(A, β) whereβ is a vector inCd andA = (aij) ∈ Zd×n is a matrix whose
columnsa1, . . . , an span theZ-moduleZd. We also assume that allai 6= 0 and that the cone
generated by the columns inRn contains no lines (one says in this case that this cone ispointed).
The polynomial ringC[∂] := C[∂1, . . . , ∂n] is a subring of the Weyl algebraD. The matrixA
induces aZd-grading onC[∂] (also called theA-grading) by definingdeg(∂i) = −ai.
A binomial inC[∂] is a polynomial with at most two monomial terms. An idealI in C[∂] is said
to be binomial is it is generated by binomials. We also say that the idealI is anA-graded ideal
if it is generated byA-homogenous elements (equivalently if for every polynomial in I all its
A-graded components are also inI).
The matrixA also induces aZd-grading on the Weyl algebraD (also called theA-grading) by
definingdeg(∂i) = −ai anddeg(xi) = ai.
To the matrixA one associates the toric idealIA ⊂ C[∂] generated by the family of binomials
∂u − ∂v whereu, v ∈ Nn andAu = Av. The idealIA is a primeA-graded ideal.
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Recall that to the pair(A, β) one can associate the GKZ hypergeometric ideal

HA(β) = DIA +D(E1 − β1, . . . , Ed − βd)

whereEi =
∑n

j=1 aijxj∂j is the ith Euler operator associated withA. The corresponding
GKZ hypergeometricD–module is nothing but the quotient (left)D–moduleMA(β) :=

D
HA(β)

,
[GGZ87], [GZK89].
Following [DMM10], for anyA–graded binomial idealI ⊂ C[∂] we denote byHA(I, β) the
A-graded left ideal inD defined by

HA(I, β) = DI +D(E1 − β1, . . . , Ed − βd).

The binomialD–module associated with the triple(A, β, I) is, by definition, the quotient
MA(I, β) := D

HA(I,β)
. Notice that the idealHA(IA, β) is nothing but the GKZ hypergeomet-

ric idealHA(β).
In [DMM10] the authors have answered essential questions about binomialD–modules. The
main treated questions are related to the holonomicity of the systems and to the dimension of
their holomorphic solution space around a non singular point. In particular, in [DMM10, The-
orem 6.3] they prove that the holonomicity ofMA(I, β) is equivalent to regular holonomicity
whenI is standardZ-graded (i.e., the row-span ofA contains the vector(1, . . . , 1)). However,
it turns out that the final sentence in [DMM10, Theorem 6.3], stating that the regular holo-
nomicity ofMA(I, β) for a given parameterβ implies standard homogeneity of the idealI, is
true for binomial Horn systems but it is not for general binomial D–modules. This is shown by
Examples 3.10 and 3.11.
These two Examples are different in nature. More precisely,the systemMA(I, β) considered in
Example 3.10 is regular holonomic for parametersβ outside a certain line in the affine complex
plane and irregular otherwise, while the system consideredin Example 3.11 is regular holo-
nomic for all parameters despite the fact that the binomial ideal I is not homogeneous with
respect to the standardZ–grading. This is a surprising phenomenon since it is not allowed
neither for GKZ hypergeometric systems nor for binomial Horn systems.
We further provide, in Theorem 3.7, a characterization of the regular holonomicity of a system
MA(I, β) that improves the above mentioned result of [DMM10, Th. 6.3].
A central question in the study of the irregularity of a holonomicD-moduleM is the compu-
tation of its slopes along smooth hypersurfaces (see [Meb90] and [LM99]). On the other hand,
the Gevrey solutions ofM along smooth hypersurfaces are closely related with the irregularity
and the slopes ofM . More precisely, the classes of these Gevrey series solutions ofM modulo
convergent series define the 0-th cohomology group of the irregularity ofM [Meb90, Définition
6.3.1].
In Section 4 we describe theL–characteristic variety and the slopes ofMA(I, β) along coordi-
nate subspaces in terms of the same objects of the binomialD–modules associated with some of
thetoral primes of the idealI determined byβ (see Theorem 4.3). The binomialD–module as-
sociated with a toral prime is essentially a GKZ hypergeometric system and theL–characteristic
variety and the slopes along coordinate subspaces of such a system are completely described in
[SW08] in a combinatorial way (see also [CT03] and [Har03, Har04] for the casesd = 1 and
n = d+ 1).
Gevrey solutions of hypergeometric systems along coordinate subspaces are described in [Fer10]
(see also [FC11], [FC08]). In Section 5 we compute the dimension of the generic stalk of the
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irregularity of binomialD-modules when the parameter is generic (see Theorem 5.1). Wefi-
nally give a procedure to compute Gevrey solutions ofMA(I, β) by using known results in the
hypergeometric case ([GZK89], [SST00] and [Fer10]).
We are grateful to Ezra Miller for his useful suggestions andcomments.

2. PRELIMINARIES ON EULER–KOSZUL HOMOLOGY, BINOMIAL PRIMARY

DECOMPOSITION AND TORAL ANDANDEAN MODULES

We review here some definitions, notations and results of [ES96], [MMW05], [DMM10] and
[DMM 210] that will be used in the sequel.
We will denoteR = C[∂]. Recall that theA–grading on the ringR is defined bydeg(∂j) = −aj
whereaj is thejth-column ofA. ThisA–grading onR can be extended to the ringD by setting
deg(xj) = aj .

Definition 2.1. [DMM10, Definition 2.4] LetV = ⊕α∈ZdVα be anA-gradedR-module. The
set of true degrees ofV is

tdeg(V ) = {α ∈ Zd : Vα 6= 0}
The set of quasidegrees ofV is the Zariski closure inCd of tdeg(V ).

Euler-Koszul complexK•(E − β;V ) associated with anA-gradedR–moduleV .
For anyA–graded leftD–moduleN = ⊕α∈ZdNα we denotedegi(y) = αi if y ∈ Nα.
The mapEi − βi : Nα → Nα defined by(Ei − βi)(y) = (Ei − βi − αi)y can be extended (by
C–linearity) to a morphism of leftD–modulesEi − βi : N → N . We denote byE − β the
sequence of commuting endomorphismsE1 − β1, . . . , Ed − βd. This allows us to consider the
Koszul complexK•(E − β,N) which is concentrated in homological degreesd to 0.

Definition 2.2. [MMW05, Definition 4.2] For anyβ ∈ Cd and anyA-gradedR–moduleV ,
the Euler-Koszul complexK•(E − β, V ) is the Koszul complexK•(E − β,D ⊗R V ). Theith

Euler-Kozsul homology ofV , denoted byHi(E − β, V ), is the homologyHi(K•(E − β, V )).

Remark 2.3. Recall that we have theA–graded isomorphismHi(E−β, V )(α) ≃ Hi(E−β+
α, V )(α) for all α ∈ Zd [MMW05]. HereV (α) is nothing butV with the shiftedA–grading
V (α)γ = Vα+γ for all γ ∈ Zd.

Binomial primary decomposition for binomial ideals.
We recall from [ES96] that for any sublatticeΛ ⊂ Zn and any partial characterρ : Λ → C∗, the
corresponding associated binomial ideal is

Iρ = 〈∂u+ − ρ(u)∂u− | u = u+ − u− ∈ Λ〉
whereu+ andu− are inNn and they have disjoint supports. The idealIρ is prime if and only if
Λ is a saturated sublattice ofZn (i.e.Λ = QΛ ∩ Zn). We know from [ES96, Corollary 2.6] that
any binomial prime ideal inR has the formIρ,J := Iρ+mJ (wheremJ = 〈∂j | j 6∈ J〉) for some
partial characterρ whose domain is a saturated sublattice ofZJ and someJ ⊂ {1, . . . , n}.
For anyJ ⊂ {1, . . . , n} we denote by∂J the monomial

∏

j∈J ∂j .

Theorem 2.4. [DMM 210, Theorem 3.2]Fix a binomial idealI in R. Each associated binomial
primeIρ,J has an explicitly defined monomial idealUρ,J such that

I =
⋂

Iρ,J∈Ass(I)

Cρ,J
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for Cρ,J = ((I + Iρ) : ∂
∞
J ) + Uρ,J , is a primary decomposition ofI as an intersection ofA–

graded primary binomial ideals.

Toral and Andean modules.
In [DMM 210, Definition 4.3] a finitely generatedA-gradedR–moduleV = ⊕Vα is said to be
toral if its Hilbert functionHV (defined byHV (α) = dimC Vα for α ∈ Zd) is bounded above.
With the notations above, aR–module of typeR/Iρ,J is toral if and only if its Krull dimension
equals the rank of the matrixAJ (see [DMM10, Lemma 3.4]). HereAJ is the submatrix ofA
whose columns are indexed byJ . In this case the moduleR/Cρ,J is toral and we say that the
idealIρ,J is a toral prime andCρ,J is a toral primary component.
If dim(R/Iρ,J) 6= rank (AJ) then the moduleR/Cρ,J is said to beAndean, the idealIρ,J is an
Andeanprime andCρ,J is anAndeanprimary component.
An A–gradedR–moduleV is said to benatively toralif there exist a binomial toral prime ideal
Iρ,J and an elementα ∈ Zd such thatV (α) is isomorphic toR/Iρ,J asA–graded modules (see
[DMM10, Definition 4.1]).

Proposition 2.5. [DMM10, Proposition 4.2]AnA–gradedR–moduleV is toral if and only if
it has a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vℓ−1 ⊂ Vℓ = V

whose successive quotientsVk/Vk−1 are all natively toral.

Such a filtration onV is called atoral filtration.
Following [DMM10, Definition 5.1] anA-gradedR-moduleV is said to benatively Andeanif
there is anα ∈ Zd and an Andean quotient ringR/Iρ,J over whichV (α) is torsion-free of rank
1 and admits aZJ/Λ-grading that refines theA-grading viaZJ/Λ → Zd = ZA, whereρ is
defined onΛ ⊂ ZJ . Moreover, ifV has a finite filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vℓ−1 ⊂ Vℓ = V

whose successive quotientsVk/Vk−1 are all natively Andean, thenV is Andean (see [DMM10,
Section 5]).
In [DMM 210, Example 4.6] it is proven that the quotientR/Cρ,J is Andean for any Andean
primary componentCρ,J of anyA-graded binomial ideal.
We finish this section with the definition and a result about the so-calledAndean arrangement
associated with anA-graded binomial idealI in R. Let us fix an irredundant primary decom-
position

I =
⋂

Iρ,J∈Ass(I)

Cρ,J

as in Theorem 2.4.

Definition 2.6. [DMM10, Definition 6.1] The Andean arrangementZAndean(I) is the union of
the quasidegree setsqdeg(R/Cρ,J) for the Andean primary componentsCρ,J of I.

From [DMM10, Lemma 6.2] the Andean arrangementZAndean(I) is a union of finitely many
integer translates of the subspacesCAJ ⊂ Cn for which there is an Andean associated prime
Iρ,J .
From [DMM10, Theorem 6.3] we have that the binomialD–moduleMA(I, β) is holonomic if
and only if−β /∈ ZAndean(I).
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3. CHARACTERIZING REGULAR HOLONOMIC BINOMIAL D–MODULES

Let I be anA–graded binomial ideal and fix a binomial primary decomposition I = ∩ρ,JCρ,J

whereCρ,J is aIρ,J–primary binomial ideal.
Let us consider the ideal

Iβ :=
⋂

−β∈qdeg(R/Cρ,J )

Cρ,J

i.e., the intersection of all the primary componentsCρ,J of I such that−β lies in the quaside-
grees set of the moduleR/Cρ,J .

Remark 3.1. Notice that if−β /∈ ZAndean(I) thenR/Iβ is contained in the toral direct sum
⊕

−β∈qdeg(R/Cρ,J )

R/Cρ,J

and so it is a toral module.

The following result generalizes [DMM10, Proposition 6.4].

Proposition 3.2. If −β /∈ ZAndean(I) then the natural surjectionR/I ։ R/Iβ induces a
isomorphism in Euler–Koszul homology

Hi(E − β,R/I) ≃ Hi(E − β,R/Iβ)

for all i. In particular,MA(I, β) ≃ MA(Iβ, β).

Proof. By [DMM10, Proposition 6.4] we have that

Hi(E − β,R/I) ≃ Hi(E − β,R/Itoral)

for all i, whereItoral denotes the intersection of all the toral primary components ofI. Thus, we
can assume without loss of generality that all the primary components ofI are toral. The rest of
the proof is now analogous to the proof of [DMM10, Proposition 6.4] if we substitute the ideals
Itoral andIAndean there by the idealsIβ andIβ respectively, where

Iβ =
⋂

−β/∈qdeg(R/Cρ,J )

Cρ,J ,

and the Andean direct sum
⊕

Iρ,JAndean R/Cρ,J there by the toral direct sum
⊕

−β /∈qdeg(R/Cρ,J )

R/Cρ,J

Finally, we can use Lemma 4.3 and Theorem 4.5 in [DMM10] in a similar way as [DMM10,
Lemma 5.4] is used in the proof of Proposition 6.4 of [DMM10]. �

The following Lemma gives a description of the quasidegreesset of a toral module of type
R/Cρ,J . E. Miller has pointed out that this result follows from Proposition 2.13 and Theorem
2.15 in [DMM210]. We will include here a slightly different proof of this Lemma.

Lemma 3.3. For anyIρ,J–primary toral idealCρ,J the quasidegrees set ofM = R/Cρ,J equals
the union of at mostµρ,J Zd–graded translates ofCAJ , whereµρ,J is the multiplicity ofIρ,J
in Cρ,J . More precisely, for any toral filtration0 = M0 ⊆ M1 ⊆ · · · ⊆ M we have that
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the quasidegrees set ofM is the union of the quasidegrees set of all the successive quotients
Mi/Mi−1 that are isomorphic toZd–graded translates ofR/Iρ,J .

Proof. SinceM is toral we have by [DMM10, Lemma 4.7] thatdim(qdeg(M)) = dimM =
rank AJ . SinceCρ,J is primary, any zero-divisor ofM is nilpotent. For allj ∈ J we have that
∂m
j /∈ Cρ,J ⊆ Iρ+mJ and so∂j is not a zero-divisor inM for all j ∈ J . Thus, the true degrees set

of M verifiestdeg(M) = tdeg(M) − NAJ . This and the fact thatdim(qdeg(M)) = rank AJ

imply that there existsα1, . . . , αr ∈ Zd such thattdeg(M) = ∪r
i=1(αi − NAJ) and

(3.1) qdeg(M) =
r
⋃

i=1

(αi + CAJ)

Consider now a toral filtration0 = M0 ⊆ M1 ⊆ · · · ⊆ M . We know that there are ex-
actly µρ,J different values ofi such thatMi/Mi−1 ≃ R/Iρ,J(γi) for someγi ∈ Zd. For the
other successive quotientsMl/Ml−1 ≃ R/Iρl,Jl(γl) we have thatIρl,Jl is a toral prime which
properly containsIρ,J . In particular, we have thatrank AJl = dimR/Iρl,Jl < dimR/Iρ,J =
rank AJ . Sinceqdeg(R/Iρl,Jl) = CAJl has dimensionrank AJl < rank AJ andqdeg(M) =
⋃

i qdeg(Mi/Mi−1) we have by (3.1) that the quasidegrees set of anyMi/Mi−1 is contained in
the quasidegrees set of someMj/Mj−1 ≃ R/Iρ,J(γj). In particularr ≤ µρ,J and each affine
subspace(αi + CAJ) in (3.1) is the quasidegrees set of someMj/Mj−1 ≃ R/Iρ,J(γj). �

Remark 3.4. Notice thatHA(Iρ,J , β) = DHAJ
(Iρ, β) +D(∂j : j /∈ J). In addition, ifIρ,J is

toral then theDJ–moduleMAJ
(Iρ, β) is isomorphic to the hypergeometric systemMAJ

(β) via
anA–graded isomorphism ofDJ–modules induced by rescaling the variablesxj , j ∈ J , using
the characterρ. Thus we can apply most of the well-knows results for hypergeometric systems
to MA(Iρ,J , β) (with Iρ,J a toral prime) in an appropriated form.

Lemma 3.5. If Iρ,J is toral and−β ∈ qdeg(R/Iρ,J) the following conditions are equivalent:

i) Hi(E − β,R/Iρ,J) is regular holonomic for alli.
ii) H0(E − β,R/Iρ,J) is regular holonomic.
iii) Iρ,J is homogeneous (equivalentlyAJ is homogeneous).

Proof. i) ⇒ ii) is obvious,ii) ⇒ iii) follows straightforward from [SW08, Corollary 3.16]
andiii) ⇒ i) is a particular case of the last statement in [DMM10, Theorem4.5] and it also
follows from [Hot98, Ch. II, 6.2, Thm.]. �

Remark 3.6. Recall from [DMM10, Theorem 4.5] that for any toral moduleV we have that
−β /∈ qdegV if and only if H0(E − β, V ) = 0 if and only if Hi(E − β, V ) = 0 for all i. In
particular, since theD–module0 is regular holonomic it follows that conditions i) and ii) in
Lemma 3.5 are also equivalent without the condition−β ∈ qdeg(R/Iρ,J).

Theorem 3.7. Let I ⊆ R be anA-graded binomial ideal such thatMA(I, β) is holonomic
(equivalently,−β /∈ ZAndean(I)). The following conditions are equivalent:

i) Hi(E − β,R/I) is regular holonomic for alli.
ii) MA(I, β) is regular holonomic.
iii) All the associated toral primesIρ,J of I such that−β ∈ qdeg(R/Cρ,J) are homoge-

neous.
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Proof. The implicationi) ⇒ ii) is obvious. Let us proveii) ⇒ iii). For any toral primary
componentCρ,J of I we haveI ⊆ Cρ,J and so there is a natural epimorphismMA(I, β) ։

MA(Cρ,J , β). SinceMA(I, β) is regular holonomic thenMA(Cρ,J , β) is also regular holonomic.
Take a toral filtration ofM = R/Cρ,J , 0 ⊆ M1 ⊆ · · · ⊆ Mr = M . We claim that

(3.2) Hj(E − β,Mi/Mi−1) andH0(E − β,Mi−1) are regular holonomic

for all i, j.
Let us prove (3.2) by decreasing induction oni. For i = r, we have a surjection from the
regular holonomicD–moduleH0(E − β,Mr) = MA(Cρ,J , β) to H0(E − β,Mr/Mr−1) and
so it is regular holonomic too. By Remark 2.3, Lemma 3.5 and Remark 3.6 we have that the
D-moduleHj(E − β,Mr/Mr−1) is regular holonomic for allj. Since

H1(E − β,Mr/Mr−1) −→ H0(E − β,Mr−1) −→ H0(E − β,Mr)

is exact we have thatH0(E − β,Mr−1) is regular holonomic.
Assume that (3.2) holds for somei = k + 1 ≤ r and for allj. We consider the exact sequence

0 −→ Mk−1 −→ Mk −→ Mk/Mk−1 −→ 0

and the following part of the long exact sequence of Euler-Koszul homology

(3.3) · · · H1(E−β,Mk/Mk−1) → H0(E−β,Mk−1) → H0(E−β,Mk) ։ H0(E−β,Mk/Mk−1).

By induction hypothesisH0(E − β,Mk) is regular holonomic. This implies thatH0(E −
β,Mk/Mk−1) is regular holonomic by (3.3). Applying Remark 2.3, Lemma 3.5 and Remark
3.6 we have thatHj(E − β,Mk/Mk−1) is regular holonomic for allj. Thus, by (3.3) we have
thatH0(E − β,Mk−1) is regular holonomic too and we have finished the induction proof of
(3.2).
Assume that−β ∈ qdeg(R/Cρ,J). By Lemma 3.3 there existsi such that−β lies in the
quasidegrees set ofMi/Mi−1 ≃ R/Iρ,J(γi) and we also have by (3.2) that

H0(E − β,Mi/Mi−1) ≃ H0(E − β + γi, R/Iρ,J)(γi)

is a nonzero regular holonomicD-module. Thus, by Lemma 3.5 we have thatIρ,J is homoge-
neous.
Let us proveiii) ⇒ i). By Proposition 3.2 we just need to prove thatMA(Iβ, β) is regular
holonomic. We have that all the associated primes ofIβ are toral and homogeneous. In par-
ticularM = R/Iβ is a toral module and for any toral filtration ofM the successive quotients
Mi/Mi−1 are isomorphic to someZd–graded translate of a quotientR/Iρi,Ji whereIρi,Ji is toral
and contains a minimal primeIρ,J of Iβ. Such minimal prime is homogeneous by assumption
and soAJ is homogeneous. SinceJi ⊆ J we have thatAJi andIρi,Ji are homogeneous too.
Now, we just point out that that the proof of the last statement in [DMM10, Theorem 4.5] still
holds forV = M if we don’t requireA to be homogenous but all the primes occurring in a toral
filtration ofM to be homogeneous.

�

Remark 3.8. Theorem 3.7 shows in particular that the property of a binomialD-moduleMA(I, β)
of being regular (holonomic) can fail to be constant when−β runs outside the Andean arrange-
ment. This phenomenon is forbidden to binomial Horn systemsMA(I(B), β) (see [DMM10,
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Definition 1.5]) since the inclusionI(B) ⊆ IA induces a surjective morphism

H0(E − β, I(B)) ։ MA(β)

and then regular holonomicity ofH0(E − β,R/I(B)) implies regular holonomicity ofMA(β),
which is equivalent to the standard homogeneity ofIA by [Hot98, SST00, SW08].

Definition 3.9. The non-regular arrangement ofI (denoted byZnon−regular(I)) is the union of
the Andean arrangement ofI and the union of quasidegrees sets of the quotients ofR by primary
componentsCρ,J of I such thatIρ,J is not homogeneous with respect to the standard grading.
So, we have

Znon−regular(I) = ZAndean(I) ∪





⋃

Iρ,J non homogeneous

qdeg(R/Cρ,J)



 .

Example 3.10.Consider the idealI = 〈∂2
1∂2 − ∂2

2 , ∂2∂3, ∂2∂4, ∂
2
1∂3 − ∂2

3∂4, ∂
2
1∂4 − ∂3∂

2
4〉. It is

A-graded for the matrix

A =

(

1 2 2 0
1 2 0 2

)

but I is not standardZ-graded. We have the prime decompositionI = I1 ∩ I2 ∩ I3 where
I1 = 〈∂2, ∂3, ∂4〉, I2 = 〈∂2

1 − ∂2, ∂3, ∂4〉 and I3 = 〈∂2, ∂2
1 − ∂3∂4〉 are toral primes ofI.

In particularZAndean(I) = ∅) and by the proof of [DMM10, Proposition 6.6] we have that
Zprimary(I) = {0} (see [DMM10, Definition 6.5] for the definition of the primaryarrangement
Zprimary(I)).
Using [DMM10, Theorem 6.8] we have thatMA(I, β) is isomorphic to the direct sum of
MA(Ij, β) for j = 1, 2, 3 if β 6= 0. Moreover,qdeg(R/Ij) = C

(

1
1

)

for j = 1, 2 and
qdeg(R/I3) = C2. Thus, for generic parameters (more precisely forβ ∈ C2 \ C

(

1
1

)

) we
have thatMA(I, β) is isomorphic toMA(I3, β) that is a regular holonomic by Lemma 3.5.
On the other hand, there is a surjective morphism fromMA(I, β) toMA(I2, β) and ifβ ∈ C

(

1
1

)

we have thatMA(I2, β) is an irregularD-module becauses = 2 is a slope alongx2 = 0.
Thus we conclude thatMA(I, β) is regular holonomic ifβ ∈ C2 \ C

(

1
1

)

and it is an irregular
holonomicD-module whenβ ∈ C

(

1
1

)

. In particular,Znon−regular(I) = C
(

1
1

)

⊂ C2. It can also
be checked that the singular locus ofMA(I, β) is {x1x2x3x4(x

2
1−4x3x4) = 0} whenβ ∈ C

(

1
1

)

and{x3x4(x
2
1 − 4x3x4) = 0} otherwise.

Example 3.11.The primary binomial idealI = 〈∂1 − ∂2, ∂
4
3 , ∂

3
4 , ∂

3
3 − ∂2

4〉 is A–graded with
respect to the matrixA = (1 1 2 3). Note thatI is not homogeneous with respect to the
standardZ-grading. However, its radical ideal

√
I = 〈∂1 − ∂2, ∂3, ∂4〉 is homogeneous. Thus,

by Theorem 3.7 we have thatMA(I, β) is regular holonomic.

4. L–CHARACTERISTIC VARIETY AND SLOPES OF BINOMIALD–MODULES

Let L be the filtration onD defined by a weight vector(u, v) ∈ R2n with ui + vi = c > 0 for
some constantc > 0.
This includes in particular the intermediate filtrationspF + qV between the filtrationF by
the order of the linear differential operators and the Kashiwara-Malgrange filtrationV along
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a coordinate subspace. The filtrationspF + qV are the ones considered when studying the
algebraic slopes of a coherentD–module along a coordinate subspace [LM99].
We will consider theL–characteristic varietyChL(N) of a finitely generatedD–moduleN on
Cn defined as the support ofgrL N in T ∗Cn (see e.g. [Lau87], [SW08, Definition 3.1]). We
recall that in fact forL = pF + qV this is a global algebraic version of Laurent’s microcharac-
teristic variety of types = p/q + 1 [Lau87,§3.2] (see also [SW08, Remark 3.3]).
The L-characteristic variety and the slopes of a hypergeometricD-moduleMA(β) are con-
trolled by the so-called(A,L)–umbrella [SW08]. Let us recall its definition in the specialcase
whenvi > 0 for all i. We denote by∆L

A the convex hull of{0, aL1 , . . . , aLn} whereaLj = 1
vj
aj .

The(A,L)-umbrella is the setΦL
A of faces of∆L

A which do not contain 0. The empty face is in
ΦL

A. One identifiesτ ∈ ΦL
A with {j|aLj ∈ τ}, or with {aj |aLj ∈ τ}, or with the corresponding

submatrixAτ of A.
By [SW08, Corollary 4.17] theL-characteristic variety of a hypergeometricD–moduleMA(β)
is

(4.1) ChL(MA(β)) =
⋃

τ∈ΦL
A

Cτ
A

whereCτ
A is the Zariski closure inT ∗Cn of the conormal space to the orbitOτ

A ⊂ T ∗
0C

n = Cn

corresponding to the faceτ . In particularChL(MA(β)) is independent ofβ. By definition we
have the equalityOτ

A := (C∗)d · 1τ
A where1τ

A ∈ Nn is defined by(1τ
A)j = 1 if j ∈ τ and

(1τ
A)j = 0 otherwise. The action of the torus is given with respect to the matrixA. If the

filtration given byL equals theF -filtration (i.e. the order filtration) then this description of the
F–characteristic variety coincides with a result of [Ado94,Lemmas 3.1 and 3.2].

Proposition 4.1. If M is a Iρ,J–coprimary toral module and−β ∈ qdeg(M) then theL–
characteristic variety ofH0(E − β,M) is theL–characteristic variety ofMA(Iρ,J , 0). In par-
ticular, the set of slopes ofH0(E − β,M) along a coordinate subspace inCn coincide with the
ones ofMA(Iρ,J , 0).

Proof. SinceM is Iρ,J–coprimary there existsm ≥ 0 such thatImρ,J annihilatesM . Consider a
set ofA–homogeneous elementsm1, . . . , mk ∈ M generatingM asR–module. This leads to a
naturalA–graded surjection

⊕k
i=1R/Imρ,J(− deg(mi)) ։ M . In particular, there is a surjective

morphism ofD-modules

k
⊕

i=1

H0(E − β,R/Imρ,J(− deg(mi))) ։ H0(E − β,M)

inducing the inclusion:

ChL(H0(E − β,M)) ⊆ V(inL(I
m
ρ,J), Axξ) = V(inL(Iρ), AJxJξJ , ξj : j /∈ J).

Here(x, ξ) stands for the coordinates in the cotangent spaceT ∗Cn, xξ = (x1ξ1, . . . , xnξn) and
V is the zero set inT ∗Cn of the corresponding ideal.
The equalityChL(MA(Iρ,J , 0)) = V(inL(Iρ), AJxJξJ , ξj : j /∈ J) follows from [SW08, (3.2.2)
and Corollary 4.17]. Thus,

(4.2) ChL(H0(E − β,M)) ⊆ ChL(MA(Iρ,J , 0))
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Let us now prove the equality

(4.3) ChL(H0(E − β,M)) = ChL(MA(Iρ,J , 0))

by induction on the lengthr of a toral filtration0 = M0 ( M1 ( · · · ( Mr = M of M .
If r = 1 we have thatM ≃ R/Iρ,J(γ) for someγ ∈ Zd and−β ∈ qdeg(M) means that
−β + γ ∈ qdeg(R/Iρ,J) = CAJ . Thus,H0(E − β,M) ≃ MA(Iρ,J , β − γ) and we have (4.3)
because theL–characteristic variety ofMA(Iρ,J , β

′) is independent ofβ ′ ∈ −qdeg(R/Iρ,J) by
the results in [SW08].
Assume by induction that we have (4.3) for all toralIρ,J–coprimary modulesM with a toral
filtration of lengthr such that−β ∈ qdeg(M).
Let M be aIρ,J–coprimary toral module with toral filtration of lengthr + 1, i.e. 0 = M0 (

M1 ⊆ · · · ( Mr+1 = M . From the exact sequence

0 −→ Mr −→ M −→ M/Mr −→ 0

we obtain the long exact sequence of Euler–Koszul homology

· · · −→ H1(E − β,M/Mr) −→ H0(E − β,Mr) −→ H0(E − β,M) −→ H0(E − β,M/Mr) −→ 0.

Now, we need to distinguish two cases.
Assume first that−β /∈ qdeg(M/Mr). Thus,Hj(E − β,M/Mr) = 0 for all j by [DMM10,
Theorem 4.5] and we have thatH0(E − β,Mr) ≃ H0(E − β,M) so they both have the same
L–characteristic variety. Notice that the fact that−β ∈ qdegM \ qdeg(M/Mr) along with
Lemma 3.3 guarantees that there exists somei ≤ r such thatMi/Mi−1 ≃ R/Iρ,J(γi). This
implies thatMr is alsoIρ,J–coprimary and we can apply the induction hypothesis.
Assume now that−β ∈ qdeg(M/Mr). In this case we still have that theL–characteristic
variety ofH0(E − β,M/Mr) is contained in theL–characteristic variety ofH0(E − β,M). If
M/Mr ≃ R/Iρ,J(γ) we have thatChL(MA(Iρ,J , 0)) ⊆ ChL(H0(E − β,M)) and using (4.2)
we get (4.3).
We are left with the case when−β ∈ qdeg(M/Mr) andM/Mr ≃ R/Iρ′,J ′(γ) with Iρ,J ( Iρ′,J ′.
This implies thatMr is alsoIρ,J–coprimary. Moreover, it is clear that−β ∈ qdeg(Mr) by
using Lemma 3.3. Thus, we have by induction hypothesis that theL–characteristic variety of
H0(E − β,Mr) is theL–characteristic variety ofMA(Iρ,J , 0).
Assume to the contrary that there exists an irreducible componentC of theL–characteristic va-
riety ofMA(Iρ,J , 0) that is not contained in theL–characteristic variety ofH0(E− β,M). This
implies thatC is not contained inChL(H0(E−β,M/Mr)), i.e. the multiplicityµL,C

A,0 (M/Mr, β)
of C in theL-characteristic cycle ofH0(E−β,M/Mr) is zero (see [SW08, Definition 4.7]). As
a consequence, the multiplicityµL,C

A,i (M/Mr, β) of C in theL-characteristic cycle ofHi(E −
β,M/Mr) is zero for alli ≥ 0 because we can use an adapted version of [SW08, Theorems
4.11 and 4.16] sinceM/Mr is a module of the formR/(IAJ′

+mJ ′)(γ) after rescaling the vari-
ables viaρ. Now, using the long exact sequence of Euler–Koszul homology and the additivity
of theL–characteristic cycle we conclude thatµL,C

A,i (M,β) = µL,C
A,i (Mr, β) for all i ≥ 0. In

particular we have thatµL,C
A,0 (M,β) > 0 and thusC is contained in theL–characteristic variety

of H0(E − β,M). We conclude that theL–characteristic variety ofMA(Iρ,J , 0) is contained in
theL–characteristic variety ofH0(E − β,M) and this finishes the induction proof. �

The following result is well known. We include a proof for thesake of completeness.
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Lemma 4.2. Let I1, . . . , Ir be a sequence of ideals inR andω ∈ Rn a weight vector. Then

(4.4) ∩r
j=1

√

inω(Ij) =
√

inω(∩jIj)

Proof. The inclusioninω(∩jIj) ⊆ ∩r
j=1 inω(Ij) is obvious and then we can take radicals.

Let us see that∩r
j=1 inω(Ij) ⊆

√

inω(∩jIj). Let us consider anω–homogeneous elementf in
∩r
j=1 inω(Ij); then for allj = 1, . . . , r there existsgj ∈ Ij such thatf = inω(gj). Thus we have

∏

j gj ∈ ∩jIj andf r =
∏

j inω(gj) = inω(
∏

j gj) ∈ inω(∩jIj). In particular,f ∈
√

inω(∩jIj).
This finishes the proof as the involved ideals areω–homogeneous. �

The following result is a direct consequence of [DMM10, Theorem 6.8] and Proposition 4.1
when−β /∈ Zprimary(I). However, we want to prove it when−β /∈ ZAndean(I) that is a weaker
condition.

Theorem 4.3. Let I be aA–graded binomial ideal and consider a binomial primary decom-
positionI = ∩ρ,JCρ,J . If MA(I, β) is holonomic (equivalently,−β lies outside the Andean
arrangement) then theL-characteristic variety ofMA(I, β) coincide with the union of the
L-characteristic varieties ofMA(Iρ,J , 0) for all associated toral primesIρ,J of I such that
−β ∈ qdeg(R/Cρ,J). In particular, the slopes ofMA(I, β) along a coordinate subspace inCn

coincide with the union of the set of slopes ofMA(Iρ,J , 0) along the same coordinate subspace
for Iρ,J varying between all the associated toral primes ofI such that−β ∈ qdeg(R/Cρ,J).

Proof. By Proposition 3.2, we have thatMA(I, β) is isomorphic toMA(Iβ, β). We also have
that

(4.5)
⋃

−β∈qdeg(R/Cρ,J )

ChL(MA(Cρ,J , β)) ⊆ ChL(MA(Iβ, β)) ⊆ V(inL(Iβ), Axξ)

On the other hand, by Lemma 4.2 we have thatV(inL(Iβ)) = ∪V(inL(Cρ,J)) = V(inL(Iρ,J)).
HereV is the zero set of the corresponding ideal. The result in the statement follows from the
last inclusion, the inclusions (4.5) and Proposition 4.1. �

Remark 4.4. Notice that Theorem 4.3 implies that the map fromCd\ZAndean(I) to Setssending
β to the set of slopes ofMA(I, β) along any fixed coordinate subspace is upper-semi-continuous
in β. The Examples 4.5 and 4.6 illustrate Theorem 4.3. [ES96, Theorem 4.1] has been very
useful in order to construct binomialA–graded idealsI starting from some toral primes that we
wanted to be associated primes ofI.

Example 4.5.The binomial ideal

I = 〈∂1∂3, ∂1∂4, ∂2∂3, ∂2∂4, ∂3∂4, ∂4
1∂

3
2 − ∂1∂5, ∂

3
1∂

4
2 − ∂2∂5, ∂

4
3 − ∂3∂5, ∂

4
4 − ∂4∂

2
5〉

is A–graded for the matrix

A =

(

1 0 1 2 3
0 1 1 2 3

)

Its primary components are the toral primesIi := Iρi,Ji, i = 1, 2, 3, 4, whereJ1 = {3, 5}, J2 =
{4, 5}, J3 = {1, 2, 5}, J4 = {5} andρi : kerZ AJi −→ C∗ is the trivial character fori =
1, 2, 3, 4. Notice thatqdeg(R/Ii) = CAJi = C

(

1
1

)

for i = 1, 2, 4 andqdegR/I3 = C2. Using
Theorem 4.3, Remark 3.4 and the results in [SW08] we have the following:
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If β ∈ C2 \ C
(

1
1

)

thenMA(I, β) ≃ MA(I3, β) has a unique slopes = 6 along the hyperplane
{x5 = 0} and it is regular along the other coordinate hyperplanes.
If β ∈ C

(

1
1

)

thenMA(I, β) has the slopess1 = 3/2, s2 = 3 ands3 = 6 along{x5 = 0}.

Example 4.6.The binomial idealI = 〈∂4∂5, ∂3∂5, ∂2∂5, ∂1∂5, ∂3∂4∂6, ∂2∂4∂6, ∂1∂3∂4, ∂1∂2∂4, ∂3
5−

∂6∂5, ∂2∂
2
3∂4 − ∂3∂

2
4 , ∂

2
1∂

3
4 − ∂4∂6, ∂

2
1∂

2
2∂

3
3 − ∂3∂6, ∂

2
1∂

3
2∂

2
3 − ∂2∂6〉 isA–graded for the matrix

A =





1 0 0 0 1 2
0 1 0 1 1 2
0 0 1 1 1 2





Using Macaulay2 we get a primary decomposition ofI where the primary components are the
toral primesIi = Iρi,Ji, i = 1, . . . , 6, whereJ1 = {1, 2, 3, 6}, J2 = {2, 3, 4}, J3 = {2, 4},
J4 = {5, 6}, J5 = {1, 4, 6}, J6 = {1, 6} andρi : kerZ AJi −→ C∗ is the trivial character for
i = 1, . . . , 6.
We haveI1 = 〈∂2

1∂
2
2∂

2
3 − ∂6, ∂4, ∂5), I2 = 〈∂2∂3 − ∂4, ∂1, ∂5, ∂6〉, I3 = 〈∂1, ∂3, ∂5, ∂6〉, I4 =

〈∂2
5 − ∂6, ∂1, ∂2, ∂3, ∂4〉, I5 = 〈∂2

1∂
2
4 − ∂6, ∂2, ∂3, ∂5〉 andI6 = 〈∂2, ∂3, ∂4, ∂5〉.

We know thatqdegR/Ii = CAJi for i = 1, . . . , 6. In particular,R/I1 is the unique component
with Krull dimensiond = 3.
There are four components with Krull dimensiond− 1 = 2, namelyR/I2, R/I3 have quaside-
grees setCAJ2 = CAJ3 = {y1 = 0} ⊆ C3 andR/I5, R/I6 have quasidegrees setCAJ5 =
CAJ6 = {y2 = y3} ⊆ C3. There is one componentR/I4 with Krull dimension one and
quasidegrees set equal to the lineCAJ4 = {y1 = y2 = y3} ⊆ C3.
Thus, in order to study the behavior ofMA(I, β) when varyingβ ∈ C3 it will be useful to
stratify the space of parametersC3 by the strataΛ1 = C3 \ {y1(y2 − y3) = 0}, Λ2 = {y1 =
0} \ {y2 − y3 = 0}, Λ3 = {y2 − y3 = 0} \ {y1 = 0}, Λ4 = {y1 = y2 = y3} \ {0},
Λ5 = Λ2 ∩ Λ3 \ {0} = {y1 = 0 = y2 − y3} \ {0} andΛ6 = {0}.
Let us compute the slopes ofMA(I, β) along coordinate hyperplanes according with Theorem
4.3, Remark 3.4 and the results in [SW08]. Recall thata1 . . . , a6 stand for the columns of the
matrixA. We have the following situations:

1) If −β ∈ Λ1 thenR/I1 is the unique component whose quasidegrees set contains−β.
Thus,MA(I, β) ≃ MA(I1, β) has a unique slopes = 6 along the hyperplane{x6 = 0}
becausea6/s = [1/3, 1/3, 1/3]t belongs to the plane passing througha1, a2, a3.

2) If −β ∈ Λ2, then−β ∈ qdeg(R/Ii) if and only if i ∈ {1, 2, 3} soMA(I, β) has the
slopes = 6 along{x6 = 0} arising fromI1 and the slopes = 2 along{x4 = 0} arising
from I2 (sincea4/2 lie in the line passing througha2, a3).

3) If −β ∈ Λ3, then−β ∈ qdegR/Ii if and only if i ∈ {1, 5, 6}. MA(I, β) has the slopes
s = 4 (arising fromI5) ands = 6 (arising fromI1) along{x6 = 0}.

4) If −β ∈ Λ4, then−β ∈ qdegR/Ii if and only if i ∈ {1, 4, 5, 6}. MA(I, β) has the
slopess = 2 (arising fromI4), s = 4 (arising fromI5) ands = 6 (arising fromI1) along
{x6 = 0}.

5) If −β ∈ Λ5 = ∩i 6=4qdegR/Ii \ qdegR/I4 thenMA(I, β) has the slopess = 4 (arising
from I5) ands = 6 (arising fromI1) along{x6 = 0} and the slopes = 2 (arising from
I2) along{x4 = 0}.

6) If −β ∈ Λ6 (i.e. β = 0) we have that−β is in the quasidegrees set of all the components
R/Ii. Thus,MA(I, β) has the slopess = 2 (arising fromI4), s = 4 (arising fromI5)



ON IRREGULAR BINOMIAL D–MODULES 13

ands = 6 (arising fromI1) along{x6 = 0} and the slopes = 2 (arising fromI2) along
{x4 = 0}.

In all the cases there are no more slopes along coordinate hyperplanes. Notice that when we
move−β from one stratumΛi of dimensionr, 1 ≤ r ≤ d = 3, to another stratumΛj ⊆ Λi of
dimensionr−1 thenMA(I, β) can have new slopes along a hyperplane but no slope disappears.

Remark 4.7. By [DMM10, Lemma 7.2], all toral primes of a lattice-basis ideal I(B) have
dimension exactlyd and are minimal primes ofI(B). Thus, theL-characteristic varieties and
the set of slopes ofMA(I(B), β) are independent of−β /∈ ZAndean(I(B)).

To finish this Section we are going to compute the multiplicities of theL–characteristic cycle
of a holonomic binomialD–moduleMA(I, β) for β generic. Recall that the volumevolΛ(B)
of a matrixB with columnsb1, . . . , bk ∈ Zd with respect to a latticeΛ ⊇ ZB is nothing but the
Euclidean volume of the convex hull of{0} ∪ {b1, . . . , bk} normalized so that the unit simplex
in the latticeΛ has volume one.
From now on we assume thatZAndean(I) 6= Cd and thatβ ∈ Cd is generic. In particular we
assume that all the quotientsR/Cρ,J whose quasidegrees set contain−β are toral and have Krull
dimensiond. The generic condition will also guarantee thatβ is not a rank–jumping parameter
of any hypergeometric systemH0(E − β, Iρ,J).
Under this assumptions it is proved in [DMM10, Theorem 6.10]that the holonomic rank of
MA(I, β) equals

rank(MA(I, β)) =
∑

R/Iρ,J torald–dimensional

µρ,J volZAJ
(AJ)

We will use the same strategy in order to compute the multiplicities in theL-characteristic
cycleCChL(MA(I, β)). It is enough to compute the multiplicities in theL-characteristic cycle
of MA(Cρ,J , β) for eachd–dimensional toral componentCρ,J of I and then apply [DMM10,
Theorem 6.8].
In [SW08, Section 3.3] the authors give an index formula for the multiplicity µL,τ

A,0(β) of the
componentCτ

A in theL–characteristic cycleCChL(MA(β)) of a hypergeometricD–module;
see equality (4.1). They prove that these multiplicities are independent ofβ if β is generic (see
[SW08, Theorem 4.28]). Let us denote byµL,τ

A this constant value.
If M is a finitely generatedR–module, we denote byµL,τ

A,0(M,β) the multiplicity of the compo-
nentCτ

A in theL–characteristic cycleCChL(H0(E − β,M)) (see [SW08, Definition 4.7]).
For J ⊂ {1, . . . , n} we denoteAJ the submatrix whose columns are indexed byJ , DJ the
Weyl algebra with variables{xj, ∂j | j ∈ J andLJ the filtration onDJ induced by the weights
(uj, vj) for j ∈ J . In particular, we can define the multiplicityµLJ ,τ

AJ
for any faceτ of the

(AJ , LJ)–umbrellaΦLJ

AJ
.

Theorem 4.8. LetR/Cρ,J be a torald–dimensional module and letβ be generic. We have for
all τ ∈ ΦLJ

AJ
and for any filtrationL onD that

µL,τ
A,0(R/Cρ,J , β) = µρ,Jµ

LJ ,τ
AJ

.

Proof. It follows the ideas of the last part of the proof of [DMM10, Theorem 6.10] (see also
the proof of Theorem 3.7). We writeM = R/Cρ,J and consider a toral filtrationM0 = (0) ⊆



14 MARÍA-CRUZ FERNÁNDEZ-FERNÁNDEZ AND FRANCISCO-JEŚUS CASTRO-JIḾENEZ

M1 ⊆ · · · ⊆ Mr = M each successive quotientMi/Mi−1 being isomorphic to R
Iρi,Ji

(γi) for

someγi ∈ Zd. The number of successive quotients of dimensiond is the multiplicityµρ,J

of the idealIρ,J in Cρ,J . From the assumption onβ we can take−β outside the union of the
quasidegree sets ofR

Iρi,Ji
with Krull dimension< d. Then

Hj(E − β,Mi/Mi−1) =

{

0 if Iρi,Ji 6= Iρ,J
Hj(E − β + γi, R/Iρ,J)(γi) otherwise.

Again using thatβ is generic, we have thatHj(E − β,Mi/Mi−1) = 0 for anyi and anyj ≥ 1.
The statement of the Theorem follows by applying decreasinginduction oni and the additivity
of µL,τ

A,0 with respect to the exact sequence

0 −→ H0(E − β,Mi−1) −→ H0(E − β,Mi) −→ H0(E − β,Mi/Mi−1) −→ 0.

We notice here that the multiplicityµL,τ
A for H0(E−β+ γi, R/Iρ,J) equalsµLJ ,τ

AJ
for the hyper-

geometricDJ–moduleMAJ
(β − γi) becauseβ is generic. �

5. ON THE GEVREY SOLUTIONS AND THE IRREGULARITY OF BINOMIALD–MODULES

Let us denote byYi the hyperplanexi = 0 in Cn. Again by [DMM10, Theorem 6.8], in order to
study the Gevrey solutions and the irregularity of a holonomic binomialD–moduleMA(I, β)
for generic parametersβ ∈ Cd it is enough to study each binomialD–moduleMA(Cρ,J , β)
arising from ad–dimensional toral primary componentR/Cρ,J . For any real numbers with s ≥
1, we consider, the irregularity complex of orders, Irr(s)Yi

(MA(Cρ,J , β)) (see [Meb90, Definition
6.3.1]). SinceMA(Cρ,J , β) is holonomic, by a result of Z. Mebkhout [Meb90, Theorem 6.3.3]
this complex is a perverse sheaf and then forp ∈ Yi generic it is concentrated in degree 0.
For r ∈ R with r ≥ 1 we denote byLr the filtration onD induced byLr = F + (r − 1)V and
we will write simplyΦr

A instead ofΦLr

A andµr,τ
A,0 instead ofµLr,τ

A,0 .

Theorem 5.1. Let R/Cρ,J be a torald–dimensional module,β generic,p ∈ Yi generic,i =
1, . . . , n ands a real number withs ≥ 1. We have that

dimC H0
(

IrrsYi
(MA(Cρ,J , β))

)

p
= µρ,J

∑

i/∈τ∈Φs
AJ

\Φ1
AJ

volZAJ
(Aτ )

Proof. We follow the argument of the proof of Theorem 7.5 in [Fer10].We apply results of Y.
Laurent and Z. Mebkhout [LM99, Lemme 1.1.2 and Section 2.3] to get

dimC H0
(

IrrsYi
(MA(Cρ,J , β))

)

p
= µs+ǫ,∅

A,0 − µ1+ǫ,∅
A,0 + µ

1+ǫ,{i}
A,0 − µ

s+ǫ,{i}
A,0 .

To finish the proof we apply Theorem 4.8 and Theorem 7.5 [Fer10]. �

Remark 5.2. Notice that the above formula fordimC H0(IrrsYi
(MA(Cρ,J , β)))p = 0 yields zero

if i /∈ J since in that case the induced filtration(Ls)J (denoted just bys by abuse of notation)
is constant and soΦs

AJ
\ Φ1

AJ
= ∅.

Let us see how to compute Gevrey solutions of a binomialD–moduleMA(I, β). By (3.3) in
[DMM 210] theIρ,J–primary componentCρ,J of an irredundant primary decomposition of any
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A–graded binomial idealI (for some minimal associated primeIρ,J = Iρ + mJ of I) contains
Iρ. Thus,

(5.1) Iρ +m
r
J ⊆ Cρ,J ⊆

√

Cρ,J = Iρ,J = Iρ +mJ

for sufficiently large integerr. In fact, it is not hard to check thatCρ,J = Iρ + Bρ,J for some
binomial idealBρ,J ⊆ R such thatmr

J ⊆ Bρ,J ⊆ mJ . Let us fix such an idealBρ,J .
For any monomial idealn ⊆ Cρ,J such that

√
n = mJ we have that

HA(Iρ + n, β) ⊆ HA(Cρ,J , β) ⊆ HA(Iρ,J , β).

Let us fix such an idealn. In particular, any formal solution ofMA(Iρ,J , β) is a solution of
MA(Cρ,J , β) and any solution ofMA(Cρ,J , β) is a solution ofMA(Iρ + n, β).
Let us assume thatCρ,J is toral (i.e. R/Iρ,J has Krull dimension equal torank AJ ). We will
also assume thatrank AJ = rank A in order to ensure thatqdeg(R/Cρ,J) = Cd.
On the one hand, both the solutions ofMA(Iρ,J , β) and the solutions ofMA(Iρ + n, β) can
be described explicitly if the parameter vectorβ is generic enough. More precisely, a formal
solution of the hypergeometric systemMA(Iρ,J , β) with very genericβ is known to be of the
form

φv =
∑

u∈kerAJ∩ZJ

ρ(u)
(v)u−

(v + u)u+

xv+u
J

wherev ∈ CJ such thatAJv = β and(v)w =
∏

j∈J

∏

0≤i≤wj−1(vj − i) is the Pochhammer
symbol (see [GZK89, SST00]). Here,v needs to verify additional conditions in order to ensure
thatφv is a formal series along a coordinate subspace or a holomorphic solution.
The vectorsv you need to consider to describe a basis of the space of Gevreysolutions of a
given order along a coordinate subspace ofCn for the binomialD-moduleMA(Iρ,J , β) are the
same that are described in [Fer10] for the hypergeometric systemMAJ

(β).
On the other hand, forγ in NJ let Gγ be either a basis of the space of holomorphic solutions
near a non singular point or the space of Gevrey solutions of agiven order along a coordinate
hyperplane ofCJ for the systemMAJ

(Iρ, β − AJγ), whereJ denotes the complement ofJ in
{1, . . . , n} andxγ

J
runs in the setSJ(n) of monomials inC[xJ ] annihilated by the monomial

differential operators inn. Then a basis of the same class of solutions for the systemMA(Iρ +
n, β) is given by

B = {xγ

J
ϕ : xγ ∈ SJ(n), ϕ ∈ Gγ}

We conclude that any holomorphic or formal solution ofMA(Cρ,J , β) can be written as a linear
combination of the series inB. The coefficients in a linear combination of elements inB that
provide a solution ofMA(Cρ,J , β) can be computed if we force a general linear combination to
be annihilated by the binomial operators in a set of generators ofBρ,J that are not inn.
Thus, the main problem in order to compute formal or analyticsolutions ofMA(Cρ,J , β) is
that the idealBρ,J is not a monomial ideal in general and that a minimal set of generators may
involve some variablesxj for j ∈ J . Let us illustrate this situation with the following example.

Example 5.3. Let us writex = x1, y = x2, z = x3, t = x4 and consider the binomial ideal
Cρ,J = Iρ + Bρ,J ⊆ C[∂x, ∂y, ∂z, ∂t] whereJ = {1, 2}, ρ : ker(AJ) ∩ Z2 → C∗ is the trivial
character,A is the row matrix(2, 3, 2, 2), Iρ = 〈∂3

x − ∂2
y〉 andBρ,J = 〈∂2

z − ∂x∂t, ∂
2
t 〉.

Notice thatCρ,J isA-graded for the row matrixA = (2 3 2 2) and thatCρ,J is toral and primary.
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SinceCρ,J is primary and its radical ideal isIρ + mJ = 〈∂3
x − ∂2

y , ∂z, ∂t〉, we have that
MA(Cρ,J , β) is an irregular binomialD-module for all parametersβ ∈ C (see Theorem 3.7)
and that it has only one slopes = 3/2 along its singular locus{y = 0}.
We are going to compute the Gevrey solutions ofMA(Cρ,J , β) corresponding to this slope.
By the previous argument and using thatn = 〈∂4

z , ∂
2
t 〉 ⊆ Bρ,J we obtain that any Gevrey

solution ofMA(Cρ,J , β) along{y = 0} can be written as

f =
∑

γ,k

λγ,kz
γz tγtφk(β − 2γz − 2γt)

whereλγ,k ∈ C, γ = (γz, γt), γz ∈ {0, 1, 2, 3}, γt, k ∈ {0, 1} and

φk(β − 2γz − 2γt) =
∑

m≥0

((β − 3k)/2− γz − γt)3m
(k + 2m)2m

x(β−3k)/2−γz−γt−3myk+2m

is a Gevrey series of indexs = 3/2 alongy = 0 at any pointp ∈ {y = 0} ∩ {x 6= 0} if
(β − 3k)/2− γz − γt /∈ N.
We just need to force the condition∂x∂t(f) = ∂2

z (f) in order to obtain the values ofλγ,k such
thatf is a solution ofMA(Cρ,J , β).
In this example, we obtain the conditionsλ(2,1),k = λ(3,1),k = 0 for k = 0, 1 and

λ(γz+2,0),1 =
((β − 3k)/2− γz)

(a + 1)(a+ 2)
λ(γz ,1),k

for k, γz = 0, 1.
In particular we get an explicit basis of the space of Gevrey solutions ofMA(Cρ,J , β) along
y = 0 with index equal to the slopes = 3/2 and we have that the dimension of this space is
8. Notice that8 = 4 · 2 is the expected dimension (see Theorem 5.1) sinceµρ,J = 4 and the
dimension of the corresponding space forMA(Iρ,J , β) is 2 (see [FC11, FC08]).
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