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ABSTRACT. We prove that a holonomic binomial-moduleM 4 (I, /3) is regular if and only if
certain associated primes bfdetermined by the parameter vectore C? are homogeneous.
We further describe the slopes df4 (7, 5) along a coordinate subspace in terms of the known
slopes of some related hypergeomefiiemodules that also depend gnWhen the parameter

S is generic, we also compute the dimension of the generik stahe irregularity ofM 4 (1, 3)
along a coordinate hyperplane and provide some remarkg #igonstruction of its Gevrey
solutions.

1. INTRODUCTION

Binomial D-modules have been introduced by A. Dickenstein, L.F. Matich and E. Miller in
[DMM10]. These objects generalize both GKZ hypergeomeiimodules[GGZ87, GZK89]
and (binomial) Horn systems, as treated in [DMM10] and [Zhi0O

Here D stands for the complex Weyl algebra of ordemwheren > 0 is an integer. Elements in
D are linear partial differential operators; such an oper&toan be written as a finite sum

P = Z Dayr™0”
ayy

wherep,, € C, o = (a1,..., ),y = (71,...,7) € NP andz® = 27" ---20", OV =
97" --- op. The partial derivativeZ- is just denoted by),.

Our input is a pail( 4, 3) wheref is a vector inC? and A = (a;;) € Z¥™ is a matrix whose
columnsay, . . ., a, span theZ-moduleZ?. We also assume that al] # 0 and that the cone
generated by the columnsIRY contains no lines (one says in this case that this copeirged.
The polynomial ringC[0] := C|0,, . .., 0,] is a subring of the Weyl algebr@. The matrixA
induces &9-grading onC|[d] (also called thed-grading) by definingleg(d;) = —a;.

A binomial inC|d] is a polynomial with at most two monomial terms. An idéah C|0] is said
to be binomial is it is generated by binomials. We also saytti@ideall is an A-graded ideal
if it is generated byd-homogenous elements (equivalently if for every polyndnma all its
A-graded components are alsalin

The matrixA also induces &<-grading on the Weyl algebrR (also called thed-grading) by
definingdeg(0;) = —a; anddeg(x;) = a;.

To the matrixA one associates the toric ideal C C[0] generated by the family of binomials
0" — 0" whereu,v € N* andAu = Av. The ideall 4 is a primeA-graded ideal.
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Recall that to the paifA, 5) one can associate the GKZ hypergeometric ideal

Hy(B) = DIy + D(Ey — B, ..., Eq— Ba)

where E; = Y77 a;;x;0; is thei™ Euler operator associated with. The corresponding

GKZ hypergeometrid>—module is nothing but the quotient (lef—moduleM 4(3) := %@,
[GGZ87], [GZK89].

Following [DMM10], for any A—graded binomial ideal c C[9] we denote byH 4(I, 3) the
A-graded left ideal inD defined by

HA(I,B):DI—FD(El—ﬁl,...,Ed—ﬁd).

The binomial D-module associated with the triplel, 5, ) is, by definition, the quotient
Ma(I,B) = %. Notice that the ideaH (14, 3) is nothing but the GKZ hypergeomet-
ric ideal H 4(3).

In [DMM10] the authors have answered essential questionstdiinomial D—-modules. The
main treated questions are related to the holonomicity @fsistems and to the dimension of
their holomorphic solution space around a non singulartpdinparticular, in [DMM10, The-
orem 6.3] they prove that the holonomicity &f4(7, 5) is equivalent to regular holonomicity
when is standardZ-graded (i.e., the row-span df contains the vectafd, . . ., 1)). However,

it turns out that the final sentence in [DMM10, Theorem 6.8}tiag that the regular holo-
nomicity of M 4(1, 3) for a given paramete$ implies standard homogeneity of the idals
true for binomial Horn systems but it is not for general binan—modules. This is shown by
Example$3.70 arld 3.111.

These two Examples are different in nature. More precisiedysystem\/4 (7, 5) considered in
Exampld_3.10 is regular holonomic for parametexsutside a certain line in the affine complex
plane and irregular otherwise, while the system considardekample 3.1l is regular holo-
nomic for all parameters despite the fact that the binondei/ is not homogeneous with
respect to the standaffi-grading. This is a surprising phenomenon since it is nawadbl
neither for GKZ hypergeometric systems nor for binomial iHsystems.

We further provide, in Theorem 3.7, a characterization efrégular holonomicity of a system
M4(I, B) that improves the above mentioned resul{of [DMM10, Th. 6.3]

A central question in the study of the irregularity of a halaric D-module M is the compu-
tation of its slopes along smooth hypersurfaces (see [Meir@®[LM99]). On the other hand,
the Gevrey solutions af/ along smooth hypersurfaces are closely related with tiegutarity
and the slopes af/. More precisely, the classes of these Gevrey series sotutif)/ modulo
convergent series define the 0-th conomology group of tegutarity of A/ [Meb90, Définition
6.3.1].

In Sectior# we describe the-characteristic variety and the slopesi\df,(7, 3) along coordi-
nate subspaces in terms of the same objects of the bindmialbdules associated with some of
thetoral primes of the ideal determined bys (see Theoreiin 41.3). The binomi@-module as-
sociated with a toral prime is essentially a GKZ hypergeoimsystem and thé—characteristic
variety and the slopes along coordinate subspaces of sydtearsare completely described in
[SWO08] in a combinatorial way (see also [CT03] ahd [Har03r0H4& for the cased = 1 and
n=d+1).

Gevrey solutions of hypergeometric systems along cootelsizbspaces are described in [Fer10]
(see also [FC11]/[FC08]). In Sectioh 5 we compute the dinoensf the generic stalk of the
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irregularity of binomialD-modules when the parameter is generic (see Thebrém 5.1%i- We
nally give a procedure to compute Gevrey solutiond/of( 7, 5) by using known results in the
hypergeometric case ([GZKB9[, [SSTO00] and [Fer10]).

We are grateful to Ezra Miller for his useful suggestions eachments.

2. PRELIMINARIES ON EULER—KOSZUL HOMOLOGY, BINOMIAL PRIMARY
DECOMPOSITION AND TORAL ANDANDEAN MODULES

We review here some definitions, notations and results 096 JMMWO05], and
[DMM ,10] that will be used in the sequel.
We will denoteR = C[0]. Recall that thed—grading on the ring? is defined byleg(9;) = —a;
whereq; is thej™-column of A. This A-grading on? can be extended to the rirg by setting
deg(xj) = aj.
Definition 2.1. Definition 2.4] LetV = &,c;4V, be anA-gradedR-module. The
set of true degrees 6f is

tdeg(V) ={a € Z*: V,#0}
The set of quasidegrees Gfis the Zariski closure if©? of tdeg(V).

Euler-Koszul complei’,(E — ; V') associated with anl-graded R—modulel/.

For anyA—graded leftO—moduleN = @z« N, we denoteleg, (y) = a; if y € N,.

The mapE; — 5; : N, — N, defined by(E; — 3;)(y) = (E; — B; — «;)y can be extended (by
C—linearity) to a morphism of lefD—modulesE; — 5; : N — N. We denote by® — 3 the
sequence of commuting endomorphisfs— (1, ..., By — B4. This allows us to consider the
Koszul complexi,(E — 8, N) which is concentrated in homological degrééds 0.

Definition 2.2. [MMWQ5] Definition 4.2] For anys € C? and anyA-gradedR—moduleV/,
the Euler-Koszul complek,(E — 3, V) is the Koszul compleX,(E — 3, D @ V). Theit
Euler-Kozsul homology of/, denoted byH;(E — 3, V), is the homologyH; (K. (E — 3, V)).

Remark 2.3. Recall that we have thé—graded isomorphisi;(E — 5, V) («a) ~ H,(E — +
a,V)(a) for all « € Z¢ [MMWO5]. Here V() is nothing butV” with the shiftedA—grading
V(a), = Vay, forally € Z4.

Binomial primary decomposition for binomial ideals.

We recall from [ES96] that for any sublattideC Z" and any partial character: A — C*, the
corresponding associated binomial ideal is

I, = (0" — p(u)0"~ |[u=usp —u_ € A)

whereu, andu_ are inN™ and they have disjoint supports. The idéals prime if and only if
A is a saturated sublattice @f' (i.e. A = QA N Z™). We know from [ES96, Corollary 2.6] that
any binomial prime ideal iR has the forny, ; := I,+m; (wherem; = (9, | j ¢ J)) for some
partial charactep whose domain is a saturated sublattic&dfand some/ C {1, ..., n}.
ForanyJ/ C {1,...,n} we denote by); the monomial [, ; 9;.

Theorem 2.4.[DMM 710, Theorem 3.2fix a binomial ideall in R. Each associated binomial
prime I, ; has an explicitly defined monomial id€d] ; such that

I= () Cu

I, j€Ass(I)
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forC,, = (I +1,):07)+ U,,, is a primary decomposition df as an intersection ofi—
graded primary binomial ideals.

Toral and Andean modules

In [DMM 10, Definition 4.3] a finitely generated-gradedR—moduleV = &V, is said to be
toral if its Hilbert function Hy (defined byHy («) = dim¢ V,, for a € Z?) is bounded above.
With the notations above, &-module of typeR/1, , is toral if and only if its Krull dimension
equals the rank of the matrit; (see [DMM10, Lemma 3.4]). Herd ; is the submatrix of4
whose columns are indexed by In this case the modul&/C, ; is toral and we say that the
ideall, ; is a toral prime and, ; is a toral primary component.

If dim(R/1, ;) # rank (A;) then the modulé?/C, ; is said to beAndean the ideall, ; is an
Andeanprime andC, ; is anAndeanprimary component.

An A—gradedR—moduleV is said to benatively toralif there exist a binomial toral prime ideal
I, ; and an element € Z? such that/(«) is isomorphic toR/ 1, ; as A—graded modules (see

[DMMI0] Definition 4.1]).

Proposition 2.5. [DMM10]| Proposition 4.2JAn A—gradedk—moduleV is toral if and only if
it has a filtration

0=VycWicCc---CV1CV,=V
whose successive quotiefig/V}._; are all natively toral.

Such a filtration orV/ is called atoral filtration.

Following [DMM10, Definition 5.1] anA-gradedR-moduleV is said to benatively Andearif
there is anv € Z? and an Andean quotient ring//, ; over whichV («) is torsion-free of rank
1 and admits &’ /A-grading that refines the-grading viaZ’ /A — Z? = ZA, wherep is
defined omA C Z”’. Moreover, ifVV has a finite filtration

0O=WcWic---CViaCVi=V
whose successive quotients/V_; are all natively Andean, thevi is Andean (see [DMM10,
Section 5]).
In [DMM 10, Example 4.6] it is proven that the quotigRtC), ; is Andean for any Andean
primary component’, ; of any A-graded binomial ideal.

We finish this section with the definition and a result aboettb-calledAndean arrangement
associated with arl-graded binomial ideal in R. Let us fix an irredundant primary decom-

position
I= () Cu

I, y€Ass(I)

as in Theorermh 214.

Definition 2.6. [DMM10) Definition 6.1] The Andean arrangemes ,,qc.. (/) is the union of
the quasidegree sejdeg(R/C, ;) for the Andean primary componerd$ ; of /.

From [DMM10, Lemma 6.2] the Andean arrangemeht, ... (1) is a union of finitely many
integer translates of the subspa€e$;, C C" for which there is an Andean associated prime

1.
From [DMM10, Theorem 6.3] we have that the binomiatmoduleM 4 (7, 3) is holonomic if
and only if—3 ¢ Zangean(1)-
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3. CHARACTERIZING REGULAR HOLONOMIC BINOMIAL D—MODULES

Let I be anA—graded binomial ideal and fix a binomial primary decomposif = N, ;C, ;
whereC,, s is al, j—primary binomial ideal.
Let us consider the ideal

Iﬁ = m CpJ

_Bequg(R/Cp,J)
I.e., the intersection of all the primary compone@tgs; of I such that-g lies in the quaside-
grees set of the module/C,, ;.

Remark 3.1. Notice that if—5 ¢ Za,4ean({) thenR /1 is contained in the toral direct sum
D rG.,
_6€qd0g(R/Cp,J)

and so it is a toral module.
The following result generalizes [DMM10, Proposition 6.4]

Proposition 3.2. If =3 ¢ Zanaean () then the natural surjectiol?/I — R/I; induces a
isomorphism in Euler—Koszul homology
Hi(E— B, R/I) ~Hi(E — B8,R/Ip)
for all <. In particular, M (1, 5) ~ Ma(Is, B).
Proof. By [DMM10)| Proposition 6.4] we have that
HZ(E - 57 R/I) ~ HZ(E - 57 R/[toral)

for all 7, wherel,.,.; denotes the intersection of all the toral primary compaseht. Thus, we
can assume without loss of generality that all the primamponents of are toral. The rest of
the proof is now analogous to the prooflof [DMM10, Propositfo4] if we substitute the ideals
TLioral @NA 1A pqcan there by the ideal$; and 1, respectively, where

E = m Cp7J7
—B¢adeg(R/C) 1)

and the Andean direct SU,;  1,qcan 11/ C)p.s there by the toral direct sum

@ R/Cp.y
—B¢qdeg(R/Cy, )

Finally, we can use Lemma 4.3 and Theorem 4.5 in [DMM10] innailsir way as[DMM10,
Lemma 5.4] is used in the proof of Proposition 6.4[of [DMM10]. U

The following Lemma gives a description of the quasidegitsof a toral module of type
R/C, ;. E. Miller has pointed out that this result follows from Pesjtion 2.13 and Theorem
2.15 in [DMM,10]. We will include here a slightly different proof of thisinma.

Lemma 3.3. For any I, ;—primary toral idealC), ; the quasidegrees setdf = R/C,, ; equals
the union of at most:, ; Z%—graded translates of A, wherey, ; is the multiplicity of/, ;
in C, ;. More precisely, for any toral filtratiod = M, C M; C --- C M we have that
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the quasidegrees set 6f is the union of the quasidegrees set of all the successiveegt®
M, /M;_, that are isomorphic t&?—graded translates ak /1, ;.

Proof. Since M is toral we have by [DMM10, Lemma 4.7] thdtm(qdeg(M)) = dim M =
rank A;. SinceC, ; is primary, any zero-divisor af/ is nilpotent. For allj € J we have that
o ¢ C,; C I,+m;andsa); is nota zero-divisor i/ forall j € J. Thus, the true degrees set
of M verifiestdeg(M) = tdeg(M) — NA;. This and the fact thatim(qdeg(M)) = rank A,
imply that there exista, . . ., a, € Z? such thatdeg(M) = Ul_,(a; — NA;) and

(3.1) qdeg(M) = | J(a; +CA,)

i=1
Consider now a toral filtratio® = M, € M; C --- C M. We know that there are ex-
actly u, ; different values of such thatM; /M, ~ R/I, ;(v;) for somey; € Z¢. For the
other successive quotiens; /M,y ~ R/I, ;(v) we have that/,, ; is a toral prime which
properly containd, ;. In particular, we have thatnk A; = dim R/, ; < dimR/1,; =
rank A;. Sinceqdeg(R/I,, ;) = CAj has dimensiomank A; < rank A; andqdeg(M) =
U, adeg(M;/M,_,) we have by[(311) that the quasidegrees set of ly\/;_, is contained in
the quasidegrees set of sotg /M;_; ~ R/, ;(~;). In particularr < p, ; and each affine
subspacéw; + CA,) in 3.1) is the quasidegrees set of sorde/A;_1 ~ R/1, ;(7;). O

Remark 3.4. Notice thatf 4 (1, ;, 5) = DHa,(I,,3) + D(0; : j ¢ J). In addition, if1, ; is
toral then theD ,—moduleM 4, (I,, 3) is isomorphic to the hypergeometric systéim , () via
an A—graded isomorphism d?P ,—modules induced by rescaling the variables; € .J, using
the charactep. Thus we can apply most of the well-knows results for hypengetric systems
to Ma(1, s, ) (with I, ; a toral prime) in an appropriated form.

Lemma 3.5.1f 1, ; is toral and—3 € qdeg(R/I, ;) the following conditions are equivalent:

i) H,(E —f,R/I, ) is regular holonomic for alk.
i) Ho(E — B, R/1, ) is regular holonomic.
i) I, ;is homogeneous (equivalently; is homogeneous).

Proof. i) = i) is obvious,ii) = iii) follows straightforward from[SW08, Corollary 3.16]
andiii) = i) is a particular case of the last statement.in [DMM10, Theodebj and it also
follows from [Hot98, Ch. II, 6.2, Thm.]. O

Remark 3.6. Recall from [DMM10, Theorem 4.5] that for any toral modifewe have that
—B ¢ qdegV if and only if Ho(E — 5,V) = 0ifand only if H,(E — 5,V) = 0 for all i. In
particular, since thd>—module0 is regular holonomic it follows that conditions i) and ii) in
Lemmd3.b are also equivalent without the conditioh € qdeg(R/1, ;).

Theorem 3.7.Let I C R be anA-graded binomial ideal such that/,(7, 8) is holonomic
(equivalently—3 ¢ Zanqean(1)). The following conditions are equivalent:

i) H,(E — 8, R/I) is regular holonomic for alk.

i) Ma(I,p5)is regular holonomic.

iii) All the associated toral primes, ; of / such that—3 € qdeg(R/C, ;) are homoge-
neous.
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Proof. The implicationi) = i) is obvious. Let us prové) = iii). For any toral primary
componeniC, ; of I we havel C C,; and so there is a natural epimorphisih(Z, 5) —
M4(C, 5, B). SinceM4(I, B) is regular holonomic then/,(C,, ;, 5) is also regular holonomic.
Take a toral filtration of\/ = R/C,, ;,0 C M; C --- C M, = M. We claim that

(3.2) H;,(E — B, M;/M,;_,) andHy(E — 3, M,_,) are regular holonomic

forall i, j.

Let us prove[(3]2) by decreasing induction ©nFori = r, we have a surjection from the
regular holonomicD—moduleH(E — 3, M,) = Ma(C, s, 3) to Ho(E — 5, M, /M,_,) and
so it is regular holonomic too. By Remdrk 2.3, Lemimd 3.5 anch&&[3.6 we have that the
D-moduleH;(E — /3, M, /M,_;) is regular holonomic for alj. Since

HI(E - 57MT’/MT—1) — HO(E - ﬁaMr—l) — HO(E - ﬁaMr)

is exact we have th&{,(E — (3, M,_,) is regular holonomic.
Assume that[(3]2) holds for some= k& + 1 < r and for allj. We consider the exact sequence

00— Mk—l — Mk — Mk/Mk—l — 0
and the following part of the long exact sequence of Eulesabhomology

(3.3) - Hi(E—B, My /My_1) = Ho(E— B, My_1) = Ho(E— B, My) - Ho(E — 3, My /Mj_1).

By induction hypothesig{,(E — 3, M;) is regular holonomic. This implies th&{,(F —
B, My, /My_,) is regular holonomic by(313). Applying RemdrkP.3, Lemm& &nd Remark
[3.8 we have that{;(E — (3, My/M,_,) is regular holonomic for alf. Thus, by[(3.B) we have
thatHo(F — 8, My_1) is regular holonomic too and we have finished the inductiaopof
(E.2).

Assume that-5 € qdeg(R/C, ;). By Lemmal[3.B there existssuch that—/ lies in the
quasidegrees set 0f;/M,_; ~ R/I, ;(;) and we also have by (3.2) that

Ho(E — B, M;/M;_1) ~ Ho(E — B+, R/1, 1) (7:)

is a nonzero regular holonomie-module. Thus, by Lemnfa 3.5 we have tligy is homoge-
neous.
Let us proveiii) = i). By Propositio 32 we just need to prove thdt, (15, 5) is regular
holonomic. We have that all the associated primegsodre toral and homogeneous. In par-
ticular M = R/I; is a toral module and for any toral filtration af the successive quotients
M, /M;_, are isomorphic to som&’—graded translate of a quotieRt I, ;, wherel,, ;, is toral
and contains a minimal primg, ; of 7. Such minimal prime is homogeneous by assumption
and soA; is homogeneous. Sincé C J we have thatd;, and/,, ; are homogeneous too.
Now, we just point out that that the proof of the last staten@fDMMZI0, Theorem 4.5] still
holds forVV = M if we don'’t requireA to be homogenous but all the primes occurring in a toral
filtration of M to be homogeneous.

O

Remark 3.8. Theoren 3.7 shows in particular that the property of a bimdmimoduleM 4(1, 3)
of being regular (holonomic) can fail to be constant whehruns outside the Andean arrange-
ment. This phenomenon is forbidden to binomial Horn systéms!/(B), 5) (see [DMM10,
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Definition 1.5]) since the inclusiof(B) C I, induces a surjective morphism
Ho(E — B,1(B)) - Ma(P)

and then regular holonomicity 6i,(E — 8, R/I(B)) implies regular holonomicity ol 4 (5),
which is equivalent to the standard homogeneity pby [Hot98,[SSTO0, SW08].

Definition 3.9. The non-regular arrangement b{denoted byZ,,,—regular (1)) is the union of

the Andean arrangement band the union of quasidegrees sets of the quotiensuf primary
componentg’, ; of I such that/, ; is not homogeneous with respect to the standard grading.
So, we have

Znon—regular(]) - ZAndean(I) U ( U qdeg(R/CP,J)) .

1,y non homogeneous

Example 3.10.Consider the ideal = (0?0, — 03, 0203, 0204, 0703 — 0504, 070, — 0305). Itis

A-graded for the matrix
1 2 20
A= (1 2 0 2)

but I is not standardZ-graded. We have the prime decompositior= 1; N I, N I3 where
I, = (0y,03,04), Iy = (07 — 05,05,04) and I3 = (0, 0? — 930,) are toral primes ofl.
In particular Zx,4can(I) = 0) and by the proof of [DMMID, Proposition 6.6] we have that
Zorimary (1) = {0} (see [DMM10, Definition 6.5] for the definition of the primaayrangement
Z rimar, (I))

Uging y, Theorem 6.8] we have thdt/, (7, 3) is isomorphic to the direct sum of
Mu(I;,8) for j = 1,2,3if 3 # 0. Moreover,qdeg(R/I;) = C(;) for j = 1,2 and
qdeg(R/I3) = C2. Thus, for generic parameters (more precisely foe C? \ (C(})) we
have thatVl (I, ) is isomorphic taM 4 (I3, 3) that is a regular holonomic by LemrnaB.5.
On the other hand, there is a surjective morphism fidn(7, 3) to M4(I>, ) and if 3 € C(;)
we have that\M 4(I», 5) is an irregularD-module because = 2 is a slope along:, = 0.
Thus we conclude that/,(I, ) is regular holonomic ifs € C2 \ C(}) and it is an irregular
holonomicD-module when3 € C(;). In particular,Z,on—reguar (I) = C(;) C C% It can also
be checked that the singular locusidf,(1, ) is {1 222374 (23 — dz324) = 0} when € C(7)
and{zzx4(z? — 4z324) = 0} otherwise.

Example 3.11.The primary binomial ideal = (0, — 05,05, 03,93 — 93) is A—graded with
respect to the matrid = (1 1 2 3). Note that/ is not homogeneous with respect to the
standardZ-grading. However, its radical idegl = (0, — 0,, 05, 04) is homogeneous. Thus,
by Theoreni 317 we have thaf,(1, ) is regular holonomic.

4. [-CHARACTERISTIC VARIETY AND SLOPES OF BINOMIAL D—-MODULES

Let L be the filtration onD defined by a weight vectdiu, v) € R*" with u; + v; = ¢ > 0 for
some constant > 0.

This includes in particular the intermediate filtrations + ¢V between the filtration?” by
the order of the linear differential operators and the Kasha-Malgrange filtratiori” along
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a coordinate subspace. The filtratign® + ¢V are the ones considered when studying the
algebraic slopes of a cohereidt-module along a coordinate subspace [LM99].

We will consider thel—characteristic variet¢’h” (V) of a finitely generated—moduleN on

C" defined as the support gfX N in T*C" (see e.g.[[Lau87]/ [SW08, Definition 3.1]). We
recall that in fact forl. = pF' + ¢V this is a global algebraic version of Laurent’s microcharac
teristic variety of types = p/q + 1 [Lau87,§3.2] (see alsd [SW08, Remark 3.3]).

The L-characteristic variety and the slopes of a hypergeométrimodule M 4(3) are con-
trolled by the so-calledA, L)—umbrella[[SWOB]. Let us recall its definition in the speciase

; L L L L _ 1
whenv; > 0 for all i. We denote byA; the convex hull of{0, ay, . . ., a;;} wherea; = oG-

The (A, L)-umbrella is the seb’ of faces ofAL which do not contain 0. The empty face is in
®%. One identifies € @4 with {j|a} € 7}, or with {a,|a} € 7}, or with the corresponding
submatrixA. of A.

By [SWO08, Corollary 4.17] thé.-characteristic variety of a hypergeometiiemodule)M 4 ()

is

(4.1) Ch*(Ma(8)) = | J Ca

TE@L

where(7, is the Zariski closure if*C" of the conormal space to the orig), C 7;C" = C»
corresponding to the face In particularCh* (1 4(5)) is independent of. By definition we
have the equality?, := (C*)¢ - 17, where1”, € N" is defined by(17,); = 1if j € 7 and
(17,); = 0 otherwise. The action of the torus is given with respect ®nfatrix A. If the
filtration given by equals theF'-filtration (i.e. the order filtration) then this descriptiof the
F—characteristic variety coincides with a resultiof [AdoRdmmas 3.1 and 3.2].

Proposition 4.1. If M is a I, j—coprimary toral module and-g € qdeg(M) then theL—
characteristic variety of{, (£ — 5, M) is the L—characteristic variety of/4(Z, ;,0). In par-
ticular, the set of slopes 6{,(F — 3, M) along a coordinate subspace @t coincide with the
ones ofM4(1,,;,0).

Proof. SinceM is I, ;j—coprimary there exist& > 0 such that/}"; annihilates)/. Consider a
set ofA—homogeneous elements, ..., m; € M generating\/ asR—moduIe This leads to a
naturalA—graded surjectio@le R/Ig{,( deg(m;)) — M. In particular, there is a surjective
morphism ofD-modules

k
@HO(E - B, R/],TJ(— deg(m;))) - Ho(E — 8, M)

inducing the inclusion:
Ch*(Ho(E — 8, M)) C V(ing (1)), Ax&) = V(inp(1,), AyzsE,&5 5 & J).

Here(z, ¢) stands for the coordinates in the cotangent sgaé&’, & = (&4, . . ., x,€,) and
V is the zero set ii™*C™ of the corresponding ideal.

The equalityCh”(M4(1,.5,0)) = V(inL(I,), Asz €5, & - j ¢ J) follows from [SWO08, (3.2.2)
and Corollary 4.17]. Thus,

(4.2) Ch¥(Ho(E — 8, M)) € Ch*(Ma(I,,4,0))
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Let us now prove the equality
(4.3) Ch™(Ho(E — 8, M)) = Ch*(Ma(1,.,0))

by induction on the length of a toral filtration0 = M, C M; € --- C M, = M of M.

If » = 1 we have that/ ~ R/I, ;(v) for somey € Z? and—3 € qdeg(M) means that
—p + v € qdeg(R/1, ;) = CA,;. Thus,Ho(E — 3, M) ~ Mu(I,;, 5 —~) and we have[(4]3)
because thé—characteristic variety af/4(1, s, 5’) is independent of’ € —qdeg(R/1,, ;) by
the results in[[SWQ08].

Assume by induction that we have (#.3) for all tofgl,—coprimary modules/ with a toral
filtration of lengthr such that-5 € qdeg(M).

Let M be al, ,—coprimary toral module with toral filtration of lengih+ 1, i.e. 0 = A, C
M, C---C M,y = M. From the exact sequence

00— M, — M — M/M, — 0
we obtain the long exact sequence of Euler—-Koszul homology
o= Hi (B = B, M/M;) — Ho(E — 8, M;) — Ho(E — B, M) — Ho(E — B, M/M;) — 0.

Now, we need to distinguish two cases.

Assume first that-3 ¢ qdeg(M/M,). Thus,H,;(E — 5, M/M,) = 0 for all j by [DMM10,
Theorem 4.5] and we have th&ty(E — 5, M,.) ~ Ho(E — 3, M) so they both have the same
L—characteristic variety. Notice that the fact that € qdegM \ qdeg(M/M,) along with
Lemma[3.8B guarantees that there exists sormer such thath,;/M;_ ~ R/I, ;(v;). This
implies that), is alsol, ;—coprimary and we can apply the induction hypothesis.

Assume now that-5 € qdeg(M/M,). In this case we still have that thie-characteristic
variety of Ho(E — 3, M /M,) is contained in thé.—characteristic variety oflo(E — 5, M). If
M/M, ~ R/I, ;() we have thaCh”(M4(I, ;,0)) € Ch*(Ho(E — 3, M)) and using[(4R)
we get[4.8).

We are left with the case whens € qdeg(M/M,) andM /M, ~ R/, y(y)with 1, ; C 1, ;.
This implies that), is also/, ,—coprimary. Moreover, it is clear thatg € qdeg()M,) by
using Lemma 3]3. Thus, we have by induction hypothesis tieai+characteristic variety of
Ho(E — B, M,) is the L—characteristic variety a¥/4 (1, ;, 0).

Assume to the contrary that there exists an irreducible cmaptC of the L—characteristic va-
riety of M4 (I, ;,0) thatis not contained in the—characteristic variety ofo(£ — 3, M). This
implies thatC' is not contained iCh" (%o (E— 3, M/M,)), i.e. the multiplicityy’;'; (M /M., B)

of C'in the L-characteristic cycle of{y(E — 3, M /M, ) is zero (se€ [SW08, Definition 4.7]). As
a consequence, the multiplicity; ' (M/M,, 3) of C'in the L-characteristic cycle o¥;(E —
B, M/M,) is zero for alli > 0 because we can use an adapted versioh of [SW08, Theorems
4.11 and 4.16] sincé//M, is a module of the fornk /(1 , +m)(v) after rescaling the vari-
ables viap. Now, using the long exact sequence of Euler—Koszul honysdogl the additivity
of the L—characteristic cycle we conclude that$ (M, 3) = pir¢ (M., ) for all i > 0. In
particular we have thatf{g(M . ) > 0 and thusC' is contained in thé.—characteristic variety
of Ho(E — B, M). We conclude that thé—characteristic variety af/4(/, s, 0) is contained in
the L—characteristic variety ok (E — /5, M) and this finishes the induction proof. O

The following result is well known. We include a proof for teake of completeness.
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Lemma4.2.Let/y,..., I, be a sequence of ideals mandw € R™ a weight vector. Then

(4.4) Ay \finu(L) = /i (01))

Proof. The inclusionin,, (N;1;) € N’_, in,(/;) is obvious and then we can take radicals.
Let us see that,_, in,(I;) € +/in,(N;];). Let us consider an—homogeneous elemeyitin
M;_, in,(;); thenforallj = 1,...,r there existg; € [; such thatf = in,(g;). Thus we have

Hj gj € ﬂj]j andfr = H] 1nw(g]) = inw(Hj g]) € le(mjlj) In partiCU|ar,f - \/ lnw(ﬁj[j)
]

This finishes the proof as the involved ideals @ardnomogeneous.

The following result is a direct consequence [of [DMM10, Tieso 6.8] and Proposition 4.1
when—p ¢ Z,imary(1). However, we want to prove it whens ¢ Za,qean () that is a weaker
condition.

Theorem 4.3. Let I be a A—graded binomial ideal and consider a binomial primary deeo
position/ = N, ;C, ;. If M4(I, () is holonomic (equivalently-/3 lies outside the Andean
arrangement) then thé.-characteristic variety ofA/4(/, 5) coincide with the union of the
L-characteristic varieties of\/4(/, ;,0) for all associated toral primeg, ; of I such that
—fB € qdeg(R/C,, ;). In particular, the slopes a4 (I, 3) along a coordinate subspace @1
coincide with the union of the set of slopes\#f (1, ;,0) along the same coordinate subspace
for 1, ; varying between all the associated toral primed sluch that—3 € qdeg(R/C,, ;).

Proof. By Propositior 3.2, we have that (1, 5) is isomorphic toM (13, 3). We also have
that

(4.5) U e (Ma(C,s, 8)) € ChH(Ma(Is, B)) € Ving(I5), Axt)
—pBeadeg(R/C,,;)

On the other hand, by Lemmia #.2 we have théh, (13)) = UV(in.(C,.y)) = V(ing(L,.s)).

HereV is the zero set of the corresponding ideal. The result intdement follows from the

last inclusion, the inclusionk (4.5) and Proposifion 4.1. O

Remark 4.4. Notice that Theorem 4.3 implies that the map fr&f\ Z4 ,4can (1) to Setssending

( to the set of slopes af/ 4 (I, 5) along any fixed coordinate subspace is upper-semi-contgiuo
in 3. The Example§ 415 arid 4.6 illustrate Theolfen 4.3. [ES96pi&Eme 4.1] has been very
useful in order to construct binomidlgraded idealg starting from some toral primes that we
wanted to be associated primes/of

Example 4.5. The binomial ideal
I = (0185, 0104, 0503, 030, D304, 0103 — D105, 0} 0y — 0205, 05 — D305, 0y — D403 )

is A—graded for the matrix
101 2 3
A_(o 112 3)

Its primary components are the toral primles= 1,, ;,,i = 1,2,3,4, whereJ; = {3,5}, Jo =
{4,5},J5 = {1,2,5},J, = {5} andp; : kery A;, — C* is the trivial character foi =
1,2,3,4. Notice thatqdeg(R/I;) = CA;, = C(}) fori = 1,2,4 andqdegR/I; = C2. Using
Theoreni 4.8, Rematk 3.4 and the results in [SW08] we haveotlening:
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If 3 € C?\ C(}) thenM (1, 3) ~ M4 (I3, B) has a unique slope = 6 along the hyperplane
{z5 = 0} and itis regular along the other coordinate hyperplanes.
If 8 € C(}) thenM4(I, B) has the slopes; = 3/2, s, = 3 ands; = 6 along{z; = 0}

Example 4.6.The binomial ideal = <8485, 8385, 6285, 6165, 836486, 628486, 618364, 816264, 8?-
D605, 05030, — D303, D303 — 0405, 020303 — D305, 070305 — D204 is A—graded for the matrix

1 0001 2
A=1010 1 1 2
001112

Using Macaulay2 we get a primary decomposition efhere the primary components are the
toral primes/; = I, 5, ¢ = 1,...,6, whereJ; = {1,2,3,6}, Jo» = {2,3,4}, J3 = {2,4},

Jy = {5,6}, J5 = {1,4,6}, Jo = {1,6} andp; : kery A;, — C* is the trivial character for
i=1,...,6.

We have[1 = <8%8228§ — 86,64,65), I = <6263 — 84,61,65,86>, 13 = <81,83,85,86>, I, =

<852 — g, 01, Op, O3, 84>, I5 = (8%83 — 0g, 03, 03, 85> andls = <62, 03, Oy, 85>

We know thatqdegR/I; = CA,, fori = 1,...,6. In particular,R/; is the unique component
with Krull dimensiond = 3.

There are four components with Krull dimensiér- 1 = 2, namelyR/ I, R/ I3 have quaside-
grees seCA;, = CA;, = {y; = 0} C C* andR/I;, R/Is have quasidegrees B, =
CA;, = {y2 = y3} C C3. There is one componert/I, with Krull dimension one and
quasidegrees set equal to the lRd ;, = {y, = . = y3} C C3.

Thus, in order to study the behavior 8f,(7, 3) when varyings € C? it will be useful to
stratify the space of parametets$ by the strata\; = C3 \ {y1(y2 — y3) = 0}, Ay = {3, =
0f\{y2 —ys = 0}, As = {yo —ys = 0F \ {on = 0}, As = {y1 = v = s} \ {0},
As = AN A3\ {0} = {1 =0 =1y —y3} \ {0} andAs = {0}.

Let us compute the slopes & 4(7, ) along coordinate hyperplanes according with Theorem
4.3, Remark3]4 and the results in [SWO08]. Recall that ., ag stand for the columns of the
matrix A. We have the following situations:

1) If =3 € Ay thenR/I; is the unique component whose quasidegrees set contains
Thus,M (1, 3) ~ M4(1;, 3) has a unique slope= 6 along the hyperplangzs = 0}
because/s = [1/3,1/3,1/3]" belongs to the plane passing throughas, as.

2) If =5 € Ay, then—p € qdeg(R/I;) if and only ifi € {1,2,3} soM4(I, ) has the
slopes = 6 along{xs = 0} arising from/; and the slope = 2 along{z, = 0} arising
from I, (sincea, /2 lie in the line passing through, as).

3) If —p € Az, then—p5 € qdegR/1; ifand only ifi € {1,5,6}. M4(I, 3) has the slopes
s = 4 (arising from/;) ands = 6 (arising from1;) along{x6 =0}.

4) If —p € Ay, then—p € qdegR/I; ifand only if i € {1,4,5,6}. Ma(l,[) has the
slopess = 2 (arising froml,), s = 4 (arising from/;) ands = 6 (arising fromIl) along
{1’6 = 0}

5) If =8 € A5 = NjzaqdegR/I; \ qdegR/I, thenM4(!, §) has the slopes = 4 (arising
from I5) ands = 6 (arising from/;) along{xs = 0} and the slope = 2 (arising from
I,) along{z, = 0}.

6) If —5 € Ag (i.e. 5 = 0) we have that- 5 is in the quasidegrees set of all the components
R/I;. Thus,M4(I, ) has the slopes = 2 (arising from1,), s = 4 (arising fromI5)
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ands = 6 (arising fromI;) along{zs = 0} and the slope = 2 (arising from/,) along

{1’4 - 0}
In all the cases there are no more slopes along coordinatrigpes. Notice that when we
move— /3 from one stratum\, of dimensionr, 1 < r < d = 3, to another stratum; C A, of
dimension-—1thenM (1, 3) can have new slopes along a hyperplane but no slope disappear

Remark 4.7. By [DMM10, Lemma 7.2], all toral primes of a lattice-basieal /(B) have
dimension exactlyl and are minimal primes of( B). Thus, theL-characteristic varieties and
the set of slopes af/4(1(B), ) are independent 6f 5 ¢ Zxngean({(B)).

To finish this Section we are going to compute the multigksitof theL—characteristic cycle
of a holonomic binomialD—-module)M 4(1, 3) for 5 generic. Recall that the volumel, (B)

of a matrix B with columnsb, . .., b, € Z¢ with respect to a latticd O Z5B is nothing but the
Euclidean volume of the convex hull §6} U {01, ..., b, } normalized so that the unit simplex
in the latticeA has volume one.

From now on we assume that,q...(I) # C¢ and thats € C? is generic. In particular we
assume that all the quotierfty C, ; whose quasidegrees set contaifi are toral and have Krull
dimensiond. The generic condition will also guarantee ti¥as not a rank—jumping parameter
of any hypergeometric systetd, (£ — 3,1, ;).

Under this assumptions it is proved in [DMM10, Theorem 6.tt@jt the holonomic rank of
Ma(I,3) equals

rank(M4(1,3)) = Z fp,1 VOlza,(A)
R/1, ; toral d—dimensional

We will use the same strategy in order to compute the mutitps in the L-characteristic
cycle CCh* (M 4(I,3)). Itis enough to compute the multiplicities in tlecharacteristic cycle
of M4(C,,;, B) for eachd—dimensional toral component, ; of I and then apply [DMMI0,
Theorem 6.8].

In [SWO08, Section 3.3] the authors give an index formula fa multiplicity uﬁ:g(ﬁ) of the
component?, in the L—characteristic cycl€Ch*(M4(3)) of a hypergeometrié—module;
see equality((4]1). They prove that these multiplicitiesiadependent of if 3 is generic (see
[SWO8, Theorem 4.28]). Let us denote b§" this constant value.

If M is afinitely generated®—module, we denote wj:g(M, () the multiplicity of the compo-
nentC7 in the L—characteristic cycl€Ch” (Hy(E — 3, M)) (see [SWOB, Definition 4.7]).
ForJ C {1,...,n} we denoteA; the submatrix whose columns are indexed.hyD; the
Weyl algebra with variablegz;, 0; | j € J and L the filtration onD; induced by the weights
(uj,v;) for j € J. In particular, we can define the multipliciyyji” for any facer of the

(Ay, Ly)-umbrellad’;’.

Theorem 4.8.Let R/C, ; be a torald—dimensional module and Igtbe generic. We have for
all 7 € @f‘j and for any filtrationZ on D that

WD R/ Clur B) = pp ity

Proof. It follows the ideas of the last part of the proof of [DMM10, ddrem 6.10] (see also
the proof of Theorern 317). We writ®/ = R/C,, ; and consider a toral filtratiofn/, = (0) C
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M, C --- C M, = M each successive quotiehf; /M;_; being isomorphic to—(%) for
somey; € Z¢. The number of successive quotients of dimensida the multlpllcnyupJ

of the ideall, ; in C, ;. From the assumption oft we can take-$ outside the union of the
quasidegree sets ¢f"— with Krull dimension< d. Then

_ 0 if ]Pz‘,Jz' # ]P J
Hi(E = 3, Mi M) = { H;(E — B+, R/1,,)(v) otherwise.
Again using thaf is generic, we have that;(£ — 3, M;/M,;_,) = 0 for anyi and any; > 1.
The statement of the Theorem follows by applying decreasidgction on; and the additivity
of Mf{f) with respect to the exact sequence

0— H(](E — ﬁ, Mi—l) — H()(E — ﬁ, Ml) — Ho(E — ﬁ M/Ml_l) — 0.

We notice here that the multiplicity’;™ for H,(E — 8 + i, R/1, ) equals,uAJ " for the hyper-
geometricD ,—modulelM 4, (5 — ;) because? is generic. O

5. ON THE GEVREY SOLUTIONS AND THE IRREGULARITY OF BINOMIAL D—MODULES

Let us denote by; the hyperplane; = 0 in C". Again by [DMM10, Theorem 6.8], in order to
study the Gevrey solutions and the irregularity of a holomoninomial D—moduleM 4(1, 5)
for generic parameters € C? it is enough to study each binomial-module)M4(C,, s, )
arising from adi—dimensional toral primary componefifC, ;. For any real numbeywith s >

1, we consider, the irregularity complex of ordaef[rrg;?(MA( 1.7, 3)) (see[Meb90, Definition
6.3.1]). SinceM 4(C,,;, ) is holonomic, by a result of Z. Mebkhout [Meb90, Theorem &] 3.
this complex is a perverse sheaf and therpfarY; generic it is concentrated in degree 0.
Forr € R with » > 1 we denote by, the filtration onD induced byL, = F' + (r — 1)V and
we will write simply @7, instead of®’;" and .’} instead ofiy’y".

Theorem 5.1.Let R/C, ; be a torald—dimensional module; generic,p € Y; generic,i =
1,...,n ands areal number withs > 1. We have that

dime H® (Trrs, (Ma(Cpp, 8))) ) = oy > volga,(Ay)

igredy \®}

Proof. We follow the argument of the proof of Theorem 7.5(in [Fer\¥e apply results of Y.
Laurent and Z. Mebkhout [LM99, Lemme 1.1.2 and Section 23jet

dime 1O (I}, (Ma(C,0, 8))), = 1ixs” — il ® + sy ™ = w5,
To finish the proof we apply Theordm #.8 and Theorem[7.5 [Her10 O

Remark 5.2. Notice that the above formula fdime H°(Irry, (Ma(C,, s, 8))), = 0 yields zero
if i ¢ J since in that case the induced filtratioh,) ; (denoted just by by abuse of notation)
is constant and &%, \ ), = 0.

Let us see how to compute Gevrey solutions of a binomamoduleM 4 (1, §). By (3.3) in
[DMM ,10] the I, ;—primary component’, ; of an irredundant primary decomposition of any



ON IRREGULAR BINOMIAL D—-MODULES 15

A—graded binomial ideal (for some minimal associated prindg; = I, + m; of I) contains
I,. Thus,

(51) Ip+m’}§Cp,J§ Cp7J:Ip7J:Ip+mJ

for sufficiently large integer. In fact, it is not hard to check that, ; = I, + B, ; for some
binomial idealB, ; C R such thain’, C B, ; C m;. Let us fix such an ideds, ;.
For any monomial ideal C C, ; such that/n = m; we have that

Ha(l,+n,8) C HA(C, g, 8) € Ha(l,,s, ).

Let us fix such an ideai. In particular, any formal solution a¥/4 (1, s, 3) is a solution of
M4(C,, 4, 8) and any solution ol 4(C,, ;, ) is a solution ofM 4 (1, + n, 3).

Let us assume that, ; is toral (i.e. R/, ; has Krull dimension equal teank A;). We will
also assume thatnk A; = rank A in order to ensure thagleg(R/C, ;) = C%,

On the one hand, both the solutions (1, s, 3) and the solutions of\/4(I, + n, 3) can
be described explicitly if the parameter vectbrs generic enough. More precisely, a formal
solution of the hypergeometric systeh, (1, ;, 5) with very generic is known to be of the

form
b= Y o e

uCker A jNZJI (U T U)u+

wherev € C7 such thatd;v = g and(v).,, = [[;c, [To<icw,—1(vj — @) is the Pochhammer
symbol (see [GZK89, SST0D0]). Hereneeds to verify additional conditions in order to ensure
thato, is a formal series along a coordinate subspace or a holoncsplution.
The vectorsy you need to consider to describe a basis of the space of Gsulefjons of a
given order along a coordinate subspac€&€bffor the binomialD-moduleM4(1, 5, 5) are the
same that are described in [Fer10] for the hypergeometsiery) 4, (5).
On the other hand, foy in N’ let G, be either a basis of the space of holomorphic solutions
near a non singular point or the space of Gevrey solutionsgdfen order along a coordinate
hyperplane ofC” for the system\/4,(1,, 3 — A5y), whereJ denotes the complement dfin
{1,...,n} andz7 runs in the setz(n) of monomials inC[z7] annihilated by the monomial
differential operators im. Then a basis of the same class of solutions for the systan?, +
n, () is given by

B={x30: 27 € S3(n), p € G,}

We conclude that any holomorphic or formal solutioméf,(C, ;, ) can be written as a linear
combination of the series iB. The coefficients in a linear combination of element®ithat
provide a solution of\/4(C,, ;, 8) can be computed if we force a general linear combination to
be annihilated by the binomial operators in a set of genesats, ; that are not im.

Thus, the main problem in order to compute formal or analgtilutions ofM4(C,, s, 5) is
that the idealB, ; is not a monomial ideal in general and that a minimal set obgatiors may
involve some variables; for j € J. Let us illustrate this situation with the following exarapl

Example 5.3. Let us writex = z1,y = x9,2 = x3,t = x4 and consider the binomial ideal
C,;=1,+B,; CCld,,0,,0.,0] whereJ = {1,2}, p : ker(A;) N Z*> — C* is the trivial
characterA is the row matrix(2, 3,2,2), I, = (03 — 92) andB,, ; = (07 — 0,.0,, 7).

Notice thatC, ; is A-graded for the row matrid = (2 3 2 2) and that”,, ; is toral and primary.
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Since C, ; is primary and its radical ideal i$, + m;, = (97 — 0;,9.,9,), we have that
M4(C, s, ) is an irregular binomiaD-module for all parameters € C (see Theorern 3.7)
and that it has only one slope= 3/2 along its singular locu$y = 0}.

We are going to compute the Gevrey solutiondnf(C,, ;, 5) corresponding to this slope.

By the previous argument and using that= (9,97) C B, , we obtain that any Gevrey
solution of M 4(C, s, B) along{y = 0} can be written as

F= Au2 (8 — 2y — 27)

v,k

where), ,, € C, v = (7., %), 7 € {0,1,2,3}, %,k € {0,1} and

—3Kk)/2 —~, — m (a e .
(bk(B — 27, — 2%) = Z ((5 (k‘)—/l— ng/g %)3 2 (B=3k)/2=7z =7 =3 yk+2

m>0

is a Gevrey series of index = 3/2 alongy = 0 at any pointp € {y = 0} N {x # 0} if
(B8—3k)/2=7:—n¢N.

We just need to force the conditiahd,(f) = 9%(f) in order to obtain the values of, , such
that f is a solution ofd/4(C, s, 5).

In this example, we obtain the conditioNg ), = A3,1)x = 0 for k = 0,1 and

(6 =3k)/2 = 72) |
(a+1)(atz) “O=DF

)\(’Yz+270)71 =

fork,v, =0, 1.

In particular we get an explicit basis of the space of Gev@yt®ons of M 4(C, ;, 5) along

y = 0 with index equal to the slope = 3/2 and we have that the dimension of this space is
8. Notice thats = 4 - 2 is the expected dimension (see Theofen 5.1) since= 4 and the
dimension of the corresponding space fé5 (1, s, 5) is 2 (see [FC11l, FC08]).
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