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Abstract. Using Weil descent, we give bounds for the number of ratio-
nal points on two families of curves over finite fields with a large abelian
group of automorphisms: Artin-Schreier curves of the form yq−y = f(x)
with f ∈ Fqr [x], on which the additive group Fq acts, and Kummer

curves of the form y
q−1
e = f(x), which have an action of the multiplica-

tive group F?
q . In both cases we can remove a

√
q factor from the Weil

bound when q is sufficiently large.

1. Introduction

Let k = Fq be a finite field of characteristic p and C a geometrically
connected smooth curve of genus g in P2

k. The well known Weil bound gives
the following estimate for the number of points Nr of C rational over Fqr
for every r ≥ 1:

|Nr − qr − 1| ≤ 2gq
r
2

This bound is sharp in general if we fix C and take variable Fqr , in the
sense that

lim sup
r≥1

logq |Nr − qr − 1| = r

2

and

lim sup
r≥1

|Nr − qr − 1|
q

r
2

= 2g.

However, for some curves it is possible to improve this bound for large values
of q if we keep r under control. In the article [6] it was proven that this was
the case for the affine Artin-Schreier curve Af defined by

yq − y = f(x)

with f ∈ k[x], whose singular model has genus (d−1)(q−1)/2 and only one
point at infinity. For Af one can get an estimate of the form

|Nr − qr| ≤ Cd,rq
r+1
2

under certain generic conditions on f (where Nr is now the number of points
on the affine curve Af ). In this formula Cd,r is independent of q (more
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precisely, it is a polynomial in d of degree r) so it gives a great improvement
of the Weil bound if q is large. This estimate was obtained by writing Nr−qr
as a sum of additive character sums

Nr − qr =
∑
t∈k

∑
x∈kr

ψ(Trkr/k(f(x))),

each of them bounded by (d − 1)q
r
2 , and then showing that there is some

cancellation on the outer sum so that the total sum is bounded by Oq(q
r+1
2 ).

In this article we take a different approach: since

Nf = q ·#{x ∈ kr|Trkr/k(f(x)) = 0},
using Weil descent we construct a hypersurface in Ark whose number of
rational points is precisely the number of x ∈ kr such that Trkr/k(f(x)) =
0. Under certain conditions the projective closure of this hypersurface is
smooth, so we can use Deligne’s bound to estimate its number of rational
points and deduce the bound

(1) |Nr − qr| ≤ (d− 1)rq
r+1
2 .

This method is certainly less powerful than the one used in [6]. In par-
ticular, the hypotheses we need f to satisfy in order to get (1) are more
restrictive than those in [6, Corollary 3.4, Corollary 4.2], and the constant
(d− 1)r is also slightly worse (notice that the coefficient of the leading term
of Cd,r in [6, Corollary 3.4] decreases rapidly as r grows). On the other hand,
this method works even when f is defined only over kr, not just over k, thus
giving a positive answer to one of the questions posed in the introduction of
[6].

We also apply the same procedure to study the other example proposed
in the introduction of [6]: Kummer curves, a particular type of superelliptic
curves of the form

Ef : y
q−1
e = f(x)

where e is a positive divisor of q−1. These curves can have genus anywhere

between
(
q−1
e − 1

)
(d − 2)/2 and

(
q−1
e − 1

)
(d − 1)/2, but in any case for

fixed e the Weil estimate gives

|Nr − qr| = O(q
r
2

+1).

Here we also have a large abelian group acting faithfully on Ef , namely the
multiplicative group k?/µe of non-zero elements of k modulo the subgroup
of e-th roots of unity, so one also expects to be able to remove a

√
q factor

from the bound. We can write

Nf = δ +
q − 1

e

∑
λe=1

#{x ∈ kr|Nkr/k(f(x)) = λ}

where δ is the number of roots of f in kr. Again using Weil descent we will
construct a hypersurface (or rather a one-parameter family of hypersurfaces)
Wλ in Ark such that the number of rational points of Wλ over k is #{x ∈
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kr|Nkr/k(f(x)) = λ}. The hypersurfaces Wλ are highly singular at infinity,
so this case requires a detailed study of the cohomology of this family, which
takes most of the length of this article.

The descent method works surprisingly well in this case, and we get the
estimate

|Nf − qr − δ + 1| ≤ r(d− 1)r(q − 1)q
s−1
2

under the only hypothesis that f is square-free of degree prime to p.
The fact that the descent method works well in the Kummer case and

not so well in the Artin-Schreier case has an explanation: for Artin-Schreier
curves, we can write Nr − qr as a “sum of additive character sums”, param-
eterized by the set of non-trivial additive characters of k. Upon choosing
a non-trivial character ψ, this set can be identified with the set of k-points
of the scheme Gm = A1 − {0}, and the corresponding exponential sums are
the local Frobenius traces of the r-th Adams power of some geometrically
semisimple `-adic sheaf on Gm. In order to get a good estimate (i.e., of the

form O(q
r+1
2 )), we need (all components of) this Adams power to not have

any invariants when regarded as representations of π1(Gm). When doing
Weil descent, what we are really looking at is the invariant space of the
(Frobenius twisted) r-th tensor power of this sheaf, which is a much larger
object. In particular, we may get some undesired additional invariants. In
this case the monodromy group is semisimple, and therefore its determinant
has some finite order N . Then its N -th tensor power is definitely going to
have non-zero invariant space, which (in general) would not be present if we
just considered the Adams power.

On the other hand, for the Kummer case we can write Nr − qr as a sum
of multiplicative character sums, parameterized by the set of all non-trivial
multiplicative characters χ of k? of order divisible by q−1

e . Even though it is
not possible to realize these sums as the Frobenius traces of an `-adic sheaf
on a scheme, recent work of Katz ([5], especially remark 17.7) shows that
these sums are approximately distributed like traces of random elements
on a compact Lie group. For generic f , this group is the unitary group
Ud−1. In particular, all tensor powers of this “representation” (the standard
(d − 1)-dimensional representation of Ud−1) have zero invariant space, and
this makes our method work well.

We conjecture that one should get a similar estimate for Kummer hyper-
surfaces of the form

y
q−1
e = f(x1, . . . , xn)

where f ∈ kr[x1, . . . , xn] is in some Zariski open set, namely one should have

|Nr − qnr| ≤ Cn,d,e,rq
nr+1

2

for some Cn,d,e,r independent of q. However, the conditions in this case
should necessarily be more restrictive, as shown by the example

yq−1 = x1x2 + 1
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in which f(x1, x2) = x1x2 + 1 is as smooth as it can be but it is easy to
check that

Nr = q2s + (q − 2)qr

for every odd q and every r.
The author would like to thank Daqing Wan for pointing out some mis-

takes in an earlier version of this article.

2. The Artin-Schreier case

Let k = Fq be a finite field of characteristic p, kr = Fqr the extension of
k degree r inside a fixed algebraic closure k̄, and f ∈ kr[x] a polynomial of
degree d prime to p. Let Af be the Artin-Schreier curve defined in A2

kr
by

the equation

(2) yq − y = f(x)

and denote by Nf its number of kr-rational points. The group of k-rational
points of the affine line A1 acts on Af (kr) by λ · (x, y) = (x, y + λ).

By the general Artin-Schreier theory, an element z ∈ kr can be written
as yq − y for some y ∈ kr if and only if Trkr/k(z) = 0, and in that case there
are exactly q such y’s. Therefore

Nf = q ·#{x ∈ kr|Tr(f(x)) = 0}
where Tr = Trkr/k is the trace map kr → k.

Let us recall the Weil descent setup (cf. for instance [3]). Fix an basis B =
{α1, . . . , αr} ⊆ kr of kr over k, and consider the polynomial S(x1, . . . , xr) =∑r

j=1 f
σj

(σj(α1)x1+· · ·+σj(αr)xr) ∈ kr[x1, . . . , xr], where σ ∈ Gal(kr/k) is

the Frobenius automorphism and fσ
j

means applying σj to the coefficients
of f . Since the coefficients of S are invariant under the action of Gal(kr/k),
S ∈ k[x1, . . . , xr].

Let V be the subscheme of Ark defined by the polynomial S. Notice that

a point (x1, . . . , xr) ∈ kr is in V (k) if and only if
∑r

j=1 f
σj

(σj(α1)x1 + · · ·+
σj(αr)xr) =

∑r
j=1 σ

j(f(α1x1 + · · ·+ αrxr)) = 0, if and only if Tr(f(α1x1 +

· · ·+αrxr)) = 0. Since {α1, . . . , αr} is a basis of kr over k, we conclude that

(3) Nf = q ·#{x ∈ kr|Tr(f(x)) = 0} = q ·#V (k).

On the other hand, V ⊗kr is isomorphic, under a linear change of variable,

to the hypersurface defined by fσ(x1) + fσ
2
(x2) + · · ·+ fσ

r
(xr) = 0 in Arkr .

Since d is prime to p, V has at worst isolated singularities, and its projective
closure has no singularities at infinity. In particular, we get:

Theorem 2.1. Let f ∈ kr[x] be a polynomial of degree d prime to p. If the

hypersurface defined in Ark by fσ(x1) + fσ
2
(x2) + · · ·+ fσ

r
(xr) = 0 is non-

singular, the number Nf of kr-rational points on Cf satisfies the estimate

|Nf −qr| ≤
(d− 1)r+1 − (−1)r(d− 1)

d
q

r+1
2 +

(d− 1)r − (−1)r−1(d− 1)

d
q

r
2 ≤



ON THE NUMBER OF RATIONAL POINTS ON CURVES OVER FINITE FIELDS 5

≤ (d− 1)rq
r+1
2 .

Proof. If V̄ is the projective closure of V in Prk and V0 = V̄ − V , we have

#V (k)− qr−1 = #V̄ (k)−#V0(k)− (#Pr−1(k)−#Pr−2(k)) =

= (#V̄ (k)−#Pr−1(k))− (#V0(k)−#Pr−2(k))

so

|Nr − qr| = q · |#V (k)− qr−1| ≤

≤ q · (|#V̄ (k)−#Pr−1(k)|+ |#V0(k)−#Pr−2(k)|) ≤

≤ (d− 1)r+1 − (−1)r(d− 1)

d
q

r+1
2 +

(d− 1)r − (−1)r−1(d− 1)

d
q

r
2

since V̄ and V0 are non-singular of degree d and dimension r − 1 and r − 2
respectively. �

As noted in [6, end of section 3], the non-singularity condition is generic in
every linear space of polynomials of degree d that contains the constants: if
λ ∈ kr is such that Trkr/k(λ) is not a critical point of fσ(x1) + · · ·+fσ

r
(xr),

then f − λ satisfies the condition. The order of magnitude of the constant
is polynomial in d of degree r, essentially the same as in [6]. However, the
leading coefficient there decreases rapidly with r, whereas here it is always
1.

The same procedure can be applied to Artin-Schreier hypersurfaces. Let
f ∈ kr[x1, . . . , xn] be a Deligne polynomial, that is, its degree d is prime
to p and its highest homogeneous form defines a non-singular projective
hypersurface. Let Bf be the Artin-Schreier hypersurface defined in An+1

kr
by

the equation

(4) yq − y = f(x1, . . . , xn)

and denote by Nf its number of kr-rational points. Like in the previous
case, we have

Nf = q ·#{(x1, . . . , xn) ∈ knr |Tr(f(x1, . . . , xn)) = 0}

where Tr is the trace map kr → k. Let S ∈ kr[{xi,j |1 ≤ i ≤ n, 1 ≤ j ≤ r}]
be the polynomial

r∑
j=1

fσ
j

(
r∑
i=1

σj(αi)x1,i, . . . ,

r∑
i=1

σj(αi)xn,i

)

which has coefficients in k, and V the subscheme of Anrk defined by S. Again
Nf = q · #V (k), and V ⊗ kr is isomorphic to the hypersurface defined by

fσ(x1,1, . . . , xn,1) + · · · + fσ
r
(x1,r, . . . , xn,r) = 0. Since this hypersurface is

non-singular at infinity, we get
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Theorem 2.2. Let f ∈ kr[x1, . . . , xn] be a Deligne polynomial of degree d
prime to p. If the hypersurface defined in Anrk by fσ(x1,1, . . . , xn,1) + · · · +
fσ

r
(x1,r, . . . , xn,r) = 0 is non-singular, the number Nf of kr-rational points

on Cf satisfies the estimate

|Nr−qnr| ≤
(d− 1)nr+1 − (−1)nr(d− 1)

d
q

nr+1
2 +

(d− 1)nr − (−1)nr−1(d− 1)

d
q

nr
2 ≤

≤ (d− 1)nrq
nr+1

2 .

3. The Kummer case

Fix a positive integer e which divides q−1. Let Ef be the Kummer curve
defined in A2

kr
by the equation

(5) y
q−1
e = f(x)

and denote by Nf its number of kr-rational points. The group k? of k-
rational points of the torus Gm acts on Ef (kr) by λ · (x, y) = (x, λey).

A non-zero element z ∈ kr can be written as y
q−1
e for some y ∈ kr if

and only if Nkr/k(z)
e = 1, and in that case there are exactly q−1

e such y’s.
Therefore

Nf = #Z(kr) +
q − 1

e
·#{x ∈ kr|N(f(x))e = 1}

where N is the norm map kr → k and Z is the subscheme of A1
kr

defined by
f = 0.

If we apply the Weil descent method to identify the set {x ∈ kr|N(f(x))e =
1} with the set of k-rational points on a scheme over k like we did in the
Artin-Schreier case we get a scheme geometrically isomorphic to the one
defined by (fσ(x1) · · · fσr

(xr))
e = 1, which is highly singular at infinity.

In particular, its higher cohomology groups do not vanish. However, these
cohomology groups are relatively easy to control as we will see.

Fix an basis B = {α1, . . . , αr} ⊆ kr of kr over k, and consider the polyno-

mial T (x1, . . . , xr) =
∏r
j=1 f

σj
(σj(α1)x1 + · · · + σj(αr)xr) ∈ kr[x1, . . . , xr],

where σ ∈ Gal(kr/k) is the Frobenius automorphism and fσ
j

means apply-
ing σj to the coefficients of f . The coefficients of T are invariant under the
action of Gal(kr/k), so T ∈ k[x1, . . . , xr].

For any λ ∈ k, let Wλ be the subscheme of Ark defined by T = λ. A

point (x1, . . . , xr) ∈ kr is in Wλ(k) if and only if
∏r
j=1 f

σj
(σj(α1)x1 + · · ·+

σj(αr)xr) =
∏r
j=1 σ

j(f(α1x1 + · · ·+ αrxr)) = λ, if and only if N(f(α1x1 +

· · ·+αrxr)) = λ. Since {α1, . . . , αr} is a basis of kr over k, we conclude that

(6) Nf = #Z(kr) +
q − 1

e
·#{x ∈ kr|N(f(x))e = 1} =

= #Z(kr)+
q − 1

e

∑
λe=1

#{x ∈ kr|N(f(x)) = λ} = #Z(kr)+
q − 1

e

∑
λe=1

#Wλ(k).
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Now Wλ ⊗ kr is isomorphic, under a linear change of variables, to the

hypersurface defined by fσ(x1)fσ
2
(x2) · · · fσr

(xr) = λ. This hypersurface
is highly singular at infinity, so in general we are not going to obtain good
bounds for its number of rational points. For instance, in the simplest case
f(x) = x, the hypersurface is a product of r − 1 tori. In particular, it has
non-zero cohomology with compact support in all degrees between r−1 and
2r − 2.

In order to understand the cohomology of these hypersurfaces, it will be
convenient to consider the entire family fσ(x1) · · · fσr

(xr) = λ parameter-
ized by λ and study the relative cohomology sheaves. We will do this in a
more general setting. Let f1, . . . , fs ∈ kr[x] be polynomials of degree d, and
let Fs : Askr → A1

kr
be the map defined by Fs(x1, . . . , xs) = f1(x1) · · · fs(xs).

Fix a prime ` 6= p and an isomorphism ι : Q̄` → C, and let Ks := RFs!Q̄` ∈
Dbc(A1

kr
, Q̄`) be the relative `-adic cohomology complex with compact sup-

port of Fs. For dimension reasons, Hj(Ks) = 0 for j < 0 and j > 2s− 2.

Lemma 3.1. Suppose that fi is square-free for every i = 1, . . . , s. Then

(1) Hj(Ks)|Gm
= 0 for j < s− 1.

(2) If s ≥ 2, H2s−2(Ks)|Gm
is the Tate-twisted constant sheaf Q̄`(1− s).

(3) Hj(Ks)|Gm
is geometrically constant of weight 2(j − s + 1) for s ≤

j ≤ 2s− 3.
(4) Hs−1(Ks)|Gm

contains a subsheaf Fs which is the extension by direct
image of a smooth sheaf on an open subset V ↪→ Gm of rank s(d−1)s,
pure of weight s − 1, unipotent at 0 and totally ramified at infinity,
such that the quotient Hs−1(Ks)|Gm

/Fs is geometrically constant of
rank ds − (d− 1)s and weight 0.

(5) H1
c(Gm,Fs) is pure of weight 0 and dimension (d− 1)s.

If all fi split completely in kr one can replace “geometrically constant” by
“Tate-twisted constant” everywhere and Gal(k̄r/kr) acts trivially on H1

c(Gm,Fs).

Proof. We will proceed by induction on s, as in [1, Théorème 7.8]. For s = 1,
(1), (2) and (3) are empty, so we only need to prove (4) and (5). In this
case, K1 = f1!Q̄`[0]. There is a natural trace map f1!Q̄` → Q̄`, let F1 be
its kernel. Since d is prime to p, the inertia group I∞ at infinity acts on
F1 via the direct sum of all its non-trivial characters of order divisible by
d. In particular, F1 is totally ramified at infinity, and is clearly pure of
weight 0. Now from the exact sequence 0 → F1 → f1!Q̄` → Q̄` → 0 we get
H1
c(Gm,F1) ↪→ H1

c(Gm, f!Q̄`) = H1
c(U1, Q̄`) = H0

c(Z1, Q̄`) which is pure of
weight 0, where Z1 ⊆ A1 is the subscheme defined by f1 = 0 and U1 = A1−
Z1. Moreover, dim H1

c(Gm,F1) = dim H1
c(Gm, f1!Q̄`) − dim H1

c(Gm, Q̄`) =
dim H1

c(U1, Q̄`)− dim H1
c(Gm, Q̄`) = d− 1 since f1 has d distinct roots in k̄.

If f1 splits completely in kr, then U1(kr) = U1(k̄r) and therefore Gal(k̄r/kr)
acts trivially on H1

c(U1, Q̄`) and a fortiori on H1
c(Gm,F1).

From now on let us denote K(f1) = K1 and F(f1) = F1 in order to
keep track of the polynomial from which they arise. We move now to the
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induction step, so suppose the lemma has been proved for s− 1. Since Fs is
the composition of Fs−1 × fs and the multiplication map µ : A2

kr
→ A1

kr
, we

get Ks = Rµ!(A1 × A1,Ks−1 �K(fs)). In particular, Ks|Gm
= Rµ!(Gm ×

Gm,Ks−1 �K(fs)). From the distinguished triangles

F(fs)[0]→ K(fs)→ Q̄`[0]→
and

Fs−1[2− s]→ Ks−1 → Ls−1 →
where Ls−1 is the “constant part” of Ks−1, we get the distinguished triangles

(7) Rµ!(Ks−1 � F(fs)[0])→ Ks|Gm
→ Rµ!(π

?
1Ks−1)→,

(8) Rµ!(π
?
1Fs−1)[2− s]→ Rµ!(π

?
1Ks−1)→ Rµ!(π

?
1Ls−1)→

and
(9)
Rµ!(Fs−1�F(fs))[2−s]→ Rµ!(Ks−1�F(fs)[0])→ Rµ!(Ls−1�F(fs)[0])→
where π1, π2 : Gm ×Gm → Gm are the projections.

Let σ : Gm × Gm → Gm × Gm be the automorphism given by (u, v) 7→
(u, uv). Then µ = π2 ◦ σ and π1 = π1 ◦ σ, so

Rµ!(π
?
1Fs−1) = Rπ2!(π

?
1Fs−1) = RΓc(Gm,Fs−1)

where the last object is seen as a geometrically constant object (in fact con-
stant if f1, . . . , fs−1 split in kr) in Dbc(Gm, Q̄`). By part (4) of the induction
hypothesis, we have H1

c(Gm,Fs−1) = 0 for i = 0, 2, so RΓc(Gm,Fs−1)[2 −
s] = H1

c(Gm,Fs−1)[1−s]. Similarly, using the automorphism (u, v) 7→ (uv, v)
we get

Rµ!(Ls−1 � F(fs)) = RΓc(Gm, Ls−1 ⊗F(fs))

and

Rµ!(π
?
1Ls−1) = RΓc(Gm, Ls−1)

which are both geometrically constant (and constant if f1, . . . , fs split in
kr).

With these ingredients we can now start proving the lemma. We have
already seen that RΓc(Gm,Fs−1)[2 − s] only has non-zero cohomology in
degree s − 1. By induction, Ls−1 only has non-zero cohomology in degrees
≥ s − 2. Since a constant object has obviously no punctual sections in
Gm, we deduce that RΓc(Gm, Ls−1 ⊗ F(fs)) and RΓc(Gm, Ls−1) only have
cohomology in degrees ≥ s− 1.

For the first term in the triangle (9) we have

Rµ!(Fs−1 � F(fs)) = Rπ2!((π1 ◦ σ−1)?Fs−1 ⊗ (π2 ◦ σ−1)?F(fs)) =

= Rπ2!(π
?
1Fs−1 ⊗ (π2 ◦ σ−1)?F(fs))

Its fibre over a geometric point t ∈ Gm is RΓc(Gm,Fs−1 ⊗ σ?tF(fs)), where
σt(u) = t/u is an automorphism of Gm. Since Fs−1 ⊗ σ?tF(fs) has no
punctual sections, it does not have cohomology in degree 0, and therefore
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Rµ!(Fs−1 �F(fs))[2− s] only has cohomology in degrees ≥ s−1. Using the
distinguished triangles 7, 8 and 9 this proves (1).

Since Fs−1 is totally ramified at infinity, H2
c(Gm,Fs−1) = 0, so Rµ!(π

?
iFs−1)[2−

s] = RΓc(Gm,Fs−1)[2− s] has no cohomology in degree ≥ s (and in partic-
ular in degree 2s− 2). On the other hand, since F(fs) is totally ramified at
infinity, so are all cohomology sheaves of Ls−1⊗F(fs). Since Ls−1 only has
cohomology in degrees ≤ 2s− 4, the spectral sequence Hi

c(Gm,Hj(Ls−1)⊗
F(fs))⇒ Hi+j

c (Gm, Ls−1 ⊗F(fs)) implies that Ls−1 ⊗F(fs) only has non-
zero cohomology in degrees ≤ 2s − 3. Finally, since F(fs) is smooth at 0
(because fs is square-free and therefore étale over 0), σ?tF(fs) is unramified
at infinity and therefore Fs−1 ⊗ σ?tF(fs) is totally ramified at infinity. In
particular, H2

c(Gm,Fs−1 ⊗ σ?tF(fs)) = 0 and Rµ!(Fs−1 � F(fs))[2 − s] has
no cohomology in degree ≥ s (in particular in degree 2s − 2). From the
triangles 7 and 8 we get then isomorphisms

H2s−2(K2|Gm
) ∼= R2s−2µ!(π

?
1Ks−1) ∼= R2s−2µ!(π

?
1Ls−1) ∼=

∼= H2
c(Gm,H2s−4(Ls−1)) ∼= H2

c(Gm, Q̄`(2− s)) = Q̄`(1− s)
by the induction hypothesis and the spectral sequence Hi

c(Gm,Hj(Ls−1))⇒
Hi+j
c (Gm, Ls−1), where the last two objects are regarded as constant sheaves

on Gm. This proves (2).
For (3), we have already seen that the left hand side of triangle 9 only

has cohomology in degree s − 1. Similarly, the left hand side of triangle 8
RΓc(Gm,Fs−1)[2− s] = H1

c(Gm,Fs−1)[1− s] only has cohomology in degree
s − 1. Since the other two ends of 8 and 9 are geometrically constant, we
conclude that Hj(K)|Gm

is geometrically constant for j ≥ s using triangle
7.

Let s ≤ j ≤ 2s − 3. For any geometrically constant object L, we have
RΓc(Gm, L) = L⊗ RΓc(Gm, Q̄`) ∼= L[−1]⊕ L(−1)[−2]. In particular

Hj(RΓc(Gm, Ls−1)) ∼= Hj−1(Ls−1)⊕Hj−2(Ls−1)(−1)

is pure of weight 2(j − s + 1) by induction. Similarly Hj(RΓc(Gm, Ls−1 ⊗
F(fs))) = Hj(Ls−1 ⊗ RΓc(Gm,F(fs))) ∼= Hj−1(Ls−1) ⊗ H1

c(Gm,F(fs)) is
pure of weight 2(j − s + 1) since H1

c(Gm,F(fs)) is pure of weight 0. Using
triangle 7 this proves that Hj(K)|Gm

is pure of weight 2(j − s+ 1).
From triangles 7 and 9 we get exact sequences

(10) 0→ Rs−1µ!(Ks−1 � F(fs)[0])→ Hs−1(Ks|Gm
)→

→ Rs−1µ!(π
?
1Ks−1)→ Rsµ!(Ks−1 � F(fs)[0])

and

0→ R1µ!(Fs−1 � F(fs))→ Rs−1µ!(Ks−1 � F(fs)[0])→

→ Hs−1
c (Gm, Ls−1 ⊗F(fs))→ 0.

We have already shown that Rsµ!(Ks−1 � F(fs)[0]) is pure of weight
2(s − s + 1) = 2. On the other hand, from triangle 8 we get an exact
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sequence

H1
c(Gm,Fs−1)→ Rs−1µ!(π

?
1Ks−1)→ Hs−1(RΓc(Gm, Ls−1))

where the left hand side has weight 0 by part (5) of the induction hy-
pothesis and the right hand side Hs−1(RΓc(Gm, Ls−1)) ∼= Hs−1(Ls−1[−1]⊕
Ls−1(−1)[−2]) = Hs−2(Ls−1) ⊕ Hs−3(Ls−1)(−1) = Hs−2(Ls−1) also has
weight 0 by part (4) of the induction hypothesis. Therefore Rs−1µ!(π

?
1Ks−1)

is pure of weight 0, and the last arrow in sequence (10) is trivial:

0→ Rs−1µ!(Ks−1 � F(fs)[0])→ Hs−1(Ks|Gm
)→ Rs−1µ!(π

?
1Ks−1)→ 0

Let Fs := R1µ!(Fs−1�F(fs)) (the multiplicative convolution of F(f1), . . . ,F(fs)).
Then Fs ↪→ Hs−1(Ks|Gm

), and the quotient sits inside an exact sequence

0→ Hs−1
c (Gm, Ls−1 ⊗F(fs))→ Hs−1(Ks|Gm

)/Fs → Rs−1µ!(π
?
1Ks−1)→ 0

whose extremes are already known to be geometrically constant by triangle
8. The rank of this quotient is

dim Hs−1
c (Gm, Ls−1 ⊗F(fs)) + dim Rs−1µ!(π

?
1Ks−1)

= (dimHs−2(Ls−1))(dim H1
c(Gm,F(fs)))+dim H1

c(Gm,Fs−1)+dim Hs−1
c (Gm, Ls−1)

= (ds−1−(d−1)s−1)(d−1)+(d−1)s−1 +dimHs−2(Ls−1)+dimHs−3(Ls−1)

= ds − ds−1 − (d− 1)s + (d− 1)s−1 + (ds−1 − (d− 1)s−1)

= ds − (d− 1)s

by parts (4) and (5) of the induction hypothesis.
By [4, Corollary 6 and Proposition 9], Hs−1(Ks) (and in particular its

subsheaf Fs) does not have punctual sections in A1. Let j0 : Gm ↪→ A1

be the inclusion. We claim that H1
c(A1, j0?Fs) = 0. This will prove both

that Fs is the extension by direct image of its restriction to any open set
jV : V ↪→ Gm on which it is smooth and that it is totally ramified at infinity,
since from the exact sequences

0→ j0?Fs → j0?jV ?j
?
V Fs → Q := jV ?j

?
V Fs/Fs(punctual)→ 0

and
0→ j∞!j0?Fs → j∞?j0?Fs → FI∞s → 0

where j∞ : A1 ↪→ P1 is the inclusion, we get injections Q ↪→ H1
c(A1, j0?Fs)

and FI∞s ↪→ H1
c(A1, j0?Fs).

Let i0 : {0} ↪→ A1 be the inclusion. From the exact sequence

0→ j0!Fs → j0?Fs → i0?i
?
0j0?Fs → 0

and the fact that Fs has no punctual sections we get

0→ FI0s → H1
c(Gm,Fs)→ H1

c(A1, j0?Fs)→ 0

where FI0s is the invariant space of Fs as a representation of the inertia
group I0. So it suffices to show that dimFI0s ≥ dim H1

c(Gm,Fs) (and then
we will automatically have equality). By definition of Fs, H1

c(Gm,Fs) =
H2
c(Gm × Gm,Fs−1 � F(fs)) = H1

c(Gm,Fs−1) × H1
c(Gm,F(fs)). Therefore
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H1
c(Gm,Fs) is pure of weight 0 and dimension (d− 1)s−1(d− 1) = (d− 1)s

by induction, thus proving (5). If f1, . . . , fs split in kr then H1
c(Gm,Fs) is a

trivial Gal(k̄r/kr)-module, also by induction.
On the other hand, Hs−1(Ks)|Gm

contains Fs plus a geometrically con-

stant part of dimension ds− (d− 1)s. So dimHs−1(Ks)
I0 = dimFI0s + (ds−

(d − 1)s). Since Hs−1(Ks) has no punctual sections, there is an injection
Hs−1(Ks)0 ↪→ Hs−1(Ks)

I0 , so dimHs−1(Ks)
I0 ≥ dimHs−1(Ks)0. By base

change,Hs−1(Ks)0 = Hs−1
c ({f1(x1) · · · fs(xs) = 0}, Q̄`) = Hs

c({f1(x1) · · · fs(xs) 6=
0}, Q̄`) = Hs

c(U1 × · · · × Us, Q̄`) = H1
c(U1, Q̄`) × · · · × H1

c(Us, Q̄`), where
Ui ⊆ A1 is the open set defined by fi(x) 6= 0 (since the Ui only have non-
zero cohomology in degrees 1 and 2), so dimHs−1(Ks)0 = ds. We conclude
that dimFI0s = dimHs−1(Ks)

I0 − (ds − (d− 1)s) ≥ dimHs−1(Ks)0 − (ds −
(d− 1)s) = (d− 1)s = dim H1

c(Gm,Fs).
To prove (4) it only remains to show that Fs|V is pure of weight s − 1

and rank s(d− 1)s and has unipotent monodromy action at 0. Let t ∈ Gm

be a geometric point which is not the product of a non-smoothness point
of Fs−1 and a non-smoothness point of F(fs). The fibre of Fs over t is
H1
c(Gm,Fs−1 ⊗ σ?tF(fs)). By the choice of t, at every point of Gm at least

one of Fs−1, σ?tF(fs) is smooth. Therefore if Fs−1 ⊗ σ?tF(fs) is smooth in
the open set jW : W ↪→ Gm, jW?j

?
W (Fs−1 ⊗ σ?tF(fs)) = (jW?j

?
WFs−1) ⊗

(jW?j
?
Wσ

?
tF(fs)) = Fs−1⊗σ?tF(fs). Given that Fs−1 (respectively σ?tF(fs))

is pure of weight s− 2, unipotent at 0 and totally ramified at ∞ (resp. pure
of weight 0, unramified at ∞ and totally ramified at 0), Fs−1 ⊗ σ?tF(fs) is
pure of weight s−2 and totally ramified at both 0 and∞, so H1

c(Gm,Fs−1⊗
σ?tF(fs)) = H1(P1, j∞?j

?
W (Fs−1 ⊗ σ?tF(fs))) is pure of weight s − 1, where

j∞ : W ↪→ P1 is the inclusion.
As for the rank, since Fs−1 ⊗ σ?tF(fs) has no punctual sections and is

totally ramified at 0 and∞, dim H1
c(Gm,Fs−1⊗σ?tF(fs)) = −χ(Gm,Fs−1⊗

σ?tF(fs)). By the Ogg-Shafarevic formula, for each of Fs−1, σ?tF(fs) its
Euler characteristic is (−1 times) a sum of local terms for the points of P1

where they are ramified. The local terms at 0, ∞ are the Swan conduc-
tors, which get multiplied by D upon tensoring with a unipotent sheaf of
rank D. The local terms corresponding to ramified points in Gm (Swan
conductor plus drop of the rank) are multiplied by D upon tensoring with
an unramified sheaf of rank D. Since at every point of Gm at least one of
Fs−1, σ?tF(fs) is unramified, we conclude that −χ(Gm,Fs−1 ⊗ σ?tF(fs)) =
−(d− 1)χ(Gm,Fs−1)− (s− 1)(d− 1)s−1χ(Gm,F(fs)) = (d− 1)(d− 1)s−1 +
(s− 1)(d− 1)s−1(d− 1) = s(d− 1)s.

Finally, since FI0s ∼= H1
c(Gm,Fs) has weight 0 and Fs is pure of weight

s−1, for every Frobenius eigenvalue of FI0s there is a unipotent Jordan block
of size s for the monodromy of Fs at 0 by [2, Section 1.8]. Since its rank is
s(d − 1)s, these Jordan blocks fill up the entire space, and therefore the I0

action is unipotent. This finishes the proof of (4) and of the lemma. �
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Now let T : Arkr → A1
kr

be the map defined by the polynomial T , and

K ′r := RT!Q̄` ∈ Dbc(A1
k, Q̄`). After extending scalars to kr, K

′
r becomes

isomorphic to Kr for fj = fσ
j
, j = 1, . . . , r. Since the results of the lemma

are invariant under finite extension of scalars, they also hold for K ′r. In
particular, for every r − 1 ≤ j ≤ 2r − 2 there exist βj,1, . . . , βj,dj ∈ C of

absolute value 1, where dj = rank Hj(Kr) (or the rank of the constant part
if j = r − 1) such that for every finite extension km of k of degree m and
every λ ∈ k?m
(11) #{(x1, . . . , xr) ∈ krm|T (x1, . . . , xr) = λ} =

=

2r−2∑
j=r−1

(−1)j
dj∑
l=1

qm(j−r+1)βmj,l + (−1)r−1Tr(Frobkm,λ|Fr).

Taking the sum over all λ ∈ k?m and using the trace formula:

#{(x1, . . . , xr) ∈ krm|T (x1, . . . , xr) 6= 0} =

=

2r−2∑
j=r−1

(−1)j
dj∑
l=1

(qm − 1)qm(j−r+1)βmj,l + (−1)r−1
∑
λ∈km

Tr(Frobkm,λ|Fr) =

=
2r−2∑
j=r−1

(−1)j
dj∑
l=1

(qm − 1)qm(j−r+1)βmj,l + (−1)rTr(Frobkm |H1
c(Gm,Fr)).

Let b be the degree of a splitting field of f over kr. Then the (geometrically
constant) cohomology sheaves of K ′r become constant after extending scalars
to kbr. In particular all βj,l are br-th roots of unity. If m is any positive
integer congruent to 1 modulo br we have then

#{(x1, . . . , xr) ∈ krm|T (x1, . . . , xr) 6= 0} =

=
2r−2∑
j=r−1

(−1)j
dj∑
l=1

(qm − 1)qm(j−r+1)βj,l + (−1)rTr(Frobkm |H1
c(Gm,Fr)) =

=

d2r−2∑
l=1

β2r−2,l

 qmr +
2r−2∑
j=r−1

(−1)j−1

dj−1∑
l=1

βj−1,l +

dj∑
l=1

βj,l

 qm(j−r+1)+

+(−1)rTr(Frobkm |H1
c(Gm,Fr)).

Since m is prime to r, B is a basis of kmr over km, and thus T (x1, . . . , xr) =
Nkmr/km(f(α1x1 + · · ·+ αrxr)). Therefore

#{(x1, . . . , xr) ∈ krm|T (x1, . . . , xr) 6= 0} =

= #{x ∈ kmr|Nkmr/km(f(x)) 6= 0} = #{x ∈ kmr|f(x) 6= 0}
and in particular

|#{(x1, . . . , xr) ∈ krm|T (x1, . . . , xr) 6= 0} − qmr| ≤ d.



ON THE NUMBER OF RATIONAL POINTS ON CURVES OVER FINITE FIELDS 13

Substituting in the formula above, we get∣∣∣∣∣∣
d2r−2∑

l=1

β2r−2,l − 1

 qmr +
2r−2∑
j=r−1

(−1)j−1

dj−1∑
l=1

βj−1,l +

dj∑
l=1

βj,l

 qm(j−r+1)+

+(−1)rTr(Frobkm |H1
c(Gm,Fr))

∣∣ ≤ d
Letting m → ∞ and using that |Tr(Frobkm |H1

c(Gm,Fr))| ≤ (d − 1)r is

bounded by a constant, we conclude that
∑d2r−2

l=1 β2r−2,l = 1 and

dj−1∑
l=1

βj−1,l +

dj∑
l=1

βj,l = 0

for every r ≤ j ≤ 2r − 2, so
∑dj

l=1 βj,l = (−1)j for every r − 1 ≤ j ≤ 2r − 2.

Theorem 3.2. Let f ∈ kr[x] be a square-free polynomial of degree d prime
to p and e|q − 1. Then the number Nf of kr-rational points on the curve

y
q−1
e = f(x)

satisfies the estimate

|Nf − qr − δ + 1| ≤ r(d− 1)r(q − 1)q
r−1
2

where 0 ≤ δ ≤ d is the number of roots of f in kr.

Proof. Substituting the computed values for
∑dj

l=1 βj,l in equation 11 for
m = 1 we get

#Wλ(k) = #{(x1, . . . , xr) ∈ kr|T (x1, . . . , xr) = λ} =

=

2r−2∑
j=r−1

qj−r+1 + (−1)r−1Tr(Frobk,λ|Fr) =

r−1∑
j=0

qj + (−1)r−1Tr(Frobk,λ|Fr).

So, by equation 6, we have

Nf = #Z(kr) +
q − 1

e

∑
λe=1

#Wλ(k) =

= δ +
q − 1

e

∑
λe=1

r−1∑
j=0

qj + (−1)r−1Tr(Frobk,λ|Fr)

 =

= δ + (qr − 1) + (−1)r−1 q − 1

e

∑
λe=1

Tr(Frobk,λ|Fr),

so

|Nf − qr − δ + 1| ≤ q − 1

e

∑
λe=1

r(d− 1)rq
r−1
2 = r(d− 1)r(q − 1)q

r−1
2

since Fr is pure of weight r − 1 and generic rank r(d − 1)r by the lemma,
and its rank can only drop at ramified points. �
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Remark 3.3. The condition that f is square-free is necessary, as shown
by the example

yq−1 = xd

in which

Nr = 1 + #{x ∈ kr|Nkr/k(x
d) = 1} = 1 +

∑
t∈k,td=1

#{x ∈ kr|Nkr/k(x) = t} =

= 1 + µd · (qs−1 + qr−2 + · · ·+ q + 1)

where µd ≥ 1 is the number of d-th roots of unity in k.
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