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Abstract

We show that the symmetric track groups Sym�(n), which are extensions
of the symmetric groups Sym(n) associated to the second Stiefel-Whitney
class, act as crossed modules on the secondary homotopy groups of a pointed
space.

Introduction

Secondary homotopy operations like Toda brackets [Tod62] or cup-one products
[BJM83], [HM93], are defined by pasting tracks, where tracks are homotopy classes
of homotopies. Since secondary homotopy operations play a crucial role in homotopy
theory it is of importance to develop the algebraic theory of tracks. We do this by
introducing secondary homotopy groups of a pointed space X

Πn,∗X =
(
Πn,1X

∂
→ Πn,0X

)

which have the structure of a quadratic pair module, see Section 1. Here ∂ is a
group homomorphism with cokernel πnX and kernel πn+1X for n ≥ 3.

We define Πn,∗X for n ≥ 2 directly in terms of maps Sn → X and tracks from
such maps to the trivial map. For n ≥ 0 the functor Πn,∗ is an additive version of the
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functor πn,∗ studied in [BM08]. The homotopy category of (n−1)-connected (n+1)-
types is equivalent via Πn,∗ to the homotopy category of quadratic pair modules for
n ≥ 3.

In this paper we consider the “generalized coefficients” of secondary homotopy
groups Πn,∗X obtained by the action of the symmetric group Sym(n) on Sn =

S1∧
n
· · · ∧S1 via permutation of coordinates. For a permutation σ ∈ Sym(n) the

map σ : Sn → Sn has degree sign σ ∈ {±1}. The group {±1} also acts on Sn by
using the topological abelian group structure of S1 and suspending n−1 times. This
shows that there are tracks σ ⇒ sign σ which, by definition, are the elements of the
symmetric track group Sym

�
(n). Also these tracks act on Πn,∗X. We clarify this

action by showing that the group Sym
�
(n) gives rise to a crossed module which acts

as a crossed module on the quadratic pair module Πn,∗X.
The symmetric track group is a central extension

Z/2 →֒ Sym
�
(n)

δ
։ Sym(n)

which, as we show, represents the second Stiefel-Whitney class pulled back to
Sym(n). The symmetric track group is computed in Section 6. We actually com-
pute a faithful positive pin representation of Sym

�
(n) from which we derive a finite

presentation of this group. This group also arose in a different way in the work of
Schur [Sch11] and Serre [Ser84].

In [BM07] we describe the smash product operation on secondary homotopy
groups Πn,∗X. This operation endows Π∗,∗ with the structure of a lax symmetric
monoidal functor where the crossed module action of Sym

�
(n) on Πn,∗X is of crucial

importance. This leads to an algebraic approximation of the symmetric monoidal
category of spectra by secondary homotopy groups, see [BM06]. As an example we
prove a formula for the unstable cup-one product α ⌣1 α ∈ π2n+1S

2m of an element
α ∈ πnS

m where n and m are even. We show that

2(α ⌣1 α) =
n + m

2
(α ∧ α)(Σ2(n−1)η)

where η : S3 → S2 is the Hopf map. In the very special case when n/2 is odd and
m/2 is even then this formula was achieved by totally different methods in [BJM83].

1 Square groups and quadratic pair modules

In this section we describe the algebraic concepts needed for the structure of sec-
ondary homotopy groups.

Definition 1.1. A square group X is a diagram

X = (Xe

P

⇆
H

Xee)

where Xe is a group with an additively written group law, Xee is an abelian group,
P is a homomorphism, H is a function such that the cross effect

(a|b)H = H(a + b) − H(b) − H(a)

is linear in a and b ∈ Xe, and the following relations are satisfied for all x, y ∈ Xee,
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1. (Px|b)H = 0, (a|Py) = 0,

2. P (a|b)H = −a − b + a + b,

3. PHP (x) = P (x) + P (x).

These relations imply that the image of P is central in Xe, and that Xe is a group
of nilpotency class 2.

The function

T = HP − 1: Xee −→ Xee

is an involution, i. e. a homomorphism with T 2 = 1.
A morphism of square groups f : X → Y is given by homomorphisms

fe : Xe −→ Ye,

fee : Xee −→ Yee,

commuting with P and H .
Let SG be the category of square groups. A square group X with Xee = 0 is the

same as an abelian group Xe. This yields the full inclusion of categories Ab ⊂ SG

where Ab is the category of abelian groups.

Square groups were introduced in [BP99] to describe quadratic endofunctors of
the category Gr of groups. More precisely, any square group X gives rise to a
quadratic functor

−⊗ X : Gr −→ Gr.

Given a group G the group G⊗X is generated by the symbols g ⊗ x and [g, h]⊗ z,
g, h ∈ G, x ∈ Xe, z ∈ Xee subject to the relations

(g + h) ⊗ x = g ⊗ x + h ⊗ x + [g, h] ⊗ H(x),

[g, g] ⊗ z = g ⊗ P (z),

where g ⊗ x is linear in x and [g, h]⊗ z is central and linear in each variable g, h, z.
If X is an abelian group then G ⊗ X = Gab ⊗ Xe, where Gab is the abelianization
of a group G. In fact, any quadratic functor F : Gr → Gr which preserves reflexive
coequalizers and filtered colimits has the form F = −⊗ X, see [BP99]. The theory
of square groups is discussed in detail in [BJP05].

There is a natural isomorphism

Xe

∼=−→ Z ⊗ X, x 7→ 1 ⊗ x.

In particular the homomorphism n : Z → Z induces a homomorphism n∗ : Xe → Xe

fitting into the following commutative diagram

Z ⊗ X
n⊗X

//
OO

∼=

Z ⊗ X
OO

∼=

Xe
n∗

// Xe

(1.2)
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The homomorphism n∗ is explicitly given by the following formula,

n∗x = n · x +

(
n

2

)
PH(x).

Here we set
(

n

2

)
= n(n−1)

2
and for any additively written group G and any n ∈ Z,

g ∈ G,

n · g =





g+
n
· · · +g, if n ≥ 0;

−g−
−n
· · · −g, if n < 0.

The function n· : G → G in general is not a homomorphism, but if G is abelian
then n· is a homomorphism. This homomorphism is generalized by n∗ in (1.2) for
square groups.

Definition 1.3. A quadratic pair module C is a morphism ∂ : C(1) → C(0) between
square groups

C(0) = (C0

P0

⇆
H

Cee),

C(1) = (C1

P

⇆
H1

Cee),

such that ∂ee = 1: Cee → Cee is the identity homomorphism. In particular ∂ is
completely determined by the diagram

Cee

P

}}{{{{{{{{

C1 ∂
// C0

H
aaCCCCCCCC

(1.4)

where ∂ = ∂e, H1 = H∂ and P0 = ∂P .
The homology of a quadratic pair module C is given by the abelian groups

h0C = C0/∂(C1), (1.5)

h1C = Ker[∂ : C1 → C0].

Morphisms of quadratic pair modules f : C → D are given by group homomor-
phisms f0 : C0 → D0, f1 : C1 → D1, fee : Cee → Dee, commuting with H , P and ∂
in (1.4) as in the diagram

C0
H //

f0

��

Cee

fee

��

P // C1

f1

��

∂ // C0

f0

��

D0
H // Dee

P // D1
∂ // D0

They form a category denoted by qpm. A morphism in qpm is said to be a weak
equivalence if it induces isomorphisms in h0 and h1.

Quadratic pair modules are also the objects of a bigger category wqpm given by
weak morphisms. A weak morphism f : C → D between quadratic pair modules is
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given by three homomorphisms f0, f1, fee as above, but we only require the following
two diagrams to be commutative

Cee
T //

fee

��

Cee

fee

��

Dee
T // Dee

⊗2(C0)ab

(−|−)H
//

⊗2(f0)ab
��

Cee

fee

��

P // C1

f1

��

∂ // C0

f0

��

⊗2(D0)ab

(−|−)H
// Dee

P // D1
∂ // D0

Here ⊗2A = A ⊗ A denotes the tensor square of an abelian group. Therefore
qpm ⊂ wqpm is a subcategory with the same objects.

Let (Z, ·) be the multiplicative (abelian) monoid of the integers Z.

Definition 1.6. Any quadratic pair module C admits an action of (Z, ·) given by
the morphisms n∗ : C → C in wqpm, n ∈ Z, defined by the equations

• n∗x = n · x +
(

n

2

)
∂PH(x) for x ∈ C0,

• n∗y = n · y +
(

n

2

)
PH∂(y) for y ∈ C1,

• n∗z = n2z for z ∈ Cee.

We point out that n∗ : C → C is an example of a weak morphism which is not a
morphism in qpm since n∗ is not compatible with H . Notice that n∗ : C0 → C0

and n∗ : C1 → C1 are induced by the square group morphisms n⊗C(0) and n⊗C(1)

respectively, see diagram (1.2). We emphasize that this action is always defined
for any quadratic pair module C and it is natural in the following sense, for any
morphism f : C → D in qpm and any n ∈ Z, the equality

fn∗ = n∗f

holds. This property does not hold if f is a weak morphism. The existence of this
action should be compared to the fact that abelian groups are Z-modules.

The category squad of stable quadratic modules is described in [Bau91, IV.C]
and [BM08]. Quadratic modules in general are discussed in [Bau91] and [Ell93],
they are special 2-crossed modules in the sense of [Con84]. More precisely, a stable
quadratic module C is a diagram of group homomorphisms

⊗2(C0)ab
ω

−→ C1
∂

−→ C0,

such that given ci, di ∈ Ci, i = 0, 1,

∂ω(c0 ⊗ d0) = −c0 − d0 + c0 + d0,

ω(∂(c1) ⊗ ∂(d1)) = −c1 − d1 + c1 + d1,

ω(c0 ⊗ d0 + d0 ⊗ c0) = 0.

Morphisms f : C → D in squad are given by homomorphisms fi : Ci → Di, i = 0, 1,
compatible with ω and ∂. There is a forgetful functor from quadratic pair modules
and weak morphisms to stable quadratic modules

wqpm −→ squad (1.7)
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sending C as in Definition 1.3 to the stable quadratic module

⊗2(C0)ab
P (−|−)H
−→ C1

∂
−→ C0. (1.8)

This functor is faithful over the full subcategory of quadratic pair modules such that
the cross effect of H is an isomorphism (−|−)H : ⊗2 (C0)ab

∼= Cee.
A track category is a groupoid-enriched category, which is also a 2-category

where all 2-morphisms (also termed tracks) are vertically invertible. The vertical
composition in track categories is denoted by �, the vertical inverse of a track α is
α⊟, and the trivial track from a morphism f to itself is 0� : f ⇒ f .

Remark 1.9. The category Top∗ of pointed spaces is known to be a track category
with tracks given by homotopy classes of homotopies. This track category has in
addition a strict zero object ∗, which is an object such that the morphism groupoids
from or to ∗ are trivial, i.e. they consist of only one object and one morphism.
In particular the zero morphism 0: X → Y between two objects X, Y is uniquely
defined as the morphism which factor as X → ∗ → Y . Moreover, in a track category
with a strict zero object the following crucial fact holds: The horizontal composition
of any track H and a zero morphism is a trivial track H0 = 0�, 0H = 0�.

The forgetful functor (1.7) can be used to pull-back to wqpm the track category
structure on squad introduced in [BM08, 6]. The track structure on squad was
already a pull-back along the forgetful functor

squad −→ cross (1.10)

from stable quadratic modules to crossed modules considered also in [BM08, 6].

Definition 1.11. We recall that a crossed module ∂ : M → N is a group homomor-
phism such that N acts on the right of M (the action will be denoted exponentially)
and the homomorphism ∂ satisfies the following two properties (m, m′ ∈ M, n ∈ N):

1. ∂(mn) = −n + ∂(m) + n,

2. m∂(m′) = −m′ + m + m′.

The crossed module associated via (1.7) and (1.10) to a quadratic pair module
C is given by the homomorphism

∂ : C1 −→ C0,

where C0 acts on the right of C1 by the formula, x ∈ C1, y ∈ C0,

xy = x + P (∂(x)|y)H . (1.12)

Definition 1.13. A track α : f ⇒ g between two morphisms f, g : C → D in wqpm

is a function
α : C0 −→ D1

satisfying the equations, x, y ∈ C0, z ∈ C1,

1. α(x + y) = α(x)f0(y) + α(y),
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2. g0(x) = f0(x) + ∂α(x),

3. g1(z) = f1(z) + α∂(z).

Tracks in qpm are tracks in wqpm between morphisms in the subcategory qpm ⊂
wqpm.

Proposition 1.14. The categories wqpm and qpm are track categories with the
tracks in Definition 1.13.

This proposition is a direct consequence of [BM08, 6.4]. Vertical and horizontal
compositions are defined in the proof of [BM08, 6.4].

The following result shows that the weak action of (Z, ·) defined above is also
natural with respect to tracks in qpm.

Proposition 1.15. Let f, g : C → D be morphisms in qpm and let α : g ⇒ f be a
track as in Definition 1.13. Then the following diagram commutes

C0
α //

n∗

��

D1

n∗

��

C0
α // D1

Given a pointed set E with base point ∗ ∈ E we denote by 〈E〉nil and Z[E] the
free group of nilpotency class 2 and the free abelian group generated by E with
∗ = 0 respectively. More generally Gnil denotes the projection of a group G to the
variety of groups of nilpotency class 2.

Definition 1.16. A quadratic pair module C is said to be 0-free if C0 = 〈E〉nil,
Cee = ⊗2

Z[E] and H is determined by the equalities H(e) = 0 for any e ∈ E and
(s|t)H = t⊗ s for any s, t ∈ 〈E〉nil. Notice that in this case the cross effect yields an
isomorphism (−|−)H : ⊗2 (C0)ab

∼= Cee.
One can similarly define a 0-free stable quadratic module as a stable quadratic

module whose lower-dimensional group is free of nilpotency class 2. No further
conditions are required in this case.

The next lemma shows that 0-free stable quadratic modules are in the image of
the forgetful functor in (1.7).

Lemma 1.17. Any 0-free stable quadratic module

⊗2
Z[E]

ω
−→ M

∂
−→ 〈E〉nil

gives rise to a 0-free quadratic pair module

⊗2
Z[E]

P

{{wwwwwwwww

M
∂

// 〈E〉nil

H
ddJJJJJJJJJ

with P (a ⊗ b) = ω(b ⊗ a).
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Later we will need the following technical lemma which measures the lack of
compatibility of certain tracks in wqpm with the action of (Z, ·).

Lemma 1.18. Let C be a 0-free quadratic pair module with C0 = 〈E〉nil, let f : C0 →
C0 be an endomorphism induced by a pointed map E → E, and let α : C0 → C1 be
a map satisfying

α(x + y) = α(x)f(y) + α(y),

m∗x = f(x) + ∂α(x),

for some m ∈ Z and any x, y ∈ C0. Then the following formula holds for any n ∈ Z

and x ∈ C0.

α(n∗x) = n∗α(x) +

(
m

2

)(
n

2

)
P (x|x)H .

Proof. We first check that the lemma holds for x+ y provided it holds for x, y ∈ C0.

αn∗(x + y) = α(n∗x + n∗y)

= α(n∗x)f(n∗y) + α(n∗y)

= n∗α(x) + n∗α(y) +

(
m

2

)(
n

2

)
P (x|x)H

+

(
m

2

)(
n

2

)
P (y|y)H + P (−f(n∗x) + n∗m∗x|f(n∗y))H

= n∗(α(x) + α(y)) + n∗P (−f(x) + m∗x|fy)H

+

(
m

2

)(
n

2

)
P (x + y|x + y)H

= n∗(α(x)f(y) + α(y)) +

(
m

2

)(
n

2

)
P (x + y|x + y)H

= n∗α(x + y) +

(
m

2

)(
n

2

)
P (x + y|x + y)H .

Here we use that f is compatible with the action of (Z, ·) and that P (x|x)H is linear
in x.

We now check that the lemma holds for −x provided it holds for x. For this we
use that, by the first equation of the statement, α(−y) = −α(y)−f(y).

αn∗(−x) = α(−n∗x)

= −(αn∗x)−fn∗x

= −n∗α(x) −

(
m

2

)(
n

2

)
P (x|x)H − P (−n∗f(x) + n∗m∗x| − fn∗x)H

= −n∗α(x) −

(
m

2

)(
n

2

)
P (x|x)H − n∗P (−f(x) + m∗x| − fx)H

= −n∗(α(x) + P (−f(x) + m∗x| − f(x))H) +

(
m

2

)(
n

2

)
P (−x| − x)H

= −n∗
(
α(x)−f(x)

)
+

(
m

2

)(
n

2

)
P (−x| − x)H

= n∗α(−x) +

(
m

2

)(
n

2

)
P (−x| − x)H .
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Now since C0 = 〈E〉nil we only need to check that the proposition holds for
e ∈ E. But H(e) = 0, so we have n∗e = n · e. The equality

α(n · e) = n · α(e) +

(
n

2

)
P (f(e)|f(e))H + m

(
n

2

)
P (e|f(e))H

follows easily by induction in n from the first equation of the statement and the laws
of a quadratic pair module. On the other hand

n∗α(e) = n · α(e) +

(
n

2

)
PH(−f(e) + m · e).

One can also check by induction that

PH(−f(e) + m · e) = P (f(e)|f(e))H + mP (e|f(e))H −

(
m

2

)
P (e|e)H .

Now the proof is finished.

Lemma 1.18 holds under the more general condition that C0 is generated by
elements x ∈ C0 with H(x) = 0 and Hf(x) = 0.

2 Homotopy groups and secondary homotopy groups

Let Top∗ be the category of (compactly generated) pointed spaces. Using classical
homotopy groups πnX we obtain for n ≥ 0 the functor

Πn : Top∗ −→ Ab

with

ΠnX =





πnX, n ≥ 2,
(π1X)ab, n = 1,
Z[π0X], n = 0,

(2.1)

termed additive homotopy groups.
One readily checks that the smash product

f ∧ g : Sn ∧ Sm −→ X ∧ Y

of maps {f : Sn → X} ∈ πnX and {g : Sm → Y } ∈ πmY induces a well-defined
homomorphism

∧ : ΠnX ⊗ ΠmY −→ Πn+m(X ∧ Y ). (2.2)

This homomorphism is symmetric in the sense that the interchange map τX,Y : X ∧
Y → Y ∧ X yields the equation in Πn+m(Y ∧ X)

(τX,Y )∗(f ∧ g) = (−1)nmg ∧ f. (2.3)

Here the sign (−1)nm is given by the interchange map

τn,m = τSn,Sm : Sn+m −→ Sm+n (2.4)

which has degree (−1)nm. Here τn,m also designates the corresponding element of
the symmetric group Sym(n + m) which acts from the left on Sn+m, see Section 5
below.

We want to generalize the smash product operator (2.2) for additive secondary
homotopy groups.
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Definition 2.5. Let n ≥ 2. For a pointed space X we define the additive sec-
ondary homotopy group Πn,∗X which is the 0-free quadratic pair module given by
the diagram

Πn,∗X =




Πn,eeX = ⊗2
Z[ΩnX]

P

xxqqqqqqqqqqqq

Πn,1X
∂

// Πn,0X = 〈ΩnX〉nil

H
hhRRRRRRRRRRRRRRRR




We obtain the group Πn,1X and the homomorphisms P and ∂ as follows. The
group Πn,1X is given by the set of equivalence classes [f, F ] represented by a map
f : S1 → ∨ΩnXS1 and a track

Sn

Σn−1f

//

0

  

Sn
X ev

// X.

F

KS
���

���

Here the pointed space

Sn
X = ∨ΩnXSn = ΣnΩnX

is the n-fold suspension of the n-fold loop space ΩnX, where ΩnX is regarded in
this equation as a pointed set with the discrete topology. Hence Sn

X is the coproduct
of n-spheres indexed by the set of non-trivial maps Sn → X, and ev : Sn

X → X
is the obvious evaluation map. Moreover, for the sake of simplicity given a map
f : S1 → ∨ΩnXS1 we will denote fev = ev(Σn−1f), so that F in the previous diagram
is a track F : fev ⇒ 0. The equivalence relation [f, F ] = [g, G] holds provided there
is a track N : Σn−1f ⇒ Σn−1g with Hopf (N) = 0 if n ≥ 3 or σ̄Hopf (N) = 0 if n = 2,
see (2.6) and (2.7) below, such that the composite track in the following diagram is
the trivial track.

Sn

0

��

0

@@

Σn−1f
%%

Σn−1g

99
Sn

X
ev // X

F ⊟

��
��
��
�

��
��
�

N
��

G

��
  
  
 

  
  

 

That is F = G�(ev N). The map ∂ is defined by the formula

∂[f, F ] = (π1f)nil(1),

where 1 ∈ π1S
1 = Z.

The Hopf invariant of a track N : Σn−1f ⇒ Σn−1g as above is defined in [BM08,
3.3] by the homomorphism

H2(IS1, S1 ∨ S1)
ad(N)∗
−→ H2(Ω

n−1Sn
X ,∨ΩnXS1) ∼=





⊗̂
2
Z[ΩnX], n ≥ 3,

⊗2
Z[ΩnX], n = 2,

(2.6)
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which carries the generator 1 ∈ Z ∼= H2(IS1, S1 ∨ S1) to Hopf (N). Here ad(N)∗ is
the homomorphism induced in homology by the adjoint of the homotopy

N : Σn−1IS1 ∼= ISn → Sn
X .

The reduced tensor square is given by

⊗̂
2
A =

A ⊗ A

a ⊗ b + b ⊗ a ∼ 0
,

and
σ̄ : ⊗2 A ։ ⊗̂

2
A, σ̄(a ⊗ b) = a⊗̂b, (2.7)

is the natural projection. The isomorphism in (2.6) is induced by the Pontrjagin
product. We refer the reader to [BM08, 3] for a complete definition of the Hopf
invariant for tracks and for the elementary properties which will be used in this
paper. For the sake of simplicity we define the reduced Hopf invariant as Hopf =
Hopf if n ≥ 3 and Hopf = σ̄Hopf if n = 2. A nil-track in this paper will be a track
in Top∗ with trivial reduced Hopf invariant. In particular the equivalence relation
defining elements in Πn,1X is determined by nil-tracks.

This completes the definition of Πn,1X, n ≥ 2, as a set. The group structure of
Πn,1X is induced by the comultiplication µ : S1 → S1 ∨ S1, compare [BM08, 4.4].

We now define the homomorphism P for additive secondary homotopy groups
Πn,∗X with n ≥ 2. Consider the diagram

Sn

Σn−1β

//

0

��

Sn ∨ Sn

B

KS

where β : S1 → S1∨S1 is given such that (π1β)nil(1) = −a−b+a+b ∈ π1(S
1∨S1)nil

is the commutator of the generators a and b, which correspond to the inclusions
of the first and the second factor of S1 ∨ S1, respectively. The track B is any
track with Hopf (B) = −a⊗̂b ∈ ⊗̂

2
π1(S

1 ∨ S1)ab. Given x ⊗ y ∈ ⊗2
Z[ΩnX] let

x̃, ỹ : S1 → ∨ΩnXS1 be maps with (π1x̃)ab(1) = x and (π1ỹ)ab(1) = y. Then the
diagram

Sn

Σn−1β

//

0

��

Sn ∨ Sn

B

KS

Σn−1(ỹ,x̃)
// Sn

X ev
// X (2.8)

represents an element

P (x ⊗ y) = [(ỹ, x̃)β, ev (Σn−1(ỹ, x̃))B] ∈ Πn,1X.

This completes the definition of the quadratic pair module Πn,∗X for n ≥ 2. For
n = 0, 1 we define the additive secondary homotopy groups Πn,∗X by the following
remark. In this way we get for n ≥ 0 a functor

Πn,∗ : Top∗ −→ qpm

which is actually a track functor, see Remark 2.10 below.
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We show in [BM08, 5.1] that, for n ≥ 3, the homology of the additive secondary
homotopy groups, in the sense of (1.5), is given by the classical homotopy groups

hiΠn,∗X ∼= πi+nX, i = 0, 1.

For this we use that, in the range n ≥ 3, the additive secondary homotopy groups
considered here coincide with the (non-additive) secondary homotopy groups πn,∗X
defined in [BM08]. Moreover, by [BM08, 4.16] the nth additive secondary homotopy
group Πn,∗(∨ESn) of a wedge of n-spheres indexed by a pointed set E, ∨ESn = ΣnE,
is weakly equivalent to the 0-free quadratic pair module Znil[E] given by

Znil[E] =




⊗2
Z[E]

P=σ̄

���������

⊗̂
2
Z[E]

∂
// 〈E〉nil

H

]]<<<<<<<




,

where σ̄ is the natural projection in (2.7) and ∂(a⊗̂b) = −a− b + a + b for a, b ∈ E.
The weak equivalence

Znil[E] −→ Πn,∗(∨ESn), (2.9)

sends e ∈ E ⊂ 〈E〉nil = (Znil[E])0 to the inclusion of the factor ie : Sn ⊂ ∨ESn corre-
sponding to the index e regarded as an element ie ∈ Ωn(∨ESn) ⊂ 〈Ωn(∨ESn)〉nil =
Πn,0(∨ESn).

Remark 2.10. Considering maps f : Sn → X together with tracks of such maps to
the trivial map, we introduced in [BM08] the secondary homotopy group πn,∗X,
which is a groupoid for n = 0, a crossed module for n = 1, a reduced quadratic
module for n = 2, and a stable quadratic module for n ≥ 3. Let squad be the
category of stable quadratic modules.

Then using the adjoint functors Adn of the forgetful functors φn as discussed in
[BM08, 6] we get the additive secondary homotopy group track functor

Πn,∗ : Top∗ −→ squad

given by

Πn,∗X =





πn,∗X, for n ≥ 3,
Ad3π2,∗X, for n = 2,
Ad3Ad2π1,∗X, for n = 1,
Ad3Ad2Ad1π0,∗X, for n = 0.

This is the secondary analogue of (2.1).
Here the category squad of stable quadratic modules is not appropriate to study

the smash product of secondary homotopy groups since we do not have a symmetric
monoidal structure in squad. Therefore we introduced above the category qpm

of quadratic pair modules and we observe that Πn,∗X in squad yields a functor to
the category qpm as follows. A map f : X → Y in Top∗ induces a homomorphism
Πn,0f : Πn,0X → Πn,0Y between free nil-groups which carries generators in Πn,0X
to generators in Πn,0Y and therefore Πn,∗f is compatible with H . This shows that
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Lemma 1.17 gives rise to a canonical lift

qpm

��

Top∗

Πn,∗

99ttttttttt

Πn,∗

// squad

Here the vertical arrow, which is the forgetful track functor given by (1.8), is faithful
over the full subcategory spanned by 0-free quadratic pair modules, which includes
additive secondary homotopy groups, but not full at the level of morphisms.

The definition of Π2,∗X given above coincides with the lifting of Ad3π2,∗X to
qpm by the claim (*) in the proof of [BM08, 4.9]. Moreover, using [BM08, 4.16]
and the definition of the functors Adn in [BM08, 6] one can easily check that the
weak equivalence (2.9) is available in all dimensions n ≥ 0.

In this paper we are concerned with the properties of the track functor Πn,∗,
mapping to the category qpm. The category qpm is, in fact, a symmetric monoidal
category, defined by a tensor product ⊙ in qpm, see [BJP05], and the smash product
yields the operator

∧ : Πn,∗X ⊙ Πm,∗Y −→ Πn+m,∗(X ∧ Y ) (2.11)

constructed in [BM07]. Equation (2.3) has now a secondary analogue given by the
right action of the symmetric group Sym(n + m) on the object Πn+m,∗(X ∧ Y ) in
qpm. More precisely the following diagram commutes in qpm.

Πn,∗X ⊙ Πm,∗Y

∼=τ⊙

��

∧ // Πn+m,∗(X ∧ Y )

∼= (τX,Y )∗
��

Πn+m,∗(Y ∧ X)
OO

∼= τ∗
n,m

Πm,∗Y ⊙ Πn,∗X
∧ // Πm+n,∗(Y ∧ X)

Here τ⊙ on the left hand side is given by the symmetry of the tensor product ⊙ in
qpm and τ ∗

n,m is defined by the action of Sym(n + m). For this reason we define
and study in this paper the properties of the symmetric group action on secondary
homotopy groups.

3 Actions of monoid-groupoids in track categories

In this paper we deal with actions on additive secondary homotopy groups. Additive
secondary homotopy groups are objects in a track category. In ordinary categories
a monoid action is given by a monoid-morphism mapping to an endomorphism
monoid in the category. In track categories endomorphism objects are monoids in
the monoidal category of groupoids, where the monoidal structure is given by the
(cartesian) product. Therefore one can define accordingly actions of such monoids.
We make explicit this structure in the following definition.
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Definition 3.1. Let I be the category with only one object ∗ and one morphism
1: ∗ → ∗. A monoid-groupoid G is a groupoid together with a multiplication
functor · : G×G → G and a unit functor u : I → G, satisfying the laws of a monoid
in the symmetric monoidal category of groupoids. We usually identify ∗ = u(∗).
The opposite Gop of a monoid-groupoid is the underlying groupoid G with its unit
functor and multiplication functor given by

G ×G
T

−→ G ×G
·

−→ G.

Here T is the interchange of factors in the product. A monoid-groupoid morphism
f : G → H is a functor preserving the multiplication and the unit.

Monoid-groupoids are also termed strict monoidal groupoids. The weaker ver-
sions of this concept will not be considered in this paper, therefore we abbreviate
the terminology.

The canonical example of a monoid-groupoid is obtained by the endomorphisms
of an object X in a track category C, denoted by

EndC(X).

The multiplication is given by composition in C, and the unit is given by the identity
morphism 1X : X → X. In fact a monoid-groupoid as defined above is exactly the
same thing as a track category with only one object, the opposite monoid-groupoid
coincides with the the opposite of the corresponding track category and monoid-
groupoid morphisms correspond to 2-functors.

The main example of endomorphism monoid-groupoid in this paper will be the
one obtained from C = Top∗ the track category of pointed spaces and X = Sn

the n-dimensional sphere. This coincides with the fundamental groupoid of the
topological monoid End∗(S

n) of pointed maps Sn → Sn, see the next section.

Definition 3.2. Let X be an object in a track category C and let G be a monoid-
groupoid. A right action of G on X is a monoid-groupoid morphism Gop →
EndC(X).

The main goal of this paper is to construct right actions of the endomorphism
monoid-groupoid of Sn on the additive secondary homotopy groups. This is achieved
in Theorem 4.1.

Another important example of monoid-groupoid arises from crossed modules.
The monoid-groupoid M(∂) associated to a crossed module ∂ : T → G has object
set G and morphism set the semidirect product G ⋉ T . Here we write the groups
T and G with a multiplicative group law. An element (g, t) ∈ G ⋉ T is a morphism
(g, t) : g · ∂(t) → g in M(∂). The composition law ◦ is given by the formula (g, t) ◦
(g · ∂(t), t′) = (g, t · t′). Multiplication in the groups G and G ⋉ T defines the
multiplication of M(∂) and the unit is given by the unit elements in G and G ⋉ T .
Indeed this correspondence determines an equivalence between crossed modules and
group objects in the category of groupoids. This example can be used to define
crossed module actions.

Definition 3.3. Let X be an object in a track category C and let ∂ : T → G be a
crossed module. A right action of ∂ : T → G on X is a monoid-groupoid morphism
M(∂)op → EndC(X).
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We are interested in right actions of crossed modules in the track category wqpm.
We explicitly describe such actions as follows.

Definition 3.4. A right action of a crossed module ∂ : T → G on a quadratic pair
module C in the category wqpm consists of a group action of G on the right of C
given by morphisms in wqpm,

g∗ : C −→ C, g ∈ G,

together with a bracket
〈〈−,−〉〉 : C0 × T −→ C1

satisfying the following properties, x, y ∈ C0, z ∈ C1, s, t ∈ T , g ∈ G,

1. 〈〈x + y, t〉〉 = 〈〈x, t〉〉∂(t)∗y + 〈〈y, t〉〉,

2. x = ∂(t)∗x + ∂〈〈x, t〉〉,

3. z = ∂(t)∗z + 〈〈∂(z), t〉〉,

4. 〈〈x, s · t〉〉 = 〈〈∂(s)∗x, t〉〉 + 〈〈x, s〉〉 = ∂(t)∗〈〈x, s〉〉 + 〈〈x, t〉〉,

5. 〈〈x, tg〉〉 = g∗〈〈(g−1)∗x, t〉〉.

We point out that the second equality in (4) follows from (1)–(3). Indeed these are
the two possible definitions of the horizontal composition 〈〈−, t〉〉〈〈−, s〉〉 : ∂(st)∗ ⇒ 1
of the tracks 〈〈−, t〉〉 : ∂(t)∗ ⇒ 1 and 〈〈−, s〉〉 : ∂(s)∗ ⇒ 1 in the track category wqpm.

The notion of action defined above corresponds to an action in Norrie’s sense
([Nor90]) of a crossed module on the underlying crossed module of a quadratic pair
module, however Norrie considers left actions.

In this paper we will be interested in the action of some crossed modules arising
from an algebraic structure that we call sign group, see Definition 3.5. This will be
used to describe the symmetric action on additive secondary homotopy groups in
Section 5.

Definition 3.5. Let {±1} be the multiplicative group of order 2. A sign group G�

is a diagram of group homomorphisms

{±1}
ı
→֒ G�

δ
։ G

ε
−→ {±1}

where the first two morphisms form a central extension. Here all groups have a
multiplicative group law and the composite εδ is also denoted by ε : G� → {±1}.
Moreover, we define the element ω = ı(−1) ∈ G�.

A sign group G� acts on the right of a quadratic pair module C if G acts on the
right of C by morphisms

g∗ : C −→ C, g ∈ G, in qpm,

and there is a bracket
〈−,−〉 : C0 × G� −→ C1

satisfying the following properties, x, y ∈ C0, z ∈ C1, s, t ∈ G�, were ε(t)∗ is given
by the action of (Z, ·) in Definition 1.6,



748 H.-J. Baues – F. Muro

1. 〈x + y, t〉 = 〈x, t〉δ(t)
∗y + 〈y, t〉,

2. ε(t)∗(x) = δ(t)∗(x) + ∂〈x, t〉,

3. ε(t)∗(z) = δ(t)∗(z) + 〈∂(z), t〉,

4. 〈x, s · t〉 = 〈δ(s)∗(x), t〉 + 〈ε(t)∗x, s〉,

5. the ω-formula:
〈x, ω〉 = P (x|x)H .

Notice that the ω-formula corresponds to the k-invariant, see [BM08, 8].

Remark 3.6. A sign group G� gives rise to a crossed module

δ� = (ε, δ) : G� −→ {±1} × G,

where {±1} × G acts on G� by the formula

g(x,h) = h̄−1gh̄ı
(
ε(g)(

x·ε(h)
2 )

)
.

Here g ∈ G�, x ∈ {±1}, h ∈ G and h̄ ∈ G� is any element with δ(h̄) = h. This
action is well defined since G� is a central extension of G by {±1}.

Lemma 3.7. The sign group action in Definition 3.5 corresponds to an action of
the crossed module δ� on C in the sense of Definition 3.4 such that {±1} acts on
C by the action of (Z, ·) in Definition 1.6, G acts by morphisms in qpm, and the
ω-formula holds. The correspondence is given by the formula

〈〈x, t〉〉 = 〈ε(t)∗x, t〉, x ∈ C0, t ∈ G�.

The proof of this lemma is straightforward. We just want to point out that
Definition 3.4 (5) follows in this case from Definition 3.5 (4), (5), and Lemma 1.18.

Remark 3.8. A sign group G� is trivial if G is a trivial group. Notice that a trivial
sign group acts on any quadratic pair module in a unique way.

The main examples of sign groups considered in this paper are the symmetric
track groups in Section 5, which act on the additive secondary homotopy groups.

4 The action of End(Sn) on Πn,∗X

Let Sn be the n-sphere and let End∗(S
n) = ΩnSn be the topological monoid of

maps Sn → Sn in Top∗. Then the fundamental groupoid of End∗(S
n), denoted by

π0,∗ End∗(S
n), is a monoid-groupoid in the sense of Definition 3.1. This monoid-

groupoid coincides with the endomorphism monoid-groupoid of Sn in the track cat-
egory Top∗. It is well known that the monoid of path components of End∗(S

n)
coincides with the multiplicative monoid (Z, ·).

We now consider the right action of π0,∗ End∗(S
n) on Πn,∗X for n ≥ 2. That is,

we define for each pointed map f : Sn → Sn an induced map in qpm

f ∗ : Πn,∗X −→ Πn,∗Y
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and we define for each track H : f ⇒ g with f, g : Sn → Sn a track in qpm

H∗ : f ∗ ⇒ g∗.

This yields a right action of the monoid-groupoid π0,∗ End∗(S
n) on the secondary

homotopy group Πn,∗X in the track category qpm of quadratic pair modules in the
sense of Definition 3.2.

Theorem 4.1. Let X be a pointed space. For any n ≥ 2 there is a natural action
of the monoid-groupoid π0,∗ End∗(S

n) on the quadratic pair module Πn,∗X.

The rest of this section is devoted to the proof of this theorem, which is carried
out in several steps.

The discrete monoid π0,0 End∗(S
n), which is the underlying set of the topological

monoid End∗(S
n), acts on the right of the pointed discrete set ΩnX of pointed maps

Sn → X by precomposition, i. e. given f : Sn → Sn the induced endomorphism is

f ∗ : ΩnX −→ ΩnX, f ∗(g) = gf.

This induces a right action of π0,0 End∗(S
n) on the free group πn,∗X = 〈ΩnX〉nil of

nilpotency class 2 which will be denoted in the same way.
In order to extend this action to Πn,1X we consider the submonoid

π̃0,1 End∗(S
n) ⊂ π0,1 End∗(S

n) (4.2)

of the monoid π0,1 End∗(S
n) of morphisms in π0,∗ End∗(S

n) given by tracks between
self-maps of Sn of the form

γ : f ⇒ Σn−1(·)deg f = (·)deg f
n . (4.3)

Here deg f ∈ Z denotes the degree of f : Sn → Sn and for k ∈ Z

(·)k : S1 −→ S1 : z 7→ zk

is given by the (multiplicative) topological abelian group structure of S1.
We need a bracket operation

〈−,−〉 : Πn,0X × π̃0,1 End∗(S
n) −→ Πn,1X, (4.4)

defined as follows. Let x ∈ πn,0X = 〈ΩnX〉nil and γ : f ⇒ (·)deg f
n in π̃0,1 End∗(S

n).
We choose maps x̃ : S1 → ∨ΩnXS1, ǫ : S1 → S1 ∨ S1 with (π1x̃)nil(1) = x and
(π1ǫ)nil = −a + b ∈ π1(S

1 ∨ S1)nil, the difference between the inclusion of the first
and the second factor of S1 ∨ S1. Then 〈x, γ〉 ∈ Πn,1X is the element represented
by the map

S1 ǫ // S1 ∨ S1 x̃∨x̃ // (∨ΩnXS1) ∨ (∨ΩnXS1)
(Σf∗,∨ΩnX(·)deg f )

// ∨ΩnXS1

and the track

Sn x̃ // Sn
X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

0

33

Σn−1ǫ

// Sn ∨ Sn

(1,1)

OO

Σn−1(x̃∨x̃)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnXf,∨ΩnX(·)deg f
n )

77oooooooooooooooooooooooooooo

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

N

]e DDDDDDDDD

DDDDDDDDD

(∨ΩnXγ,0�)

T\00000

00000

(4.5)
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Here N is a nil-track.

The main properties of the bracket operation in (4.4) are listed in the following
proposition.

Proposition 4.6. The bracket 〈−,−〉 in (4.4) satisfies the following formulas for
any x, y ∈ Πn,0X and γ : f ⇒ (·)deg f

n , δ : g ⇒ (·)deg g
n in π̃0,1 End∗(S

n).

1. 〈x + y, γ〉 = 〈x, γ〉f
∗y + 〈y, γ〉,

2. (deg f)∗x = f ∗x + ∂〈x, γ〉,

3. 〈x, γδ〉 = 〈f ∗x, δ〉 + 〈(deg g)∗x, γ〉,

4. if ω : 1Sn ⇒ 1Sn is a track with 0 6= Hopf (ω) ∈ ⊗̂
2
Z = Z/2 then 〈x, ω〉 =

P (x|x)H .

Moreover, this bracket operation is natural in X.

Proof. With the notation in [BM08, 7.4] we have 〈x, γ〉 = r(ev(∨ΩnXγ)(Σn−1x̃)) for
the track

ev(∨ΩnXγ)(Σn−1x̃) : ev(Σnf∗)(Σn−1x̃) = ev(∨ΩnXf)(Σn−1x̃) ⇒ ev(∨ΩnX(·)deg f
n )(Σn−1x̃),

therefore (1) and (2) follow from [BM08, 7.6 and 7.5 (2)].

It is easy to see that the formula

ev(∨ΩnXγδ) = (ev(∨ΩnXγ)(∨ΩnX(·)deg g
n ))�(ev(∨ΩnXδ)(Σnf ∗))

holds, therefore (3) follows from [BM08, 7.5 (3)].

If we evaluate 〈x,−〉 at ω then the composite track obtained from (4.5) by going
from the lower left Sn to the upper right Sn

X has the same reduced Hopf invariant
as the track from Sn to Sn

X in (2.8). Indeed the formula for both reduced Hopf
invariants is (c) in the proof of Proposition 4.8. Therefore (4) follows.

The next result follows from the algebraic properties of the bracket (4.4) which
are proved in the previous proposition together with Lemma 1.18.

Proposition 4.7. The monoid π̃0,1 End∗(S
n) acts on the right of Πn,1X by the

following formula, n ≥ 2: given x ∈ Πn,1X and γ : f ⇒ (·)deg f
n

γ∗x = (deg f)∗x − 〈∂(x), γ〉.

This action satisfies ∂γ∗ = f ∗∂, γ∗P = P (⊗2f ∗
ab), and Hf ∗ = (⊗2f ∗

ab)H, therefore
it defines an action of π̃0,1 End∗(S

n) on the right of the quadratic pair module Πn,∗X
in the category qpm. This action is natural in X.

Proof. The equality Hf ∗ = (⊗2f ∗
ab)H follows from the fact that the endomorphism

f ∗ carries generators to generators in 〈ΩnX〉nil. The equality ∂γ∗ = f ∗∂ follows
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from Proposition 4.6 (2). Let us check γ∗P = P (⊗2f ∗
ab). Given a, b ∈ ΩnX

γ∗P (a ⊗ b) = (deg f)∗P (a ⊗ b) − 〈−a − b + a + b, γ〉

= P (deg f)2(a ⊗ b) − 〈b, γ〉 − 〈a, γ〉 + 〈b, γ〉 + 〈a, γ〉

+P (−f ∗(a) + (deg f)∗a|f ∗b)H − P (−f ∗(b) + (deg f)∗b|f ∗a)H

= P (deg f)2(a ⊗ b) + P (∂〈b, γ〉|∂〈a, γ〉)H

+P (−f ∗(a) + (deg f)∗a|f ∗b)H − P (−f ∗(b) + (deg f)∗b|f ∗a)H

= −P (deg f)2(a|b)H

−P (−f ∗(a) + (deg f)∗a| − f ∗(b) + (deg f)∗b)H

+P (−f ∗(a) + (deg f)∗a|f ∗b)H + P (f ∗a| − f ∗(b) + (deg f)∗b)H

= −P (f ∗(a)|f ∗(b))H

= P (f ∗(b)|f ∗(a))H

= P (f ∗(a) ⊗ f ∗(b)).

Here we use Proposition 4.6 (1) and (2) and the fact that H(a) = 0 = H(b).

Finally given δ : g ⇒ (·)deg g
n

γ∗δ∗(x) = γ∗((deg g)∗x − 〈∂(x), δ〉)

= (deg f)∗(deg g)∗x − (deg f)∗〈∂(x), δ〉 − 〈g∗∂(x), γ〉

= ((deg f)(deg g))∗x − 〈(deg f)∗∂(x), δ〉 − 〈g∗∂(x), γ〉

+

(
deg f

2

)(
deg g

2

)
P (∂(x)|∂(x))H

= (deg fg)∗x − 〈∂(x), γδ〉

= (γδ)∗(x).

Here we use Proposition 4.6 (1), (2) and (3), Lemma 1.18 and the fact that
P (∂(x)|∂(x))H = −x − x + x + x = 0.

Proposition 4.8. For n ≥ 2 the right action of the monoid π̃0,1 End∗(S
n) on the

group Πn,1X given by Proposition 4.7 factors through the boundary homomorphism

q : π̃0,1 End∗(S
n) ։ π0,0 End∗(S

n), q(γ : f ⇒ (·)deg f
n ) = f,

that is, the homomorphism γ∗ = f ∗ only depends on the boundary q(γ) = f .

Proof. Let γ : f ⇒ (·)deg f
n be any element in π̃0,1 End∗(S

n) and let δ : (·)deg f
n ⇒

(·)deg f
n be any track. We know that all elements in q−1(f) are of the form δ�γ,

therefore we only have to check that for any [g, G] ∈ Πn,1X

γ∗[g, G] = (δ�γ)∗[g, G],

or equivalently

〈∂[g, G], γ〉 = 〈∂[g, G], δ�γ〉.
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By definition of the bracket 〈−,−〉 in (4.4), see diagram (4.5), the element
〈∂[g, G], δ�γ〉 is represented by the following diagram

Sn
Σn−1g

// Sn
X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

0

;;

Σn−1ǫ

// Sn ∨ Sn

(1,1)

OO

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO
55

(∨ΩnXf,∨ΩnX(·)deg f
n )

KK

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

N

X` 88888888888

88888888888

(∨ΩnXγ,0�)

]e DDDDDD

DDDDDD

(∨ΩnXδ,0�)

RZ,,,,
(a)

Let us now pay special attention to the following subdiagram of (a)

Sn
Σn−1g

// Sn
X

∨ΩnX(·)deg f
n

// Sn
X

Sn

0

;;

Σn−1ǫ

// Sn ∨ Sn

(1,1)

OO

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnX(·)deg f
n ,∨ΩnX(·)deg f

n )

55

(∨ΩnXδ,0�)

RZ,,,,

N

X` 88888888888

88888888888

(b)

This is a composite track, termed (b), between (n − 1)-fold suspensions. By the
elementary properties of the Hopf invariant for tracks [BM08, 3] the reduced Hopf
invariant of (b) is trivial provided Hopf (δ) = 0. Again by [BM08, 3] if 0 6= Hopf (δ) ∈

⊗̂
2
Z = Z/2 then the reduced Hopf invariant of (b) is given by the formula below.

For the formula we need to fix a notation for the linear expansion of (π1g)ab(1) ∈
π1(∨ΩnXS1)ab = Z[ΩnX] in terms of generators ai ∈ ΩnX and ni ∈ Z, (π1g)ab(1) =∑k

i=0 niai.

Hopf (b) =
k∑

i=0

niai⊗̂ai ∈ ⊗̂
2
Z[ΩnX]. (c)

By using once again the elementary properties of the Hopf invariant for tracks de-
scribed in [BM08, 3] the reader can easily check that for any track

Q : (∨ΩnX(·)deg f
n )(Σn−1g) ⇒ (Σn−1g)(·)deg f

n
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the following composite track has the same reduced Hopf invariant as (b)

Sn

Σn−1g

��
444444444444444444444444

Sn ∨ Sn

((·)deg f
n ,(·)deg f

n )

55

((·)deg f
n ,(·)deg f

n )

GG

Σn−1(g,g)
// Sn

X

∨ΩnX(·)deg f
n

// Sn
X

Sn

0

33

Σn−1ǫ

// Sn ∨ Sn

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(Q,Q)

QY*******

*******

N

V^555555555555

555555555555

(δ,0�)

X` 88888

88888

(d)

Since (b) and (d) have the same reduced Hopf invariant then we can replace subdi-
agram (b) in (a) by (d), obtaining the same element in Πn,1X, namely

Sn

Σn−1g

��
444444444444444444444444

Sn ∨ Sn

((·)deg f
n ,(·)deg f

n )

55

((·)deg f
n ,(·)deg f

n )

GG

Σn−1(g,g)
// Sn

X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

0

33

Σn−1ǫ

// Sn ∨ Sn

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnXf,∨ΩnX(·)deg f
n )

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

(Q,Q)

QY*******

*******

N

V^555555555555

555555555555

(δ,0�)

X` 88888

88888

(∨ΩnXγ,0�)

OW&&&&&&

&&&&&&

(e)
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Pasting the trivial track G0 (see Remark 1.9) to (e) gives

Sn

0

��

Σn−1g

��
444444444444444444444444

Sn ∨ Sn

((·)deg f
n ,(·)deg f

n )

55

((·)deg f
n ,(·)deg f

n )

GG

Σn−1(g,g)
// Sn

X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

0

33

Σn−1ǫ

// Sn ∨ Sn

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnXf,∨ΩnX(·)deg f
n )

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

(Q,Q)

QY*******

*******

N

V^555555555555

555555555555

(δ,0�)

X` 88888

88888

(∨ΩnXγ,0�)

OW&&&&&&

&&&&&&

G -5bbbbb bbbbb

(f)

Again by Remark 1.9 we can remove some trivial tracks from (f).

Sn

0

��

Σn−1g

��
444444444444444444444444

Sn ∨ Sn

((·)deg f
n ,(·)deg f

n )

GG

Σn−1(g,g)
// Sn

X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

Σn−1ǫ

// Sn ∨ Sn

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnXf,∨ΩnX(·)deg f
n )

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

(Q,Q)

QY*******

*******

(∨ΩnXγ,0�)

OW&&&&&&

&&&&&&

G -5bbbbb bbbbb

(g)

Pasting another trivial track to (g) and factoring some maps and tracks through
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(1, 1) : Sn ∨ Sn → Sn we obtain

Sn

0

��

Σn−1g

��
444444444444444444444444

Sn

(·)deg f
n{{{{{{{{{{{{{{{{{{{{{{

=={{{{{{{

Σn−1g
// Sn

X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

0

;;

Σn−1ǫ

// Sn ∨ Sn

(1,1)

OO

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnXf,∨ΩnX(·)deg f
n )

=={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

Q

S[//////////

//////////

(∨ΩnXγ,0�)

OW&&&&&&

&&&&&&

G -5bbbbb bbbbb

N

X` 88888888888

88888888888

(h)

Finally removing trivial tracks from (h) gives

Sn
Σn−1g

// Sn
X

∨ΩnX(·)deg f
n

// Sn
X

ev

��

Sn

0

;;

Σn−1ǫ

// Sn ∨ Sn

(1,1)

OO

Σn−1(g∨g)
// Sn

X ∨ Sn
X

(1,1)

OO

(∨ΩnXf,∨ΩnX(·)deg f
n )

??~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(Σnf∗,∨ΩnX(·)deg f
n )

// Sn
X ev

// X

(∨ΩnXγ,0�)

NV$$$$$$

$$$$$$

N

X` 88888888888

88888888888

(i)

Notice that this last composite track (i) represents 〈∂[g, G], γ〉, see (4.5), hence we
are done.

The next corollary follows from the two previous propositions.

Corollary 4.9. For any pointed space X and n ≥ 2 the monoid π0,0 End∗(S
n) acts

on the right of the quadratic pair module Πn,∗X. This action is natural in X.

Now Theorem 4.1 is a consequence of the next result.

Proposition 4.10. The action of π0,0 End∗(S
n) on the right of Πn,∗X given by

Corollary 4.9 extends to an action of the whole monoid-groupoid π0,∗ End∗(S
n), n ≥

2.

Proof. A morphism H in π0,∗ End∗(S
n) is a track H : f ⇒ g between maps f, g : Sn →

Sn, in particular deg f = deg g = k ∈ Z. In order to define a track

H∗ : f ∗ ⇒ g∗
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between the quadratic pair module morphisms

f ∗, g∗ : Πn,∗X −→ Πn,∗X

we choose tracks in π̃0,1 End∗(S
n)

α : f ⇒ (·)k
n,

β : g ⇒ (·)k
n,

such that
H = β⊟

�α.

By Proposition 4.6 the maps

〈−, α〉, 〈−, β〉 : Πn,0X −→ Πn,1X

are tracks
〈−, α〉 : f ∗ ⇒ k∗,

〈−, β〉 : g∗ ⇒ k∗,

in the category wqpm, therefore we can define H∗ as the vertical composition

H∗ = 〈−, β〉⊟�〈−, α〉,

i. e. H∗ is the map
H∗ : Πn,0X −→ Πn,1X

defined by
H∗(x) = 〈x, α〉 − 〈x, β〉.

By the proof of Proposition 4.6 and by [BM08, 7.5 (3)] the element H(x) coincides
with r(ev(∨ΩnXH)(Σn−1x̃)) for x̃ : S1 → ∨ΩnXS1 any map with (π1x̃)nil(1) = x in
the sense of [BM08, 7.4]. The reader can now use the properties of the bracket (4.4)
described in Proposition 4.6 together with [BM08, 7.5 (3)] to check that this yields
a monoid-groupoid action.

Later we will consider the quotient monoid π̄0,1 End∗(S
2) of π̃0,1 End∗(S

2) defined

as follows: two elements γ : f ⇒ (·)deg f
2 , γ̄ : g ⇒ (·)deg g

2 in π̃0,1 End∗(S
2) represent

the same element in π̄0,1 End∗(S
2) provided deg f = deg g and

0 = Hopf (γ̄�γ⊟) ∈ ⊗̂
2
Z = Z/2.

Proposition 4.11. The bracket operation (4.4) factors for n = 2 through the natural
projection π̃0,1 End∗(S

2) ։ π̄0,1 End∗(S
2).

〈−,−〉 : Π2,0X × π̄0,1 End∗(S
2) −→ Π2,1X.

Proof. Two tracks γ and γ̄ in π̃0,1 End∗(S
2) represent the same element in π̄0,1 End∗(S

2)
if and only if γ̄ = δ�γ for some δ : (·)k

2 ⇒ (·)k
2 with Hopf (δ) = 0, so we only need to

check that 〈x, γ〉 = 〈x, δ�γ〉. The element 〈x, δ�γ〉 is represented by diagram (a) in
the proof of Proposition 4.8 where we assume that g is a map with (π1g)nil(1) = x.
As we mention in that proof diagram (b) is a nil-track in these circumstances, there-
fore we can drop δ from (a) and still obtain the same element in Π2,1X. But if we
drop δ we obtain 〈x, γ〉, hence we are done.
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5 The symmetric action on secondary homotopy groups

The permutation of coordinates in Sn = S1 ∧ · · · ∧ S1 induces a left action of the
symmetric group Sym(n) on the n-sphere Sn. This action induces a monoid inclusion

Sym(n) ⊂ π0,0 End∗(S
n). (5.1)

We define the symmetric track group for n ≥ 3

Sym
�
(n) ⊂ π̃0,1 End∗(S

n)

as the submonoid of tracks of the from

α : σ ⇒ (·)sign(σ)
n ,

where σ ∈ Sym(n) and sign(σ) ∈ {±1} is the sign of the permutation. Compare the
notation in (1.7) and (4.3).

The submonoid defined as above for n = 2 will be called the extended symmetric
track group

Sym
�
(2) ⊂ π̃0,1 End∗(S

2).

For n = 2 the symmetric track group Sym
�
(2) is the image of Sym

�
(2) by the

natural projection π̃0,1 End∗(S
2) ։ π̄0,1 End∗(S

2) in Proposition 4.11.

Sym
�
(2) ⊂ π̄0,1 End∗(S

2). (5.2)

Proposition 5.3. The symmetric track group is indeed a group. Moreover, it fits
into a central extension, n ≥ 2,

Z/2 →֒ Sym
�
(n)

δ
։ Sym(n)

with δ(α) = σ, which splits if and only if n = 2 or 3.

This proposition follows from Corollary 6.9 and Remarks 6.10 and 6.12 below.
For n = 0 and n = 1 we define Sym(n) to be the trivial group, and Sym

�
(n) the

trivial sign group. Then the symmetric track group Sym
�
(n) is a sign group (n ≥ 0)

{±1} →֒ Sym
�
(n)

δ
։ Sym(n)

sign
−→ {±1}

as in Definition 3.5.

Theorem 5.4. Let X be a pointed space. For n ≥ 0 the symmetric group Sym(n)
acts naturally on the right of the additive secondary homotopy group Πn,∗X in the
category qpm of quadratic pair modules. Moreover, the restriction

〈−,−〉 : Πn,0X × Sym
�
(n) −→ Πn,1X

of the bracket defined in (4.4) if n ≥ 3 and in Proposition 4.11 if n = 2 yields a
natural right action of the sign group Sym

�
(n) on Πn,∗X in the sense of Definition

3.5.
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The action of Sym(n) is given by Corollary 4.9 and the inclusion (5.1) if n ≥ 3
or (5.2) if n = 2. The rest of the statement follows from Proposition 4.6. The cases
n = 0, 1 are trivial consequences of Remark 3.8.

Remark 5.5. Computations with secondary homotopy groups can be carried out in
a rather explicit way. We commented on an example from [BM08, 5.1] in (2.9). One
can find further computations in [BM06]. In this remark we perform a computation
which takes into account the action of symmetric track groups.

The aim of this remark is to provide a small model for the nth additive secondary
homotopy group of the sphere Sn equipped with an action of Sym

�
(n). The weak

equivalence of quadratic pair modules (2.9) yields a small model of Πn,∗S
n for all

n ≥ 0 given by

Znil =




Z

P

�����������

Z/2
∂=0

//
Z

H(n)=(n

2)
YY2222222


 .

However for n ≥ 2 this algebraic model does not carry any action of Sym
�
(n), hence

it is not a good model for Πn,∗S
n. We now compute a small model A(Sym

�
(n)) with

an action of Sym
�
(n). This model is obtained by a procedure which resembles the

construction of the group-ring of a group G. As an abelian group this group-ring
is Z[G+], where G+ denotes the group G with an outer base point. This is the
universal way of extending the integers Z to an abelian group with an action of G.

For a sign group G�, as for example G� = Sym
�
(n), the quadratic pair module

A(G�) is going to be defined as the universal extension of Znil to a weakly equivalent
quadratic pair module with an action of G�. The extension will be given by a
morphism of quadratic pair modules which we denote by

ξ : Znil −→ A(G�).

We now carefully construct A(G�) and ξ step by step, by looking at the properties
they must satisfy.

Recall from Definition 3.5 that a G�-action consists, first of all, of an action of
the group G. The lower group of a quadratic pair module has always nilpotency
class 2 and the universal extension of (Znil)0 = Z to a group of nilpotency class 2
with an action of G is

A0(G�) = 〈G+〉nil,

and the homomorphism ξ0 sends 1 ∈ Z to 1 ∈ G ⊂ 〈G+〉nil.
The G�-action does not generate elements in Aee(G�), see Definition 3.5, and G

acts on A(G�) as a quadratic pair module, so given g ∈ G ⊂ A0(G�)

H(g) = H(g∗1) = g∗H(1) = g∗
(

1

2

)
= g∗1(1 − 1)

2
= g∗0 = 0,

so the action of G on A0(G�) takes generators to generators. This shows that
A(G�) must be 0-free, hence Aee(G�) = ⊗2

Z[G+] and H is as in Definition 1.16. In
particular, ξee = ⊗2(ξ0)ab. Moreover, since (Znil)1 = Z/2 is generated by P (1|1)H
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then ξ1 will be fully determined by ξ0 and the fact that the quadratic pair module
morphism ξ must be compatible with P and H .

The computation of A1(G�) is more complicated. There are essentially two
sources of elements for this group, the central homomorphism

P (−|−)H : ⊗2
Z[G+] −→ A1(G�),

which is part of the stable quadratic module (1.8), and the bracket operation of the
G�-action,

〈−,−〉 : A0(G�) × G� = 〈G+〉nil × G� −→ A1(G�),

see Definition 3.5.
The laws of a stable quadratic module show that P (−|−)H is a central homo-

morphism which factors through the reduced tensor square

P (−|−)H : ⊗2
Z[G+] ։ ⊗̂

2
Z[G+] −→ A1(G�).

Equation (4) in Definition 3.5 for s = t = 1 ∈ G� shows that 〈x, 1〉 = 0 is always
zero. Moreover, given arbitrary s, t ∈ G�

〈1, st〉 = 〈δ(s), t〉 + 〈ε(t), s〉

= 〈δ(s), t〉 + ε(t)∗〈1, s〉 +

(
ε(s)

2

)(
ε(t)

2

)
P (1|1)H.

Here we also use Lemma 1.18. Since δ is surjective this equation shows that 〈−,−〉
is fully determined by P (−|−)H and the elements

〈1, t〉, t ∈ G�.

The group A1(G�) has necessarily nilpotency class 2, so there is a well-defined
homomorphism

〈G�〉nil −→ A1(G�) : t 7→ 〈1, t〉,

where G� is based at 1 ∈ G�.
There is no further source of elements in A1(G�), therefore A1(G�) must be a

quotient of
〈G�〉nil × ⊗̂

2
Z[G+].

Taking s = ω ∈ G� in the equation above and using (5) in Definition 3.5 we
obtain for any t ∈ G� the relation

〈1, ωt〉 = 〈1, t〉 + P (1|1)H. (a)

By Definition 3.5 (2) and by the elementary laws of a quadratic pair module the
structure homomorphisms P , ∂ are given by

P (h ⊗ g) = (0, g⊗̂h), g, h ∈ G,

∂(t, g⊗̂h) = (−δ(t) + ε(t)) + (−g − h + g + h), t ∈ G�.

Then the following relation in A1(G�) must be satisfied,

(−s − t + s + t, 0) = (0, (−δ(s) + ε(s))⊗̂(−δ(t) + ε(t))), s, t ∈ G�. (b)
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From (a) we obtain a further relation in A1(G�),

(ωt, 0) = (t, 0) + (0, 1⊗̂1), t ∈ G�. (c)

A straightforward computation shows that if we define A1(G�) as the quotient

of 〈G�〉nil × ⊗̂
2
Z[G+] by relations (b) and (c) then A(G�) is indeed a well-defined

0-free quadratic pair module endowed with an action of G�, and with homology

h0A(G�) ∼= Z, with natural projection 〈G+〉nil ։ Z : g 7→ ε(g),

h1A(G�) ∼= Z/2, generated by (ω, 0) = (0, 1⊗̂1),

so ξ is a weak equivalence. Notice that the action of G on Aee(G�) is the diagonal
action and then the action of G on A1(G�) is determined by equation (3) in Def-
inition 3.5. This finally defined a quadratic pair module A(G�) and a morphism
ξ : Znil → A(G�) satisfying all the required properties.

For G� = Sym
�
(n) the weak equivalence Znil → Πn,∗S

n given by (2.9) factors in
a unique way as

Znil
ξ

−→ A(Sym
�
(n))

ζ
−→ Πn,∗S

n,

by a Sym
�
(n)-equivariant morphism ζ of stable quadratic modules, i.e. ζ is given

levelwise by Sym(n)-equivariant group homomorphisms ζi, i ∈ {0, 1, ee}, and for any
x ∈ A0(Sym

�
(n)) and s ∈ Sym

�
(n) the equation ζ1〈x, s〉 = 〈ζ0(x), s〉 holds. This

follows from the definition of Sym
�
(n) in terms of tracks between maps Sn → Sn,

as Πn,1S
n. The quadratic pair module morphism ζ is then a weak equivalence, since

weak equivalences of quadratic pair modules clearly satisfy the “two out of three”
property.

6 The structure of the symmetric track groups

In this section we construct a positive pin representation for the symmetric track
group Sym

�
(n). By using this representation we obtain a finite presentation of

Sym
�
(n).

The action of Sym(n) on Sn can be extended to a well-known action of the
orthogonal group O(n) which we now recall. Let [−1, 1]n ⊂ R

n be the hypercube
centered in the origin whose vertices have all coordinates in {±1}, Dn ⊂ R

n the
Euclidean unit ball and Sn−1 its boundary. There is a homeomorphism φ : [−1, 1]n →
Dn fixing the origin defined as follows

φ(x) =
max
1≤i≤n

|xi|

‖x‖
x.

Here x ∈ [−1, 1]n is an arbitrary non-trivial vector in the hypercube and ‖·‖ is the
Euclidean norm. This homeomorphism projects the hypercube onto the ball from
the origin. There is also a map collapsing the boundary

̺ : [−1, 1]n −→ S1∧
n
· · · ∧S1 = Sn,

̺(x1, . . . , xn) = (exp(iπ(1 + x1)), . . . , exp(iπ(1 + xn))).
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The composite
̺φ−1 : Dn −→ Sn

induces a homeomorphism

Dn/Sn−1 ∼= S1∧
n
· · · ∧S1 = Sn

that we fix.
The orthogonal group O(n) acts on the left of the unit ball Dn. This action

induces an action of O(n) on the quotient space Sn = Dn/Sn−1 preserving the base-
point. The interchange of coordinates action of the symmetric group Sym(n) on R

n

preserves the Euclidean scalar product, and therefore induces a homomorphism

i : Sym(n) →֒ O(n). (6.1)

The pull-back of the action of O(n) along this homomorphism is the action of Sym(n)
on Sn given by the smash product decomposition of Sn.

Remark 6.2. The action of O(n) on Sn defines an inclusion O(n) ⊂ End∗(S
n). The

induced homomorphism on π1 is the Whitehead-Hopf J-homomorphism

J : π1O(n) ∼= π1 End∗(S
n) = πn+1S

n (6.3)

which is known to be an isomorphism for n ≥ 2. Let π0,∗O(n) be the fundamental
groupoid of the Lie group O(n). Then, considering elements A, B ∈ O(n) as pointed
maps

A, B : Sn −→ Sn

the isomorphism in (6.3) allows to identify all morphisms γ : A → B in π0,∗O(n)
with all tracks

γ : A ⇒ B

in π0,1 End∗(S
n). Let Idn ∈ O(n) be the identity matrix. The order 2 matrix

(
Idn−1 0

0 −1

)
∈ O(n)

will be denoted by Idn−1 ⊕(−1). By using the action of O(n) on Sn we have by the
notation in (4.3) that

Idn−1 ⊕(−1) = (·)−1
n : Sn −→ Sn.

Obviously Idn = (·)1
n = 1Sn : Sn → Sn.

The topological group structure of O(n) induces an internal group structure on
the fundamental groupoid π0,∗O(n) in the category of groupoids. In particular the
set π0,1O(n) of morphisms in π0,∗O(n) forms a group. We define the subgroup

Õ(n) ⊂ π0,1O(n)

consisting of all the morphisms with target Idn or Idn−1 ⊕(−1). By Remark 6.2 the
symmetric track group is the subgroup

Sym
�
(n) ⊂ Õ(n)
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of morphisms with source in the image of i in (6.1), n ≥ 3. The subgroup Õ(n) is
embedded in an extension

Z/2 →֒ Õ(n)
q
։ O(n), n ≥ 3. (6.4)

The projection q sends a morphism in Õ(n) ⊂ π0,1O(n) to the source, and the kernel
is clearly π1O(n) = Z/2 for n ≥ 3. The case n = 2 will be considered in Remark
6.12 below.

There is also a well-known extension

Z/2 →֒ Pin+(n)
ρ
։ O(n) (6.5)

given by the positive pin group. Let us recall the definition of this extension.

Definition 6.6. The positive Clifford algebra C+(n) is the unital R-algebra gener-
ated by ei, 1 ≤ i ≤ n, with relations

1. e2
i = 1 for 1 ≤ i ≤ n,

2. eiej = −ejei for 1 ≤ i < j ≤ n.

Clifford algebras are defined for arbitrary quadratic forms on finite-dimensional vec-
tor spaces, see for instance [BtD85, 6.1]. The Clifford algebra defined above cor-
responds to the quadratic form of the standard positive-definite scalar product in
R

n. We identify the sphere Sn−1 with the vectors of Euclidean norm 1 in the vector
subspace R

n ⊂ C+(n) spanned by the generators ei. The vectors in Sn−1 are units
in C+(n). Indeed for any v ∈ Sn−1 the square v2 = 1 is the unit element in C+(n),
so that v−1 = v. The group Pin+(n) is the subgroup of units in C+(n) generated
by Sn−1. Any x ∈ Pin+(n) defines an automorphism of R

n ⊂ C+(n) given by
conjugation in C+(n) as follows

R
n −→ R

n : w 7→ −xwx−1.

If x ∈ Sn−1 then this automorphism is the reflection along the hyperplane orthogo-
nal to the unit vector x. This endomorphism always preserves the scalar product,
therefore this defines a homomorphism

ρ : Pin+(n) ։ O(n).

This homomorphism is surjective since all elements in O(n) are products of ≤ n
reflections. It is easy to see that the kernel of ρ is Z/2 generated by −1 ∈ C+(n).
This is the extension in (6.5).

The Clifford algebra C+(n) has dimension 2n. A basis is given by the elements

ei1 · · · eik , 1 ≤ i1 < · · · < ik ≤ n.

We give C+(n) the topology induced by the Euclidean norm associated to this basis.
The positive pin group inherits a topology turning (6.5) into a Lie group extension.



The symmetric action on secondary homotopy groups 763

Proposition 6.7. The extension (6.4) is isomorphic to (6.5).

Proof. Since Pin+(n) is a topological group π0,∗Pin+(n) is a group object in the
category of groupoids. We define

P̃ in+(n) ⊂ π0,1Pin+(n)

to be the subgroup given by morphisms x → y in π0,∗Pin+(n) with target 1 or
en. This is well defined since {1, en} ⊂ Pin+(n) is a subgroup. This observation
is indeed the key step of the proof, and it shows for example why the negative pin
group does not occur as (6.4). Moreover, π0,∗ρ induces a homomorphism

P̃ in+(n) −→ Õ(n). (a)

It is well-known that Pin+(n) has two components. The two components are
separated by the function

Pin+(n)
ρ
։ O(n)

det
։ {±1} .

In particular 1 and en lie in different components, hence the homomorphism

P̃ in+(n) −→ Pin+(n) (b)

is surjective. Moreover, it is injective since the two components of Pin+(n) are
known to be simply connected, therefore (b) is an isomorphism. The inverse

Pin+(n) −→ P̃ in+(n) (c)

sends an element x ∈ Pin+(n) to the image by π0,∗ρ of the unique morphism x → y
in π0,∗Pin+(n) with y = en provided det ρ(x) = −1 or y = 1 otherwise.

Obviously the composite of (c) and (a) is compatible with the projections onto
O(n) in (6.4) and (6.5), so we only need to check that the composite of (c) and
(a) induces an isomorphism between the kernels. The kernel of ρ is −1. A path
γ : [0, 1] → Pin+(n) from −1 to 1 is defined by

γ(t) = (− cos(tπ)e2 + sin(tπ)e1)e2 = − cos(tπ) + sin(tπ)e1e2.

Now it is an easy exercise to check that ργ : [0, 1] → O(n) is a generator of π1O(n),
and hence we are done.

Remark 6.8. We recall that the extension (6.5), and therefore (6.4), represents the
second Stiefel-Whitney class w2 ∈ H2(BO(n), Z/2), compare [Tei92, page 21].

By definition of (6.4) and Proposition 6.7 we obtain the following corollary.

Corollary 6.9. For n ≥ 3 the symmetric track group Sym
�
(n) is the pull back of

the central extension for the positive pin group Pin+(n) in (6.5) along the inclusion
i : Sym(n) ⊂ O(n), in particular there is a central extension

Z/2 →֒ Sym
�
(n)

δ
։ Sym(n)

classified by the pull-back of the second Stiefel-Whitney class i∗w2 ∈ H2(Sym(n), Z/2).
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Remark 6.10. The low-dimensional mod 2 cohomology groups of symmetric groups
Sym(n) are as follows, n ≥ 3,

H1(Sym(n), Z/2) =





Z/2 χ ⊕ Z/2 i∗w1, for n = 3;

Z/2 i∗w1, for n > 3;

H2(Sym(n), Z/2) =





Z/2 i∗w2
1, for n = 3;

Z/2 i∗w2
1 ⊕ Z/2 i∗w2, for n > 3.

Here we write wj ∈ Hj(BO(n), Z/2) for the jth Stiefel-Whitney class, j = 1, 2. The
pull-back i∗w1 corresponds to the sign homomorphism

i∗w1 = sign : Sym(n) −→ {±1} ∼= Z/2,

The pull-back of the second Stiefel-Whitney class is trivial for n = 3, therefore
Sym

�
(3) is a split extension of Sym(3) by Z/2, and χ : Sym

�
(3) ։ Z/2 is a retrac-

tion.

The following structure theorem follows from Corollary 6.9.

Theorem 6.11. The symmetric track group Sym
�
(n) is the subgroup of Pin+(n)

formed by the units x ∈ C+(n) such that for any 1 ≤ i ≤ n there exists 1 ≤ σ(i) ≤ n
with −xeix

−1 = eσ(i). The boundary homomorphism δ : Sym
�
(n) ։ Sym(n) sends

x above to the permutation δ(x) = σ. The group Sym
�
(n) has a presentation given

by generators ω, ti, 1 ≤ i ≤ n − 1, and relations

t21 = 1 for 1 ≤ i ≤ n − 1,

(titi+1)
3 = 1 for 1 ≤ i ≤ n − 2,

ω2 = 1,

tiω = ωti for 1 ≤ i ≤ n − 1,

titj = ωtjti for 1 ≤ i < j − 1 ≤ n − 1;

with ω 7→ −1 and ti 7→
1√
2
(ei − ei+1). In particular δ(ω) = 0 and δ(ti) = (i i + 1).

This is a group considered by Schur in [Sch11] and by Serre in [Ser84].

Remark 6.12. In case n = 2 we have O(2) = {±1} ⋉ S1 with {±1} acting on
S1 exponentially, Õ(2) = {±1} ⋉ R with {±1} acting on R multiplicatively, and
the projection q : Õ(2) ։ O(2) defined as in (6.4) is the identity in {±1} and the
exponential map in the second coordinate R ։ S1 : x 7→ exp(2πix). In particular
we have an abelian extension

Z →֒ Õ(2)
q
։ O(2).

The induced action of O(2) on Z is given by the determinant det : O(2) ։ {±1}.
By Remark 6.2 the extended symmetric track group Sym

�
(2) is the pull-back of

i : Sym(2) ⊂ O(2) along q, therefore we have an abelian extension

Z →֒ Sym
�
(2)

q
։ Sym(2), (6.13)
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where Sym(2) acts on Z by the unique isomorphism Sym(2) ∼= {±1}. Now the
symmetric track group Sym

�
(2) can be identified with the push-forward of the

extension (6.13) along the natural projection Z ։ Z/2, therefore we get a central
extension

Z/2 →֒ Sym
�
(2)

q
։ Sym(2). (6.14)

The cohomology group H2(Sym(2), Z) = 0 is trivial, so (6.13) is a split extension and
Sym

�
(2) ∼= Sym(2) ⋉ Z is a semidirect product. Moreover (6.14) is also split since

it is the push-forward of (6.13), therefore Sym
�
(2) ∼= Sym(2) × Z/2 is a product.

7 An application to the cup-one product

Let n ≥ m > 1 be even integers. The cup-one product operation

πnSm −→ π2n+1S
2m : α 7→ α ⌣1 α

is defined in the following way, compare [HM93, 2.2.1]. Let k be any positive integer
and let τk ∈ Sym(2k) be the permutation exchanging the first and the second block
of k elements in {1, . . . , 2k}. If k is even then sign τk = 1. We choose for any even
integer k > 1 a track τ̂k : τk ⇒ 1S2k in Sym

�
(2k). Consider the following diagram in

the track category Top∗ of pointed spaces where a : Sn → Sm represents α.

S2n a∧a //

τn

��

1
S2n

((

S2m

τm

��

1
S2m

vv

S2n a∧a // S2m

τ̂⊟
n +3 τ̂m +3

(7.1)

By pasting this diagram we obtain a self-track of a ∧ a

(τ̂m(a ∧ a))�((a ∧ a)τ̂⊟

n ) : a ∧ a ⇒ a ∧ a. (7.2)

The set of self-tracks a ∧ a ⇒ a ∧ a is the automorphism group of the map a ∧ a
in the track category Top∗. The element α ⌣1 α ∈ π2n+1S

2m is given by the track
(7.2) via the well-known Barcus-Barratt-Rutter isomorphism

Aut(a ∧ a) ∼= π2n+1S
2m,

see [BB58], [Rut67] and also [Bau91, VI.3.12] and [BJ01] for further details.
The following theorem generalizes [BJM83, 6.5].

Theorem 7.3. The formula

2(α ⌣1 α) =
n + m

2
(α ∧ α)(Σ2(n−1)η)

holds, where η : S3 → S2 is the Hopf map.

The proof of Theorem 7.3 is based on the following lemma.

Lemma 7.4. The following formula holds in Sym
�
(2k)

τ̂ 2
k = ω(k

2).
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Proof. Here we use the representation of Sym
�
(2k) in Pin+(2k) given in Theorem

6.11 and the relations (1) and (2) in the definition of the Clifford algebra C+(2k),
see Definition 6.6.

The permutation τk can be expressed as a product of transpositions as follows

τk = (1 k)(2 k + 1) · · · (k − 1 2k − 1)(k 2k).

The element 1√
2
(ei − ei+k) ∈ S2k−1 ⊂ Pin+(2k) acts on R

2k (with coordinates

ei, 1 ≤ i ≤ 2k) by reflection along the hyperplane orthogonal to 1√
2
(ei − ei+k), see

Definition 6.6. This hyperplane is ei = ei+k, therefore the action of 1√
2
(ei − ei+k) on

R
2k interchanges the coordinates in ei and ei+k and preserves all the other ones.

Now by Theorem 6.11 1√
2
(ei − ei+k) lies in the positive pin representation of

Sym
�
(2k) and δ

(
1√
2
(ei − ei+k)

)
= (i i + k), so

τ̂k = ±
1

2
k
2

(e1 − ek+1)(e2 − ek+2) · · · (ek−1 − e2k−1)(ek − e2k).

The following equalities hold in the Clifford algebra C+(2k), see the defining
relations in Definition 6.6, i 6= j, i 6= j + k, i + k 6= j, k > 0,

(ei − ei+k)
2 = e2

i − eiei+k − ei+kei + e2
i+k

= 1 − eiei+k + eiei+k + 1

= 2,

(ei − ei+k)(ej − ej+k) = eiej − eiej+k − ei+kej + ei+kej+k

= −ejei + ej+kei + ejei+k − ej+kei+k

= −(ej − ej+k)(ei − ei+k).

Hence we observe that

τ̂ 2
k =

1

2
k
2

1

2
k
2

(−1)k−12(−1)k−22 · · · (−1)12(−1)02

= (−1)k−1(−1)k−2 · · · (−1)1(−1)0

= (−1)(
k
2).

The proof is now finished.

Proof of Theorem 7.3. The element 2(α ⌣1 α) corresponds to the pasting of the
following diagram

S2n a∧a //

τn

��

1
S2n

((

S2m

τm

��

1
S2m

vv

S2n a∧a //

τn

��

1
S2n

((

S2m

τm

��

1
S2m

vv

S2n a∧a // S2m

τ̂⊟
n +3 τ̂m +3

τ̂⊟
n +3 τ̂m +3
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By Lemma 7.4 and using that n and m are even this composite track coincides with

S2n

1
S2n

##

1
S2n

<<S
2n a∧a // S2m

1
S2m

##

1
S2m

<<S
2m

ω
n
2

��
ω

m
2

��

therefore 2(α ⌣1 α) corresponds to the self-track

((ω
m
2 )(a ∧ a))�((a ∧ a)(ω

n
2 )). (a)

The self-track ω
m
2 (a ∧ a) corresponds to the homotopy class

(
m

2
(Σ2(m−1)η)

)
(Σ(α ∧ α)). (b)

Since Σ(α ∧ α) = ±(Σm+1α)(Σn+1α) which is a composite of two triple suspensions
(b) is

(α ∧ α)
(

m

2
(Σ2(n−1)η)

)
. (c)

Moreover, the self-track (a ∧ a)(ω
n
2 ) corresponds to

(α ∧ α)
(

n

2
(Σ2(n−1)η)

)
, (d)

so the self-track (a) corresponds to the sum of (c) and (d)

(α ∧ α)
(

n + m

2
(Σ2(n−1)η)

)
.
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