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(1/10/2010 - 31/12/2013), bajo la dirección de los Drs. Luis M. Fernández
Fernández y Pablo S. Alegre Rueda.

Dichos art́ıculos se desarrollan en el ámbito de la Geometŕıa Semi-Rie-
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Introduction

This thesis consists of a compendium of papers, so, according to the current
regulations for this kind of thesis, we divide it in two different parts.

The first one is an introduction with three different sections; Goals, where
we set up our work historically, motivate its study and establish our objec-
tives. In the second section we summarize our main results and in the third
one we talk about some open problems.

The second part consists of five published papers:

• [A1] B.-Y. Chen and A. Prieto-Mart́ın, “Classification of Lagrangian
submanifolds in complex space forms satisfying a basic equality involv-
ing δ(2, 2)”. Diff. Geom. Appl., 30(1) (2012), 107-123;
DOI:10.1016/j.difgeo.2011.11.008

• [A2] B.-Y. Chen, A. Prieto-Mart́ın and Xianfeng Wang, “Lagrangian
submanifolds in complex space forms satisfying an improved equality
involving δ(2, 2)”. Publ. Math. Debrecen, 82(1) (2013), 193-217.

• [A3] A. Carriazo, J. Barrera, L.M. Fernández and A. Prieto-Mart́ın,
“The Maslov form in non-invariant slant submanifolds of S-space-forms”.
Ann. Mat. Pura Appl., 191 (2012), 803-818;
DOI 10.1007/s10231-011-0207-0

• [A4] A.M. Fuentes, L.M. Fernández and A. Prieto-Mart́ın, “General-
ized S-space forms”. Publ. Inst. Math. (Beograd) N.S., 94(108)
(2013), 151-161;
DOI:10.2998/PIM1308151P

• [A5] L.M. Fernández and A. Prieto-Mart́ın, “On η-Einstein para-S-
manifolds”. Bull. Mal. Math. Sci. So. (2015);
DOI 10.1007/s40840-015-0156-7

They can be classify in two blocks, the so called [A1] and [A2] are referred
to the Submanifold Theory in Complex Space-forms and the rest correspond
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to the study of manifolds with an f -structure (in the sense of K.Yano [52]),
in particular of those defined as S-manifolds by D.E. Blair [7].

1. Goals.

1.1 Papers [A1] and [A2]

The study of submanifolds of a differential manifold is, from the very begin-
ning of Differential Geometry, one of the most studied topics and additionally,
one of those which has produced more interesting results and applications.
Furthermore, the study of submanifolds which present an homogeneous be-
havior with respect to the structure of the ambient manifold has become an
interesting research subject.

In particular, if the ambient space is an almost-Hermitian manifold, sub-
manifolds which present this behaviour with respect to the almost-complex
structure J are widely studied. So that, we can consider the so called com-
plex submanifolds, where JX is tangent for any tangent vector field X or the
totally real submanifolds, where JX is normal for any tangent vector field
X. Among these ones, Lagrangian submanifolds, whose dimension is the half
dimension of the ambient manifold, play an specially important role. Both
complex submanifolds and totally real submanifolds were generalized by B.-
Y. Chen [20, 21] when he introduced the notion of slant submanifold, where
the angle θ between JpXp and TpM is constant for any tangent vector field X
and any point p ∈ M . Complex submanifolds and totally real submanifolds
are slant submanifolds with slant angles θ = 0 and θ = π/2, respectively.

Lagrangian submanifolds appear naturally in the context of classical me-
chanics and mathematical physics. For instance, the systems of partial differ-
ential equations of Hamilton-Jacobi type lead to the study of Lagrangian sub-
manifolds and foliations in the cotangent bundle. Furthermore, Lagrangian
submanifolds play some important roles in supersymmetric field theories as
well as in string theory.

In Differential Geometry, theorems which relate intrinsic and extrinsic
curvatures always play important roles. Intrinsic and extrinsic invariants are
very powerful tools to study submanifolds of Riemannian manifolds and to
establish relationships between them is one of the most fundamental problems
in submanifolds theory. In this context, B.-Y. Chen [23, 24, 25] proved
some basic inequalities for submanifolds of a real space-form. Corresponding
inequalities have been obtained for different kinds of submanifolds (invariant,
anti-invariant, slant) in ambient manifolds endowed with different kinds of
structures (mainly, real, complex and Sasakian space-forms).
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The famous Nash embedding theorem published in 1956 [43] was aiming
for the opportunity to use extrinsic help in the study of (intrinsic) Rieman-
nian geometry, since Riemannian manifolds could be regarded as Riemannian
submanifolds. However, this hope had not been materialized yet according
to [37]. The main reason for this was the lack of control of the extrinsic
properties of the submanifolds by the known intrinsic invariants. In or-
der to overcome such difficulties as well as to provide answers to an open
question on minimal immersions, B.-Y. Chen [22], introduced in the early
1990s new types of Riemannian invariants, denoted by δ(n1, . . . , nk). For
an n-dimensional submanifold Mn in a real space form Rm(c) of constant
sectional curvature c, he proved the following sharp general inequality,

δ(n1, . . . , nk) ≤
n2(n+ k − 1−

∑
nj)

2(n+ k −
∑
nj)

H2 +
1

2

(
n(n− 1)−

k∑
j=1

nj(nj − 1)
)
c,

(1)
where H2 is the squared mean curvature of Mn.

An immersion satisfying the equality case of inequality (1) at every point
is called δ(n1, . . . , nk)-ideal. Roughly speaking, an ideal immersion is an
immersion which produces the least possible amount of tension from the
ambient space.

It is known that inequality (1) holds for Lagrangian submanifolds in com-
plex space-forms of constant holomorphic sectional curvature 4c as well (cf.
[26, 27, 30]). Also, B.-Y. Chen proved in [28, Theorem 1] that every ideal
Lagrangian submanifold of a complex space form is a minimal submanifold.
In this context, δ(2)-ideal submanifolds in real and complex space-forms have
been studied by many geometers since the invention of δ-invariants.

In 2000, it was proved by B.-Y. Chen [26] that every Lagrangian subman-
ifold M5 of a complex space form M̃5(4c) of constant holomorphic sectional
curvature 4c satisfies

δ(2, 2) ≤ 25

3
H2 + 8c, (2)

where δ(2, 2) is a δ-invariant of M5.
Furthermore, it was proved in [29] that every Lagrangian submanifold M5

of a complex space form M̃5(4c) of constant holomorphic sectional curvature
4c satisfies the following optimal inequiality:

δ(2, 2) ≤ 25

4
H2 + 8c. (3)

Thus, in papers [A1] and [A2] we completely classify Lagrangian subman-
ifolds of complex space forms M5(4c), for c = 0, 1,−1, satisfying the equality
case of the inequality (2) and we also classify Lagrangian submanifolds of
M5(4c) satisfying the equality case of the optimal inequality (3).
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1.2 Paper [A3]

A (2m + s)-dimensional Riemannian manifold (M̃, g) endowed with an f -
structure f (that is, a tensor field f of type (1,1) and rank 2m satisfying
f 3 + f = 0 (see [52]) is said to be a metric f -manifold if, moreover, there

exist s global vector fields ξ1, . . . , ξs on M̃ (called structure vector fields) such
that, if η1, . . . , ηs are the dual 1-forms of ξ1, . . . , ξs, then

fξα = 0; ηα ◦ f = 0; f 2 = −I +
s∑

α=1

ηα ⊗ ξα; (4)

g(X, Y ) = g(fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ), (5)

for any X, Y tangent to M̃ . From the definition, the metric g satisfies that

g(fX, Y ) = −g(X, fY ), (6)

for any X, Y . Let F be the 2-form on M̃ defined by F (X, Y ) = g(X, fY ).

Since f is of rank 2m, then η1 ∧ · · · ∧ ηs ∧ Fm 6= 0 and, particularly, M̃ is
orientable. The f -structure f is said to be normal if

[f, f ] + 2
s∑

α=1

ξα ⊗ dηα = 0,

where [f, f ] denotes the Nijenhuis tensor of f .
A metric f -manifold is said to be a K-manifold [7] if it is normal and

dF = 0. In a K-manifold M̃ , the structure vector fields are Killing vector
fields [7]. Furthermore, a K-manifold is called an S-manifold if F = dηα, for
any α. Note that, if s = 0, a K-manifold would correspond to a Kaehlerian
manifold and, for s = 1, a K-manifold is a quasi-Sasakian manifold and an
S-manifold is a Sasakian manifold. When s ≥ 2, non-trivial examples can be
found in [7, 38]. Moreover, the Riemannian connection ∇̃ of an S-manifold
satisfies (see [7]), for any tangent vector fields X, Y and any α = 1, . . . , s:

∇̃Xξα = −fX, (7)

(∇̃Xf)Y =
s∑

α=1

(g(fX, fY )ξα + ηα(Y )f 2X). (8)

A plane section π on a metric f -manifold M̃ is said to be an f -section
if it is determined by a unit vector X, normal to the structure vector fields
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and fX. The sectional curvature of π is called an f -sectional curvature.
An S-manifold is said to be an S-space-form if it has constant f -sectional
curvature c and then, it is denoted by M̃(c). In such case, the curvature
tensor field R of M(c) satisfies [40]

R(X, Y, Z,W ) =
s∑

α,β=1

(g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ)ηα(Y )ηβ(W )+

+g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z))+

+
c+ 3s

4
(g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW ))+

+
c− s

4
(F (X,W )F (Y, Z)− F (X,Z)F (Y,W )− 2F (X, Y )F (Z,W )), (9)

for any tangent vector fields X, Y, Z,W .
On the other hand, for totally real submanifolds of almost Hermitian

manifolds, one can consider the so-called Maslov form, defined as the dual
form of the vector field JH, being J the almost Hermitian structure and
H the mean curvature vector of the submanifold, which has been widely
studied (for example, [8, 18, 19, 48] can be consulted). Thus, in [48], it
is proved that any Lagrangian submanifold of Cm has closed Maslov form
and, moreover, that the well-known Whitney sphere is the only compact
Lagrangian submanifold of Cm with conformal Maslov form.

However, there are not too many papers devoted to study the Maslov form
in anti-invariant submanifolds of metric almost contact manifolds or, more in
general, of metric f -manifolds, considering such form as the dual form of the
vector field φH (resp. fH), where φ (resp., f) denotes the almost contact
structure (resp., the f -structure).

One of our main goals of paper [A3] is to deal with non-invariant slant
submanifolds of S-manifold. In such submanifolds, we define the Maslov
form as the dual 1-form of the tangent component of the vector field fH and
our purpose is to find conditions for it to be closed and conformal in the case
of being the ambient S-manifold an S-space-form, that is, of having constant
f -sectional curvature.

1.3 Paper [A4]

In Riemannian geometry, it is an interesting problem to analyze what kind of
Riemannian manifolds may be determined by special pointwise expressions
for their curvatures. For instance, it is well known that the sectional cur-
vatures of a Riemannian manifold determine the curvature tensor field com-
pletely. So, if (M, g) is a connected Riemannian manifold with dimension
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greater than 2 and its curvature tensor field R has the pointwise expression

R(X, Y )Z = λ {g(X,Z)Y − g(Y, Z)X} ,

where λ is a differentiable function on M , then M is a space of constant
sectional curvature, that is, a real-space-form and λ is a constant function.

Further, when the manifold is equipped with some additional structure,
it is sometimes possible to obtain conclusions from the special form of the
curvature tensor field for this structure too. Thus, an almost-Hermitian
manifold (M,J, g) is said to be a generalized complex-space-form [51] if
its curvature tensor satisfies

R(X, Y )Z = f1 {g(Y, Z)X − g(X,Z)Y }+

+f2 {g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ} , (10)

where f1 and f2 are differentiable functions on M . This name derives from
the fact that, whenM is a complex-space-form, that is, a Kaehlerian manifold
of constant holomorphic curvature equal to c, the curvature tensor field of
M satisfies (10) with f1 = f2 = c/4.

Since Sasakian-spaces-forms play a similar role in contact metric geometry
to that of complex-space-forms in complex geometry, P. Alegre, D.E. Blair
and A. Carriazo have defined and studied generalized Sasakian-space
forms [1] as those almost-contact metric manifolds (M,φ, ξ, η, g) whose cur-
vature tensor field satisfies

R(X, Y )Z = f1 {g(Y, Z)X − g(X,Z)Y }+

+f2 {g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}+

+f3 {η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ} , (11)

f1, f2, f3 being differentiable functions on M . If M is actually a Sasakian-
space-form, that is a Sasakian manifold with constant φ-sectional curvature
equal to c, then:

f1 =
c+ 3

4
; f2 = f3 =

c− 1

4
.

For these reasons, we consider that it is interesting to introduce a notion
of generalized S-space-form on metric f -manifolds. We observe that this
work was made in [15] for metric f -manifolds with two structure vector fields,
giving some interesting examples. In paper [A4], we present the definition for
any number of structure vector fields. To this end, we have followed the same
procedure as in almost complex and almost contact cases, that is, we have
substituted the constants in the expression of the curvature tensor field of
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an S-space-form (an S-manifold of constant f -sectional curvature) obtained
in [40] by certain differentiable functions on the manifold. So, S-space-forms
are natural examples of generalized S-space-forms. Furthermore, we check
that C-space-forms are also generalized S-space-forms.

1.4 Paper [A5]

Nowadays, one of the topics which has many applications and it is related to
some physical problems (the nice survey [20] can be consulted for more de-
tails)is the study of paracomplex structures. When, moreover, a compatible
pseudo-Riemannian metric is considered, we have the para-Hermitian and
para-Kaehler manifolds and their variants.

On the other hand, (almost) paracontact manifolds are semi-Riemannian
manifolds which can be viewed as the odd dimensional counterpart of (al-
most) paracomplex manifolds. They were introduced by Sato in [49] and
Kaneyuki and Williams in [39]. Recently, there seems to be an increasing
interest in paracontact geometry and, in particular, in para-Sasakian mani-
folds, due to its links to more consolidated theory of para-Kaehler manifolds
and to their role in geometry and mathematical physics (see, for instance,
[31, 32, 33]).

Actually, the notion of almost paracontact structure is an analogue of
that one of almost contact structure and is closely related to the almost
product structure. In this context, Bucki and Miernowski defined in [11]
the notion of an almost r-paracontact structure which generalizes almost
paracontact structure in a similar way to f -structures of co-rank greater
than one generalizes almost contact structures. They also started the study
of almost r-paracontact manifolds equipped with a Riemannian compatible
metric [9, 10, 42]

So, it is interesting to study what happens if instead of a Riemannian
metric we consider a pseudo-Riemannian metric and this is the goal of paper
[A5]. Zamkovoy in [53] has obtained a complete arrangement of all the theory
in the case of paracontact manifolds and recently, Brunetti and Pastore have
done a similar work in the context of indefinite globally framed f -manifolds
in [12]. For these reasons, we want to introduce in this work the notion of
para-S-manifold and begin the study of some of its properties. The name
is chosen to point out that it is the analogue of S-manifolds introduced by
Blair [7] in the setting of f -structures.
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2. Main results.

In the paper [A1], we study Lagrangian submanifolds in a 5-dimensional
complex space form M̃5(4c), where this inequality (2) is verified.

By definition, a Lagrangian submanifold M5 in M̃5(4c) is δ(2, 2)-ideal
if and only if it satisfies the equality sign of (2) identically. A δ(2, 2)-ideal
submanifold in M̃5(4c) is called proper if it is not a δ(2)-ideal Lagrangian
submanifold in M̃5(4c).

Our purpose is firstly, to classify proper δ(2, 2)-ideal Lagrangian subman-
ifolds in C5, CP 5(4) and CH5(−4). Now, we present some of the main and
most original theorems of this work.

For C5, we prove:

Theorem. ([A1] 5.1) Let L : M5 → C5 be a Lagrangian immersion into the
complex Euclidean 5-space C5. Then L is a proper δ(2, 2)-ideal Lagrangian
immersion if and only if L is locally congruent to one of the following im-
mersions:

(1) the direct product of an open interval I of the real line in C and two non-
totally geodesic Lagrangian minimal immersions φi : M2

i → C2 (i = 1, 2),
i.e.,

L : I ×M2
1 ×M2

2 → C×C2 ×C2; (t, p, q) 7→ (t, φ1(p), φ2(q)) (12)

(2) a Lagrangian immersion defined by

L : I ×M2
1 ×tM2

2 → C2 ×C3; (t, p, q) 7→ (φ(p), tζ(q)), (13)

where φ : M2
1 → C2 is a non-totally geodesic Lagrangian minimal immersion

and ζ : M2
2 → S5(1) ⊂ C3 is a non-totally geodesic Legendrian minimal

immersion of M2
2 into S5(1).

For CP 5(4), we have:

Theorem. ([A1] 6.1) Let L : M5 → CP 5(4) be a Lagrangian immersion.
Then M5 is a proper δ(2, 2)-ideal Lagrangian submanifold if and only if L is
locally congruent to π ◦ L̃, where π : S11(1)→ CP 5(4) is the Hopf fibration,
L̃ : M5 → S11(1) ⊂ C6 is given by

L̃(t, p, q) = (cos t)φ1(p) + (sin t)φ2(q), t ∈ R, (14)

and φi : M2
i → S5(1) ⊂ C3 (i = 1, 2) are non-totally geodesic Legendrian

minimal immersions into the Sasakian S5(1).

Finally, for CH5(−4), we prove:
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Theorem. ([A1] 7.1) Let L : M5 → CH5(−4) be a Lagrangian immersion of
M5 into CH5(−4). Then M5 is a proper δ(2, 2)-ideal Lagrangian submanifold
of CH5(−4) if and only if L is locally congruent to π◦L̃, where π : H11

1 (−1)→
CH5(−4) is the Hopf fibration and either

(a) L̃ : M5 → H11
1 (−1) ⊂ C6

1 is given by

L̃(t, p, q) = (cosh t)φ(p) + (sinh t)ψ(q), t ∈ R, (15)

and φ : M2
1 → H5(−1) ⊂ C3

1 and ψ : M2
2 → S5(1) ⊂ C3 are non-

totally geodesic Legendrian minimal immersions into the Sasakian H5
1 (−1)

and S5(1), resp., or

(b) L̃ : M5 → H11
1 (−1) ⊂ C6

1 is given by

L̃(t, x, y, z, w) =
(

sinh t+ et(u(z, y) + v(z, w)− 1),

sinh t+ et(u(x, y) + v(z, w)), etψ1(x, y), etψ2(z, w)
)
,

(16)
ψi : M2

2 → C2 (i = 1, 2) are non-totally geodesic minimal Lagrangian immer-
sions, u, v are complex-valued functions satisfying the following PDE systems,
respectively: 

uxx =
{

(lnE1)x +
i

E2
1

}
ux − (lnE1)yuy − E2

1 ,

uxy = (lnE1)yux +
{

(lnE1)x −
i

E2
1

}
uy,

uyy = −
{

(lnE1)x +
i

E2
1

}
ux + (lnE1)yuy − E2

1 ,
vzz =

{
(lnE2)z+

i

E2
2

}
vz − (lnE2)wvw − E2

2 ,

vzw = (lnE2)wvz +
{

(lnE2)z −
i

E2
z

}
vw,

vww = −
{

(lnE2)z +
i

E2
2

}
vz + (lnE2)wvw − E2

2 ,

and the metric tensors of M2
1 ,M

2
2 are given respectively by

g1 = E2
1(dx2 + dy2), g2 = E2

2(dz2 + dw2)

for some positive functions E1 = E1(x, y) and E2 = E2(z, w).

In addition, it was proved by B.-Y. Chen and F. Dillen in 2011 [30]
that every Lagrangian submanifold M5 of a complex space form M̃5(4c) of
constant holomorphic sectional curvature 4c satisfies the optimal inequality
(3). So, in paper [A2], we also classify Lagrangian submanifolds of M5(4c)
satisfying this improved inequality.

First, we get:
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Theorem. ([A2] 6.1) Let M be an improved δ(2, 2)-ideal Lagrangian sub-
manifold in C5. Then it is one of the following Lagrangian submanifolds:

(a) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(b) an H-umbilical Lagrangian submanifold of ratio 4;

(c) a Lagrangian submanifold defined by

L(µ, u2, . . . , un) =
e

4
3
i tan−1

√
µ3/(c2−µ3)√

c2µ−1 − µ2 + iµ
φ(u2, . . . , un), (17)

where c is a positive real number and φ(u2, . . . , un) is a horizontal lift
of a non-totally geodesic δ(2)-ideal Lagrangian minimal immersion in
CP 4(4).

On the other hand, we obtain:

Theorem. ([A2] 7.1) Let M be an improved δ(2, 2)-ideal Lagrangian subman-
ifold in CP 5(4). Then it is one of the following Lagrangian submanifolds:

(1) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(µ, u2, . . . , u4) =
1

c

(√
µeiθφ, e3iθ(

√
c2 − µ3 − µ− iµ

3
2 )
)
, (18)

where c is a positive real number, φ : N4 → S9(1) ⊂ C5 is a horizontal
lift of a non-totally geodesic δ(2)-ideal Lagrangian minimal immersion
in CP 4(4), and θ(µ) satisfies

dθ

dµ
=

1

2
√
c2µ−1 − µ2 − 1

. (19)

Finally, we have:

Theorem. ([A2] 8.1) Let M be an improved δ(2, 2)-ideal Lagrangian subman-
ifold in CH5(−4). Then M is one of the following Lagrangian submanifolds:

(i) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(ii) an H-umbilical Lagrangian submanifold of ratio 4;
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(iii) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(√
µeiθφ(u2, . . . , u4), e

−iθ(
√
µ−µ3− c2 − iµ

3
2 )
)
,

(20)

where c is a positive number, φ : N4 → H9
1 (−1) ⊂ C5

1 is a horizontal
lift of a non-totally geodesic δ(2)-ideal minimal Lagrangian immersion
in CH4(−4), and θ(t) satisfies dθ

dµ
= 1

2

√
1− µ2 − c2µ−1;

(iv) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(
e−iθ(

√
µ−µ3 + c2 − iµ

3
2 ),
√
µeiθφ(u2, . . . , u4)

)
,

(21)

where c is a positive number, φ : N4 → S9(1) ⊂ C5 is a horizontal lift
of a non-totally geodesic δ(2)-ideal minimal Lagrangian immersion in
CP 4(4), and θ(t) satisfies dθ

dµ
= 1

2

√
1− µ2 + c2µ−1;

(v) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(
2t+w+ i

(
cosh 2t−〈ψ, ψ〉− 1

4

)
,

ψ, 2t+ w + i

(
cosh 2t−〈ψ, ψ〉+ 1

4

))
,

(22)
where ψ(u1, . . . , u4) is a non-totally geodesic δ(2)-ideal Lagrangian min-
imal immersion in C4 and up to a constant w(u1, . . . , u4) is the unique
solution of the PDE system: wuj = 2

〈
ψuj , iψ

〉
, j = 1, 2, 3, 4;

(vi) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(
2t+w + i

(
cosh 2t−〈ψ, ψ〉− 1

4

)
,

ψ1, ψ2, 2t+w + i

(
cosh 2t−〈ψ, ψ〉+ 1

4

))
,

(23)
where ψ = (ψ1, ψ2) is the direct product immersion of two non-totally
geodesic Lagrangian minimal immersions ψα : N2

α → C2, α = 1, 2,
and up to a constant w(u1, . . . , u4) is the unique solution of the PDE
system: wuj = 2

〈
ψuj , iψ

〉
, j = 1, 2, 3, 4.
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Recall that, given a Riemannian manifold (M, g), a vector field X in M
is said to be closed in M if the 1-form ω given by ωX(Y ) = g(X, Y ) (the dual
1-form of X) is closed. Then, X is closed if and only if

g(Y,∇ZX) = g(Z,∇YX), (24)

for any vector fields Y, Z in M , where ∇ is denoting the Riemannian con-
nection of M . On the other hand, X is called conformal in M (and the dual
1-form is also called conformal in M) if LXg = ρg, being ρ a differentiable
function on M . A closed vector field X is conformal if and only if

∇YX = hY, (25)

for any vector field Y in M , being h a differentiable function on M .
In paper [A3] we consider (m + s)-dimensional (being s the number of

structure vector fields) non-invariant slant submanifolds of an S-space-form
of dimension 2m+ s and we prove the following two theorems:

Theorem. ([A3] 4.1) Let Mm+s be an (m+ s)-dimensional S-slant subman-
ifold of an S-space-form M2m+s(c) of dimension 2m + s. Then, the Maslov
form is closed if and only if c = −3s.

Theorem. ([A3] 4.2) Let Mm+s be an anti-invariant submanifold of an S-
space-form M2m+s(c) of dimension 2m + s, tangent to the structure vector
fields. Then, ωH is closed if and only if c = −3s.

From above theorems we prove the following topological obstruction to
S-slant immersions as well as to anti-invariant immersions tangent to the
structure vector fields into an S-space-form of constant f -sectional curvature
c = −3s:

Theorem. ([A3] 4.3) Let Mm+s be a compact simply-connected (m + s)-
dimensional differentiable manifold. Then, M can not be immersed in any
S-space-form M2m+s(−3s) of dimension 2m + s as a non-minimal anti-
invariant submanifold tangent to the structure vector fields. Moreover, if
m is even, M can not be immersed in such a S-space-form as a non-minimal
S-slant submanifold either. In particular, if m = 2, M cannot be immersed
in M(−3s) as a non-minimal and non-invariant slant submanifold with no
minimal points.

Theorem. ([A3] 5.4) Let Mm+s be an (m + s)-dimensional anti-invariant
submanifold of an S-manifold M2m+s of dimension 2m + s, tangent to the
structure vector fields and such that its Maslov form is closed. Then, this
Maslov form is conformal in M if and only if the mean curvature vector is
parallel.
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Finally, in this paper we prove:

Theorem. ([A3] 5.5) Let Mm+s be an (m + s)-dimensional anti-invariant

submanifold of an S-space-form M̃2m+s(−3s) of dimension 2m + s, tangent
to the structure vector fields. If

σ(X, Y ) =
m+ s

m+ s+ 1
{g(fX, fY )H − (ωH(X) +

m+ s+ 1

m+ s

s∑
α=1

ηα(X))fY−

−(ωH(Y ) +
m+ s+ 1

m+ s

s∑
α=1

ηα(Y ))fX}, (26)

for any tangent vector fields X, Y tangent to M , then the Maslov form of M
is L-conformal.

As we said before, generalized S-space-forms with two structure vector
fields were defined in [15], giving some interesting examples. Now, in paper
[A4], we present the definition for any number of structure vector fields. A
metric f -manifold (M, f, ξ1, . . . , ξs, η1, . . . , ηs, g) is said to be a generalized
S-space-form if there exists a family of differentiable functions on M ,

{F1, F2, Fαβ, Gαβ, Hαβγ},

such that the curvature tensor field R of M satisfies

R = F1R1+F2R2+
s∑

α,β=1

FαβRαβ+
∑

1≤α<β≤s

GαβR̃αβ+
s∑

α,β,γ=1,
α 6=β 6=γ 6=α

HαβγRαβγ, (27)

where

R1(X, Y, Z,W ) =g(X,W )g(Y, Z)− g(X,Z)g(Y,W );

R2(X, Y, Z,W ) =F (X,W )F (Y, Z)− F (X,Z)F (Y,W )

− 2F (X, Y )F (Z,W );

Rαβ(X, Y, Z,W ) =g(Y,W )ηα(X)ηβ(Z)− g(X,W )ηα(Y )ηβ(Z)

+ g(X,Z)ηα(Y )ηβ(W )− g(Y, Z)ηα(X)ηβ(W );

R̃αβ(X, Y, Z,W ) =ηα(X)ηβ(Y )ηβ(Z)ηα(W )− ηβ(X)ηα(Y )ηβ(Z)ηα(W )

+ ηβ(X)ηα(Y )ηα(Z)ηβ(W )− ηα(X)ηβ(Y )ηα(Z)ηβ(W );

Rαβγ(X, Y, Z,W ) =ηα(X)ηβ(Y )ηγ(Z)ηα(W )− ηβ(X)ηα(Y )ηγ(Z)ηα(W )

+ ηβ(X)ηα(Y )ηα(Z)ηγ(W )− ηα(X)ηβ(Y )ηα(Z)ηγ(W ),

(28)
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for any X, Y, Z,W ∈ X (M).
So, S-space-forms are natural examples of generalized S-space-forms (see

[40]). Furthermore, we check that C-space-forms are also generalized S-
space-forms.

Now, let us suppose that M is a generalized S-space-form such that the
distribution spanned by the structure vector fields is flat (for instance, if M
is either a metric f -K-contact manifold or a K-manifold, see [34]).Then, we
prove the following results:

Theorem. ([A4] 5.1) Let M be a (2n+ s)-dimensional generalized S-space-
form with functions {F1, F2, Fαβ, Gαβ, Hαβγ}, such that ∇ξα = −f , for any
α = 1, . . . , s. Then, M is an S-manifold and

F1 =
c+ 3s

4
;F2 =

c− s
4

;Fαα =
c+ 3s

4
− 1;

Fαβ = −1 (α 6= β);Gαβ =
c+ 3s

4
− 2 (α < β);

Hαβγ = −1 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s} and c = F1 + 3F2. In particular, any generalized
S-space-form with a metric f -K-contact-structure is an S-manifold.

Theorem. ([A4] 5.2) Let M be a (2n+ s)-dimensional generalized S-space-
form with functions {F1, F2, Fαβ, Gαβ, Hαβγ} and with an underlying C-struc-
ture. Then

F1 = F2 = Fαα = Gαβ =
c

4
, α < β;

Fαβ = Hαβγ = 0, α 6= β 6= γ 6= α,

where α, β, γ ∈ {1, . . . , s} and c = F1 + 3F2. Moreover, if n > 1, M is a
C-space-form.

In paper [A5], we introduce the notion of para-S-manifold as follows:
Let M be a (2n + s)-dimensional smooth manifold. It is said to have

an almost para-f -structure (f, η1, . . . , ηs, ξ1, . . . , ξs) and it is called an almost
para-f -manifold if it admits a tensor field f of type (1, 1), s global tan-
gent vector fields ξ1, . . . , ξs, called the structure vector fields and s 1-forms
η1, . . . , ηs, satisfying the following compatibility conditions:

• f(ξα) = 0, ηα ◦ f = 0, α = 1, . . . , s;

• ηα(ξβ) = δαβ, α, β = 1, . . . , s;
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• f 2 = Id−
∑
α=1s

ηα⊗ ξα and the eigendistributions of f corresponding to

the eigenvalues 1 and -1, denoted by D+ and D− respectively, have the
same dimension equal to n.

If an almost para-f -manifold M admits a pseudo-Riemannian metric g
such that

g(fX, fY ) + g(X, Y ) =
s∑

α=1

ηα(X)ηα(Y ), (29)

for any X, Y ∈ TM , we say that M is a metric almost para-f -manifold and
g is called a compatible metric.

On a metric almost para-f -manifold, we define a 2-form by F (X, Y ) =
g(X, fY ), for any X, Y ∈ TM . Moreover, an almost para-f -estructure is
said to be normal if

[f, f ](X, Y ) = 2
s∑

α=1

dηα(X, Y )ξα,

where [f, f ] is denoting the Nijenhuis tensor of f
A para-K-manifold is a normal almost para-f -manifold such that dF = 0.

A para-S-manifold is a normal para-f -manifold. In these cases, the structures
are called para-K-structure and para-S-structure, respectively.

In this context, we firstly prove the following theorem.

Theorem. ([A5] 2) For s ≥ 2 there are not Einstein para-S-manifolds.

This motivates, as in the case of Sasakian geometry, to introduce the
notion of η-Einstein para-S-manifold. We say that a para-S-manifold M is
an η-Einstein manifold if its Ricci tensor field satisfies

Ric = ag + b
s∑

α=1

ηα ⊗ ηα + (a+ b)
s∑

α 6=β

ηα ⊗ ηβ, (30)

where a and b are differentiable functions on M .
Then, we obtain:

Theorem. ([A5] 3) Let M be a (2n + s)-dimensional η-Einstein para-S-
manifold. If we assume that the foliation generated by the structure vector
fields is regular, then M projects onto an Einstein para-Kaehler manifold.

Moreover, for ξ-conformally flatness, we get:

Theorem. ([A5] 4) Let M be a (2n + s)-dimensional η-Einstein para-S-
manifold with n ≥ 1. Then:
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(i) If s = 1, that is, is M is a para-Sasakian manifold, M is ξ-conformally
flat.

(ii) If s = 2, M is ξ-conformally flat if and only if a = −4n.

(iii) If s > 2, M cannot be ξ-conformally flat.

Theorem. ([A5] 5) A para-Sasakian manifold M is ξ-conformally flat if and
only if it is an η-Einstein manifold.

Finally, for s = 2 we have:

Theorem. ([A5] 6) Let M be a ξ-conformally flat para-S-manifold with two
structure vector fields. Then, M is an η-Einstein manifold with a = −4n.

3. Open problems.

As a consequence of all these results, we have now many interesting open-
problems that we have started to work on.

• We have proven charaterization theorems for the Maslov form in certain
submanifolds of S-spaces-forms to be closed. So now, we would like to
know what happens when the ambient manifold is a generalized S-
space-form.

• In 1985 J. Oubiña in [45] introduced a new class of contact metric man-
ifolds, called trans-Sasakian manifolds. If there are smooth functions
(α, β) on an almost contact metric manifold (M,φ, ξ, η, g) satisfying

(∇φ)(X, Y ) = α(g(X, Y )ξ− η(Y )X) +β(g(φX, Y )ξ− η(Y )φX), (31)

then this is said to be a trans-Sasakian manifold, where (∇φ)(X, Y ) =
(∇Xφ)Y − φ∇XY , X, Y ∈ X (M) and ∇ is the Levi-Civita connection
with respect to the metric g.

Moreover, A.M. Fuentes, in her PhD thesis [36], develops the concept
of generalized S-space forms, giving some examples by using warped
products. In theses examples, we observe that ∇f has an expres-
sion that seems to generalized (31), for s ≥ 1. Therefore, we have
also introduced the notion of trans-S-manifolds in [4], as a generaliza-
tion of trans-Sasakian manifolds; so that now, trans-Sasakian mani-
folds are the particular case in which the f -metric manifold has one
structure vector field. As particular cases of trans-S-manifolds we have
S-manifolds and f -Kenmotsu manifolds.
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In fact, we have found non-trivial examples which justify this new no-
tion and we are now trying to prove some characterization theorems.
We would also like to study the submanifolds of these manifolds, spe-
cially when the trans-S-manifold has an additional structure of gener-
alized S-space-form and try to prove characterization theorems for the
Maslov form to be close in this case as well.

• In relation to generalized S-space-forms, since the use of different ge-
ometrical constructions is a very important tool to obtain interesting
non-trivial examples of them, we want to consider other metric changes,
such as D-homothetic and D-conformal transformations. In the case
s = 1, this work has been done in [2].

Moreover, we think it is interesting to study submanifolds of gener-
alized S-space-forms. We want to highlight the case of the almost
semi-invariant submanifols, which has been recently studied in [3]. So,
we would like to obtain some inequalities where the Ricci curvature and
the Scalar curvature appear (not depending on the chosen metric).

In addition, in [5, 6] it was proven that an S-manifold endowed with
a semi-symmetric connection (metric or non-metric) is a generalized
S-space-form of constant sectional curvature if and only if it is a gener-
alized S-space-form with respect to the Levi-Civita connection. There-
fore, we want to check if there exist generalized S-space-forms endowed
with such a semi-symmetric connection and, if case, give examples. For
the case s = 1, this work has already been done in [50].

• We also want to study para f -manifolds which are not para S-mani-
folds, giving new and interesting examples. In particular, topics as the
behaviour of the curvature tensor fields or D-homothetic transforma-
tions should be considered.
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Lagrangian submanifolds appear naturally in the context of classical mechanics. They play
important roles in geometry as well as in physics. It was proved by B.-Y. Chen in (2000)
[6] that every Lagrangian submanifold M5 of a complex space form M̃5(4c) of constant
holomorphic sectional curvature 4c satisfies

δ(2,2) � 25

3
H2 + 8c, (A)

where H2 is the squared mean curvature and δ(2,2) is a δ-invariant of M5 (cf. Chen,
2000, 2011 [6,9]). The main purpose of this paper is to completely classify Lagrangian
submanifolds of complex space forms M̃5(4c), c = 0,1,−1, satisfying the equality case of
the inequality (A) identically.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let M̃n be a Kähler n-manifold endowed with the complex structure J and with a Kähler metric g . The Kähler 2-form
ω is defined by ω(·,·) = g( J · ,·). An isometric immersion ψ : Mn → M̃n of a Riemannian n-manifold Mn into M̃n is called
Lagrangian if ψ∗ω = 0. Lagrangian submanifolds appear naturally in the context of classical mechanics and mathematical
physics. For instance, the systems of partial differential equations of Hamilton–Jacobi type lead to the study of Lagrangian
submanifolds and foliations in the cotangent bundle. Furthermore, Lagrangian submanifolds play some important roles in
supersymmetric field theories as well as in string theory.

In differential geometry theorems which relate intrinsic and extrinsic curvatures always play important roles. Related
with Nash’s embedding theorem [16], the first author introduced in [3,4,6] a new type of Riemannian invariants, denoted
by δ(n1, . . . ,nk). For an n-dimensional submanifold Mn in a real space form Rm(c) of constant sectional curvature c, he
proved the following sharp general inequality:

δ(n1, . . . ,nk) � n2(n + k − 1 − ∑
n j)

2(n + k − ∑
n j)

H2 + 1

2

(
n(n − 1) −

k∑
j=1

n j(n j − 1)

)
c, (1.1)

where H2 is the squared mean curvature of Mn .
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An immersion satisfying the equality case of inequality (1.1) at every point is called δ(n1, . . . ,nk)-ideal. Roughly speaking,
an ideal immersion is an immersion which produces the least possible amount of tension from the ambient space.

It is known that inequality (1.1) holds for Lagrangian submanifolds in complex space forms of constant holomorphic
sectional curvature 4c as well (cf. [6,9,10]). Also, the first author proved in [7, Theorem 1] that every ideal Lagrangian
submanifold of a complex space form is a minimal submanifold. δ(2)-ideal submanifolds in real and complex space forms
have been studied by many geometers since the invention of δ-invariants (see [1] and [9, Chapter 20] for details).

For Lagrangian submanifolds in a 5-dimensional complex space form M̃5(4c), inequality (1.1) reduces to

δ(2,2) � 25

3
H2 + 8c. (1.2)

By definition, a Lagrangian submanifold M5 in M̃5(4c) is δ(2,2)-ideal if and only if it satisfies the equality sign of (1.2)
identically. A δ(2,2)-ideal submanifold in M̃5(4c) is called proper if it is not a δ(2)-ideal Lagrangian submanifold in M̃5(4c).

The main purpose of this paper is to classify proper δ(2,2)-ideal Lagrangian submanifolds in C5, CP5(4) and CH5(−4).

2. Preliminaries

2.1. Basic formulas

Let M̃n(4c) denote a complete simply-connected Kähler n-manifold with constant holomorphic sectional curvature 4c.
Then it is well-known that M̃n(4c) is holomorphically isometric to the complex Euclidean n-plane Cn , the complex projective
n-space CPn(4c), or a complex hyperbolic n-space CHn(−4c) according to c = 0, c > 0 or c < 0.

Let Mn be a Lagrangian submanifold of M̃n(4c). We denote the Levi-Civita connections of M and M̃n(4c) by ∇ and ∇̃ ,
respectively. The formulas of Gauss and Weingarten are given respectively by (cf. [2])

∇̃X Y = ∇X Y + h(X, Y ), (2.1)

∇̃Xξ = −Aξ X + D Xξ, (2.2)

for tangent vector fields X and Y and normal vector fields ξ , where h is the second fundamental form, A is the shape
operator and D is the normal connection.

The second fundamental form h is related to the shape operator A by〈
h(X, Y ), ξ

〉 = 〈Aξ X, Y 〉.
The mean curvature vector

−→
H of Mn is defined by

−→
H = 1

n
trace h,

and the squared mean curvature is given by H2 = 〈−→H ,
−→
H〉.

For Lagrangian submanifolds, we have (cf. [9,12])

D X J Y = J∇X Y , (2.3)

A J X Y = − Jh(X, Y ) = A J Y X . (2.4)

Formula (2.4) implies that 〈h(X, Y ), J Z〉 is totally symmetric.
The equations of Gauss and Codazzi are given respectively by〈

R(X, Y )Z , W
〉 = 〈Ah(Y ,Z) X, W 〉 − 〈Ah(X,Z)Y , W 〉

+ c
(〈X, W 〉〈Y , Z〉 − 〈X, Z〉〈Y , W 〉), (2.5)

(∇X h)(Y , Z) = (∇Y h)(X, Z) (2.6)

for X, Y , Z , W tangent to M , where R is the curvature tensor of Mn and ∇h is defined by

(∇X h)(Y , Z) = D X h(Y , Z) − h(∇X Y , Z) − h(Y ,∇X Z). (2.7)

For an orthonormal basis {e1, . . . , en} of T p Mn at a point p ∈ Mn , we put

hi
jk = 〈

h(e j, ek), J ei
〉
, i, j,k = 1, . . . ,n.

It follows from (2.4) that

hi
jk = h j

ik = hk
ij. (2.8)
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2.2. Horizontal lift of Lagrangian submanifolds

The following link between Legendrian submanifolds and Lagrangian submanifolds is due to [17] (see [9, pp. 247–248]).
Case (i): CPn(4). Consider Hopf’s fibration π : S2n+1 → CPn(4). For a given point u ∈ S2n+1(1), the horizontal space at u

is the orthogonal complement of iu, i = √−1, with respect to the metric on S2n+1 induced from the metric on Cn+1. Let
ι : N → CPn(4) be a Lagrangian isometric immersion. Then there is a covering map τ : N̂ → N and a horizontal immersion
ι̂ : N̂ → S2n+1 such that ι ◦ τ = π ◦ ι̂. Thus each Lagrangian immersion can be lifted locally (or globally if N is simply-
connected) to a Legendrian immersion of the same Riemannian manifold. In particular, a minimal Lagrangian submanifold
of CPn(4) is lifted to a minimal Legendrian submanifold of the Sasakian S2n+1(1).

Conversely, suppose that f : N̂ → S2n+1 is a Legendrian isometric immersion, then ι = π ◦ f : N → C Pn(4) is again a
Lagrangian isometric immersion. Under this correspondence the second fundamental forms h f and hι of f and ι satisfy
π∗h f = hι . Moreover, h f is horizontal with respect to π .

Case (ii): CHn(−4). We consider the complex number space Cn+1
1 equipped with the pseudo-Euclidean metric:

g0 = −dz1 dz̄1 +
n+1∑
j=2

dz j dz̄ j .

Consider the anti-de Sitter spacetime

H2n+1
1 (−1) = {

z ∈ C2n+1
1 : 〈z, z〉 = −1

}
with the canonical Sasakian structure, where 〈,〉 is the induced inner product.

Put T ′
z = {u ∈ Cn+1: 〈u, z〉 = 0}, H1

1 = {λ ∈ C: λλ̄ = 1}. Then there is an H1
1-action on H2n+1

1 (−1), z �→ λz and at each
point z ∈ H2n+1

1 (−1), the vector ξ = −iz is tangent to the flow of the action. Since the metric g0 is Hermitian, we have
〈ξ, ξ〉 = −1. The quotient space H2n+1

1 (−1)/∼, under the identification induced from the action, is the complex hyperbolic
space CHn(−4) with constant holomorphic sectional curvature −4 whose complex structure J is induced from the complex
structure J on Cn+1

1 via Hopf’s fibration π : H2n+1
1 (−1) → C Hn(4c).

Just like case (i), suppose that ι : N → C Hn(−4) is a Lagrangian immersion, then there is an isometric covering map
τ : N̂ → N and a Legendrian immersion f : N̂ → H2n+1

1 (−1) such that ι ◦ τ = π ◦ f . Thus every Lagrangian immersion
into C Hn(−4) can be lifted locally (or globally if N is simply-connected) to a Legendrian immersion into H2n+1

1 (−1). In
particular, Lagrangian minimal submanifolds of C Hn(−4) are lifted to Legendrian minimal submanifolds of H2n+1

1 (−1).

Conversely, if f : N̂ → H2n+1
1 (−1) is a Legendrian immersion, then ι = π ◦ f : N → C Hn(−4) is a Lagrangian immersion.

Under this correspondence the second fundamental forms h f and hι are related by π∗h f = hι . Also, h f is horizontal with
respect to π .

2.3. Existence and uniqueness theorem for Lagrangian minimal surfaces

We need the following theorem from [5, Corollary 3.6] for later use.

Theorem 2.1. Let L : M2 → M̃2(4c) be a Lagrangian minimal immersion without totally geodesic points. Then with respect to a
suitable isothermal coordinate system (x, y) we have

(1) the metric tensor of M2 is given by g = E2(dx2 + dy2) such that E satisfies


(ln E) = 2 − cE6

E4
, 
 = ∂2

∂2x
+ ∂2

∂2 y
, (2.9)

(2) the second fundamental form of L satisfies

h(∂x, ∂x) = J∂x

E2
1

, h(∂x, ∂y) = − J∂y

E2
1

, h(∂y, ∂y) = − J∂x

E2
1

. (2.10)

Conversely, if E = E(x, y) is a positive function defined on a simply-connected domain U of the 2-plane R2 satisfying (2.9) for some
real number c, then up to rigid motions there exists a unique Lagrangian minimal immersion from M2 = (U , g), g = E2(dx2 + dy2),
into a complete simply-connected complex space form M̃2(4c) whose second fundamental form satisfies (2.10).

By applying Theorem 2.1 and the link via Hopf’s fibration given in Section 2.2, we have the following.

Corollary 2.1. If E is a positive function defined on a simply-connected domain U of R2 satisfying (2.9) for c = 1 (respectively c = −1)
then there exists a Legendrian minimal immersion from M2 = (U , g), g = E2(dx2 + dy2), into the Sasakian S5(1) (resp., the Sasakian
H5(−1)) whose second fundamental form satisfies
1
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h(∂x, ∂x) = φ(∂x)

E2
1

, h(∂x, ∂y) = −φ(∂y)

E2
1

, h(∂y, ∂y) = −φ(∂x)

E2
1

, (2.11)

where φ is the (1,1)-tensor of S5(1) (resp., of H5
1(−1)) induced from the complex structure on C3 (resp., on C3

1).

3. δ-invariants and fundamental inequalities

Let Mn be a Riemannian n-manifold. Denote by K (π) the sectional curvature of Mn associated with a plane section
π ⊂ T p Mn , p ∈ Mn . For any orthonormal basis e1, . . . , en of T p Mn , the scalar curvature τ at p is defined to be

τ (p) =
∑
i< j

K (ei ∧ e j). (3.1)

Let L be an r-subspace of T p Mn with r � 2 and {e1, . . . , er} an orthonormal basis of L. The scalar curvature τ (L) of the
r-plane section L is defined by

τ (L) =
∑
α<β

K (eα ∧ eβ), 1 � α,β � r. (3.2)

For given integers n � 3 and k � 1, we denote by S(n,k) the finite set consisting of all k-tuples (n1, . . . ,nk) of integers
satisfying

2 � n1, . . . ,nk < n and n1 + · · · + nk � n.

Denote the union
⋃

k�1 S(n,k) by S(n). For each (n1, . . . ,nk) ∈ S(n), the first author introduced in [6] the Riemannian
invariant δ(n1, . . . ,nk) defined by

δ(n1, . . . ,nk)(p) = τ (p) − inf
{
τ (L1) + · · · + τ (Lk)

}
, p ∈ Mn, (3.3)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of T p Mn such that dim L j = n j , j = 1, . . . ,k. The invariants
δ(n1, . . . ,nk) and the scalar curvature τ are very much different in nature (cf. [8,9] for details).

The following fundamental relation between δ(n1, . . . ,nk) and the squared mean curvature H2 was proved in [6].

Theorem A. Let Mn be an n-dimensional submanifold in a real space form Rm(c) of constant curvature c. Then for each k-tuple
(n1, . . . ,nk) ∈ S(n) we have

δ(n1, . . . ,nk) � n2(n + k − 1 − ∑
n j)

2(n + k − ∑
n j)

H2 + 1

2

(
n(n − 1) −

k∑
j=1

n j(n j − 1)

)
c. (3.4)

The equality case of inequality (3.4) holds at a point p ∈ M if and only if there exists an orthonormal basis {e1, . . . , em} at p such
that the shape operator of Mn in Rm(c) at p with respect to {e1, . . . , em} takes the form:

Ar =

⎡
⎢⎢⎢⎢⎢⎣

Ar
1 · · · 0
...

. . .
... 0

0 . . . Ar
k

0 μr I

⎤
⎥⎥⎥⎥⎥⎦ , r = n + 1, . . . ,m, (3.5)

where I is an identity matrix and Ar
j is a symmetric n j × n j submatrix satisfying

trace
(

Ar
1

) = · · · = trace
(

Ar
k

) = μr .

The same result holds for a Lagrangian submanifolds in a complex space form M̃n(4c) of constant holomorphic sectional
curvature 4c. More precisely, we have

Theorem B. Let Mn be an n-dimensional Lagrangian submanifold in a complex space form M̃n(4c) of constant holomorphic sectional
curvature 4c. Then, for each k-tuple (n1, . . . ,nk) ∈ S(n), we have

δ(n1, . . . ,nk) � n2(n + k − 1 − ∑
n j)

2(n + k − ∑
n j)

H2 + 1

2

(
n(n − 1) −

k∑
j=1

n j(n j − 1)

)
c. (3.6)

The equality case of inequality (3.6) holds at a point p ∈ M if and only if, there exists an orthonormal basis {e1, . . . , em} at p, such
that the shape operators of M in M̃n(4c) at p with respect to {e1, . . . , em} take the form of (3.5).
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The following result was proved in [7] which extends a result in [10,11] on δ(2).

Theorem C. Every Lagrangian submanifold of a complex space form M̃n(4c) that satisfies the equality case of (3.6) identically for a
k-tuple (n1, . . . ,nk) is minimal.

4. Some lemmas

Now we provide some lemmas to be used in the proofs of our main theorems.

Lemma 4.1. A Lagrangian submanifold M5 of a complex space form M̃5(4c) satisfies

δ(2,2) � 25

3
H2 + 8c. (4.1)

If the equality sign of (4.1) holds identically, then M5 is a minimal submanifold. Moreover, the second fundamental form h of M5

satisfies

h(e1, e1) = h1
11 J e1 + h2

11 J e2,

h(e1, e2) = h2
11 J e1 − h1

11 J e2,

h(e2, e2) = −h1
11 J e1 − h2

11 J e2,

h(e3, e3) = h3
33 J e3 + h4

33 J e4,

h(e3, e4) = h4
33 J e3 − h3

33 J e4,

h(e4, e4) = −h3
33 J e3 − h4

33 J e4,

h(ei, e j) = 0, otherwise, (4.2)

with respect a suitable orthonormal frame {e1, . . . , e5}.

Proof. This is an immediate consequence of Theorems B and C. �
Assume that Mn is a Lagrangian submanifold of a complex space form M̃n(4c). Let p ∈ Mn and V be a d-dimensional

subspace of T p Mn . Denote by πV : T p Mn → V the orthogonal projection. For each v ∈ V , we define a symmetric endomor-
phism AV

J v on V by AV
J v = πV ◦ A J v , where A J v is the shape operator at J v .

We need the following lemma from [7, Lemma 1].

Lemma 4.2. Let Mn be a Lagrangian submanifold of a complex space form M̃n(4c) and V be a d-dimensional subspace of T p Mn at
some point p ∈ Mn. Then there exists an orthonormal basis {ε1, . . . , εd} of V such that

(4.1) AV
Jε1

εi = λiεi, i = 1, . . . ,d,

where λ1, . . . , λd satisfy λ1 � 2λ j , j = 2, . . . ,d; λ1 > λ j for j = 2, . . . ,d.

Lemma 4.3. Let M5 be a δ(2,2)-ideal Lagrangian submanifold of a complex space form M̃5(4c). Then there exists an orthonormal
frame {e1, . . . , e5} such that

h(e1, e1) = a Je1, h(e1, e2) = −a Je2, h(e2, e2) = −a Je1,

h(e3, e3) = b Je3, h(e3, e4) = −b Je4, h(e4, e4) = −b Je3,

h(ei, e j) = 0, otherwise (4.3)

for some functions a and b.
Moreover, M5 is proper δ(2,2)-ideal if and only if a,b �= 0.

Proof. By applying Lemma 4.2 to V = Span{e1, e2} and V = Span{e3, e4}, we obtain (4.3) with respect to a suitable or-
thonormal frame {e1, . . . , e5} on M5.

The second statement follows from the definition of proper δ(2,2)-ideal submanifolds, (4.3) and Theorem A. �
From now on, we assume that M5 is a proper δ(2,2)-ideal Lagrangian submanifold of a complex space form M̃5(4c)

and we shall always choose the orthonormal frame {e1, . . . , e5} satisfying (4.3). Since M5 is proper δ(2,2)-ideal, we have
a,b �= 0.
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Let us put

∇X ei =
5∑

j=1

ω
j
i (X), X ∈ T M5. (4.4)

Then we have ω
j
i = −ωi

j , i, j = 1, . . . ,5.

Lemma 4.4. Let M5 be a proper δ(2,2)-ideal Lagrangian submanifold of a complex space form M̃5(4c). Then we have

e1a = −3aμ, e2a = 3aλ, e3a = e4a = 0, e5a = aα, (4.5)

e1b = e2b = 0, e3b = −3bη, e4b = 3bϕ, e5b = bβ, (4.6)

where α, β , λ, μ, ϕ , η are defined by

λ = ω2
1(e1), μ = ω2

1(e2), ϕ = ω4
3(e3), η = ω4

3(e4),

α = ω5
1(e1) = ω5

2(e2), β = ω5
3(e3) = ω5

4(e4). (4.7)

Moreover, we have ω
j
i (ek) = 0, i, j,k ∈ {1, . . . ,5}, for those ω

j
i (ek) which do not appear in (4.7).

Proof. This was done by performing long computations on Codazzi’s equation via Lemma 4.3. �
By using (4.4) and Lemma 4.4 we obtain the following.

Lemma 4.5. Under the hypothesis of Lemma 4.4, the Levi-Civita connection ∇ of M5 satisfies

∇e1 e1 = λe2 + αe5, ∇e1 e2 = −λe1, ∇e1 e5 = −αe1,

∇e2 e1 = μe2, ∇e2 e2 = −μe1 + αe5, ∇e2 e5 = −αe2,

∇e3 e3 = ϕe3 + βe5, ∇e3 e4 = −ϕe3, ∇e3 e5 = −βe3,

∇e4 e3 = ηe4, ∇e4 e4 = −ηe3 + βe5, ∇e4 e5 = −βe4,

∇ei e j = 0, otherwise. (4.8)

We put

T0 = Span{e5}, T1 = Span{e1, e2}, T2 = Span{e3, e4}. (4.9)

Lemma 4.6. Under the hypothesis of Lemma 4.4, we have

(a) T0 is a totally geodesic distribution, i.e. T0 is integrable whose leaves are totally geodesic submanifolds;
(b) T0 ⊕ T1 and T0 ⊕ T2 are totally geodesic distributions;
(c) T1 and T2 are spherical distributions, i.e. T1 and T2 are integrable distributions and their leaves are totally umbilical submanifolds

with parallel mean curvature vector.

Proof. Since the distribution T0 is of rank one, it is always integrable. Moreover, since ∇e5 e5 = 0 according to Lemma 4.5,
the integral curves of e5 are geodesics in M5. Thus we have statement (a). Statement (b) follows easily from (4.8).

To prove statement (c), first we observe that [e1, e2] ∈ T1 and [e3, e4] ∈ T2 follow from (4.8). Thus T1, T2 are integrable.
Also, it follows from (4.8) that the second fundamental form h1 of a leave L1 of T1 in M5 is given by

h1(X, Y ) = αg1(X1, Y1)e5, X1, Y1 ∈ T L1, (4.10)

where g1 is the metric of L1. Moreover, from (4.8), we find

∇ei e5 = −αei, i = 1,2.

Thus we get

D1
e1

e5 = D1
e2

e5 = 0, (4.11)

where D1 denotes the normal connection of L1 in M5. From the equation of Gauss and Lemma 4.3 we know that the
curvature tensor R of M5 satisfies
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〈
R(e1, e2)e1, e j

〉 = 0, j = 3,4,5. (4.12)

Thus we derive from (4.12) and Lemma 4.5 that

0 ≡ R(e1, e2)e1

≡ ∇e1(μe2) − ∇e2(λe2 + αe5) + λ∇e1 e1 + μ∇e2 e1

≡ −(e2α)e5 (mod T1). (4.13)

Hence we find e2α = 0.
Similarly, by considering R(e2, e1)e2, we also have e1α = 0. By combining these with (4.11), we conclude that L1 has

parallel mean curvature vector in M5. Consequently, T1 is a spherical distribution.
Similarly, we also have e3β = e4β = 0. Moreover, we know that T2 is a spherical distribution as well. Thus we obtain

statement (c) of the lemma. �
Lemma 4.7. Under the hypothesis of Lemma 4.4, the Lagrangian submanifold M5 is a locally warped product I ×ρ1(t) M2

1 ×ρ2(t) M2
2 ,

where t is function such that e5 = ∂t (i.e., e5 = ∂
∂t ), ρ1 and ρ2 are two positive functions in t and M2

1, M2
2 are Riemannian 2-manifolds.

Proof. It follows from Lemma 4.6 and result of Hiepko [14] (see also [13]). �
Lemma 4.8. Under the hypothesis of Lemma 4.4 and under the same notations as previous lemmas, we have

e jα = e jβ = 0, j = 1,2,3,4, (4.14)

e3λ = e4λ = e3μ = e4μ = 0, e5μ = αμ, (4.15)

e1λ = −e2μ, (4.16)

e1α + 3e5μ = 3αμ, e2α − 3e5λ = −3αλ, (4.17)

e1ϕ = e2ϕ = e1η = e2η = 0, e5η = βη, (4.18)

e3ϕ = −e4η, (4.19)

e3β + 3e5η = 3βη, e4β − 3e5ϕ = −3βϕ. (4.20)

Proof. The equations e1α = e2α = e3β = e4β = 0 are already derived in the proof of Lemma 4.6. The other equations in
(4.14)–(4.20) are obtained by applying (4.5), (4.6), (4.8) and the compatibility conditions:

[ei, e j] f = (∇ei e j − ∇e j ei) f , i, j = 1, . . . ,5,

for f = a,b. For instance, we find (4.16) from [e1, e2]a = (∇e1 e2 − ∇e2 e1)a via (4.5) and (4.8); and e3λ = 0 from [e2, e3]a =
(∇e2 e3 − ∇e3 e2)a. �

It follows from (4.14) and e5 = ∂
∂t in Lemma 4.7 that α = α(t) and β = β(t).

Lemma 4.9. Under the hypothesis of Lemma 4.4, we may choose isothermal coordinate systems {x, y} on M2
1 and {z, w} on M2

2 such
that the metric tensors g1, g2 of the Riemannian 2-manifolds M2

1, M2
2 in Lemma 4.7 are given respectively by

g1 = E2
1

(
dx2 + dy2), g2 = E2

2

(
dz2 + dw2). (4.21)

Proof. By using (4.5) in Lemma 4.4 and Lemma 4.5 we find[
a− 1

3 e1,a− 1
3 e2

] = 0. (4.22)

It follows from e3a = e4a = 0 and e5a = aα in Lemma 4.4 that

a = f e
∫ t

α(t)dt (4.23)

for some function f defined on M2
1. We conclude from (4.22) and (4.23) that there exists a coordinate system {x, y} on M2

1

with ∂
∂x = E1e1 and ∂

∂ y = E1e2. Now, by putting E1 = f − 1
3 (x, y), we obtain g1 = E2

1(dx2 + dy2). After applying the same

argument to M2
2, we obtain a similar result for M2

2. �
It follows from Lemmas 4.7 and 4.9 that there is a coordinate system {t, x, y, z, w} on M5 = I ×ρ1(t) M2

1 ×ρ2(t) M2
2 such

that the metric tensor g of M5 is given by
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g = dt2 + ρ2
1 (t)E2

1(x, y)
(
dx2 + dy2) + ρ2

2 (t)E2
2(z, w)

(
dz2 + dw2). (4.24)

Lemma 4.10. The Levi-Civita connection of the metric tensor (4.24) satisfies

∇ ∂
∂t

∂

∂t
= 0,

∇ ∂
∂t

∂

∂x
= ρ ′

1

ρ1

∂

∂x
, ∇ ∂

∂t

∂

∂ y
= ρ ′

1

ρ1

∂

∂ y
,

∇ ∂
∂x

∂

∂x
= ∂(ln E1)

∂x

∂

∂x
− ∂(ln E1)

∂ y

∂

∂ y
− ρ1ρ

′
1 E2

1
∂

∂t
,

∇ ∂
∂x

∂

∂ y
= ∂(ln E1)

∂ y

∂

∂x
+ ∂(ln E1)

∂x

∂

∂ y
,

∇ ∂
∂ y

∂

∂ y
= −∂(ln E1)

∂x

∂

∂x
+ ∂(ln E1)

∂ y

∂

∂ y
− ρ1ρ

′
1 E2

1
∂

∂t
,

∇ ∂
∂t

∂

∂z
= ρ ′

2

ρ2

∂

∂z
, ∇ ∂

∂t

∂

∂ w
= ρ ′

2

ρ2

∂

∂ w
,

∇ ∂
∂z

∂

∂z
= ∂(ln E2)

∂z

∂

∂z
− ∂(ln E2)

∂ w

∂

∂ w
− ρ2ρ

′
2 E2

2
∂

∂t
,

∇ ∂
∂z

∂

∂ w
= ∂(ln E2)

∂ w

∂

∂z
+ ∂(ln E2)

∂z

∂

∂ w
,

∇ ∂
∂ w

∂

∂ w
= −∂(ln E2)

∂z

∂

∂z
+ ∂(ln E2)

∂ w

∂

∂ w
− ρ2ρ

′
2 E2

2
∂

∂t
,

∇ ∂
∂x

∂

∂z
= ∇ ∂

∂x

∂

∂ w
= ∇ ∂

∂ y

∂

∂z
= ∇ ∂

∂ y

∂

∂ w
= 0.

Proof. It follows from (4.24) and direct computation. �
Lemma 4.11. Let M5 be a proper δ(2,2)-ideal Lagrangian submanifold of a complex space form M̃5(4c). The with respect to metric
(4.24) the second fundamental form of M5 satisfies

h(∂x, ∂x) = J∂x

E2
1

, h(∂x, ∂y) = − J∂y

E2
1

, h(∂y, ∂y) = − J∂x

E2
1

,

h(∂z, ∂z) = J∂z

E2
2

, h(∂z, ∂w) = − J∂w

E2
2

, h(∂w , ∂w) = − J∂z

E2
2

,

h(∂x, ∂z) = h(∂x, ∂w) = h(∂y, ∂z) = h(∂y, ∂w) = 0,

h(∂x, ∂t) = h(∂y, ∂t) = h(∂z, ∂t) = h(∂w , ∂t) = 0, (4.25)

where ∂x = ∂
∂x , ∂y = ∂

∂ y , etc.

Proof. It follows from the proof of Lemma 4.9 and (4.24) that

∂x = ρ1 E1e1, ∂y = ρ1 E1e2, ∂z = ρ2 E2e3, ∂w = ρ2 E2e4, ∂t = e5. (4.26)

By combining Lemma 4.4 and (4.25) we get

∂x(ln a) = −3ρ1 E1μ, ∂y(ln a) = 3ρ1 E1λ, ∂t(ln a) = α,

∂z(ln b) = −3ρ2 E2η, ∂w(ln b) = 3ρ2 E2ϕ, ∂t(ln b) = β. (4.27)

On the other hand, by applying (4.7), (4.8) and Lemma 4.10, we find

α = −∂t(lnρ1), β = −∂t(lnρ2),

μ = ∂x(ln E1)

ρ1 E1
, λ = −∂y(ln E1)

ρ1 E1
,

η = ∂z(ln E2)
, ϕ = −∂w(ln E2)

. (4.28)

ρ2 E2 ρ2 E2
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Now, we obtain from (4.27), (4.28) and Lemma 4.4 that

∂x(ln a) = ∂x
(
ln E−3

1

)
, ∂y(ln a) = ∂y

(
ln E−3

1

)
, ∂t(ln a) = ∂t

(
lnρ−1

1

)
,

∂z(ln b) = ∂z
(
ln E−3

2

)
, ∂w(ln b) = ∂w

(
ln E−3

2

)
, ∂t(ln b) = ∂t

(
lnρ−1

2

)
. (4.29)

Therefore, after combining (4.29) with e3a = e4a = e1b = e2b = 0 from Lemma 4.4, we obtain

a = c1

ρ1 E3
1

, b = c2

ρ2 E3
2

(4.30)

for some real numbers c1, c2 �= 0. Without loss of generality, we may choose c1 = c2 = 1 by rescaling E1, E2 if necessary.
Consequently, we obtain (4.25) from (4.3) of Lemma 4.3, (4.26) and (4.30). �
5. Proper δ(2,2)-ideal Lagrangian submanifolds in C5

First, we classify all proper δ(2,2)-ideal Lagrangian submanifolds in C5.

Theorem 5.1. Let L : M5 → C5 be a Lagrangian immersion into the complex Euclidean 5-space C5 . Then L is a proper δ(2,2)-ideal
Lagrangian immersion if and only if L is locally congruent to one of the following immersions:

(1) the direct product of an open interval I of the real line in C and two non-totally geodesic Lagrangian minimal immersions φi :
M2

i → C2 (i = 1,2), i.e.,

L : I × M2
1 × M2

2 → C × C2 × C2; (t, p,q) �→ (
t, φ1(p),φ2(q)

)
. (5.1)

(2) a Lagrangian immersion defined by

L : I × M2
1 ×t M2

2 → C2 × C3; (t, p,q) �→ (
φ(p), tζ(q)

)
, (5.2)

where φ : M2
1 → C2 is a non-totally geodesic Lagrangian minimal immersion and ζ : M2

2 → S5(1) ⊂ C3 is a non-totally geodesic
Legendrian minimal immersion of M2

2 into S5(1).

Proof. Let L : M5 → C5 be a proper δ(2,2)-ideal Lagrangian immersion. Then, by applying Lemma 4.10, we find

〈
R(∂x, ∂z)∂z, ∂x

〉 = −ρ1ρ2ρ
′
1ρ

′
2 E2

1 E2
2. (5.3)

On the other hand, we find from the equation of Gauss and Lemmas 4.3 and 4.9 that 〈R(∂x, ∂z)∂z, ∂x〉 = 0. Combining
this with (5.3) gives ρ ′

1ρ
′
2 = 0. Hence either ρ1 is constant or ρ2 is constant. Without loss of generality, we may assume

that ρ1 is constant. Thus we may assume ρ1 = 1 by rescaling E1 if necessary.
Next, by computing 〈R(∂z, ∂t)∂t , ∂z〉 using Lemma 4.10, we find

〈
R(∂z, ∂t)∂t, ∂z

〉 = −ρ2ρ
′′
2 E2

1. (5.4)

On the other hand, it follows from Lemma 4.3 and equation of Gauss that 〈R(∂z, ∂t)∂t , ∂z〉 = 0. By combining this with
(5.4), we get ρ ′′

2 = 0. Thus ρ2 = ct + k for some constant c,k, not simultaneous zero. Hence, after rescaling E2 and applying
a suitable translation in t if necessary, we have either ρ2 = t or ρ2 = 1.

Case (i): ρ1 = ρ2 = 1. In this case, M5 is the Riemannian product I × M2
1 × M2

2 of an open interval I and two Riemannian
2-manifolds M2

1, M2
2. Since the second fundamental form of M5 in C5 is mixed-totally geodesic (i.e., h(X, Y ) = 0 for any X, Y

tangent to two different factors of I × M2
1 × M2

2), Moore’s lemma [15] implies that L : M5 → C5 is the direct product of three
immersions. Moreover, since L is Lagrangian whose second fundamental form satisfies (4.25), each of the three immersions
are Lagrangian. Thus, we obtain case (1) of the theorem.

Case (ii): ρ1 = 1 and ρ2 = t . It follows from (4.24) that the metric tensor of M5 is

g = dt2 + E2
1(x, y)

(
dx2 + dy2) + t2 E2

2(z, w)
(
dz2 + dw2). (5.5)

Thus M5 is the Riemannian product of a Riemannian 2-manifold M2
1 and the warped product N3 := I ×t M2

2. It follows
from Lemma 4.11 that the second fundamental form of M2

1 × N3 is mixed-totally geodesic. So, L is the direct product of a
Lagrangian immersion M2 → C2 and a Lagrangian immersion of N3 → C3.
1
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On the other hand, it follows from Lemmas 4.10, 4.11 and Gauss’s formula that L satisfies

Lxx =
{
(ln E1)x + i

E2
1

}
Lx − (ln E1)y L y, (5.6)

Lxy = (ln E1)y Lx +
{
(ln E1)x − i

E2
1

}
L y, (5.7)

L yy = −
{
(ln E1)x + i

E2
1

}
Lx + (ln E1)y L y, (5.8)

Lzz =
{
(ln E2)z + i

E2
2

}
Lz − (ln E2)w Lw − t E2

2Lt , (5.9)

Lzw = (ln E2)w Lz +
{
(ln E2)z − i

E2
2

}
Lw , (5.10)

Lw w = −
{
(ln E2)z + i

E2
2

}
Lz + (ln E2)w Lw − t E2

2Lt, (5.11)

Lxz = Lxw = L yz = L yw = 0, (5.12)

Lxt = L yt = 0, (5.13)

Lzt = Lz

t
, Lwt = Lw

t
, (5.14)

Ltt = 0. (5.15)

The compatibility condition of this PDE system is given by


1(ln E1) = 2

E4
1

, 
1 = ∂2

∂2x
+ ∂2

∂2 y
, (5.16)


2(ln E2) = 2 − E6
2

E4
2

, 
2 = ∂2

∂2z
+ ∂2

∂2 w
. (5.17)

After solving Eqs. (5.12)–(5.15), we obtain

L = φ(x, y) + tζ(z, w) (5.18)

for some vector functions φ(x, y) and ζ(z, w).
By substituting (5.18) into (5.6)–(5.11), we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φxx =
{
(ln E1)x + i

E2
1

}
φx − (ln E1)yφy,

φxy = (ln E1)yφx +
{
(ln E1)x − i

E2
1

}
φy,

φyy = −
{
(ln E1)x + i

E2
1

}
φx + (ln E1)yφy,

(5.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζzz =
{
(ln E2)z + i

E2
2

}
ζz − (ln E2)wζw − E2

2ζ,

ζzw = (ln E2)wζz +
{
(ln E2)z − i

E2
2

}
ζw ,

ζw w = −
{
(ln E2)z + i

E2
2

}
ζz + (ln E2)w Lw − E2

2ζ.

(5.20)

The compatibility condition of systems (5.19) and (5.20) are given respectively by (5.16) and (5.17).
It follows from system (5.19) that φ : M2

1 → C2 is a non-totally geodesic Lagrangian minimal immersion. Also, it follows
from (5.17) and (5.20) that ζ : M2

2 → C3 maps M2
2 into S5(1) ⊂ C3 as a non-totally geodesic Legendrian minimal submanifold

(see Theorem 2.1 and Corollary 2.1). Therefore, we obtain case (2).
The converse can be verified by direct computation. �
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6. Proper δ(2,2)-ideal Lagrangian submanifolds in C P 5(4)

Now, we classify proper δ(2,2)-ideal Lagrangian submanifolds in C P 5.

Theorem 6.1. Let L : M5 → C P 5(4) be a Lagrangian immersion. Then M5 is a proper δ(2,2)-ideal Lagrangian submanifold if and only
if L is locally congruent to π ◦ L̃, where π : S11(1) → C P 5(4) is the Hopf fibration, L̃ : M5 → S11(1) ⊂ C6 is given by

L̃(t, p,q) = (cos t)φ1(p) + (sin t)φ2(q), t ∈ R, (6.1)

and φi : M2
i → S5(1) ⊂ C3 (i = 1,2) are non-totally geodesic Legendrian minimal immersions into the Sasakian S5(1).

Proof. Let L : M5 → C P 5(4) be a proper δ(2,2)-ideal Lagrangian immersion. Then we may assume the metric tensor of M5

is given by (4.24) (cf. Section 4). From Lemma 4.3 and Gauss’ equation we find〈
R(∂x, ∂t)∂t, ∂x

〉 = ρ2
1 .

On the other hand, by applying Lemma 4.10 we also find〈
R(∂x, ∂t)∂t, ∂x

〉 = −ρ1ρ
′′
1 .

Hence ρ ′′
1 + ρ1 = 0, which implies that ρ1 = r cos(t + t0) for some real numbers t0 and r > 0. So we obtain ρ1 = cos t after

applying a suitable translation in t and a rescaling of E1 if necessary. Similarly, we have ρ2 = cos(t + t0). Now, it follows
from (4.28), Lemma 4.11, and the equation of Gauss that〈

R(∂x, ∂z)∂z, ∂x
〉 = cos2 t cos2(t + t0)E2

1 E2
2. (6.2)

On the other hand, it follows from Lemma 4.10 and the definition of R that〈
R(∂x, ∂z)∂z, ∂x

〉 = − sin t cos t sin(t + t0) cos(t + t0)E2
1 E2

2. (6.3)

By combining (6.2) and (6.3) we find cos t0 = 0. Thus we may choose t0 = −π
2 which gives cos(t + t0) = sin t . Consequently,

(4.24) becomes

g = dt2 + (
cos2 t

)
E2

1(x, y)
(
dx2 + dy2) + (

sin2 t
)

E2
2(z, w)

(
dz2 + dw2). (6.4)

Next, by applying Lemmas 4.10, 4.11, (6.4) and Gauss’ formula, we obtain

L̃xx =
{
(ln E1)x + i

E2
1

}
L̃x − (ln E1)y L̃ y + (cos t)E2

1(sin t L̃t − cos t L̃), (6.5)

L̃xy = (ln E1)y L̃x +
{
(ln E1)x − i

E2
1

}
L̃ y, (6.6)

L̃ yy = −
{
(ln E1)x + i

E2
1

}
L̃x + (ln E1)y L̃ y + (cos t)E2

1(sin t L̃t − cos t L̃), (6.7)

L̃zz =
{
(ln E2)z + i

E2
2

}
L̃z − (ln E2)w L̃w − (sin t)E2

2(cos L̃t + sin t L̃), (6.8)

L̃zw = (ln E2)w L̃z +
{
(ln E2)z − i

E2
2

}
L̃w , (6.9)

L̃w w = −
{
(ln E2)z + i

E2
2

}
L̃z + (ln E2)w L̃w − (sin t)E2

2(cos L̃t + sin t L̃), (6.10)

L̃xz = L̃xw = L̃ yz = L̃ yw = 0, (6.11)

L̃xt = − tan t L̃x, L̃ yt = − tan t L̃ y, (6.12)

L̃zt = cot t L̃z, L̃wt = cot t L̃w , (6.13)

L̃tt = −L̃. (6.14)

The compatibility conditions of system (6.5)–(6.14) are given by


1(ln E1) = 2 − E6
1

E4
, 
2(ln E2) = 2 − E6

2

E4
. (6.15)
1 2
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After solving (6.11)–(6.14), we get

L̃ = (cos t)φ1(x, y) + (sin t)φ2(z, w) (6.16)

for some C6-valued functions φ1, φ2. Substituting (6.16) into (6.5)–(6.10) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ1)xx =
{
(ln E1)x + i

E2
1

}
(φ1)x − (ln E1)y(φ1)y − E2

1φ1,

(φ1)xy = (ln E1)y(φ1)x +
{
(ln E1)x − i

E2
1

}
(φ1)y,

(φ1)yy = −
{
(ln E1)x + i

E2
1

}
(φ1)x + (ln E1)y(φ1)y − E2

1φ1,

(6.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ2)zz =
{
(ln E2)z + i

E2
2

}
(φ2)z − (ln E2)w(φ2)w − E2

2φ2,

(φ1)zw = (ln E2)w(φ2)z +
{
(ln E2)z − i

E2
2

}
(φ2)w ,

(φ2)w w = −
{
(ln E2)z + i

E2
2

}
(φ2)z + (ln E2)w(φ2)w − E2

2φ2.

(6.18)

It follows from system (6.17) and the first equation in (6.15) that φ1 : M2
1 → C3 gives rises to a Legendrian minimal

surface in the Sasakian S5(1) ⊂ C3. Similarly, system (6.18) and the second equation in (6.15) imply that φ : M2
2 → C3 gives

a Legendrian minimal surface in S5(1) too. Now, because M5 is proper δ(2,2)-ideal, both Legendrian minimal submanifolds
in S5(1) are non-totally geodesic.

The converse can be verified by direct long computation. �
The following provides a simple example of proper δ(2,2)-ideal Lagrangian submanifold in C P 5(4) associated with E1 =

E2 = 1.

Example 6.1. Consider the map L̃ : M5 → C6 defined by

L̃ = 1√
3

(
ei

√
2x cos t,

√
2e

− ix√
2 cos t cos

(√
3√
2

y

)
,
√

2e
− ix√

2 cos t sin

(√
3√
2

y

)
,

ei
√

2z sin t,
√

2e
− iz√

2 sin t cos

(√
3√
2

w

)
,
√

2e
− iz√

2 sin t sin

(√
3√
2

w

))
.

It is direct to verify that L̃(M5) lies in the unit hypersphere S11(1) ⊂ C6 and that the composition π ◦ L̃ : M5 → C P 5(4) is a
proper δ(2,2)-ideal Lagrangian submanifold of C P 5(4).

7. Proper δ(2,2)-ideal Lagrangian submanifolds in C H 5(−4)

Finally, we classify all proper δ(2,2)-ideal Lagrangian submanifolds in C H5.

Theorem 7.1. Let L : M5 → C H5(−4) be a Lagrangian immersion of M5 into C H5(−4). Then M5 is a proper δ(2,2)-ideal Lagrangian
submanifold of C H5(−4) if and only if L is locally congruent to π ◦ L̃, where π : H11

1 (−1) → C H5(−4) is the Hopf fibration and either

(a) L̃ : M5 → H11
1 (−1) ⊂ C6

1 is given by

L̃(t, p,q) = (cosh t)φ(p) + (sinh t)ψ(q), t ∈ R, (7.1)

and φ : M2
1 → H5(−1) ⊂ C3

1 and ψ : M2
2 → S5(1) ⊂ C3 are non-totally geodesic Legendrian minimal immersions into the

Sasakian H5
1(−1) and S5(1), resp., or

(b) L̃ : M5 → H11
1 (−1) ⊂ C6

1 is given by

L̃(t, x, y, z, w) = (
sinh t + et(u(z, y) + v(z, w) − 1

)
,

sinh t + et(u(x, y) + v(z, w)
)
, etψ1(x, y), etψ2(z, w)

)
, (7.2)

ψi : M2
i → C2 (i = 1,2) are non-totally geodesic minimal Lagrangian immersions, u, v are complex-valued functions satisfying

the following PDE systems, respectively:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uxx =
{
(ln E1)x + i

E2
1

}
ux − (ln E1)yu y − E2

1,

uxy = (ln E1)yux +
{
(ln E1)x − i

E2
1

}
u y,

u yy = −
{
(ln E1)x + i

E2
1

}
ux + (ln E1)yu y − E2

1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vzz =
{
(ln E2)z + i

E2
2

}
vz − (ln E2)w v w − E2

2,

vzw = (ln E2)w vz +
{
(ln E2)z − i

E2
z

}
v w ,

v w w = −
{
(ln E2)z + i

E2
2

}
vz + (ln E2)w v w − E2

2,

and the metric tensors of M2
1, M2

2 are given respectively by

g1 = E2
1

(
dx2 + dy2), g2 = E2

2

(
dz2 + dw2)

for some positive functions E1 = E1(x, y) and E2 = E2(z, w).

Proof. Let L : M5 → C H5(−4) be a proper δ(2,2)-ideal Lagrangian immersion. Then we may assume that the metric tensor
of M5 is given by (4.24) according to Section 4. From Lemma 4.3 and Gauss’ equation we find〈

R(∂x, ∂t)∂t, ∂x
〉 = −ρ2

1 .

On the other hand, by applying Lemma 4.10 we also have〈
R(∂x, ∂t)∂t, ∂x

〉 = −ρ1ρ
′′
1 .

Hence ρ ′′
1 = ρ1, which implies that

ρ1 = r cosh t + s sinh t (7.3)

for some real numbers r and s, not both zero.
If s = 0 (resp., r = 0, or r = ±s), then (7.3) reduces ρ1 = r cosh t (resp., ρ1 = s sinh t , or ρ1 = re±t ). If r2 > s2 (resp.,

r2 < s2), then (7.3) reduces to ρ1 = c cosh(t +t0) (resp., ρ1 = c sinh(t +t0)) for some real numbers c �= 0 and t0. Thus without
loss of generality, we may assume that ρ1 is one of the functions: cosh t, sinh t, et , by applying a suitable translation and
or reflection in t and a suitable rescaling of E1 if necessary. Similarly, we may also assume that ρ2 is one of functions:
cosh(t + t1), sinh(t + t1), et+t1 , t1 ∈ R.

Case (i): ρ1 = cosh t and ρ2 = cosh(t + t1). It follows from (4.28), Lemma 4.11 and the equation of Gauss that〈
R(∂x, ∂z)∂z, ∂x

〉 = − cosh2 t cosh2(t + t1)E2
1 E2

2. (7.4)

On the other hand, it follows from Lemma 4.10 that〈
R(∂x, ∂z)∂z, ∂x

〉 = − sinh t cosh t sinh(t + t1) cosh(t + t1)E2
1 E2

2. (7.5)

By combining (7.4) and (7.5) we obtain cosh t1 = 0 which is impossible.
Case (ii): ρ1 = cosh t and ρ2 = sinh(t + t1). By considering the two different expressions of 〈R(∂x, ∂z)∂z, ∂x〉 via Lem-

mas 4.10 and 4.11 in the same way as in case (i), we get sinh t1 = 0. Therefore, t1 = 0 and (4.24) reduces to

g = dt2 + (
cosh2 t

)
E2

1(x, y)
(
dx2 + dy2) + (

sinh2 t
)

E2
2(z, w)

(
dz2 + dw2). (7.6)

Therefore, after applying Lemmas 4.10 and 4.11, (6.2) and Gauss’ formula, we have

L̃xx =
{
(ln E1)x + i

E2
1

}
L̃x − (ln E1)y L̃ y + (cosh t)E2

1(cosh t L̃ − sinh t L̃t), (7.7)

L̃xy = (ln E1)y L̃x +
{
(ln E1)x − i

E2
1

}
L̃ y, (7.8)

L̃ yy = −
{
(ln E1)x + i

E2

}
L̃x + (ln E1)y L̃ y + (cosh t)E2

1(cosh t L̃ − sinh t L̃t), (7.9)

1
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L̃zz =
{
(ln E2)z + i

E2
2

}
L̃z − (ln E2)w L̃w + (sinh t)E2

2(sinh t L̃ − cosh t L̃t), (7.10)

L̃zw = (ln E2)w L̃z +
{
(ln E2)z − i

E2
2

}
L̃w , (7.11)

L̃w w = −
{
(ln E2)z + i

E2
2

}
L̃z + (ln E2)w L̃w + (sinh t)E2

2(sinh t L̃ − cosh t L̃t), (7.12)

L̃xz = L̃xw = L̃ yz = L̃ yw = 0, (7.13)

L̃xt = tanh t L̃x, L̃ yt = tanh t L̃ y, (7.14)

L̃zt = coth t L̃z, L̃wt = coth t L̃w , (7.15)

L̃tt = L̃. (7.16)

The compatibility conditions of system (7.7)–(7.16) are given by


1(ln E1) = 2 + E6
1

E4
1

, 
2(ln E2) = 2 − E6
2

E4
2

. (7.17)

After solving (7.13)–(7.16) we obtain

L̃ = (cosh t)φ(x, y) + (sinh t)ψ(z, w) (7.18)

for some vector-valued functions φ,ψ . Substituting (7.18) into (7.7)–(7.12) gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φxx =
{
(ln E1)x + i

E2
1

}
φx − (ln E1)yφy + E2

1φ,

φxy = (ln E1)yφx +
{
(ln E1)x − i

E2
1

}
φy,

φyy = −
{
(ln E1)x + i

E2
1

}
φx + (ln E1)yφy + E2

1φ,

(7.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψzz =
{
(ln E2)z + i

E2
2

}
ψz − (ln E2)wψw − E2

2ψ,

ψzw = (ln E2)wψz +
{
(ln E2)z − i

E2
2

}
ψw ,

rψw w = −
{
(ln E2)z + i

E2
2

}
ψz + (ln E2)wψw − E2

2ψ.

(7.20)

It follows from (7.19) and the first equation in (7.17) that φ gives rises to a Legendrian minimal surface in H5
1(−1) ⊂ C3

1.
Similarly, (7.20) and the second equation in (7.17) imply that ψ gives rises to a Legendrian minimal surface in S5(1) ⊂ C3.
Now, because M5 is a proper δ(2,2)-ideal Lagrangian submanifolds in C P 5(4), both Legendrian submanifolds are non-totally
geodesic. Consequently, we obtain case (a) of the theorem.

Case (iii): ρ1 = cosh t and ρ2 = et+t1 . It follows from (4.28), Lemmas 4.10, 4.11, and the equation of Gauss that

〈
R(∂x, ∂z)∂z, ∂x

〉 = −(
cosh2 t

)
e2t+2t1 E2

1 E2
2, (7.21)〈

R(∂x, ∂z)∂z, ∂x
〉 = −(sinh t cosh t)e2t+2t1 E2

1 E2
2, (7.22)

which is impossible.
Case (iv): ρ1 = sinh t and ρ2 = sinh(t + t1). Using the same arguments as in case (i), we find cosh t1 = 0, which is

impossible.
Case (v): ρ1 = sinh t and ρ2 = et+t1 . By applying the same arguments as in case (iii), we get sinh t = cosh t , which is also

impossible.
Case (vi): ρ1 = sinh t and ρ2 = cosh(t + t1). As case (ii), this also gives case (a) of the theorem.
Case (vii): ρ1 = et and ρ2 = cosh(t + t1). Using the same arguments as in case (iii), we conclude that this case is

impossible.
Case (viii): ρ1 = et and ρ2 = sinh(t + t1). This is impossible by applying the same arguments as in case (v).
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Case (ix): ρ1 = et and ρ2 = et+t1 . Since ρ2 = et1 et , without loss of generality we may assume that the metric tensor of
M5 is given by

g = dt2 + e2t E2
1(x, y)

(
dx2 + dy2) + e2t E2

2(z, w)
(
dz2 + dw2). (7.23)

So, after applying Lemmas 4.10, 4.11, (6.2) and Gauss’ formula, we obtain

L̃xx =
{
(ln E1)x + i

E2
1

}
L̃x − (ln E1)y L̃ y + e2t E2

1(L̃ − L̃t), (7.24)

L̃xy = (ln E1)y L̃x +
{
(ln E1)x − i

E2
1

}
L̃ y, (7.25)

L̃ yy = −
{
(ln E1)x + i

E2
1

}
L̃x + (ln E1)y L̃ y + e2t E2

1(L̃ − L̃t), (7.26)

L̃zz =
{
(ln E2)z + i

E2
2

}
L̃z − (ln E2)w L̃w + e2t E2

2(L̃ − L̃t), (7.27)

L̃zw = (ln E2)w L̃z +
{
(ln E2)z − i

E2
2

}
L̃w , (7.28)

L̃w w = −
{
(ln E2)z + i

E2
2

}
L̃z + (ln E2)w L̃w + e2t E2

2(L̃ − L̃t), (7.29)

L̃xz = L̃xw = L̃ yz = L̃ yw = 0, (7.30)

L̃xt = L̃x, L̃ yt = L̃ y, L̃zt = L̃z, L̃wt = L̃w , (7.31)

L̃tt = L̃. (7.32)

The compatibility conditions of system (7.24)–(7.32) are given by


1(ln E1) = 2

E4
1

, 
2(ln E2) = 2

E4
2

. (7.33)

After solving (7.30)–(7.32) we get

L̃ = et(φ̃(x, y) + ψ̃(z, w)
) + c0 sinh t (7.34)

for some vector-valued functions φ̃, ψ̃ . Since L̃ maps M5 into H11
1 (−1) ⊂ C6

1 as a Legendrian minimal submanifold, we find
from (7.34) that

−1 = e2t〈φ̃ + ψ̃, φ̃ + ψ̃〉 + (
e2t − 1

)〈c0, φ̃ + ψ̃〉 + 〈c0, c0〉 sinh2 t. (7.35)

Thus we have

〈c0, c0〉 = 0, 〈c0, φ̃ + ψ̃〉 = 1, 〈φ̃ + ψ̃, φ̃ + ψ̃〉 = −1. (7.36)

It follows from the first equation in (7.36) that either c0 = 0 or c0 is a light-vector.
If c0 = 0, it follows from (7.34) and (7.36) that

−1 = e2t〈φ̃ + ψ̃, φ̃ + ψ̃〉 = −e2t,

which is impossible. Thus c0 must be a light-like vector. Therefore we may put

c0 = (1,1,0,0,0,0) ∈ C6
1. (7.37)

Since 〈c0, φ + ψ〉 = 1 from (7.36), in views of (7.34) we may also put

L̃ = (
sinh t + et( f − 1), sinh t + et f , et(ψ1(x, y) + ψ2(z, w)

))
(7.38)

for some complex-valued functions f with ft = 0 and some vector-valued functions ψ1,ψ2. It follows from (7.23) and (7.38)
that 〈

(ψ1)x, (ψ2)z
〉 = 〈

(ψ1)x, (ψ2)w
〉 = 〈

(ψ1)y, (ψ2)z
〉 = 〈

(ψ1)y, (ψ2)w
〉 = 0.

Thus, for simplicity we may put
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L̃ = (
sinh t + et( f − 1), sinh t + et f , etψ1(x, y), etψ2(z, w)

)
. (7.39)

From (7.39) we get

L̃ − L̃t = (−et,−et ,0,0,0,0
)
. (7.40)

By substituting (7.39) into (7.24)–(7.29), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ψ1)xx =
{
(ln E1)x + i

E2
1

}
(ψ1)x − (ln E1)y(ψ1)y,

(ψ1)xy = (ln E1)y(ψ1)x +
{
(ln E1)x − i

E2
1

}
(ψ1)y,

(ψ1)yy = −
{
(ln E1)x + i

E2
1

}
(ψ1)x + (ln E1)y(ψ1)y,

(7.41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ψ2)zz =
{
(ln E2)z + i

E2
2

}
(ψ2)z − (ln E2)w(ψ2)w ,

(ψ2)zw = (ln E2)w(ψ2)z +
{
(ln E2)z − i

E2
2

}
(ψ2)w ,

(ψ2)w w = −
{
(ln E2)z + i

E2
2

}
(ψ2)z + (ln E2)w(ψ2)w .

(7.42)

It follows from (7.39), (7.41) and (7.42) that ψi : M2
1 → C2 (i = 1,2) are Lagrangian minimal. Since L is proper δ(2,2)-ideal,

both φ and ψ are non-totally geodesic.
In order to determine the function f in (7.38), we only need to consider the second components from (7.24)–(7.29). First,

we know from (7.30) and (7.38) that f = u(x, y) + v(z, w) for some complex-valued functions u, v . Thus (7.39) becomes

L̃ = (
sinh t + et(u + v − 1), sinh t + et(u + v), etφ(x, y), etψ(z, w)

)
. (7.43)

Now, by substituting (7.43) into (7.24)–(7.29) and using (7.40), we find from the second components of (7.24)–(7.29) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uxx =
{
(ln E1)x + i

E2
1

}
ux − (ln E1)yu y − E2

1,

uxy = (ln E1)yux +
{
(ln E1)x − i

E2
1

}
u y,

u yy = −
{
(ln E1)x + i

E2
1

}
ux + (ln E1)yu y − E2

1,

(7.44)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

vzz =
{
(ln E2)z + i

E2
2

}
vz − (ln E2)w v w − E2

2,

vzw = (ln E2)w vz +
{
(ln E2)z − i

E2
z

}
v w ,

v w w = −
{
(ln E2)z + i

E2
2

}
vz + (ln E2)w v w − E2

2.

(7.45)

It is direct to verify that the compatibility condition of system (7.44) (resp., system (7.45)) is exactly the compatibility
condition of (7.41) (resp., (7.42)). Hence, for any two given Lagrangian minimal surfaces ψ1, ψ2 in C2, there always exist
solutions u and v of (7.44) and (7.45). Consequently, we obtain case (b) of the theorem.

The converse can be verified by direct long computation. �
Finally, we provide a simple example of type (b) proper δ(2,2)-ideal Lagrangian submanifold in C H5(−4).

Example 7.1. Let E = √
2 cosh x. Then E satisfies (2.9) with c = 0. Hence there is a non-totally geodesic Lagrangian minimal

immersion ψ1 into C2 according to Theorem 2.1. In fact, up to congruences, ψ1(x, y) is given by(
2
√

2 cos

(
y

2

)(
cosh

(
x

2

)
− i sinh

(
x

2

))
,2

√
2 sin

(
y

2

)(
cosh

(
x

2

)
− i sinh

(
x

2

)))
.
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Similarly, for E = √
2 cosh z, there exists a non-totally geodesic Lagrangian minimal immersion ψ2 into C2 such that

ψ2(z, w) is given by(
2
√

2 cos

(
w

2

)(
cosh

(
z

2

)
− i sinh

(
z

2

))
,2

√
2 sin

(
w

2

)(
cosh

(
z

2

)
− i sinh

(
z

2

)))
.

Also, it is easy to verify that u = 4ix − cosh x and v = 4iz − cosh z are solutions of systems (7.44) and (7.45), respectively.
Thus if we define L̃ : M5 → H11

1 (−1) ⊂ C6
1 by

L̃(t, z, y, z, w) =
(

sinh t + 4et(ix + iz − cosh x − cosh z) − et,

sinh t + 4et(ix + iz − cosh x − cosh z),2
√

2et cos

(
y

2

)(
cosh

(
x

2

)
− i sinh

(
x

2

))
,

2
√

2et sin

(
y

2

)(
cosh

(
x

2

)
− i sinh

(
x

2

))
,2

√
2et cos

(
w

2

)(
cosh

(
z

2

)
− i sinh

(
z

2

))
,

2
√

2et sin

(
w

2

)(
cosh

(
z

2

)
− i sinh

(
z

2

)))
,

then π ◦ L̃ : M5 → C H5(−4) is a proper δ(2,2)-ideal Lagrangian submanifold.
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Lagrangian submanifolds in complex space forms satisfying
an improved equality involving δ(2, 2)
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Abstract. It was proved in [8], [9] that every Lagrangian submanifold M of a

complex space form M̃5(4c) of constant holomorphic sectional curvature 4c satisfies the

following optimal inequality:

δ(2, 2) ≤ 25

4
H2 + 8c, (A)

where H2 is the squared mean curvature and δ(2, 2) is a δ-invariant on M introduced by

the first author. This optimal inequality improves a special case of an earlier inequality

obtained in [B.-Y. Chen, Japan. J. Math. 26 (2000), 105–127].

The main purpose of this paper is to classify Lagrangian submanifolds of M̃5(4c)

satisfying the equality case of the improved inequality (A).

1. Introduction

Let M̃n be a Kähler n-manifold with the complex structure J , a Kähler

metric g and the Kähler 2-form ω. An isometric immersion ψ : M → M̃n of a

Riemannian n-manifold M into M̃n is called Lagrangian if ψ∗ω = 0.
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Let M̃n(4c) denote a Kähler n-manifold with constant holomorphic sectional

curvature 4c, called a complex space form. A complete simply-connected complex

space form M̃n(4c) is holomorphically isometric to the complex Euclidean n-plane

Cn, the complex projective n-space CPn(4c), or a complex hyperbolic n-space

CHn(4c) according to c = 0, c > 0 or c < 0, respectively.

B.-Y. Chen introduced in 1990s new Riemannian invariants δ(n1, . . . , nk).

For any n-dimensional submanifold M in a real space form Rm(c) of constant

curvature c, he proved the following sharp general inequality (see [5], [7] for de-

tails):

δ(n1, . . . , nk)≤ n2(n+ k−1−
∑
nj)

2(n+ k −
∑
nj)

H2+
1

2

(
n(n− 1)−

k∑
j=1

nj(nj− 1)
)
c. (1.1)

For Lagrangian submanifolds in a complex space form M̃n(4c), we have

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a com-

plex space form M̃n(4c) of constant holomorphic sectional curvature 4c. Then

inequality (1.1) holds for each k-tuple (n1, . . . , nk) ∈ S(n).

The following result from [6] extends a result in [10] on δ(2).

Theorem B. Every Lagrangian submanifold of a complex space form M̃n(4c)

is minimal if it satisfies the equality case of (1.1) identically.

Theorem B was improved recently in [8], [9] to the following inequality.

Theorem C. LetM be an n-dimensional Lagrangian submanifold of M̃n(4c).

Then, for an (n1, . . . , nk) ∈ S(n) with
∑k
i=1 ni < n, we have

δ(n1, . . . , nk) ≤
n2
{(
n−

∑k
i=1 ni + 3k − 1

)
− 6

∑k
i=1(2 + ni)

−1}
2
{(
n−

∑k
i=1 ni + 3k + 2

)
− 6

∑k
i=1(2 + ni)−1

} H2

+
1

2

{
n(n− 1)−

k∑
i=1

ni(ni − 1)
}
c. (1.2)

The equality sign holds at a point p ∈M if and only if there is an orthonormal

basis {e1, . . . , en} at p such that the second fundamental form h satisfies

h(eαi , eβi) =
∑
γi

hγiαiβiJeγi +
3δαiβi
2 + ni

λJeN+1,

ni∑
αi=1

hγiαiαi = 0,

h(eαi , eαj ) = 0, i 6= j; h(eαi , eN+1) =
3λ

2 + ni
Jeαi , h(eαi , eu) = 0,
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h(eN+1, eN+1) = 3λJeN+1, h(eN+1, eu) = λJeu, N = n1 + · · ·+ nk,

h(eu, ev) = λδuvJeN+1, i, j = 1, . . . , k; u, v = N + 2, . . . , n. (1.3)

For simplicity, we call a Lagrangian submanifold of a complex space form

δ(n1, . . . , nk)-ideal (resp., improved δ(n1, . . . , nk)-ideal) if it satisfies the equality

case of (1.1) (resp., the equality case of (1.2)) identically.

For k = 2 and n1 = n2 = 2, Theorem C reduces to the following.

Theorem D. Let M be a Lagrangian submanifold in a complex space form

M̃5(4c) of constant holomorphic sectional curvature 4c. Then we have

δ(2, 2) ≤ 25

4
H2 + 8c. (1.4)

If the equality sign of (1.4) holds identically, then with respect some suitable

orthonormal frame {e1, . . . , e5} the second fundamental form h satisfies

h(e1, e1) = αJe1 + βJe2 + µJe5, h(e1, e2) = βJe1 − αJe2,

h(e2, e2) = −αJe1 − βJe2 + µJe5,

h(e3, e3) = γJe3 + δJe4 + µJe5, h(e3, e4) = δJe3 − γJe4,

h(e4, e4) = −γJe3 − δJe4 + µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆; h(ei, ej) = 0, otherwise, (1.5)

for some functions α, β, γ, δ, µ, where ∆ = {1, 2, 3, 4}.

The classification of δ(2, 2)-ideal Lagrangian submanifolds in complex space

forms M̃5(4c) is done in [13]. In this paper we classify improved δ(2, 2)-ideal

Lagrangian submanifolds in M̃5(4c). The main results of this paper are stated as

Theorem 6.1, Theorem 7.1 and Theorem 8.1.

2. Preliminaries

2.1. Basic formulas. Let M̃n(4c) denote a complete simply-connected Kähler

n-manifold with constant holomorphic sectional curvature 4c. Then M̃n(4c) is

holomorphically isometric to the complex Euclidean n-plane Cn, the complex pro-

jective n-space CPn(4c), or a complex hyperbolic n-space CHn(−4c) according

to c = 0, c > 0 or c < 0.
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Let M be a Lagrangian submanifold of M̃n(4c). We denote the Levi–Civita

connections of M and M̃n(4c) by ∇ and ∇̃, respectively. The formulas of Gauss

and Weingarten are given respectively by (cf. [7])

∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +DXξ, (2.1)

for tangent vector fields X and Y and normal vector fields ξ, where h is the second

fundamental form, A is the shape operator and D is the normal connection.

The second fundamental form and the shape operator are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉.

The mean curvature vector
−→
H of M is defined by

−→
H = 1

n trace h and the squared

mean curvature is given by H2 =
〈−→
H,
−→
H
〉
.

For Lagrangian submanifolds, we have (cf. [7], [12])

DXJY = J∇XY, (2.2)

AJXY = −Jh(X,Y ) = AJYX. (2.3)

Formula (2.3) implies that 〈h(X,Y ), JZ〉 is totally symmetric.

The equations of Gauss and Codazzi are given respectively by

〈R(X,Y )Z,W 〉 = 〈Ah(Y,Z)X,W 〉 − 〈Ah(X,Z)Y,W 〉
+ c(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉), (2.4)

(∇Xh)(Y,Z) = (∇Y h)(X,Z), (2.5)

where R is the curvature tensor of M and ∇h is defined by

(∇Xh)(Y,Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.6)

For an orthonormal basis {e1, . . . , en} of TpM , we put

hijk = 〈h(ej , ek), Jei〉, i, j, k = 1, . . . , n.

It follows from (2.3) that hijk = hjik = hkij .
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2.2. δ-invariants. Let M be a Riemannian n-manifold. Denote by K(π) the

sectional curvature of a plane section π ⊂ TpM , p ∈ M . For any orthonormal

basis e1, . . . , en of TpM , the scalar curvature τ at p is τ(p) =
∑
i<j K(ei ∧ ej).

Let L be a r-subspace of TpM with r ≥ 2 and {e1, . . . , er} an orthonormal

basis of L. The scalar curvature τ(L) of L is defined by

τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (2.7)

For given integers n ≥ 3, k ≥ 1, we denote by S(n, k) the finite set consisting

of k-tuples (n1, . . . , nk) of integers satisfying 2 ≤ n1, . . . , nk < n and
∑k
j=1 i ≤ n.

Put S(n) = ∪k≥1S(n, k). For each k-tuple (n1, . . . , nk) ∈ S(n), the first

author introduced in 1990s the Riemannian invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)}, p ∈M, (2.8)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that

dimLj = nj , j = 1, . . . , k (cf. [7] for details).

2.3. Horizontal lift of Lagrangian submanifolds. The following link be-

tween Legendrian submanifolds and Lagrangian submanifolds is due to [16] (see

also [7, pp. 247–248]).

Case (i): CPn(4). Consider Hopf’s fibration π : S2n+1 → CPn(4). For a given

point u ∈ S2n+1(1), the horizontal space at u is the orthogonal complement of

ıu, ı =
√
−1, with respect to the metric on S2n+1 induced from the metric on

Cn+1. Let ι : N → CPn(4) be a Lagrangian isometric immersion. Then there is

a covering map τ : N̂ → N and a horizontal immersion ι̂ : N̂ → S2n+1 such that

ι ◦ τ = π ◦ ι̂. Thus each Lagrangian immersion can be lifted locally (or globally

if N is simply-connected) to a Legendrian immersion of the same Riemannian

manifold. In particular, a minimal Lagrangian submanifold of CPn(4) is lifted to

a minimal Legendrian submanifold of the Sasakian S2n+1(1).

Conversely, suppose that f : N̂ → S2n+1 is a Legendrian isometric immer-

sion. Then ι = π ◦ f : N → CPn(4) is again a Lagrangian isometric immersion.

Under this correspondence the second fundamental forms hf and hι of f and ι

satisfy π∗h
f = hι. Moreover, hf is horizontal with respect to π.

Case (ii): CHn(−4). We consider the complex number space Cn+1
1 equipped

with the pseudo-Euclidean metric: g0 = −dz1dz̄1 +
∑n+1
j=2 dzjdz̄j .

Consider H2n+1
1 (−1) = {z ∈ C2n+1

1 : 〈z, z〉 = −1} with the canonical

Sasakian structure, where 〈 , 〉 is the induced inner product.



198 Bang-Yen Chen, Alicia Prieto-Mart́ın and Xianfeng Wang

Put T ′z = {u ∈ Cn+1 : 〈u, z〉 = 0}, H1
1 = {λ ∈ C : λλ̄ = 1}. Then there is an

H1
1 -action on H2n+1

1 (−1), z 7→ λz and at each point z ∈ H2n+1
1 (−1), the vector

ξ = −ız is tangent to the flow of the action. Since the metric g0 is Hermitian,

we have 〈ξ, ξ〉 = −1. The quotient space H2n+1
1 (−1)/ ∼, under the identification

induced from the action, is the complex hyperbolic space CHn(−4) with constant

holomorphic sectional curvature −4 whose complex structure J is induced from

the complex structure J on Cn+1
1 via Hopf’s fibration π : H2n+1

1 (−1)→ CHn(4c).

Just like case (i), suppose that ι : N → CHn(−4) is a Lagrangian immersion,

then there is an isometric covering map τ : N̂ → N and a Legendrian immersion

f : N̂ → H2n+1
1 (−1) such that ι ◦ τ = π ◦ f . Thus every Lagrangian immer-

sion into CHn(−4) an be lifted locally (or globally if N is simply-connected)

to a Legendrian immersion into H2n+1
1 (−1). In particular, Lagrangian mini-

mal submanifolds of CHn(−4) are lifted to Legendrian minimal submanifolds of

H2n+1
1 (−1). Conversely, if f : N̂ → H2n+1

1 (−1) is a Legendrian immersion, then

ι = π ◦f : N → CHn(−4) is a Lagrangian immersion. Under this correspondence

the second fundamental forms hf and hι are related by π∗h
f = hι. Also, hf is

horizontal with respect to π.

Let h be the second fundamental form of M in S2n+1(1) (or in H2n+1
1 (−1)).

Since S2n+1(1) and H2n+1
1 (−1) are totally umbilical with one as its mean curva-

ture in Cn+1 and in Cn+1
1 , respectively, we have

∇̂XY = ∇XY + h(X,Y )− εL, (2.9)

where ε = 1 if the ambient space is Cn+1; and ε = −1 if it is Cn+1
1 .

3. H-umbilical Lagrangian submanifolds and complex extensors

3.1. H-umbilical Lagrangian submanifolds.

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kähler

n-manifold is called H-umbilical if its second fundamental form satisfies

h(ej , ej) = µJen, h(ej , en) = µJej , j = 1, . . . , n− 1,

h(en, en) = ϕJen, h(ej , ek) = 0, 1 ≤ j 6= k ≤ n− 1, (3.1)

for some functions µ, ϕ with respect to an orthonormal frame {e1, . . . , en}. If the

ratio of ϕ : µ is a constant r, the H-umbilical submanifold is said to be of ratio r.
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IfG : Nn−1 → En is a hypersurface of a Euclidean n-space En and γ : I → C∗

is a unit speed curve in C∗ = C − {0}, then we may extend G : Nn−1 → En to

an immersion I × Nn−1 → Cn by γ ⊗ G : I × Nn−1 → C ⊗ En = Cn, where

(γ ⊗G)(s, p) = F (s)⊗G(p) for s ∈ I, p ∈ Nn−1. This extension of G via tensor

product ⊗ is called the complex extensor of G via the generating curve γ.

H-umbilical Lagrangian submanifolds in complex space forms were classified

in a series of papers by the first author (cf. [2], [3], [4]). In particular, the following

two results were proved in [2].

Theorem E. Let ι : Sn−1 ⊂ En be the unit hypersphere in En centered at

the origin. Then every complex extensor of ι via a unit speed curve γ : I → C∗

is an H-umbilical Lagrangian submanifold of Cn unless γ is contained in a line

through the origin (which gives a totally geodesic Lagrangian submanifold).

Theorem F. Let M be an H-umbilical Lagrangian submanifold of Cn with

n ≥ 3. Then M is either a flat space or congruent to an open part of a complex

extensor of ι : Sn−1 ⊂ En via a curve γ : I → C∗.

3.2. Legendre curves. A unit speed curve z : I → S3(1) ⊂ C2 (resp., z : I →
H3

1 (−1) ⊂ C2
1) is called Legendre if 〈z′, iz〉 = 0. It was proved in [3] that a unit

speed curve z in S3(1) (resp., in H3
1 (−1)) is Legendre if and only if it satisfies

z′′ = iλz′ − z (resp., z′′ = iλz′ + z) (3.2)

for a real-valued function λ. It is known in [3] that λ is the curvature function of

z in S3(1) (resp., in H3
1 (−1)) (see also [1, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio. We provide a general

method to construct H-umbilical Lagrangian submanifolds with any given ratio

in CPn(4) via curves in S2
(
1
2

)
(resp., in CHn(−4) via curves in H2(− 1

2 )).

Proposition 3.2. For any real number r there exist H-umbilical Lagrangian

submanifolds of ratio r in CPn(4) and in CHn(−4).

Proof. If r = 2 this was done in [3, Theorems 5.1 and 6.1]. If r 6= 2,

H-umbilical Lagrangian submanifolds of ratio r can be constructed as follows:

Case (a): CPn(4). Let S2
(
1
2

)
=
{
x ∈ E3; 〈x,x〉 = 1

4

}
. The Hopf fibration

π from S3(1) onto S2
(
1
2

)
≡ CP 1(4) is given by (cf. [1])

π(z1, z2) =

(
z1z̄2,

1

2
(|z1|2 − |z2|2)

)
, (z1, z2) ∈ S3(1) ⊂ C2. (3.3)
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For a Legendre curve z in S3(1), the projection γz = π ◦ z is a curve in S2
(
1
2

)
.

Conversely, each curve γ in S2
(
1
2

)
gives rise to a horizontal lift γ̃ in S3(1) via π

which is unique up to a factor eiθ, θ ∈ R. Notice that each horizontal lift of γ is

a Legendre curve in S3(1). Moreover, since the Hopf fibration is a Riemannian

submersion, each unit speed Legendre curve z in S3(1) is projected to a unit speed

curve γz in S2
(
1
2

)
with the same curvature.

It was known in [3, Lemma 7.2] that, for a given H-umbilical Lagrangian

submanifold of ratio r 6= 2 in M̃n(4c), the function µ in (3.1) satisfies

µµ′′ −
(
r − 3

r − 2

)
µ′2 + (r − 2)µ2((r − 1)µ2 + c) = 0. (3.4)

If µ is a non-trivial solution of (3.4) with c = 1, then there is a unit speed

curve γ in S2
(
1
2

)
whose curvature equals to rµ. Let z be a horizontal lift of γ in

S3(1). Then z is a unit speed Legendre curve satisfying z′′(x) = irµz′(x)− z(x)

(cf. [3, Theorem 4.1] or [1, Lemma 3.1]).

Consider the map ψ : M5 → S11(1) ⊂ C6 defined by

ψ(x, y1, . . . , y5) = (z1(x), z2(x)y1, . . . , . . . , z2(x)y5),

5∑
j=1

y2j = 1. (3.5)

It follows from [3, Theorem 4.1 and Lemma 7.2] that π ◦ ψ is a H-umbilical

Lagrangian submanifold of ratio r in CPn(4) such that

h(ej , ej) = µJe5, h(ej , en) = Jej ,

h(en, en) = rµJen, h(ej , ek) = 0, 1 ≤ j 6= k ≤ n− 1, (3.6)

with respect to suitable orthonormal frame {e1, . . . , e5}.

Case (b): CHn(−4). For a non-trivial solution of (3.4) with c = −1, we

can construct an H-umbilical Lagrangian submanifold of CHn(−4) via the Hopf

fibration π : H3
1 (−1)→ CH1(−4) ≡ H2

(
− 1

2

)
in a similar way as case (a), where

π(z1, z2) =

(
z1z̄2,

1

2
(|z1|2 + |z2|2)

)
, (z1, z2) ∈ H3

1 (−1) ⊂ C2
1, (3.7)

and H2
(
− 1

2

)
=
{

(x1, x2, x3) ∈ E3
1 : x21 − x22 − x23 = 1

4 , x1 ≥
1
2

}
is the model of

the real projective plane of curvature −4. �
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3.4. Classification of H-umbilical submanifolds of ratio 4. The equation

of Gauss and (3.1) imply that H-umbilical Lagrangian submanifolds of ratio r 6= 4

in complex space forms contain no open subsets of constant sectional curvature.

Hence we conclude from [3, Theorems 4.1 and 7.1] and §3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in

CP 5(4) is congruent to an open portion of π ◦ ψ, where π : S11(1) → CP 5(4) is

Hopf’s fibration, ψ : M → S11(1) ⊂ C6 is given by

ψ(t, y1, . . . , y5) = (z1(t), z2(t)y), {y ∈ E5 : 〈y,y〉 = 1}, (3.8)

and z = (z1, z2) : I → S3(1) ⊂ C2 is a unit speed Legendre curve satisfying

z′′ = 4iµz′ − z, and µ is a nonzero solution of 2µµ′′ − µ′2 + 4µ2(3µ2 + 1) = 0.

Let M be an H-umbilical Lagrangian submanifold in CH5(−4) satisfying

(3.1). We may assume that µ is defined on an open interval I 3 0. Since H-

umbilical submanifolds of ratio 4 in CH5(−4) contain no open subsets of constant

curvature, Theorems 4.2 and 9.1 of [3] and results in §3.3 imply the following

classification of H-umbilical submanifolds of ratio 4 in CH5(−4).

Lemma 3.4. An H-umbilical Lagrangian submanifold M of ratio 4 in

CH5(−4) is congruent to an open part of π ◦ ψ, where π : H11
1 (−1)→ CH5(−4)

is Hopf’s fibration and ψ : M → H11
1 (−1) ⊂ C6

1 is either one of

ψ(t, y1, . . . , y4) = (z1(t), z2(t)y), {y ∈ E5 : 〈y,y〉 = 1}, (3.9)

ψ(t, y1, . . . , y4) = (z1(t)y, z2(t)), {y ∈ E5
1 : 〈y,y〉 = −1}, (3.10)

where z is a unit speed Legendre curve in H3
1 (−1) satisfying z′′ = 4iµz′ + z and

µ is a non-trivial solution of 2µµ′′ − µ′2 + 4µ2(3µ2 − 1) = 0; or ψ is

ψ(t, u1, . . . , u4) =
√
µei

∫ t
0
µ(t)dt

(
1 +

1

2

4∑
j=1

u2j − it+
1

2µ
− 1

2µ(0)
,

(
iµ(0)− µ′(0)

2µ(0)

)(
1

2

4∑
j=1

u2j − it+
1

2µ
− 1

2µ(0)

)
, u1, . . . , u4

)
, (3.11)

where z = (z1, z2) : I → H3
1 (−1) ⊂ C2

1 is a unit speed Legendre curve and µ is a

non-trivial solution of µ′2 = 4µ2(1− µ2).
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Example. It is easy to verify that µ = sech 2t is a non-trivial solution of

µ′2 = 4µ2(1− µ2). Using µ = sech 2t, (3.11) reduces to

ψ(t, u1, . . . , u4) =
ei tan

−1(tanh t)

√
cosh 2t

(
1

2
− it+

1

2

4∑
j=1

u2j +
cosh 2t

2
,

t− i

2
+

i

2

4∑
j=1

u2j +
i cosh 2t

2
, u1, . . . , u4

)
. (3.12)

It is direct to verify that (3.12) satisfies 〈ψ,ψ〉 = −1 and the composition π ◦ ψ
gives rise to an H-umbilical Lagrangian submanifold of ratio 4 in CH5(−4).

4. Some lemmas

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

of M̃5(4c). Then with respect to some orthonormal frame {e1, . . . , e5} we have

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,

h(e2, e2) = −aJe1 + µJe5, h(e3, e3) = bJe3 + µJe5,

h(e3, e4) = −bJe4, h(e4, e4) = −bJe3 + µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(e5, e5) = 4µJe5,

h(ei, ej) = 0, otherwise. (4.1)

Proof. Under the hypothesis, we have (1.5) with respect to an orthonormal

frame {e1, . . . , e5}. Thus, after applying [6, Lemma 1] to V = Span{e1, e2} and

V = Span{e3, e4}, we obtain (4.1). �

Let us put

∇Xei =

5∑
j=1

øji (X)ej , i = 1, . . . , 5, X ∈ TM5. (4.2)

Then øji = −øij , i, j = 1, . . . , 5.

If µ = 0, then M is a minimal Lagrangian submanifold according (4.1). Such

submanifolds in complex space forms M̃5(4c) have been classified in [13].

If a = b = 0 and µ 6= 0, then M is an H-umbilical Lagrangian submanifold

with ratio 4. Therefore, from now on we assume that a, µ 6= 0.
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Lemma 4.2. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, b, µ 6= 0. Then we have

∇e1e1 =
e2a

3a
e2 − νe5, ∇e1e2 = −e2a

3a
e1, ∇e2e1 = −e1a

3a
e2,

∇e2e2 =
e1a

3a
e1 − νe5, ∇e3e3 =

e4b

3b
e4 − νe5, ∇e3e4 = −e4b

3b
e3,

∇e4e3 = −e3b
3b
e4, ∇e4e4 =

e3b

3b
e3 − νe5, ∇eie5 = νei, i ∈ ∆,

∇ekej = 0, otherwise, (4.3)

with ν = 1
2e5(lnµ) = −e5(ln a) = −e5(ln b), where ∆ = {1, 2, 3, 4}. Moreover, we

have
ejµ = 0, j ∈ ∆, e1b = e2b = e3a = e4a = 0. (4.4)

Proof. This lemma is obtained from Codazzi’s equations via Lemma 4.1

and (4.2) and long computations. �

Lemma 4.3. Under the hypothesis of Lemma 4.2, we have

(a) T0 is a totally geodesic distribution, i.e. T0 is integrable whose leaves are

totally geodesic submanifolds;

(b) T0 ⊕ T1 and T0 ⊕ T2 are totally geodesic distributions;

(c) T1 and T2 are spherical distributions, i.e. T1, T2 are integrable distributions

whose leaves are totally umbilical submanifolds with parallel mean curvature

vector,

where T0 = Span{e5}, T1 = Span{e1, e2} and T2 = Span{e3, e4}.

Proof. Since the distribution T0 is of rank one, it is integrable. Moreover,

since ∇e5e5 = 0 by Lemma 4.2, the integral curves of e5 are geodesics in M . Thus

we have statement (a). Statement (b) follows easily from (4.3).

To prove statement (c), first we observe that [e1, e2] ∈ T1 and [e3, e4] ∈ T2
follow from (4.3). Thus T1, T2 are integrable. Also, it follows from (4.3) that the

second fundamental form h1 of a leaf L1 of T1 in M is given by

h1(X,Y ) = −νg1(X1, Y1)e5, X1, Y1 ∈ TL1, (4.5)

where g1 is the metric of L1. From (4.3) we obtain ∇eie5 = νei, i = 1, 2. Thus

D1
e1e5 = D1

e2e5 = 0, where D1 is the normal connection of L1 in M . It follows

from Gauss’ equation and Lemma 4.1 that the curvature tensor R satisfies

〈R(e1, e2)e1, ej〉 = 0, j = 3, 4, 5. (4.6)

Thus (4.6) and Lemma 4.2 imply that 0 ≡ R(e1, e2)e1 ≡ (e2ν)e5 (mod T1). Hence

e2ν = 0. Similarly, by considering R(e2, e1)e2, we also have e1α = 0. After
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combining these with D1e5 = 0, we conclude that L1 has parallel mean curvature

vector in M . Hence T1 is a spherical distribution. Similarly, T2 is also a spherical

distribution. Consequently, we obtain statement (c). �

Lemma 4.4. Under the hypothesis of Lemma 4.2, M is locally a warped

product I×ρ1(t)M2
1×ρ2(t)M2

2 , where t is function such that e5 = ∂t (i.e., e5 = ∂
∂t ),

ρ1 and ρ2 are two positive functions in t and M2
1 ,M

2
2 are Riemannian 2-manifolds.

Proof. This lemma follows from Lemma 4.3 and a result of Hiepko [15] (see

also [7, Theorem 4.4, p. 90]). �

Lemma 3.3 and (4.4) imply that µ depends only on t. Thus µ = µ(t).

Lemma 4.5. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, b, µ 6= 0. Then we have c = −ν2−µ2 < 0.

Thus µ satisfies µ′(t)2 = −4µ2(t)(c+ µ2(t)).

Proof. Under the hypothesis, it follows from Gauss’ equation and Lem-

ma 4.1 that 〈R(e1, e3)e3, e1〉 = c + µ2. On the other hand, the definition of

curvature tensor and Lemma 4.2 imply that 〈R(e1, e3)e3, e1〉 = −ν2. Thus c =

−ν2 − µ2 < 0. By combining this with the definition of ν, we obtain the lemma.

�

5. More lemmas

Next, we consider the case a, µ 6= 0 and b = 0.

Lemma 5.1. Let M be a Lagrangian submanifold of M̃5(4c) whose second

fundamental form satisfies (4.1) with a, µ 6= 0 and b = 0. Then we have

∇e1e1 =
e2a

3a
e2 +

e3a

a
e3 +

e4a

3a
e4 − νe5,

∇e1e2 = −e2a
3a

e1 − 3ø21(e3)e3 − 3ø21(e4)e4,

∇e1e3 = −e3a
a
e1 + 3ø21(e3)e2 + ø43(e1)e4,

∇e1e4 = −e4a
a
e1 + 3ø21(e4)e2 − ø43(e1)e3,

∇e2e1 = −e1a
3a

e2 + 3ø21(e3)e3 + ø41(e2)e4,

∇e2e2 =
e1a

3a
e1 +

e3a

a
e3 +

e4a

a
e4 − νe5,
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∇e2e3 = −3ø21(e3)e1 −
e3a

a
e2 + ø43(e2)e4,

∇e2e4 = −ø41(e2)e1 −
e4a

a
e2 − ø43(e2)e3,

∇e3e1 = ø21(e3)e2, ∇e3e2 = −ø21(e3)e1,

∇e3e3 = ø43(e3)e4 − νe5, ∇e3e4 = −ø43(e3)e3,

∇e4e1 = ø21(e4)e2, ∇e4e2 = −ø21(e4)e1,

∇e4e3 = ø43(e4)e4, ∇e4e4 = −ø43(e4)e3 − νe5,

∇e5e3 = ø43(e5)e4, ∇e5e4 = −ø43(e5)e5,

∇eie5 = νei, i ∈ ∆, ∇ekej = 0, otherwise. (5.1)

with ν = 1
2e5(lnµ) = −e5(ln a). Moreover, we have

ejµ = 0, j ∈ ∆ = {1, 2, 3, 4}. (5.2)

Proof. Follows from Codazzi’s equations via Lemma 4.1 and (4.2). �

Lemma 5.2. Under the hypothesis of Lemma 5.1, we have

(i) T0 is a totally geodesic distribution;

(ii) T3 is a spherical distribution,

where T0 = Span{e5} and T3 = Span{e1, e2, e3, e4}.

Proof. Clearly, T0 is integrable. Moreover, since ∇e5e5 = 0 by Lemma 5.1,

integral curves of e5 are geodesics in M5. Thus statement (i) follows. To prove

statement (ii), we observe that the integrability of T3 follows from (5.1). Also,

(5.1) implies that the second fundamental form ĥ of a leaf L of T3 in M5 is given

by ĥ(X,Y ) = −νĝ(X,Y )e5 for X,Y ∈ TL, where ĝ is the metric of L. Since

[ej , e5]µ = 0 by (5.1) and ejµ = 0, for j ∈ ∆, we find eie5µ − e5eiµ = 2e1ν = 0.

Therefore T3 is a spherical distribution. �

Lemma 5.3. Under the hypothesis of Lemma 5.1, M is locally a warped

product I ×ρ(t) N4, where t is function such that e5 = ∂
∂t and ρ is a positive

function in t and N4 is a Riemannian 4-manifold.

Proof. Follows from Lemma 5.2 and Hiepko’s theorem. �

It follows from (5.2) and the definition of ν that µ = µ(t) and ν = ν(t).
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Lemma 5.4. Under the hypothesis of Lemma 5.1, we have

dν

dt
= −3µ2 − ν2 − c, dµ

dt
= 2µν. (5.3)

Proof. From Gauss’ equation and (5.1) we find 〈R(e1, e5)e5, e1〉 = 3µ2 + c.

On the other hand, (5.1) of Lemma 5.1 yields 〈R(e1, e5)e5, e1〉 = −e5ν−ν2. Thus

we find the first equation of (5.3). The second one follows immediately from the

definition of ν given in Lemma 5.1. �

6. Improved δ(2, 2)-ideal Lagrangian submanifolds of C5

Theorem 6.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in C5. Then it is one of the following Lagrangian submanifolds:

(a) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(b) an H-umbilical Lagrangian submanifold of ratio 4;

(c) a Lagrangian submanifold defined by

L(µ, u2, . . . , un) =
e

4
3 i tan−1

√
µ3/(c2−µ3)√

c2µ−1 − µ2 + iµ
φ(u2, . . . , un), (6.1)

where c is a positive real number and φ(u2, . . . , un) is a horizontal lift of a

non-totally geodesic δ(2)-ideal Lagrangian minimal immersion in CP 4(4).

Proof. Assume that M is an improved δ(2, 2)-ideal Lagrangian submanifold

in C5. Then there exists an orthonormal frame {e1, . . . , e5} such that (4.1) holds.

If µ = 0, then M is a minimal δ(2, 2)-ideal Lagrangian submanifold. Thus, we

obtain case (a). If µ 6= 0 and a = b = 0, we obtain case (b).

Now, let us assume a, µ 6= 0. Then Lemma 4.5 implies b = 0. So, by Lem-

mas 5.1 we have (5.1) and ejµ = 0, j ∈ ∆. Further, by Lemma 5.3, M is locally

a warped product I ×ρ(t) N4 with e5 = ∂t. Moreover, 4.1 shows that the second

fundamental form satisfies

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,

h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5,

h(ei, e5) = µJei, i ∈ ∆,
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h(e5, e5) = 4µJe5, h(ei, ej) = 0, otherwise. (6.2)

From Lemma 5.4 we have the following differential system:

dν

dt
= −3µ2 − ν2, dµ

dt
= 2µν. (6.3)

Let ϕ(t) be a function satisfying dϕ
dt = −4µ. Consider the map

φ = eiϕe5. (6.4)

Then 〈φ, φ〉 = 1. It follows from ∇e5e5 = 0, dϕ
dt = −4µ and (6.2) that ∇̃e5φ = 0,

where ∇̃ is the Levi–Civita connection of C5. Thus φ is independent of t.

Let L denote the Lagrangian immersion of M in C5. Then (6.4) yields

e5 = Lt = e−iϕφ(u1, . . . , u4), (6.5)

where u1, . . . , u4 are local coordinates of N4. For each j ∈ ∆, we obtain from

∇eje5 = νej of Lemma 5.1 and the first equation of (6.3) that

φ∗(ej) = ∇̃ejφ = eiϕ∇̃eje5 = eiϕ(ν + iµ)ej . (6.6)

Thus

∇̃ej (φ∗(ei)) = eiϕ(ν + iµ)∇̃ejei. (6.7)

In view of ∇eje5 = νej and (6.2), we may put

∇̃eiej =

( 4∑
k=1

Γkij + ihkij

)
ek − (ν − iµ)δije5, i, j ∈ ∆, (6.8)

for some functions Γkij . Now, it follows from (6.4), (6.6), (6.7), and (6.8) that

∇̃ej (φ∗(ei)) =

n∑
γ=2

(
Γkij + ihkij

)
φ∗(ek)− (µ2 + ν2)δijφ

=

n∑
γ=2

(Γkij + ihkij)φ∗(ek)− 〈φ∗(ei), φ∗(ej)〉φ. (6.9)

Since M is a Lagrangian submanifold in C5, (6.4) and (6.6) show that iφ

is perpendicular to each tangent space of M . Hence φ is a horizontal immersion

in the unit hypersphere S9(1) ⊂ C5. Moreover, it follows from (6.9) that the

second fundamental form of φ is the original second fundamental form of M
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respect to to the second factor N4 of the warped product I ×ρ(t) N4. Hence, φ

is a minimal horizontal immersion in S9(1). Therefore, φ is a horizontal lift of a

minimal Lagrangian immersion in CP 4(4). Now, it follows from (6.2) that φ is a

horizontal lift of a δ(2)-ideal minimal Lagrangian submanifold of CP 4(4).

By direct computation we find

∇̃eα
(
L− e5

ν + iµ

)
= 0, α = 1, . . . , 5. (6.10)

Thus, by (6.4), up to translations the Lagrangian immersion L is

L =
e−iϕ

ν + iµ
φ(u1, . . . , u4), (6.11)

where φ is a horizontal minimal immersion in S9(1) and ν, ϕ, µ satisfy

dν

dt
= −3µ2 − ν2, dϕ

dt
= −4µ,

dµ

dt
= 2µν. (6.12)

From (6.12) we find
dν

dµ
+

ν

2µ
= −3µ

2ν
. (6.13)

After solving (6.13) we get ν = ±
√
c2µ−1 − µ2 for some real number c > 0.

Replacing e5 by −e5 if necessary, we have

ν =
√
c2µ−1 − µ2. (6.14)

It follows from (6.12) an (6.14) that ϕ′(µ) = −2/
√
c2µ−1 − µ2. By solving the

last equation we find ϕ = − 4
3 i tan−1

√
µ3/(c2 − µ3) + c0 for some constant c0.

Therefore, we have the theorem after applying a suitable translation in µ. �

Remark 6.2. Minimal δ(2, 2)-ideal Lagrangian submanifolds in complex space

forms C5, CP 5 and CH5 are classified in [13]. Also δ(2)-ideal minimal Lagrangian

submanifolds in CP 4 and CH4 have been classified recently in [14].

Let γ(t) be a unit speed curve in C∗. We put

γ(t) = r(t)eiθ(t), γ′(t) = eiζ(t). (6.15)

The following result gives H-umbilical submanifolds of C5 with ratio 4.

Proposition 6.3. If M is an H-umbilical Lagrangian submanifold of C5 of

ratio 4, then M is an open part of a complex extensor γ⊗ι of the unit hypersphere

ι : S4(1) ⊂ E5 via a generating curve γ : I → C∗ whose curvature satisfies κ = 4θ′.
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Proof. If M is an H-umbilical Lagrangian submanifold of C5 with ratio 4,

then the second fundamental form satisfies

h(ej , ej) = µJe5, h(ej , e5) = µJej , j ∈ ∆,

h(e5, e5) = 4µJe5, h(ej , ek) = 0, 1 ≤ j 6= k ≤ 4,

for a nonzero function µ. Thus Gauss’ equation yields K(e1∧e5) = 3µ2. Hence M

is non-flat. Therefore, according to Theorem F, M is an open part of a complex

extensor of ι : Sn−1(1) ⊂ En via a generating curve γ : I → C∗. It follows from [2]

that the functions ϕ and µ in (4.1) are related with the two angle functions ζ and θ

by ϕ = ζ ′(t) = κ and µ = θ′(t). Thus whenever γ is a unit speed curve satisfying

κ = 4θ′, the complex extensor γ⊗ ι is an H-umbilical Lagrangian submanifold of

ratio 4. Conversely, every H-umbilical Lagrangian submanifold of ratio 4 in Cn

can be obtained in such way. �

7. Improved δ(2, 2)-ideal Lagrangian submanifolds of CP 5

Theorem 7.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in CP 5(4). Then it is one of the following Lagrangian submanifolds:

(1) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(µ, u2, . . . , u4) =
1

c

(√
µeiθφ, e3iθ

(√
c2 − µ3 − µ− iµ

3
2

))
, (7.1)

where c is a positive real number, φ : N4 → S9(1) ⊂ C5 is a horizontal lift of

a non-totally geodesic δ(2)-ideal Lagrangian minimal immersion in CP 4(4),

and θ(µ) satisfies
dθ

dµ
=

1

2
√
c2µ−1 − µ2 − 1

. (7.2)

Proof. Under the hypothesis there is an orthonormal frame {e1, . . . , e5}
such that (4.1) holds. If µ = 0, then M is a δ(2, 2)-ideal Lagrangian minimal

submanifold. Thus we obtain case (1). If µ 6= 0 and a, b = 0, then M is an

H-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that a, µ 6= 0. Then Lemma 4.5 implies b = 0. So, by Lem-

mas 5.1 we obtain (5.1) and (5.2). Also, in this case M is locally a warped product

I ×ρ(t) N4 with e5 = ∂t according to Lemma 5.3. From Lemma 4.1, we find

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,
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h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(ei, ej) = 0, otherwise. (7.3)

By Lemma 5.4 we have the following ODE system:

dν

dt
= −1− ν2 − 3µ2,

dµ

dt
= 2µν. (7.4)

Let θ(t) be a function on M satisfying

θ′(t) = µ. (7.5)

Let L denote the horizontal lift in S11(1) ⊂ C6 of the Lagrangian immersion

of M in CP 5(4) via Hopf ’s fibration. Consider the maps:

ξ =
e−3iθ(e5 − (ν + iµ)L)√

1 + µ2 + ν2
, φ =

e−iθ(L+ (ν − iµ)e5)√
1 + µ2 + ν2

. (7.6)

Then 〈ξ, ξ〉 = 〈φ, φ〉 = 1. From ∇eje5 = νej , j ∈ ∆, and (7.4), we find ∇̃ejξ = 0.

Moreover, it follows from Lemma 5.1 and (7.3) that ∇̃e5e5 = 4iµe5−L. Thus we

also have ∇̃e5ξ = 0. Hence ξ is a constant unit vector in C6. Similarly, we also

have ∇̃e5φ = 0. So φ is independent of t. Therefore, by combining (7.6) we find

L =
eiθφ− e3iθ(ν − iµ)ξ√

1 + µ2 + ν2
. (7.7)

Since φ is orthogonal to ξ, iξ, after choosing ξ = (0, . . . , 0, 1) ∈ C6 we obtain

L =
1√

1 + µ2 + ν2
(eiθφ, e3iθ(ν − iµ)) (7.8)

It follows from (7.4) and (7.5) that

dν

dµ
= −1 + ν2 + 3µ2

2µν
,

dθ

dµ
=

1

2ν
. (7.9)

Solving the first differential equation in (7.9) gives

ν = ±
√
c2µ−1 − µ2 − 1, c ∈ R+. (7.10)
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By replacing e5 by −e5 if necessary, we have ν =
√
c2µ−1 − µ2 − 1. Consequently,

L =
1

c

(√
µeiθφ, e3iθ

(√
c2 − µ3 − µ− iµ

3
2

))
, (7.11)

It follows from (5.1), (7.3) and the second formula in (7.6) that

∇̂ejφ =
ce−iθ

√
µ
ej , j ∈ ∆. (7.12)

Thus after applying (6.11) and (7.12) we derive that

∇̂eβ ∇̂eαφ =

n∑
γ=2

(Γkij + ihkij)φ∗(ek)− 〈φ∗(ei), φ∗(ej)〉φ, i, j ∈ ∆. (7.13)

Hence φ is a horizontal immersion in S9(1). Moreover, it follows from (7.13)

that the second fundamental form of φ is a scalar multiple of the original second

fundamental form of M restricted to the second factor of the warped product

I ×ρ N . Consequently, φ is a minimal horizontal immersion in S9(1) of a non-

totally geodesic δ(2)-ideal Lagrangian minimal submanifold of CP 4(4).

The converse is easy to verify. �

8. Improved δ(2, 2)-ideal Lagrangian submanifolds of CH5

Theorem 8.1. Let M be an improved δ(2, 2)-ideal Lagrangian submanifold

in CH5(−4). Then M is one of the following Lagrangian submanifolds:

(i) a δ(2, 2)-ideal Lagrangian minimal submanifold;

(ii) an H-umbilical Lagrangian submanifold of ratio 4;

(iii) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(√
µeiθφ(u2, . . . , u4), e−iθ

(√
µ− µ3 − c2 − iµ

3
2

))
, (8.1)

where c is a positive number, φ : N4 → H9
1 (−1) ⊂ C5

1 is a horizontal lift of a

non-totally geodesic δ(2)-ideal minimal Lagrangian immersion in CH4(−4),

and θ(t) satisfies dθ
dµ = 1

2

√
1− µ2 − c2µ−1;

(iv) a Lagrangian submanifold defined by

L(µ, u1, . . . , u4) =
1

c

(
e−iθ

(√
µ− µ3 + c2 − iµ

3
2

)
,
√
µeiθφ(u2, . . . , u4)

)
, (8.2)

where c is a positive number, φ : N4 → S9(1) ⊂ C5 is a horizontal lift of

a non-totally geodesic δ(2)-ideal minimal Lagrangian immersion in CP 4(4),

and θ(t) satisfies dθ
dµ = 1

2

√
1− µ2 + c2µ−1;
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(v) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(
2t+ w + i

(
cosh 2t− 〈ψ,ψ〉 − 1

4

)
,

ψ, 2t+ w + i

(
cosh 2t− 〈ψ,ψ〉+

1

4

))
, (8.3)

where ψ(u1, . . . , u4) is a non-totally geodesic δ(2)-ideal Lagrangian minimal

immersion in C4 and up to a constant w(u1, . . . , u4) is the unique solution

of the PDE system: wuj = 2〈ψuj , iψ〉, j = 1, 2, 3, 4;

(vi) a Lagrangian submanifold defined by

L(t, u1, . . . , u4) =
1

cosh t− i sinh t

(
2t+ w + i

(
cosh 2t− 〈ψ,ψ〉 − 1

4

)
,

ψ1, ψ2, 2t+ w + i

(
cosh 2t− 〈ψ,ψ〉+

1

4

))
, (8.4)

where ψ = (ψ1, ψ2) is the direct product immersion of two non-totally ge-

odesic Lagrangian minimal immersions ψα : N2
α → C2, α = 1, 2, and

up to a constant w(u1, . . . , u4) is the unique solution of the PDE system:

wuj = 2〈ψuj , iψ〉, j = 1, 2, 3, 4.

Proof. Under the hypothesis there exists an orthonormal frame {e1, . . . , e5}
such that (4.1) holds.

Case (1) µ = 0. In this case, we obtain case (i) of the theorem.

Case (2): µ 6= 0 and a, b = 0. In this case M is an H-umbilical Lagrangian

submanifold with ratio 4, which gives case (ii).

Case (3): µ 6= 0 and at least one of a, b is nonzero. Without loss of generality,

we may assume a 6= 0 and µ > 0. We divide this into two cases.

Case (3.a): a, µ 6= 0 and b = 0. By Lemmas 5.1 we obtain (5.1) and (5.2).

Also, M is locally a warped product I ×ρ(t)N4 with e5 = ∂t according to Lemma

5.3. From Lemma 4.1 we find

h(e1, e1) = aJe1 + µJe5, h(e1, e2) = −aJe2,

h(e2, e2) = −aJe1 + µJe5,

h(e3, e3) = h(e4, e4) = µJe5, h(e5, e5) = 4µJe5,

h(ei, e5) = µJei, i ∈ ∆, h(ei, ej) = 0, otherwise. (8.5)
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Let L be a horizontal immersion of M in H11
1 (−1) ⊂ C6

1 of the Lagrangian

immersion of M in CH5(−4) via Hopf ’s fibration and θ(t) a function satisfying

dθ

dt
= µ. (8.6)

From Lemma 5.4 we obtain the following ODE system:

dν

dt
= 1− 3µ2 − ν2, dµ

dt
= 2µν. (8.7)

It follows from (8.6) and (8.7) that

dν

dµ
=

1− 3µ2 − ν2

2µν
,

dθ

dµ
=

1

2ν
. (8.8)

Solving the first differential equation in (8.8) gives ν = ±
√

1− µ2 − kµ−1 for

some real number k. By replacing e5 by −e5 if necessary, we find

ν =
√

1− µ2 − kµ−1, dθ

dµ
=

1

2
√

1− µ2 − kµ−1
. (8.9)

It follows from (8.7) that d
dt (1 − µ

2 − ν2) = −2ν(1 − µ2 − ν2). Since this

equation for y(t) = 1−µ2−ν2 = kµ−1 has a unique solution for each given initial

condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): µ2 + ν2 < 1. In this case, (8.9) implies k > 0. Thus we may

put k = c2, c > 0. Consider the maps:

η =
e−3iθ(e5 − (ν + iµ)L)√

1− µ2 − ν2
, φ =

e−iθ((ν − iµ)e5 − L)√
1− µ2 − ν2

. (8.10)

Then 〈η, η〉 = 1 and 〈φ, φ〉 = −1. From ∇eje5 = νej , j ∈ ∆, and (8.5), we obtain

∇̃ejξ = 0, where ∇̃ is the Levi–Civita connection of C6
1. Lemma 5.1 and (8.5)

give ∇̃e5e5 = 4iµe5 + L. Thus we find ∇̃e5ξ = 0. So η is a constant unit vector.

Also, we find ∇̃e5φ = 0. Hence φ is independent of t. From (8.10) we get

L = −e
iθφ+ e−iθ(ν − iµ)η√

1− µ2 − ν2
. (8.11)

Since φ is orthogonal to η, iη and η is a constant unit space-like vector, we

conclude from (8.9) and (8.11) that L is congruent to (8.1). Next, by applying

the same method of the proof of Theorem 7.1, we conclude that φ is a horizontal
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immersion in H9
1 (−1) whose second fundamental form is a scalar multiple of

the original second fundamental form restricted to the second factor of I ×ρ
N . Consequently, φ is a minimal horizontal immersion in H9

1 (−1) of a non-

totally geodesic δ(2)-ideal Lagrangian minimal submanifold of CH4(−4). This

gives case (iii).

Case (3.a.2): µ2 + ν2 > 1. In this case (8.8) implies k < 0. Thus we may put

k = −c2, c > 0. Now, we consider the maps:

η =
e−3iθ(e5 − (ν + iµ)L)√

µ2 + ν2 − 1
, φ =

e−iθ((ν − iµ)e5 − L)√
µ2 + ν2 − 1

(8.12)

instead. Then 〈φ, φ〉 = −〈η, η〉 = 1. By applying similar arguments as case

(3.a.1), we know that η is a constant time-like vector and φ is independent of t

and orthogonal to η, iη. Moreover, we may prove that φ is a minimal Legendre

immersion in S9(1). Therefore we have case (iv) after choosing η = (1, 0, . . . , 0).

Case (3.a.3): µ2 + ν2 = 1. In this case system (8.7) gives dν
dt = 2(ν2− 1) and

µ = ±
√

1− ν2. Solving these and applying a suitable translations in t, we find

µ = sech 2t, ν = − tanh 2t. (8.13)

It follows from ∇e5e5 = 0, (8.5) and (8.13) that the horizontal lift L of the

Lagrangian immersion of M in CH5(−4) ⊂ C6
1 satisfies

Ltt − 4i(sech 2t)Lt − L = 0. (8.14)

Solving this second order differential equation gives

L =
φ(u1, . . . , u4) +B(u1, . . . , u4)(2t+ i cosh 2t)

cosh t− i sinh t
, (8.15)

where φ(u1, . . . , u4) and B(u1, . . . , u4) are C6
1-valued functions.

On the other hand, it follows from Lemma 5.1, (8.5) and (8.13) that

Ltuj = (i sech 2t− tanh 2t)Luj , j ∈ ∆. (8.16)

Substituting (8.15) into (8.16) shows that B is a constant vector ζ. Thus

L(t, u1, . . . , u4) =
φ(u1, . . . , u4)

cosh t− i sinh t
+

(2t+ i cosh 2t)

cosh t− i sinh t
ζ, (8.17)

Since 〈L,L〉 = −1, (8.17) implies

− cosh 2t = 〈φ, φ〉+ 〈φ, (4t+ 2i cosh 2t)ζ〉+ (4t2 + cosh2(2t))〈ζ, ζ〉. (8.18)
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Since φt = 0, by differentiating (8.18) with respect t we find

− sinh 2t = 2t〈φ, ζ〉+ 2 sinh 2t〈φ, iζ〉+ (4t+ sinh 4t)〈ζ, ζ〉. (8.19)

We find from (8.19) at t = 0 that 〈φ, ζ〉 = 0. Thus (8.19) gives

0 = sinh 2t(1 + 〈φ, iζ〉) + (4t+ sinh 4t)〈ζ, ζ〉. (8.20)

Differentiating (8.20) gives 〈φ, iζ〉 = − 1
2−2〈ζ, ζ〉. Thus (8.17) yields 〈φ, iζ〉 = − 1

2

and 〈ζ, ζ〉 = 0. Now, we find from (8.18) that 〈φ, φ〉 = 0. Consequently we have

〈φ, φ〉 = 〈ζ, ζ〉 = 〈φ, ζ〉 = 0, 〈φ, iζ〉 = −1

2
. (8.21)

Since ζ is a constant light-like vector, we may put

ζ = (1, 0, . . . , 0, 1), φ = (a1 + ib1, . . . , a6 + ib6). (8.22)

It follows from (8.21) and (8.22) that a6 = a1 and b6 = b1 + 1
2 . Therefore

φ =

(
a1 + ib1, a2 + ib2, . . . , a1 + i

(
b1 +

1

2

))
. (8.23)

Now, by using 〈φ, φ〉 = 0 and (8.23), we find ψ = (a2 + ib2, . . . , a5 + ib5) and

b1 = − 1
4 − 〈ψ,ψ〉. Combining these with (8.23) yields

φ =

(
w − i〈ψ,ψ〉 − i

4
, ψ, w − i〈ψ,ψ〉+

i

4

)
(8.24)

with w = a1. It follows from (8.22) and (8.24) that 〈φuj , ζ〉 = 〈φuj , iζ〉 = 0. Thus,

by applying 〈Luj , iL〉 = 0, j ∈ ∆, we find from (8.17) that 〈φuj , iφ〉 = 0.

On the other hand, (8.24) implies that

〈φuj , iφ〉 = −1

2
wuj + 〈ψuj , iψ〉 (8.25)

with wuj = ∂w
∂uj

. Therefore w satisfies the PDE system: wuj = 2〈ψuj , iψ〉.
Now, we derive from (8.17), (8.22) and (8.23) that

L =
1

cosh t− i sinh t

(
2t+ w + i

(
cosh 2t− 〈ψ,ψ〉 − 1

4

)
,

ψ, 2t+ w + i

(
cosh 2t− 〈ψ,ψ〉+

1

4

))
. (8.26)
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It follows from (8.26) that

Luj =
1

cosh t− i sinh t

(
wuj − i〈ψ,ψ〉uj , ψuj , wuj − i〈ψ,ψ〉uj

)
. (8.27)

Thus we find 〈ψuj , ψuk〉 = cosh 2t〈Luj , Luk〉 which implies that ψ is an immersion

in C4. Also, we find from (8.27) and 〈Luj , iLuk〉 = 0 that 〈ψuj , iψuk〉 = 0. Thus

ψ is a Lagrangian immersion. Now, by applying an argument similar to the last

part of the proof of [11, Theorem 6.1], we conclude that

ψujuk =

4∑
i=1

(Γijk + ihijk)φui , j, k ∈ ∆.

Therefore, according to (8.5), ψ is a δ(2)-ideal minimal Lagrangian immersion

in C4. Consequently, we obtain case (v) of the theorem.

Case (3.b): a, b, µ 6= 0. We obtain case (vi) of the theorem by applying the

same argument as case (3.a.3). �
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Abstract We present a characterization theorem for the Maslov form in certain non-invari-
ant slant submanifolds of S-space-forms to be closed and, from it, we deduce a topological
obstruction for these types of non-invariant slant immersions. Moreover, we also give con-
ditions for an anti-invariant submanifolds of an S-manifold, tangent to the structure vector
fields, to have closed and conformal Maslov form.

Keywords S-space-forms · Slant submanifolds · Maslov form

Mathematics Subject Classification (2000) 53C25 · 53C40

1 Introduction

The study of submanifolds which present a homogeneous behavior with respect to the struc-
ture of the ambient manifold has become an interesting research subject. In particular, slant
submanifolds, defined by B.-Y. Chen in complex geometry as a natural generalization of
both holomorphic and totally real submanifolds [10,11], have this homogeneous behavior,
and they can be considered in more general situations (see, for instance, [6,7,12,15]).
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804 J. Barrera et al.

On the other hand, for totally real submanifolds of almost Hermitian manifolds, one can
consider the so-called Maslov form, defined as the dual form of the vector fields J H , being
J the almost Hermitian structure and H the mean curvature vector of the submanifold,
which has been widely studied (for example, [3,8,9,19] can be consulted). Thus, in [19], it
is proved that any Lagrangian submanifold of Cm has closed Maslov form and, moreover,
that the well-known Whitney sphere is the only compact Lagrangian submanifold of Cm

with conformal Maslov form. However, there are not too many papers devoted to study the
Maslov form in anti-invariant submanifolds of metric almost contact manifolds or, more in
general, of metric f -manifolds, considering such form as the dual form of the vector field
φH (resp. f H ), where φ (resp. f ) denotes the almost contact structure (resp. the f -struc-
ture). In fact, the more significative results can be found in [17,18] for integral submanifolds
of Sasakian manifolds (that is, anti-invariant submanifolds normal to the structure vector
field).

In the present paper, we deal with non-invariant slant submanifolds of S-manifold. These
S-manifolds were introduced by D.E. Blair in [1] and, for manifolds endowed with a
general f -structure, they play the role of the Kaehlerian manifolds in complex geometry
and of the Sasakian manifolds in contact geometry. In such submanifolds, we define the
Maslov form as the dual 1-form of the tangent component of the vector field f H , and
our purpose is to find conditions for it to be closed and conformal in the case of being
the ambient S-manifold an S-space-form, that is, of having constant f -sectional curva-
ture.

To this end and after two preliminary sections containing basic notions of Riemannian
submanifolds theory and some definitions and formulas concerning metric f -manifolds and
their submanifolds for later use, in Sect. 4 we consider (m + s)-dimensional (being s the
number of structure vector fields) non-invariant slant submanifolds of an S-space-form of
dimension 2m + s, and we prove that, in the particular cases of S-slant submanifolds and
anti-invariant submanifolds tangent to the structure vector fields, the Maslov form is closed
if and only if the constant f -sectional curvature equals to −3s (this holds for R2m+s with its
usual structure of S-manifold [13]) and, as a consequence, we get a topological obstruction
to S-slant immersions as well as to anti-invariant immersions tangent to the structure vec-
tor fields into an S-space-form of constant f -sectional curvature c = −3s. To obtain these
results, we use special local orthonormal frames for the ambient S-space-form adapted to the
structure of the submanifolds in each case, which cannot be deduced one from the other and
thus, even though the mentioned final results are the same, the computations have to be done
independently for the two cases.

Finally, in Sect. 5, we first prove that the Maslov form of an (m + s)-dimensional anti-
invariant submanifold tangent to the structure vector fields of an S-manifold of dimension
2m + s, if it is closed, is also conformal if and only if the mean curvature vector is parallel.
Then, we introduce the more restrictive notion for the Maslov form to be L-conformal, with L
the distribution orthogonal to the structure vector fields, and present a sufficient condition for
such type of submanifolds to have L-conformal Maslov form when the ambient S-manifold
has constant f -sectional curvature c = −3s, giving examples of submanifolds satisfying this
condition.

2 Preliminaries

Let ( ˜M, g) a Riemannian manifold. A vector field X in ˜M is said to be closed in ˜M if the
1-form ω given by ωX (Y ) = g(X, Y ) (the dual 1-form of X ) is closed. Then, X is closed if
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and only if

g(Y, ˜∇Z X) = g(Z , ˜∇Y X), (2.1)

for any vector fields Y, Z in ˜M , where ˜∇ is denoting the Riemannian connection of ˜M . On the
other hand, X is called conformal in ˜M (and the dual 1-form is also called conformal in ˜M)
if L X g = ρg, being ρ a differentiable function on ˜M . A closed vector field X is conformal
if and only if

˜∇Y X = f Y, (2.2)

for any vector field Y in ˜M , being f a differentiable function on ˜M .
Now, let M be a Riemannian manifold isometrically immersed in a Riemannian manifold

˜M . Let g denote the metric tensor of ˜M as well as the induced metric tensor on M . If ∇
denotes the Riemannian connection of M , the Gauss–Weingarten formulas are given by

˜∇X Y = ∇X Y + σ(X, Y ), ˜∇X V = −AV X + DX V, (2.3)

for any vector fields X, Y (resp., V ) tangent (resp., normal) to M , where D is the normal
connection, σ is the second fundamental form of the immersion, and AV is the Weingarten
endomorphism associated with V . Then, AV and σ are related by:

g(AV X, Y ) = g(σ (X, Y ), V ). (2.4)

The curvature tensor fields of ∇ and ˜∇ are denoted by R and ˜R, respectively. Then, ˜R
satisfies the Codazzi equation

(˜R(X, Y )Z)⊥ = ( ∇Xσ
) (

Y, Z
) − (∇Y σ

) (

X, Z
)

, (2.5)

for any X, Y, Z tangent to M , where
( ∇Xσ

) (

Y, Z
) = DXσ(Y, Z) − σ(∇X Y, Z) − σ(Y,∇X Z) (2.6)

and (˜R(X, Y )Z)⊥ is denoting the normal component of ˜R(X, Y )Z .
The mean curvature vector H is defined by

H = 1

m
trace σ = 1

m

m
∑

i=1

σ(ei , ei ),

where dimM = m and {e1, . . . , em} is a local orthonormal basis of tangent vector fields to M .
This mean curvature vector is said to be parallel if DX H = 0, for any vector field X tangent
to M . The submanifold M is called minimal if H vanishes identically or, equivalently, if
traceAV = 0, for any vector field V normal to M . Moreover, M is said to be totally geodesic
in ˜M if σ ≡ 0.

Next, we assume that m ≥ 2. If dim( ˜M) = m̃, a local orthonormal basis of X ( ˜M)

{e1, . . . , em, em+1, . . . , em̃}
can be chosen such that, restricted to M , the vector fields e1, . . . , em are tangent to M and
so, em+1, . . . , em̃ are normal to M . Let {ω1, . . . , ωm̃} be the field of dual frames. Then, for
any vector field X tangent to ˜M , it can be written that

˜∇X eA =
m̃

∑

B=1

ωB
A(X)eB , (2.7)
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for any A = 1, . . . , m̃. The 1-forms ωB
A , defined by the Eq. (2.7), are called the connection

forms of M in ˜M , and they satisfy ωA
B + ωB

A = 0, for any A, B = 1, . . . , m̃. Moreover, the
structure equations of ˜M are given by

dωA = −
m̃

∑

B=1

ωA
B ∧ ωB , dωA

B = −
m̃

∑

C=1

ωA
C ∧ ωC

B + �A
B , (2.8)

where �A
B are the so-called curvature forms, defined by

�A
B = 1

2

m̃
∑

C,D=1

˜R A
BC DωC ∧ ωD, (2.9)

with 1 ≤ A, B, C, D ≤ m̃.

3 Submanifolds of metric f -manifolds

A (2m + s)-dimensional Riemannian manifold ( ˜M, g) endowed with an f -structure f (that
is, a tensor field f of type (1,1) and rank 2m satisfying f 3 + f = 0 (see [20]) is said to be
a metric f -manifold if, moreover, there exist s global vector fields ξ1, . . . , ξs on ˜M (called
structure vector fields) such that, if η1, . . . , ηs are the dual 1-forms of ξ1, . . . , ξs , then

f ξα = 0; ηα ◦ f = 0; f 2 = −I +
s

∑

α=1

ηα ⊗ ξα; (3.10)

g(X, Y ) = g( f X, f Y ) +
s

∑

α=1

ηα(X)ηα(Y ), (3.11)

for any X, Y tangent to ˜M . From the definition, the metric g satisfies that

g( f X, Y ) = −g(X, f Y ), (3.12)

for any X, Y . Let F be the 2-form on ˜M defined by F(X, Y ) = g(X, f Y ). Since f is of rank
2m, then η1 ∧ · · · ∧ ηs ∧ Fm 
= 0 and, particularly, ˜M is orientable. The f -structure f is
said to be normal if

[ f, f ] + 2
s

∑

α=1

ξα ⊗ dηα = 0,

where [ f, f ] denotes the Nijenhuis tensor of f .
A metric f -manifold is said to be a K -manifold [1] if it is normal and dF = 0. In

a K -manifold ˜M , the structure vector fields are Killing vector fields [1]. Furthermore, a
K -manifold is called an S-manifold if F = dηα , for any α. Note that, if s = 0, a K -manifold
would correspond to a Kaehlerian manifold and, for s = 1, a K -manifold is a quasi-Sasakian
manifold and an S-manifold is a Sasakian manifold. When s ≥ 2, non-trivial examples can
be found in [1,13]. Moreover, the Riemannian connection ˜∇ of an S-manifold satisfies (see
[1]), for any tangent vector fields X, Y and any α = 1, . . . , s:

˜∇X ξα = − f X, (3.13)

(˜∇X f )Y =
s

∑

α=1

(g( f X, f Y )ξα + ηα(Y ) f 2 X). (3.14)
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A plane section π on a metric f -manifold ˜M is said to be an f -section if it is determined
by a unit vector X , normal to the structure vector fields and f X . The sectional curvature of
π is called an f -sectional curvature. An S-manifold is said to be an S-space-form if it has
constant f -sectional curvature c and then, it is denoted by ˜M(c). In such case, the curvature
tensor field R of M(c) satisfies [14]:

R(X, Y, Z , W ) =
s

∑

α,β=1

(g( f X, f W )ηα(Y )ηβ(Z) − g( f X, f Z)ηα(Y )ηβ(W )

+ g( f Y, f Z)ηα(X)ηβ(W ) − g( f Y, f W )ηα(X)ηβ(Z))

+ c + 3s

4
(g( f X, f W )g( f Y, f Z) − g( f X, f Z)g( f Y, f W ))

+ c − s

4
(F(X, W )F(Y, Z) − F(X, Z)F(Y, W ) − 2F(X, Y )F(Z , W )),

(3.15)

for any tangent vector fields X, Y, Z , W .
Next, let M be a isometrically immersed submanifold of a metric f -manifold ˜M . Given a

differentiable function on ˜M , we also denote by F the composition F◦x , where x : M −→ ˜M
is the corresponding immersion. For any vector field X tangent to M , we write

f X = T X + N X, (3.16)

where T X and N X are the tangential and normal components of f X , respectively. The sub-
manifold M is said to be invariant if N is identically zero, that is, if f X is tangent to M ,
for any vector field X tangent to M . On the other hand, M is said to be an anti-invariant
submanifold if T is identically zero, that is, if f X is normal to M , for any X tangent to M .

Similarly, for any vector field V normal to M , we have

f V = tV + nV, (3.17)

where tV (resp., nV ) is the tangential component (resp., the normal component) of f V .
From (3.12), by using (3.16) and (3.17), we get

g(T X, Y ) = −g(X, T Y ) (3.18)

and

g(N X, V ) = −g(X, tV ), (3.19)

for any X, Y tangent to M and V normal to M . Moreover, if ˜M is a S-manifold and the
structure vector fields are tangent to M , from (2.3), (3.13) and (3.16), it is easy to show that

∇X ξα = −T X, σ (X, ξα) = −N X, (3.20)

for any X tangent to M and any α = 1, . . . , s and, in particular, since f ξα = 0, for any α:

σ(ξα, ξβ) = 0, α, β = 1, . . . , s. (3.21)

Also, if we extend formula (3.14), taking into account (2.3), the tangent component gives

ANY X = (∇X T )Y − tσ(X, Y ) −
s

∑

α=1

[g( f X, f Y )ξα + ηα(Y ) f 2 X ], (3.22)

for any X, Y tangent to M , where (∇X T )Y = ∇X T Y − T ∇X Y .
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Concerning the behavior of the second fundamental of a submanifold in a metric f -man-
ifold, we know that the study of totally geodesic submanifolds of S-manifolds reduces to
the study of invariant submanifolds (see [7]). It is necessary, then, to use a variation of this
concept, more related to the structure, namely totally f -geodesic submanifolds, introduced
by Ornea [16]. Thus, a submanifold of an S-manifold, tangent to the structure vector fields, is
said to be a totally f -geodesic submanifold if the distribution L is totally geodesic, that is, if
σ(X, Y ) = 0, for any X, Y ∈ L. Thus, from (3.20), the submanifold M is totally f -geodesic
if and only if

σ(X, Y ) = −
s

∑

α=1

(ηα(X)NY + ηα(Y )N X), (3.23)

for any X, Y tangent to M . It is easy to show that a totally f -geodesic submanifold is minimal.
From now on, we will always suppose that all the structure vector fields are tangent

to the submanifold M . Then, the distribution on M spanned by the structure vector fields is
denoted by M, and its complementary orthogonal distribution is denoted by L. Consequently,
if X ∈ L, then ηα(X) = 0, for any α = 1, . . . , s and if X ∈ M, then f X = 0.

The submanifold M is said to be a slant submanifold if, for any x ∈ M and any X ∈ Tx M ,
linearly independent on ξ1, . . . , ξs , the angle between f X and Tx M is a constant θ ∈ [0, π/2],
called the slant angle of M in ˜M (see [4] for a general survey concerning slant submanifolds
in different geometric structures). Moreover, invariant and anti-invariant submanifolds are
slant submanifolds with slant angle θ = 0 and θ = π/2, respectively. A slant immersion
which is not invariant nor anti-invariant is called a proper slant immersion, and the subman-
ifold is said to be proper slant. If M is a non-anti-invariant θ -slant submanifold (that is, if
θ ∈ [0, π/2)), then it was proved in [12] that

( f , ξ1, . . . , ξs, η1, . . . , ηs, g)

is a metric f -structure on M , where f = (sec θ)T , which implies that, if dim(M) = m + s
then, m is even. Moreover, in a θ -slant submanifold of a metric f -manifold, we have [6]:

g(T X, T Y ) = cos2 θ(g(X, Y ) −
s

∑

α=1

ηα(X)ηα(Y )), (3.24)

g(N X, NY ) = sin2 θ(g(X, Y ) −
s

∑

α=1

ηα(X)ηα(Y )), (3.25)

for any vector fields X, Y tangent to the submanifold.
We say that a proper slant submanifold of an S-manifold is an S-slant submanifold if

(∇X T )Y = cos2 θ

s
∑

α=1

(g( f X, f Y )ξα + ηα(Y ) f 2 X), (3.26)

for any tangent vector fields X, Y to M , where θ is the slant angle. Note that, if X, Y ∈ L,
then (∇X T )Y = (∇Y T )X . Furthermore, it has been proved [6] that every (2 + s)-dimen-
sional proper slant submanifold of an S-manifold is an S-slant submanifold. Observe that
2 + s is the minimum possible dimension for a submanifold of an S-manifold, tangent to the
structure vector fields, to be proper slant.
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4 Closed Maslov form

Let Mm+s be an (m +s)-dimensional slant submanifold, with slant angle θ , of an S-manifold
˜M2m+s of dimension 2m + s. By following the analogy with totally real submanifolds of
Kaehlerian manifolds, we define the Maslov form ωH of M as the dual form of the vector
field t H , that is,

ωH (X) = g(X, t H), (4.27)

for any tangent vector field X to M . In this section, our goal is to give a characterization for
ωH to be closed when the ambient S-manifold is an S-space-form ˜M(c). First, we consider
the case of M being a proper slant submanifold. As we have already pointed out, then m has
to be even and so, we can write m = 2k.

Now, we are going to define an special local frame for ˜M . Let e1 be a unit tangent vector
field of M , orthogonal to the structure vector fields. We put:

e2 = (sec θ)T e1, e1∗ = (csc θ)Ne1, e2∗ = (csc θ)Ne2.

Since k ≥ 1, then, by using an induction procedure, for each l = 1, . . . , k − 1, we can
choose a unit tangent vector field e2l+1 of M such that e2l+1 is normal to

{e1, e2, . . . , e2l−1, e2l , ξ1, . . . , ξs}
and we put:

e2l+2 = (sec θ)T e2l+1, e(2l+1)∗ = (csc θ)Ne2l+1, e(21+2)∗ = (csc θ)Ne2l+2.

Thus, by using (3.24) and (3.25), we have a local orthonormal frame of tangent vector
fields of ˜M ,

{e1, . . . , em, ξ1, . . . , ξs, e1∗, . . . , em∗},
such that e1, . . . , em ∈ L and e1∗, . . . , em∗ are normal to M . Furthermore, a direct computa-
tion gives:

T e2 j−1 = (cos θ)e2 j , T e2 j = −(cos θ)e2 j−1, j = 1, . . . , k; (4.28)

Nei = (sin θ)ei∗, tei∗ = −(sin θ)ei , i = 1, . . . , m; (4.29)

ne(2 j−1)∗ = −(cos θ)e(2 j)∗, ne(2 j)∗ = (cos θ)e(2 j−1)∗, j = 1, . . . , k. (4.30)

We call such an orthonormal frame an adapted slant frame of M in ˜M .
Now, we define a canonical 1-form on M by:


 =
m

∑

i=1

ωi∗
i . (4.31)

We are going to compute d
. By following the same line of reasoning as in [5], we have,

ω
(2 j)∗
2i + ω

(2 j−1)∗
2i−1 = ω

(2i)∗
2 j + ω

(2i−1)∗
2 j−1 , (4.32)

ω
(2 j)∗
(2i)∗ − ω

(2 j−1)∗
(2i−1)∗ = ω

2 j
2i − ω

2 j−1
2i−1 , (4.33)

ω2i−1
2 j − ω

(2 j−1)∗
(2 j)∗ = ω

2 j−1
2i − ω

(2 j−1)∗
(2i)∗ , (4.34)
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for any i, j = 1, . . . , k. On the other hand, (2.9), (3.15), (4.28)–(4.30) and a straightforward
computation, give

�
(2 j)∗
2 j = c − s

4
sin θ cos θ(−ω2 j−1 ∧ ω2 j + ω(2 j−1)∗ ∧ ω(2 j)∗)

−
(

c + 3s

4
+ c − s

4
sin2 θ

)

ω2 j ∧ ω(2 j)∗ + c − s

4
cos2 θω2 j−1 ∧ ω(2 j−1)∗

+ c − s

2

k
∑

p=1

{sin θ cos θ(−ω2p−1 ∧ ω2p + ω(2p−1)∗ ∧ ω(2p)∗)

− sin2 θ(ω2p ∧ ω(2p)∗ + ω2p−1 ∧ ω(2p−1)∗}, (4.35)

and

�
(2 j−1)∗
2 j−1 = c − s

4
sin θ cos θ(−ω2 j−1 ∧ ω2 j + ω(2 j−1)∗ ∧ ω(2 j)∗)

−
(

c + 3s

4
+ c − s

4
sin2 θ

)

ω2 j−1 ∧ ω(2 j−1)∗ + c − s

4
cos2 θω2 j ∧ ω(2 j)∗

+ c − s

2

k
∑

p=1

{sin θ cos θ(−ω2p−1 ∧ ω2p + ω(2p−1)∗ ∧ ω(2p)∗)

− sin2 θ(ω2p ∧ ω(2p)∗ + ω2p−1 ∧ ω(2p−1)∗}, (4.36)

for any j = 1, . . . , k. By using these results, we can prove:

Lemma 1 Let Mm+s be an (m + s)-dimensional (m = 2k) proper slant submanifold of an
S-space-form ˜M2m+s(c) of dimension 2m + s. Then, the 1-form 
 satisfies

d
 = − sin2 θ
(m + 1)c − s(m − 3)

2

k
∑

j=1

(ω2 j−1 ∧ ω(2 j−1)∗ + ω2 j ∧ ω(2 j)∗)

− sin θ cos θ
(m + 1)c − s(m − 3)

2

k
∑

j=1

(ω2 j−1 ∧ ω2 j − ω(2 j−1)∗ ∧ ω(2 j)∗),

(4.37)

where θ is the slant angle of M. Hence, 
 es closed if and only if:

c = s(m − 3)

m + 1
.

Proof By using (2.8) for an adapted slant frame, we get:

d
 = −
m

∑

i, j=1

(ωi∗
j ∧ ω

j
i + ωi∗

j∗ ∧ ω
j∗
i ) −

s
∑

α=1

m
∑

i=1

ωi∗
m+α ∧ ωm+α

i +
m

∑

i=1

�i∗
i , (4.38)

where we are denoting em+α = ξα , α = 1, . . . , s. Now, from (4.32)–(4.34) and following
the same steps as in the proof of Theorem 3.1 of [10], we obtain:

m
∑

i, j=1

(ωi∗
j ∧ ω

j
i + ωi∗

j∗ ∧ ω
j∗
i ) = 0. (4.39)
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Moreover, since from (2.7), (3.12) and (3.13),

ωi∗
m+α(X) = g(˜∇X ξα, ei∗) = −g( f X, ei∗) = g(X, f ei∗)

and

ωm+α
i (X) = g(˜∇X ei , ξα) = −g(ei , ˜∇X ξα) = g( f X, ei ) = −g(X, f ei ),

for any vector field X in ˜M , any i = 1, . . . , m and any α = 1, . . . , s, we have that, from
(4.28)–(4.30):

ω
(2 j−1)∗
m+α = − sin θω2 j−1 − cos θω(2 j)∗; ω

(2 j)∗
m+α = − sin θω2 j + cos θω(2 j−1)∗, (4.40)

ωm+α
2 j−1 = − cos θω2 j − sin θω(2 j−1)∗; ωm+α

2 j = cosθω2 j−1 − sin θω(2 j)∗, (4.41)

for any j = 1, . . . , k and any α = 1, . . . , s. Consequently, taking into account (4.40) and
(4.41), we compute

−
m

∑

i=1

ωi∗
m+α ∧ ωm+α

i = 2 sin θ cos θ

k
∑

j=1

(−ω2 j−1 ∧ ω2 j + ω(2 j−1)∗ ∧ ω(2 j)∗)

+(cos2 θ − sin2 θ)

k
∑

j=1

(−ω2 j−1 ∧ ω(2 j−1)∗ + ω2 j ∧ ω(2 j)∗),

(4.42)

for any α = 1, . . . , s. Finally, from (4.35), (4.36), (4.38), (4.39) and (4.42), we deduce (4.37).
The remaining part of the proof follows directly from (4.37). ��

Observe that the above lemma does not give a closed 1-form on M if the constant f -sec-
tional curvature of the ambient S-space-form is equal to −3s (for instance, R2m+s with the
S-structure given in [13]). However, we can define another 1-form on M :

ω = 
 + m sin θ

s
∑

α=1

ηα. (4.43)

For this form, we can prove:

Lemma 2 Let Mm+s be an (m + s)-dimensional (m = 2k) proper slant submanifold of an
S-space-form ˜M2m+s(c) of dimension 2m + s. Then, the 1-form ω satisfies

dω = − sin θ cos θ

(

(m + 1)(c + 3s)

2

) k
∑

j=1

(ω2 j−1 ∧ ω2 j − ω(2 j−1)∗ ∧ ω(2 j)∗)

− sin2 θ

(

(m + 1)(c + 3s)

2

) k
∑

j=1

(ω2 j−1 ∧ ω(2 j−1)∗ + ω2 j ∧ ω(2 j)∗), (4.44)

where θ denotes the slant angle of M. Hence, ω is closed if and only if c = −3s.

Proof Since from (2.7), (3.12) and (3.13),

ωm+α
i∗ (X) = g(˜∇X ei∗, ξα) = −g(ei∗, ˜∇X ξα) = g( f X, ei∗) = −g(X, f ei∗),

and, from (3.10),

ωα
β(X) = g(˜∇X ξβ, ξa) = −g( f X, ξα) = 0,
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for any vector field X tangent to M , any i = 1, . . . , m and any α, β = 1, . . . , s, we have
that, from (4.28)-(4.30),

ωm+α
(2 j−1)∗ = sin θω2 j−1 + cos θω(2 j)∗; ωm+α

(2 j)∗ = sin θω2 j − cos θω(2 j−1)∗, (4.45)

for any j = 1, . . . , k and any α = 1, . . . , s. Thus, from (2.8) and taking into account (4.45),
we compute

dηα = −
m

∑

i=1

(ωm+α
i ∧ ωi + ωm+α

i∗ ∧ ωi∗)

= −2
k

∑

j=1

(

cos θ(ω2 j−1 ∧ ω2 j − ω(2 j−1)∗ ∧ ω(2 j)∗)

+ sin θ(ω2 j−1 ∧ ω(2 j−1)∗ + ω2 j ∧ ω(2 j)∗)
)

, (4.46)

for any α = 1, . . . , s. Next, since ˜M is an S-manifold, we know that F = dηα , for any α

too. Consequently, by using (4.37), (4.43) and (4.46), we obtain (4.44). The rest of the proof
is immediate. ��

For S-slant submanifolds, the Maslov form ωH and ω are related by the following theorem.

Theorem 4.1 Let Mm+s be an (m +s)-dimensional S-slant submanifold of an S-space-form
˜M2m+s(c) of dimension 2m + s. Then,

ωH = − sin θ

m + s
ω, (4.47)

where θ is the slant angle. Consequently, the Maslov form is closed if and only if c = −3s.

Proof We consider an adapted slant frame {e1, . . . , em, ξ1, . . . , ξs, e1∗, . . . , em∗} of M in ˜M .
Then, from (2.4), (3.19), (3.21) and the definition of H , we have, for any i = 1, . . . , m:

ωH (ei ) = − 1

m + s

m
∑

j=1

g(ANei e j , e j ). (4.48)

But, from (3.22), (3.26) and the symmetry of σ , we get

g(ANei e j , e j ) = g((∇e j T )ei , e j ) − g(tσ(ei , e j ), e j )

= g((∇ei T )e j , e j ) − g(tσ(ei , e j ), e j ) = g(ANe j ei , e j ), (4.49)

for any i, j = 1, . . . , m. Thus, replacing (4.49) into (4.48) and taking into account (2.7) and
(4.29),

ωH (ei ) = − 1

m + s

m
∑

j=1

g(ANe j ei , e j ) = − 1

m + s
sin θ

m
∑

j=1

g(σ (ei , e j ), e j∗)

= − 1

m + s
sin θ

m
∑

j=1

g(˜∇ei e j , e j∗) = − 1

m + s
sin θ

m
∑

j=1

2m+s
∑

A=1

ωA
j (ei )g(eA, e j∗)

= − 1

m + s
sin θ

m
∑

j=1

ω
j∗
j (ei ) = − 1

m + s
sin θ
(ei ), (4.50)
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for any i = 1, . . . , m, where we have denoted e2m+α = ξα , α = 1, . . . , s and used (4.31).
On the hand, by using (2.3), (2.7), (3.20), (4.29) and (4.31), we compute


(e2m+α) =
m

∑

i=1

g(˜∇e2m+α
ei , ei∗) =

m
∑

i=1

g(σ (e2m+α, ei ), ei∗)

= −
m

∑

i=1

g(Nei , ei∗) = −m sin θ,

for any α = 1, . . . , s. Consequently,

m
∑

i=1


(ei )ω
i = 
 + m sin θ

s
∑

α=1

ηa = ω. (4.51)

Finally, since from (3.10) we easily get that ωH (e2m+α) = 0, for any α = 1, . . . , s, (4.50)
and (4.51) give

ωH = − sin θ

m + s

∑

i=1


(ei )ω
i = − sin θ

m + s
ω

and we complete the proof. ��
Now, we are going to consider an (m + s)-dimensional anti-invariant submanifold Mm+s

of an S-space-form ˜M2m+s(c), tangent to the structure vector fields ξ1, . . . , ξs , which is a
particular case of slant immersion. In this situation, t H = f H . Moreover, we cannot use an
adapted slant frame, but, if we take any local orthonormal frame

{e1, . . . , em, ξ1, . . . , ξs}
on M , it is easy to show that

{e1, . . . , em, ξ1, . . . , ξs, e1∗ , . . . , em∗ },
where ei∗ = f ei , for any i = 1, . . . , m, is a local orthonormal frame on ˜M , called an adapted
anti-invariant frame of M in ˜M . Observe that adapted anti-invariant frames are not particular
cases of adapted slant frames. So, it is necessary to make all the computations again, although
we can use the same line of reasoning. So, we do not explicit them as detailed as above. First,
we get that, for an adapted anti-invariant frame,

ω
j∗
i = ωi∗

j , ω
j∗
i∗ = −ω

j
i , (4.52)

for any i, j = 1, . . . , m. Furthermore, from (3.15), the curvature forms are given by

�i∗
i = −c + s

2
ωi ∧ ωi∗ − c − s

2

n
∑

j=1

ω j ∧ ω j∗ , (4.53)

for any i = 1, . . . , n. Therefore, for the 1-form 
, defined as in (4.31), by using (2.8), (4.52)
and (4.53), we have:

Lemma 3 Let Mm+s be an (m + s)-dimensional anti-invariant submanifold of an S-space-
form ˜M2m+s(c) of dimension 2m + s, tangent to the structure vector fields. Then, the 1-form

 satisfies:

d
 = − (m + 1)c − s(m − 1) − 2s

2

m
∑

i=1

ωi ∧ ωi∗ . (4.54)
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814 J. Barrera et al.

Consequently, 
 is closed if and only if:

c = s(m − 3)

m + 1
.

The above lemma implies that the 1-form 
 is not closed if c = −3s. Then, we consider
the 1-form

ω = 
 + m
s

∑

α=1

ηα

and we can prove:

Lemma 4 Let Mm+s be an (m + s)-dimensional anti-invariant submanifold of an S-space-
form ˜M2m+s(c) of dimension 2m + s, tangent to the structure vector fields. Then, the 1-form
ω satisfies:

dω = − (m + 1)(c + 3s)

2

m
∑

i=1

ωi ∧ ωi∗ . (4.55)

Consequently, ω is closed if and only if c = −3s.

The relationship between ω and the Maslov form is given in the following theorem.

Theorem 4.2 Let Mm+s be an (m + s) an anti-invariant submanifold of an S-space-form
˜M2m+s(c) of dimension 2m + s, tangent to the structure vector fields. Then:

ωH = − 1

m + s
ω. (4.56)

Consequently, ωH is closed if and only if c = −3s.

Proof Considering an adapted anti-invariant frame

{e1, . . . , em, ξ1, . . . , ξs, e1∗, . . . , em∗}
of M in ˜M and taking into account the Gauss formula, (2.4) and (3.21), we have

ωH (ei ) = − 1

m + s

m
∑

j=1

g(Aei∗e j , e j ), (4.57)

for any i = 1, . . . , n.. Now, from (3.22), since T = 0 and σ is symmetric:

g(Aei∗e j , e j ) = g(Ae j∗ei , e j ). (4.58)

Then, replacing (4.58) into (4.57) and from (2.3), we get

ωH (ei ) = − 1

m + s

m
∑

j=1

g(˜∇ei e j , e j∗) = − 1

m + s

m
∑

j=1

ω
j∗
j (ei ) = − 1

m + 1

(ei ), (4.59)

for any i = 1, . . . , n. On the other hand, by using (2.7), (3.20) and that M is an anti-invariant
submanifold:


(ξα) =
m

∑

i=1

g(˜∇ξα ei , ei∗) =
m

∑

i=1

g(σ (ei , ξα), ei∗)

= −
m

∑

i=1

g(ei∗, ei∗) = −m. (4.60)
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Finally, by using (4.59) and (4.60) and since it is easy to show that ωH (ξα) = 0, for any
α = 1, . . . , s, we get:

ωH =
m

∑

i=1

ωH (ei )ω
i = − 1

m + s

m
∑

i=1


(ei )ω
i

= − 1

m + s
(
 + m

s
∑

α=1

ηα) = − 1

m + s
ω.

��
From Theorems 4.1 and 4.2, we can prove the following topological obstruction to S-slant

immersions as well as to anti-invariant immersions tangent to the structure vector fields into
an S-space-form of constant f -sectional curvature c = −3s:

Theorem 4.3 Let Mm+s be a compact simply connected (m + s)-dimensional differentia-
ble manifold. Then, M cannot be immersed in any (2m + s)-dimensional S-space-form
˜M2m+s(−3s) as an anti-invariant submanifold tangent to the structure vector fields with no
minimal points. Moreover, if m is even, M cannot be immersed in such a S-space-form as
an S-slant submanifold with no minimal points either. In particular, if m = 2, M cannot be
immersed in ˜M(−3s) as a non-invariant slant submanifold with no minimal points.

Proof Let us suppose that M is an anti-invariant submanifold of ˜M(−3s), tangent to the
structure vector fields, with no minimal points. Then, H is nowhere zero and, consequently,
the Maslov form ωH is also nowhere zero because M has codimension m (to check this, it
is enough to consider an adapted anti-invariant frame). From Theorem 4.2, ωH is closed and
so, it represents a cohomology class [ωH ] ∈ H1(M, R). Since M is compact, ωH cannot
be exact. Therefore, [ωH ] is a non-trivial cohomology class and then, the first cohomology
group H1(M, R) is non-trivial. Hence, M is not simply connected, which is a contradiction.

In the case of being m even, the second part of the proof follows analogously from
Theorem 4.1.

5 Conformal Maslov form

In this section, we want to study whether the Maslov form of an (m + s)-dimensional (s ≥ 1)
anti-invariant submanifold of an S-space-form ˜M2m+s(−3s) of dimension 2m + s, tangent
to the structure vector fields, can be conformal in M . First, we have a more general result:

Theorem 5.4 Let Mm+s be an (m + s)-dimensional anti-invariant submanifold of an
S-manifold ˜M2m+s of dimension 2m + s, tangent to the structure vector fields and such
that its Maslov form is closed. Then, this Maslov form is conformal in M if and only if the
mean curvature vector is parallel.

Proof From (2.1) and (3.20), if Y is a tangent vector field to M , we get,

g(∇ξα f H, Y ) = g(∇Y f H, ξα) = −g( f H,∇Y ξα) = g( f H, T Y ) = 0

and so:

∇ξα f H = 0.
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Consequently, by using (2.2), we have that ωH is conformal in M if and only if

∇X f H = 0,

for any vector field X tangent to M . But, since from (3.14), (˜∇X f )H = 0, taking into
account the tangent component of this formula, we obtain ∇X f H − f DX H = 0, that is,
ωH is conformal in M if and only if DX H = 0 and the proof is complete. ��

Due to the above theorem, it is necessary to introduce a more restrictive notion, and we say
that the Maslov form is L-conformal if ∇Y f H = hY , for any Y ∈ L, being h a differentiable
function. Then, we can prove the following theorem.

Theorem 5.5 Let Mm+s be an (m + s)-dimensional anti-invariant submanifold of an
S-space-form ˜M2m+s(−3s) of dimension 2m + s, tangent to the structure vector fields.
If

σ(X, Y ) = m + s

m + s + 1

{

g( f X, f Y )H − (ωH (X) + m + s + 1

m + s

s
∑

α=1

ηα(X)) f Y

−(ωH (Y ) + m + s + 1

m + s

s
∑

α=1

ηα(Y )) f X

}

, (5.61)

for any tangent vector fields X, Y tangent to M, then the Maslov form of M is L-conformal.

Proof Let X, Y ∈ L be two orthogonal vector fields such that g(Y, Y ) = 1. Then, from
(5.61):

σ(Y, Y ) = m + s

m + s + 1
{H + 2g( f Y, H) f Y }. (5.62)

Differentiating (5.62) with respect to X :

DXσ(Y, Y ) = m + s

m + s + 1
{DX H + 2Xg( f Y, H) f Y + 2g( f Y, H)DX f Y }. (5.63)

Now, since from (3.14), we have that (˜∇X f )Y = 0, then, by using the Weingarten formula
(2.3), we deduce Xg( f Y, H) = g( f ˜∇X Y, H) + g( f Y, DX H) and, substituting into (5.63):

DXσ(Y, Y ) = m + s

m + s + 1
{DX H + 2g( f ˜∇X Y, H) f Y

+ 2g( f Y, DX H) f Y + 2g( f Y, H)DX f Y }. (5.64)

On the other hand, from (5.61) and by using that g(∇X Y, Y ) = 0 = ηα(∇X Y ), we get:

σ(∇X Y, Y ) = m + s

m + s + 1
{g( f ∇X Y, H) f Y + g( f Y, H) f ∇X Y }. (5.65)

Thus, from (2.6), (5.64) and (5.65):

(˜∇X σ)(Y, Y ) = m + s

m + s + 1
{DX H + 2g( f ˜∇X Y, H) f Y + 2g( f Y, DX H) f Y

+ 2g( f Y, H)DX f Y − 2g( f ∇X Y, H) f Y − 2g( f Y, H) f ∇X Y }.
(5.66)

But, since f H is a tangent vector field to M and (˜∇X f )Y = 0, from (2.3) and (3.12), we
obtain g( f ˜∇X Y, H) = g( f ∇X Y, H) and DX f Y = f ∇X Y , so (5.66) reduces to:

(˜∇Xσ)(Y, Y ) = m + s

m + s + 1
{DX H + 2g(DX H, f Y ) f Y }. (5.67)
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Next, from (2.6) again and by using a similar line of reasoning to above, a straightforward
computation gives:

(˜∇Y σ)(X, Y ) = m + s

m + s + 1
{g( f X, DY H) f Y + g( f Y, DY H) f X}. (5.68)

Consequently, since from (3.15) we have that (˜R(X, Y )Y )⊥ = 0, then, from the Codazzi
Eq. (2.5), we deduce that (˜∇Xσ)(Y, Y ) − (˜∇Y σ)(X, Y ) = 0 and subtracting (5.68) from
(5.67):

DX H = g( f X, DY H) f Y + g( f Y, DY H) f X − 2g(DX H, f Y ) f Y. (5.69)

Moreover, since from (3.14), ˜∇X f H = f ˜∇X H , taking into account (2.3) and (3.12), we
get g(DX H, f Y ) = −g(∇X f H, Y ) and g(DY H, f X) = −g(∇Y f H, X). But, from (2.1),
since ωH is closed, g(∇X f H, Y ) = g(∇Y f H, X), therefore (5.69) reduces to:

DX H = g(DY H, f Y ) f X − g(DX H, f Y ) f Y.

Thus, g(DX H, f Y ) = −g(DX H, f Y ), because g( f X, f Y ) = 0 and g( f Y, f Y ) = 1,
that is, g(DX H, f Y ) = 0. Then, we obtain:

DX H = g(DY H, f Y ) f X. (5.70)

Finally, from (2.3), (3.12), (3.14) and (5.70), we easily check that

g(∇X f H, Z) = −g(DY H, f Y )g(X, Z),

for any vector field Z tangent to M . This implies that ∇X f H = −g(DY H, f Y )X , which
completes the proof. ��

Notice that, from Theorem 5.4, this result cannot be improved. However, it is interesting to
ask about examples of submanifolds satisfying (5.61). Firstly, we have the totally f -geodesic
submanifolds. It is easy to show that these submanifolds are minimal. Thus, (3.20) and (3.23)
imply that any anti-invariant and totally f -geodesic submanifold satisfies (5.61).

On the other hand, in the case s = 1, if we consider R2m+1 as the ambient Sasakian
manifold, A. Carriazo and D. E. Blair proved in [2] that the condition (5.61) characterizes
anti-invariant (m + 1)-dimensional submanifolds satisfying the equality case of

‖H‖2 ≥ 2(m + 2)

(m + 1)2(m − 1)
τ,

where τ denotes the scalar curvature of the submanifold.

Acknowledgments The authors wish to express their gratitude to the referee of this paper for his/her valuable
comments in order to improve it.
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GENERALIZED S-SPACE-FORMS

Alicia Prieto-Martín,

Luis M. Fernández, and Ana M. Fuentes

Abstract. We introduce and study generalized S-space-forms. Moreover, we
investigate generalized S-space-forms endowed with an additional structure
and we obtain some obstructions for them to be S-manifolds.

1. Introduction

It is an interesting problem to analyze what kind of Riemannian manifolds may
be determined by special pointwise expressions for their curvatures. For instance, it
is well known that the sectional curvatures of a Riemannian manifold determine the
curvature tensor field completely. So, if (M, g) is a connected Riemannian manifold
with dimension greater than 2 and its curvature tensor field R has the pointwise
expression

R(X, Y )Z = λ {g(X, Z)Y − g(Y, Z)X} ,

where λ is a differentiable function on M , then M is a space of constant sectional
curvature, that is, a real-space-form and λ is a constant function.

Further, when the manifold is equipped with some additional structure, it is
sometimes possible to obtain conclusions from the special form of the curvature
tensor field for this structure too. Thus, an almost-Hermitian manifold (M, J, g) is
said to be a generalized complex-space-form [9] if its curvature tensor satisfies

R(X, Y )Z = f1
{

g(Y, Z)X − g(X, Z)Y
}

(1.1)

+ f2
{

g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ
}

,

where f1 and f2 are differentiable functions on M . This name derives from the fact
that, when M is a complex-space-form, that is, a Kaehlerian manifold of constant
holomorphic curvature equal to c, the curvature tensor field of M satisfies (1.1)
with f1 = f2 = c/4.
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Since Sasakian-spaces-forms play a similar role in contact metric geometry to
that of complex-space-forms in complex geometry, Alegre, Blair and Carriazo have
defined and studied generalized Sasakian-space forms [1] as those almost-contact
metric manifolds (M, φ, ξ, η, g) whose curvature tensor field satisfies

R(X, Y )Z = f1 {g(Y, Z)X − g(X, Z)Y } +

+ f2 {g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}

+ f3 {η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ} ,

f1, f2, f3 being differentiable functions on M . If M is actually a Sasakian-space-
form, that is a Sasakian manifold with constant φ-sectional curvature equal to c,
then f1 = 1

4 (c + 3), f2 = f3 = 1
4 (c − 1).

More in general, Yano [10] introduced the notion of f -structure on a (2n + s)
-dimensional manifold as a tensor field f of type (1,1) and rank 2n satisfying
f3 + f = 0. Almost complex (s = 0) and almost contact (s = 1) structures are
well-known examples of f -structures. In this context, Blair [2] defined K-manifolds
(and particular cases of S-manifolds and C-manifolds) as the analogue of Kaehle-
rian manifolds in the almost complex geometry and of quasi-Sasakian manifolds
in the almost contact geometry and he showed that the curvature of either S-
manifolds or C-manifolds is completely determined by their f -sectional curvatures.
Later, Kobayashi and Tsuchiya [8] got expressions of the curvature tensor field of S-
manifolds and C-manifolds when their f -sectional curvature is constant depending
on such a constant.

For these reasons, we consider that it is interesting to introduce a notion of gen-
eralized S-space-form on metric f -manifolds (see Section 2 for a precise definition of
these manifolds). We observe that this work was made in [5] for metric f -manifolds
with two structure vector fields, giving some interesting examples. Now, we present
the definition for any number of structure vector fields. To this end, we have fol-
lowed the same procedure as in almost complex and almost contact cases, that is,
we have substituted the constants in the expression of the curvature tensor field of
an S-space-form (an S-manifold of constant f -sectional curvature) obtained in [8]
by certain differentiable functions on the manifold. So, S-space-forms are natural
examples of generalized S-space-forms. Furthermore, we check that C-space-forms
are also generalized S-space-forms.

We have organized the communication in the following way. In Section 2 we
review definitions and formulas concerning metric f -manifolds which we shall use
later. In Section 3 we define generalized S-space-forms and study the sectional
curvatures of such manifolds. Moreover, we establish that the writing of the cur-
vature tensor field is unique in terms of a family of differentiable functions on the
manifold if and only if the dimension of the manifold is greater than 2 + s, s being
the number of structure vector fields. In Section 4, we consider a different defini-
tion given by Falcitelli and Pastore in [6], comparing both definitions. Finally, in
Section 5, we study generalized S-space-forms endowed with an additional struc-
ture and the relationships between the functions in such a case. Thus, we prove
that any generalized S-space-form with a metric f -K-contact structure is actually



GENERALIZED S-SPACE-FORMS 153

an S-manifold and we deduce an obstruction for a generalized S-space-form to be
an S-manifold, depending on the functions. The same result holds for a metric f -
contact structure with some additional conditions on the functions. We also study
generalized S-space-forms with an underlying C-structure and, more in general,
with a K-structure.

2. Metric f-manifolds

A Riemannian manifold (M, g) of dimension 2n + s and endowed with an f -
structure f (that is, a tensor field of type (1,1) and rank 2n satisfying f3 + f = 0
[10]) is said to be a metric f -manifold if, moreover, there exist s global vector fields
ξ1, . . . , ξs on M (called structure vector fields) such that, if η1, . . . , ηs are the dual
1-forms of ξ1, . . . , ξs, then

fξα = 0; ηα ◦ f = 0; f2 = −I +

s∑

α=1

ηα ⊗ ξα;

g(X, Y ) = g(fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ),

for any X, Y ∈ X (M) and α = 1, . . . , s. The distribution on M spanned by
the structure vector fields is denoted by M and its complementary orthogonal
distribution is denoted by L. Consequently, T M = L ⊕ M. Moreover, if X ∈ L,
then ηα(X) = 0, for any α = 1, . . . , s and if X ∈ M, then fX = 0.

Let F be the 2-form on M defined by F (X, Y ) = g(X, fY ), for any X, Y ∈
X (M). Since f is of rank 2n, then η1 ∧ · · · ∧ ηs ∧ F n 6= 0 and, particularly, M is
orientable. A metric f -manifold is said to be a metric f -contact manifold if F =
dηα, for any α = 1, . . . , s. On the other hand, a metric f -contact manifold is said
to be a metric f -K-contact manifold if the structure vector fields are Killing vector
fields. When s = 1, metric f -contact manifolds correspond to contact manifolds and
metric f -K-contact manifolds to K-contact manifolds. Furthermore, in a metric
f -K-contact manifold it easy to show that:

(2.1) ∇Xξα = −fX, X ∈ X (M), α = 1, . . . , s.

The f -structure f is said to be normal if [f, f ] + 2
∑s

α=1 ξα ⊗ dηα = 0, where
[f, f ] denotes the Nijenhuis tensor of f . Then, a metric f -manifold is said to be
a K-manifold [2] if it is normal and dF = 0. In a K-manifold M , the structure
vector fields are Killing vector fields [2] and:

(2.2) ∇ξα
ξβ = 0, α, β = 1, . . . , s.

A K-manifold is called an S-manifold if F = dηα, for any α (that is, if it is also
a metric f -K-contact manifold) and a C-manifold if dηα = 0, for any α. Note that,
for s = 0, a K-manifold is a Kaehlerian manifold and, for s = 1, a K-manifold is a
quasi-Sasakian manifold, an S-manifold is a Sasakian manifold and a C-manifold
is a cosymplectic manifold. When s > 2, non-trivial examples can be found in
[2, 3, 7]. Moreover, a K-manifold M is an S-manifold if and only if

∇Xξα = −fX, X ∈ X (M), α = 1, . . . , s,
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and it is a C-manifold if and only if ∇f = 0 [2].
On the other hand, the curvature tensor field R of a K-manifold M satisfies

(2.3) R(ξα, X, ξβ , Y ) = −g(∇Xξβ , ∇Y ξα),

for any X, Y ∈ X (M) and α, β = 1, . . . , s [4].
A plane section π on a metric f -manifold M is said to be an f -section if it is

determined by a unit vector X ∈ L and fX . The sectional curvature K(π) of π is
called an f -sectional curvature. An S-manifold (resp., a C-manifold) is said to be
an S-space-form (resp., a C-space-form) if it has a constant f -sectional curvature
c and then, it is denoted by M(c). In such cases, the curvature tensor field R of
M(c) satisfies

R(X, Y, Z, W ) =
∑

α,β

(
g(fX, fW )ηα(Y )ηβ(Z) − g(fX, fZ)ηα(Y )ηβ(W )

+ g(fY, fZ)ηα(X)ηβ(W ) − g(fY, fW )ηα(X)ηβ(Z)
)

+
c + 3s

4

(
g(fX, fW )g(fY, fZ) − g(fX, fZ)g(fY, fW )

)

+
c − s

4

(
F (X, W )F (Y, Z) − F (X, Z)F (Y, W )

− 2F (X, Y )F (Z, W )
)
,

(2.4)

(resp.,

R(X, Y, Z, W ) =
c

4
(g(fX, fW )g(fY, fZ) − g(fX, fZ)g(fY, fW ))

+ F (X, W )F (Y, Z) − F (X, Z)F (Y, W )

− 2F (X, Y )F (Z, W ))),

(2.5)

for any X, Y, Z, W ∈ X (M) [8].

3. Generalized S-space-forms

A metric f -manifold (M, f, ξ1, . . . , ξs, η1, . . . , ηs, g) is said to be a generalized

S-space-form if there exists a family of differentiable functions on M ,

{F1, F2, Fαβ , Gαβ , Hαβγ},

such that the curvature tensor field R of M satisfies

(3.1) R = F1R1 + F2R2 +

s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ ,
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where

R1(X, Y, Z, W ) = g(X, W )g(Y, Z) − g(X, Z)g(Y, W );

R2(X, Y, Z, W ) = F (X, W )F (Y, Z) − F (X, Z)F (Y, W )

− 2F (X, Y )F (Z, W );

Rαβ(X, Y, Z, W ) = g(Y, W )ηα(X)ηβ(Z) − g(X, W )ηα(Y )ηβ(Z)

+ g(X, Z)ηα(Y )ηβ(W ) − g(Y, Z)ηα(X)ηβ(W );

R̃αβ(X, Y, Z, W ) = ηα(X)ηβ(Y )ηβ(Z)ηα(W ) − ηβ(X)ηα(Y )ηβ(Z)ηα(W )

+ ηβ(X)ηα(Y )ηα(Z)ηβ(W ) − ηα(X)ηβ(Y )ηα(Z)ηβ(W );

Rαβγ(X, Y, Z, W ) = ηα(X)ηβ(Y )ηγ(Z)ηα(W ) − ηβ(X)ηα(Y )ηγ(Z)ηα(W )

+ ηβ(X)ηα(Y )ηα(Z)ηγ(W ) − ηα(X)ηβ(Y )ηα(Z)ηγ(W ),

(3.2)

for any X, Y, Z, W ∈ X (M).
This kind of manifold appears as a natural generalization of S-space-forms

because a straightforward computation from (2.4) gives that any S-space-form M(c)
is a generalized S-space-form with functions

F1 = 1
4 (c + 3s); F2 = 1

4 (c − s); Fαα = 1
4 (c + 3s) − 1;

Fαβ = −1 (α 6= β); Gαβ = 1
4 (c + 3s) − 2 (α < β);

Hαβγ = −1 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s}. Moreover, any C-space-form M(c) is also a generalized
S-space-form. In fact, from (2.5), we only have to take

F1 = F2 = Fαα = Gαβ = c
4 (α < β);

Fαβ = 0 (α 6= β);

Hαβγ = 0 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s}.

From (3.2) we easily deduce that R̃αα = 0; R̃αβ = R̃βα; Rαββ = R̃αβ ; Rααα =
Rααβ = 0, for any α, β = 1, . . . , s. Furthermore, from (3.1) we get that

R(X, ξα, X, ξβ) = Fαβ ,(3.3)

R(ξα, ξβ , ξγ , ξα) = Hαβγ − Fβγ ,(3.4)

for any unit vector field X ∈ L and any α, β, γ = 1, . . . , s, α 6= β 6= γ 6= α. Then, by
using the symmetries of the curvature tensor field R, from (3.3) and (3.4) together,
we obtain Fαβ = Fβα and Hαβγ = Hαγβ,α, β, γ = 1, . . . , s, α 6= β 6= γ 6= α.

Now, we observe that, if s = 2, (3.1) agrees with (3.1) of [5]. In that pa-
per, more examples of generalized S-space-forms with two structure vector fields
were given and they can be generalized to any s. Thus, pseudo-umbilical, totally
contact-umbilical, totally contact-geodesic, totally umbilical and totally geodesic
hypersurfaces of a generalized S-space-form are also generalized S-space-forms and,
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moreover, the bundle space of a principal toroidal bundle over a Kaehlerian mani-
fold and the warped product of R times a generalized S-space-form are generalized
S-space-forms too.

Next, for the sectional curvatures of a generalized S-space form and by using
(3.1) and (3.2), we can prove the following proposition.

Proposition 3.1. Let M be a generalized S-space-form with functions:

{F1, F2, Fαβ , Gαβ , Hαβγ}.

Then, for any orthonormal vector fields X, Y ∈ L and α, β ∈ {1, . . . , s}, we have

(i) K(X, Y ) = R(X, Y, Y, X) = F1 + 3F2g(X, fY )2.

(ii) H(X) = K(X, fX) = F1 + 3F2.

(iii) K(X, ξα) = F1 − Fαα.

(iv) K(ξα, ξβ) = F1 − Fαα − Fββ + Gαβ , (α < β).

We are going now to study if the writing of the curvature tensor field of a
generalized S-space-form is unique. First, we can prove:

Proposition 3.2. Let M be a (2n + s)-dimensional generalized S-space-form.

If n > 2, the writing of the curvature tensor field R of M in terms of a family of

functions is unique.

Proof. Let us suppose that there exist two families of differentiable functions,
{F1, F2, Fαβ , Gαβ , Hαβγ} and {F ∗

1 , F ∗
2 , F ∗

αβ , G∗
αβ , H∗

αβγ}, such that

(3.5) R = F1R1 + F2R2 +
s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +
s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ

= F ∗
1 R1 + F ∗

2 R2 +

s∑

α,β=1

F ∗
αβRαβ +

∑

16α<β6s

G∗
αβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

H∗
αβγRαβγ .

Since n > 2, we can consider a pair of orthonormal vector fields X, Y ∈ L such
that g(X, fY ) = 0. From (3.5) we get that R(X, Y, fX, fY ) = F2 = F ∗

2 and so,
R(X, Y, Y, X) = F1 = F ∗

1 . From (iii) and (iv) of Proposition 3.1 we deduce that
Fαα = F ∗

αα, for any α = 1, . . . , s and Gαβ = G∗
αβ , for any α, β = 1, . . . , s, α < β.

Finally, if X ∈ L is a unit vector field and α, β = 1, . . . , s, α 6= β, from (3.5)
again, we get that R(X, ξα, X, ξβ) = Fαβ = F ∗

αβ and, by using (3.4), Hαβγ = H∗
αβγ ,

for any α, β, γ ∈ {1, . . . , s}, α 6= β 6= γ 6= α. �

Next, what about (2 + s)-dimensional generalized S-space-forms? In this case,
the writing of the curvature tensor field is not unique. Actually, if M is a generalized
S-space-form of dimension 2 + s such that its curvature tensor field R can be
simultaneously written as

R = F1R1 + F2R2 +

s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ
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and

R = F ∗
1 R1 + F ∗

2 R2 +

s∑

α,β=1

F ∗
αβRαβ +

∑

16α<β6s

G∗
αβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

H∗
αβγRαβγ ,

then, given a unit vector field X ∈ L and α, β, γ ∈ {1, . . . , s}, from (3.3), (3.4) and
Proposition 3.1, we obtain the system

F1 − F ∗
1 = 3(F ∗

2 − F2);

F1 − F ∗
1 = Fαα − F ∗

αα;

Fαβ − F ∗
αβ = 0; (α 6= β)

Fαα − F ∗
αα = Gαβ − G∗

αβ ; (α < β)

Fββ − F ∗
ββ = Gαβ − G∗

αβ ; (α < β)

Hαβγ − H∗
αβγ = 0, (α 6= β 6= γ 6= α)

whose general solution is given by

F ∗
1 = F1 + h, F ∗

2 = F2 − 1
3 h, F ∗

αα = Fαα + h,

G∗
αβ = Gαβ + h, F ∗

αβ = Fαβ , H∗
αβγ = Hαβγ ,(3.6)

where h is a differentiable function on M . Consequently, if h 6= 0, the writing of R
in not unique and the functions of two different writings are related by (3.6).

On the other hand, if M is a (2+s)-dimensional generalized S-space-form with
functions {F1, F2, Fαβ , Gαβ , Hαβγ} and we define the functions

{F ∗
1 , F ∗

2 , F ∗
αβ , G∗

αβ , H∗
αβγ}

as in (3.6), for any differentiable function h on M , then we deduce:

R = F1R1 + F2R2 +

s∑

α,β=1

FαβRαβ +
∑

16α<β6s

GαβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

HαβγRαβγ ,

= F ∗
1 R1 + F ∗

2 R2 +
s∑

α,β=1

F ∗
αβRαβ +

∑

16α<β6s

G∗
αβR̃αβ +

s∑

α,β,γ=1,
α6=β 6=γ 6=α

H∗
αβγRαβγ

−hR1 +
h

3
R2 − h

s∑

α=1

Rαα − h
∑

16α<β6s

R̃αβ .

But it is straightforward to check that

hR1 −
h

3
R2 + h

s∑

α=1

Rαα + h
∑

16α<β6s

R̃αβ = 0

and, consequently, M is also a generalized S-space-form with functions

{F ∗
1 , F ∗

2 , F ∗
αβ , G∗

αβ , H∗
αβγ}.
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4. A different definition

In [6], Falcitelli and Pastore defined a generalized f.pk-space-form as a metric
f.pk-manifold M of dimension 2n + s (actually, a metric f -manifold) endowed

with a family of differentiable functions {F̃1, F̃2, F̃αβ , α, β = 1, . . . , s}, such that

F̃αβ = F̃βα, for any α, β ∈ {1, . . . , s} and such that the curvature tensor field R of
M can be written as

R(X, Y )Z = F̃1
{

g(fX, fZ)f2Y − g(fY, fZ)f2X
}

(4.1)

+ F̃2
{

g(X, fZ)fY + g(Y, fZ)fX + 2g(X, fY )fZ
}

+

s∑

α,β=1

F̃αβ

{
ηα(X)ηb(Z)f2Y − ηα(Y )ηb(Z)f2X

+ g(fY, fZ)ηα(X)ξβ − g(fX, fZ)ηα(Y )ξβ

}
,

for any X, Y, Z ∈ X (M). This definition is more restrictive than the one concerning
generalized S-space-form. In fact, we observe that, from (4.1), R(ξα, ξβ)ξγ = 0, for
any α, β, γ ∈ {1, . . . , s} (this means that the distribution M is flat), but some
examples of generalized S-space-forms not satisfying this condition were presented
in [5].

Moreover, if M is a generalized f.pk-space-form, a straightforward computation
using (3.2) gives

R = F̃1R1 + F̃2R2 + F̃1

{ s∑

α=1

Rαα −
∑

16α<β6s

R̃αβ

}

−

s∑

α,β=1

F̃αβRαβ −

s∑

α,β=1

F̃ααR̃αβ −

s∑

α,β=1,
α6=β

F̃αβ

{ s∑

γ=1,
α6=γ 6=β

Rγαβ

}
.

Consequently, M is a generalized S-space form with functions

F1 = F̃1; F2 = F̃2; Fαα = F̃1 − F̃αα; Fαβ = −F̃αβ (α 6= β);

Gαβ = F̃1 − F̃αα − F̃ββ ; Hαβγ = −F̃βγ .

Conversely, if M is a generalized S-space-form with functions

{F1, F2, Fαβ , Gαβ , Hαβγ}

such that the distribution M is flat, then, from (3.4) we get that Hαβγ = Fβγ , for
any α, β, γ = 1, . . . , s, α 6= β 6= γ 6= α and from (v) of Proposition 3.1, Gαβ =
Fαα + Fββ − F1, 1 6 α < β 6 s. Then, it is easy to check that M is a generalized
f.pk-space-form with functions:

F̃1 = F1; F̃2 = F2; F̃αα = F1 − Fαα; F̃αβ = −Fαβ (α 6= β).

5. Generalized S-space-forms with additional structures

Taking into account the results of the above section, if M is a generalized
S-space-form such that the distribution M is flat (for instance, if M is either a
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metric f -K-contact manifold or a K-manifold), we can apply the results of [6] to
it. Firstly, we can prove:

Theorem 5.1. Let M be a (2n + s)-dimensional generalized S-space-form with

functions {F1, F2, Fαβ , Gαβ , Hαβγ}, such that ∇ξα = −f , for any α = 1, . . . , s.

Then, M is an S-manifold and

F1 = 1
4 (c + 3s); F2 = 1

4 (c − s); Fαα = 1
4 (c + 3s) − 1;

Fαβ = −1 (α 6= β); Gαβ = 1
4 (c + 3s) − 2 (α < β);

Hαβγ = −1 (α 6= β 6= γ 6= α),

where α, β, γ ∈ {1, . . . , s} and c = F1 +3F2. In particular, any generalized S-space-

form with a metric f -K-contact-structure is an S-manifold.

Proof. Since, the condition of the statement implies that the distribution M
is flat, we deduce that M is a generalized f.pk-space-form and we apply Proposition
7 of [6]. For metric f -K-contact manifolds we only have to consider (2.1). �

We point out here that, if n > 2, c becomes constant (see, for example, [7])
and M is actually an S-space-form. Moreover, we deduce:

Corollary 5.1. Let M be a (2n + s)-dimensional generalized S-space-form

with functions {F1, F2, Fαβ , Gαβ , Hαβγ}. If M is an S-manifold, then F1 − F2 = s.

For C-manifolds, we have:

Theorem 5.2. Let M be a (2n + s)-dimensional generalized S-space-form with

functions {F1, F2, Fαβ , Gαβ , Hαβγ} and with an underlying C-structure. Then

F1 = F2 = Fαα = Gαβ = c/4, α < β;(5.1)

Fαβ = Hαβγ = 0, α 6= β 6= γ 6= α,(5.2)

where α, β, γ ∈ {1, . . . , s} and c = F1 + 3F2. Moreover, if n > 1, M is a C-space-

form.

Proof. Since M is a C-manifold and so, a K-manifold, from (2.2), the dis-
tribution M is flat and M is also a generalized f.pk-space.form. Furthermore, the
structure vector fields are parallel and, by using Proposition 8 and Remark 2 of
[6] and applying the relationships obtained in the above section we get the desired
results. Finally, from (3.1), the Ricci tensor field S and the scalar curvature ρ of
M are given by

S(X, Y ) =
(n + 1)c

2

(
g(X, Y ) −

s∑

α=1

ηα(X)ηα(Y )

)

and ρ = n(n + 1)c. Now, from the second Bianchi identity,

∇iρ = 2
∑

j

∇jSj
i ,

where Sj
i denotes the components of the Ricci tensor of type (1,1). Consequently,

(n − 1)dc = 0 and hence, dc = 0 if n > 1. �
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Next, we are going to study generalized S-space-forms with more general struc-
tures. First, we get

Theorem 5.3. Let M be a generalized S-space-form with functions

{F1, F2, Fαβ , Gαβ , Hαβγ}.

If M is a K-manifold, then

F1 + Gαβ = Fαα + Fββ ; F1 − Fαα > 0, with 1 6 α < β 6 s;

Hαβγ = Fβγ , for any α, β, γ = 1, . . . , s such that α 6= β 6= γ 6= α.

Proof. Since M is a K-manifold, from (2.2) we get that the distribution M is
flat. Thus, M is a generalized f.pk-space-form and by using the results of Section
4, we deduce that Gαβ = Fαα + Fββ − F1, 1 6 α < β 6 s and Hαβγ = Fβγ ,
α 6= β 6= γ 6= α. Now, from (2.3) together (iii) of Proposition 3.1, we complete the
proof. �

Finally, for metric f -contact structures, we can prove the following theorem.

Theorem 5.4. Let M be a (2n + s)-dimensional generalized S-space-form with

functions {F1, F2, Fαβ , Gαβ , Hαβγ}. If M is a metric f -contact manifold and

F1 − Fαα = Fββ − Gαβ = 1, 1 6 α < β 6 s;

Fαα = Fββ , for any α, β = 1, . . . , s,

then M is an S-manifold.

Proof. First, from (v) of Proposition 3.1 and the hypothesis, we deduce
that K(ξα, ξβ) = 0. Moreover, a direct computation by using (3.1) shows that
S(ξα, ξα) = 2n(F1 − Fαα) = 2n, α = 1, . . . , s, where S is the Ricci curvature tensor
of M . Then, by using Theorem 3.8 of [4], we obtain that the structure vector fields
are Killing vector fields, that is, M is a metric f -K-contact manifold. Thus, from
Theorem 5.1, it is an S-manifold. �
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Abstract We introduce para-S-manifolds and obtain some results concerning the
curvature of these manifolds. In particular, we prove that there does not exist Einstein
para-S-manifold, and consequently, we investigate η-Einstein para-S-manifolds and
the conditions for them to be ξ -conformally flat.
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1 Introduction

The study of paracomplex structures is a subject which has many applications to
different topics and it is related to some physical problems (the nice survey [9] can
be consulted for more details). When, moreover, a compatible pseudo-Riemannian
metric is considered, we have the para-Hermitian and para-Kaehler manifolds and
their variants.
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On the other hand, (almost) paracontact manifolds are semi-Riemannian manifolds
which can be viewed as the odd dimensional counterpart of (almost) paracomplex
manifolds. They were introduced by Sato in [17] and Kaneyuki and Williams in [12].
Recently, there seems to be an increasing interest in paracontact geometry and, in
particular, in para-Sasakian manifolds, due to its links to more consolidated theory of
para-Kaehler manifolds and to their role in geometry and mathematical physics (see,
for instance, [8,10,11]).

Actually, the notion of almost paracontact structure is an analog of that one of almost
contact structure and is closely related to the almost product structure. In this context,
Bucki and Miernowski defined in [5] the notion of an almost r -paracontact structure
which generalizes almost paracontact structure in a similar way to f -structures of co-
rank greater than one generalize almost contact structures. They also started the study
of almost r -paracontact manifolds equipped with a Riemannian compatible metric
[3,4,13].

So, it is interesting to study what happens if instead of a Riemannian metric we
consider a pseudo-Riemannian metric. Zamkovoy in [21] has obtained a complete
arrangement of all the theory in the case of paracontact manifolds, and recently,
Brunetti and Pastore have done a similar work in the context of indefinite globally
framed f -manifolds in [2]. For these reasons, we want to introduce in this paper the
notion of para-S-manifold and begin the study of some of its properties. The name is
chosen to point out that it is the analog of S-manifolds introduced byBlair [1] in the set-
ting of f -structures. We also observe that para-S-manifolds generalize para-Sasakian
manifolds.

Firstly and after some preliminaries on almost para- f -structures, we define para-
S-manifolds and obtain some results concerning the curvature tensor field and the
Ricci tensor field of them. Since we show that they are not Einstein para-S-manifolds
when the co-rank of the structure is greater than one, we also define η-Einstein para-
S-manifolds and we prove that if the foliation generated by the structure vector fields
is regular, then they project onto Einstein para-Kaehler manifolds and, consequently,
their study is justified. Finally, if we consider the conformal curvature tensor field of
the metric, introduced by Weyl in [19,20], we analyze the existence of ξ -conformally
flat η-Einstein para-S-manifolds.

2 Preliminaries on (Almost) Para- f -manifolds

From now on, given a smooth manifold M , we shall denote by TM the Lie algebra of
its tangent vector fields.

A (2n + s)-dimensional smooth manifold M is said to have an almost para- f -
structure ( f, η1, . . . , ηs, ξ1, . . . , ξs) and it is called an almost para- f -manifold if it
admits a tensor field f of type (1, 1), s global tangent vector fields ξ1, . . . , ξs , called the
structure vector fields and s 1-forms η1, . . . , ηs , satisfying the following compatibility
conditions:

– f (ξα) = 0, ηα ◦ f = 0, α = 1, . . . , s;
– ηα(ξβ) = δαβ , α, β = 1, . . . , s;
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– f 2 = I d −
∑s

α=1
ηα ⊗ ξα and the eigendistributions of f corresponding to

the eigenvalues 1 and −1, denoted by D+ and D−, respectively, have the same
dimension equal to n.

An immediate consequence of the above definition is that the endomorphism f
has rank 2n. In particular, any almost s-paracontact manifold in the sense defined by
Bucki and Miernowski (see [5]) is an almost para- f -structure.

If an almost para- f -manifold M admits a pseudo-Riemannian metric g such that

g( f X, f Y ) + g(X,Y ) =
s∑

α=1

ηα(X)ηα(Y ), (1)

for any X, Y ∈ TM, we say that M is a metric almost para-f-manifold and g is called
a compatible metric. Putting Y = ξα in (1), we have that ηα(X) = g(X, ξα), for any
α = 1, . . . , s.

Any compatible metric with a given almost para- f -structure is of signature (n +
s, n).Moreover, any almost para- f -structure admits a compatiblemetric. In fact, given
a metric G on M , if we put

Ḡ(X,Y ) = G( f 2X, f 2Y ) +
s∑

α=1

ηα(X)ηα(Y ),

then, the metric g defined as

g(X,Y ) = 1

2

(
Ḡ(X, Y ) − Ḡ( f X, f Y ) +

s∑

α=1

ηα(X)ηα(Y )

)

is a compatible metric with the structure. Observe that Ḡ(X, ξα) = ηα(X), for any α.
We should like to mention here that A. Bucky and A. Miernoski defined an almost

s-paracontact metric structure (see [5]) if it admits a Riemannian metric g such that

g( f X, f Y ) = g(X,Y ) −
s∑

α=1

ηα(X)ηα(Y ),

for any tangent vector fields X,Y . For our interest, in this paper, the metric will be
always pseudo-Riemannian and it will satisfy (1).

For a manifold M endowed with a metric almost para- f -structure, we can construct
a very useful local orthonormal basis. To this end, letU be a coordinate neighborhood
on M and E1 any unit vector field on U orthogonal to the structure vector fields.
Then, f E1 is a vector field orthogonal to E1 and to the structure vector fields too.
Moreover, g( f E1, f E1) = −1. Now, if it is possible, we choose a unit vector field
E2 orthogonal to the structure vector fields, to E1 and to f E1. Then, f E2 is also a
vector field orthogonal to the structure vector fields, to E1, to f E1 and to E2 and
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g( f E2, f E2) = −1. Proceeding in this way, we obtain a local orthonormal basis
{Ei , f Ei , ξα}, i = 1, . . . , n and α = 1, . . . , s, called an f -basis.

On a metric almost para- f -manifold, we define a 2-form by F(X,Y ) = g(X, f Y ),
for any X, Y ∈ TM, and we consider the following tensor fields,

– N (1)(X,Y ) = [ f, f ](X, Y ) − 2
∑s

α=1 dηα(X,Y )ξα ,

– N (2)
α (X,Y ) = (L f Xηα)Y − (L f Yηα)X ,

– N (3)
α (X) = (Lξα f )X ,

– N (4)
α,β(X) = (Lξαηβ)X ,

for any X, Y ∈ TM and α = 1, . . . , s, where [ f, f ] is denoting the Nijenhuis tensor
of f and LX the Lie derivative with respect to the tangent vector field X . Firstly, we
can prove the following proposition.

Proposition 1 Let M be a metric almost para- f -manifold. Then, the covariant deriv-
ative ∇ f of f with respect to the Levi-Civita connection ∇ of g is given by

2g((∇X f )Y, Z) = −3dF(X, f Z) − 3dF(X, f Y, f Z) − g(N (1)(Y, Z), f X)

+
s∑

α=1

{N (2)
α (Y, Z)ηα(X) − 2dηα( f Z , X)ηα(Y )

+ 2dηα( f Y, X)ηα(Z)}, (2)

for any X,Y, Z ∈ TM.

Proof We know that the Levi-Civita connection ∇ of g is given by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z , X) − Zg(X,Y ) + g([X,Y ], Z)

+ g([Z , X ],Y ) − g([Y, Z ], X),

for any X,Y, Z ∈ TM. On the other hand, dF can be expressed by

3dF(X, Y, Z) = XF(Y, Z) + Y F(Z , X) + ZF(X, Y ) − F([X,Y ], Z)

− F([Z , X ],Y ) − F([Y, Z ], X).

These two equations imply (2). ��
If F = dηα , for any α = 1, . . . , s, then we say that M is a para- f -manifold, and

the structure ( f, ξ1, . . . , ξs, η1, . . . , ηs, g) is called a para- f -structure. In this case,
we have

Proposition 2 Let M be a para- f -manifold. Then, N (2)
α vanishes, for any α =

1, . . . , s. Consequently, (2) simplifies to
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2g((∇X f )Y, Z) = −g(N (1)(Y, Z), f X)

−2
s∑

α=1

{F( f Z , X)ηα(Y ) − F( f Y, X)ηα(Z)}.

Proof Since the structure is a para- f -structure, N (2)
α can be written as

N (2)
α (X,Y ) = 2dηα( f X, Y ) + 2dηα(X, f Y ) = 2F( f X, Y ) + 2F(X, f Y )

= 2g( f X, f Y ) + 2g(X, f 2Y )

= 2g( f X, f Y ) + 2g(X, Y ) − 2
s∑

β=1

ηβ(X)ηβ(Y ) = 0,

for any X, Y ∈ TM, where we have used (1). ��
An almost para- f -structure is said to be normal if N (1) vanishes.

Proposition 3 [5] Let M be a normal almost para- f -manifold. Then, N (2)
α , N (3)

α , and
N (4)

α,β vanish too, for any α, β = 1, . . . , s.

3 Para-S-manifolds

In this section, we are going to introduce para-S-manifolds and study some basic
properties of them.

Definition 1 A para-K -manifold is a normal almost para- f -manifold such that dF =
0. A para-S-manifold is a normal para- f -manifold. In these cases, the structures are
called para-K -structure and para-S-structure, respectively.

Observe that, if s = 1, a para-S-manifold is a para-Sasakian manifold (see, for
instance, [21]). In general, it is clear that any para-S-manifold is a para-K -manifold.
To find a necessary and sufficient condition for the converse, we have first to prove
the following proposition.

Proposition 4 Let M be a para-K -manifold and denote the para-K -structure by
( f, η1, . . . , ηs, ξ1, . . . , ξs, g). Then, we have

(i) [ξα, ξβ ] = 0, for any α, β = 1, . . . , s.
(ii) The structure vector fields ξ1, . . . , ξs are Killing vector fields with respect to the

metric g.
(iii) dηα( f X, Y ) + dηα(X, f Y ) = 0, for any X,Y ∈ TM and any α = 1, . . . , s.

Proof For (i), by using the normality of the structure, we obtain

0 = N (1)(X, ξα) = f 2[X, ξα] − f [ f X, ξα] − 2
s∑

γ=1

dηγ (X, ξα)ξγ ,

= [X, ξα] − f [ f X, ξα] +
s∑

γ=1

(ξαηγ (X))ξγ , (3)
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for any X ∈ TM and any α = 1, . . . , s. Consequently, putting ξβ in place of X , we
deduce (i) from (3).

Now, since dF = 0 and F(X, ξα) = 0, for any X ∈ TM and α = 1, . . . , s, from
the well-known formula Lξα F = diξα F + iξαdF , we get that Lξa F = 0. Moreover,
given any X, Y ∈ TM, it is easy to show that

0 = (Lξα F)(X,Y ) = (Lξαg)(X, f Y ) + g(X, (Lξα f )Y ).

But, since the structure is normal, by using Proposition 3, (Lξα f )Y = 0 and so,
(Lξαg)(X, f Y ) = 0. Putting f Y in place of Y and applying the definition of almost
para- f -structure, we have

(Lξαg)(X,Y ) =
s∑

β=1

ηβ(Y )(Lξαg)(X, ξβ).

But, a direct expansion gives that

(Lξαg)(X, ξβ) = (Lξαηβ)X − g(X, [ξα, ξβ ])

and we get (i i) from (i) and Proposition 3.
Finally, (i i i) is a direct consequence from the fact that N (2)

α = 0, for any α =
1, . . . , s. ��

Next, from (2) we have:

Proposition 5 Let M be a para-S-manifold. Then,

(∇X f )Y =
s∑

α=1

{
g( f X, f Y )ξα + ηα(Y ) f 2X

}
, (4)

for any X, Y ∈ TM.

In this context, we can proof the desired characterization theorem.

Theorem 1 A para-K -manifold M is a para-S-manifold if and only if (4) holds for
any X, Y ∈ TM.

Proof Let us denote by ( f, ξ1, . . . , ξs, η1, . . . , ηs, g) the para-K -structure. We only
have to prove that F = dηα , for any α = 1, . . . , s. But, from (4), we get that
(∇ f X f )ξα = f X , for any α = 1, . . . , s and X ∈ TM. On the other hand, from
(2), we obtain that g((∇ f X f )ξα,Y ) = −dηα( f Y, f X), for any Y ∈ TM. Therefore,
F(X, Y ) = −dηα( f X, f Y ).

Now, from (i i i) of Proposition 4,

dηα( f X, f Y ) = −dηα(X, f 2Y ) = −dηα(X,Y ) +
s∑

β=1

ηβ(Y )dηα(X, ξβ),

but, by using (3), 2dηα(X, ξβ) = −ξβηα(X) − ηα([X, ξβ ]) = 0 and this completes
the proof. ��
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Example 1 Let R2n+s with coordinates x1, . . . , xn, y1, . . . , yn, z1, . . . , zs .We define

ηα = 1

2

(
dzα −

n∑

i=1

yidxi

)
, ξα = 2

∂

∂zα
; α = 1, . . . , s,

g =
s∑

α=1

(ηα ⊗ ηα) +
n∑

i=1

(dxi ⊗ dyi + dyi ⊗ dxi ).

Then, we consider the basis {X1, . . . , Xn,Y1, . . . ,Yn, ξ1, . . . , ξs}, where

Xi = ∂

∂yi
; Yi = ∂

∂xi
+

s∑

α=1

yi
∂

∂zα

and we define

f Xi = Xi , f Yi = −Yi , f ξα = 0, 1 ≤ i ≤ n, 1 ≤ α ≤ s.

Observe that we deduce

g(Xi , X j ) = g(Yi ,Y j ) = 0, g(Xi ,Y j ) = δi j , 1 ≤ i, j ≤ n;
g(ξα, ξβ) = δαβ, 1 ≤ α, β ≤ s,

g(Xi , ξα) = g(Yi , ξα) = 0, 1 ≤ i ≤ n, 1 ≤ α ≤ s

and ηα = g(., ξα), for any α = 1, . . . , s.
In this context, it is straightforward to compute that ( f, ξα, ηα, g) is a para-S-

structure on R2n+s .

From now on, M will always be a (2n+s)-dimensional para-S-manifold with para-
S-structure given by ( f, ξ1, . . . , ξs, η1, . . . , ηs, g). If we denote by R the curvature
tensor field associated with the Levi-Civita connection ∇ of M , from (4), a direct
expansion gives that

R(X, Y, fZ,W ) + R(X,Y, Z , fW)

=
s∑

α=1

{Xg(fY, fZ)ηα(W ) − g(fY, fZ)g(fX,W )

− Xηα(Z)g(fY, fW) + ηα(Z)g(∇X f 2Y,W )

+ g(fX, f ∇Y Z)ηα(W ) − ηα(∇Y Z)g(fX, fW)

−Yg(fX, fZ)ηα(W ) + g(fX, fZ)g(fY,W )

+Yηα(Z)g(fX, fW) − ηα(Z)g(∇Y f 2X,W )

− g(fY, f ∇X Z)ηα(W ) + ηα(∇X Z)g(fY, fW)

+ g( f ∇XY, fZ)ηα(W ) − g( f ∇Y X, fZ)ηα(W )

− ηα(Z)g( f ∇XY, fW) + ηα(Z)g( f ∇Y X, fW)}, (5)
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for any X, Y, Z ,W ∈ TM. Therefore, if we choose these four vector fields orthogonal
to the structure vector fields, from (5) we easily prove the following proposition.

Proposition 6 Let M be a para-S-manifold. Then,

R(X, Y, Z ,W ) + R(X, Y, fZ, fW)

= s{g(X, Z)g(Y, fW) − g(X,W )g(Y, fZ)

+ g(X, fZ)g(Y,W ) − g(X, fW)g(Y, Z)}, (6)

for any vector fields X, Y, Z ,W orthogonal to the structure vector fields.

On the other hand, by using the fact of being the structure vector fields of M Killing
vector fields, from (4) again, we deduce that

∇Xξα = − f X, (7)

for any X ∈ TM and any α = 1, . . . , s. Therefore, R(X,Y )ξα = (∇Y f )X − (∇X f )Y ,
for any X, Y ∈ TM and any α = 1, . . . , s. Thus, from (4), we get

R(X,Y )ξα =
s∑

β=1

{
ηβ(X) f 2Y − ηβ(Y ) f 2X

}
. (8)

If we consider now an f -basis {Ei , f Ei , ξα}{1≤i≤n,1≤α≤s} of TM, the Ricci tensor
field of M is defined by

Ric(X,Y ) =
n∑

i=1

{R(Ei , X, Y, Ei ) − R( f Ei , X, Y, f Ei )}

+
s∑

α=1

R(ξα, X, Y, ξa), (9)

for any X, Y ∈ TM. So, by using (8) we obtain

Ric(X, ξα) = −2n
s∑

β=1

ηβ(X), (10)

for any X ∈ TM and α = 1, . . . , s. Moreover, taking into account (6) and (8) again
and by using the symmetries of the curvature tensor field, we have

Ric(Ei , Ei ) = R(Ei , fEi , E j , fE j ) − s(2n − 1) (11)

and
Ric(fEi , fEi ) = −Ric(Ei , Ei ), (12)
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for any i = 1, . . . , n. Denoting by r the scalar curvature of M and, following [14], r∗
by

r∗ =
n∑

i=1, j

{R(E j , Ei , fEi , fE j ) − R(fE j , Ei , fEi , f 2E j )}

−
n∑

i, j=1

{R(E j , fEi , f 2Ei , fE j ) − R(fE j , fEi , f 2Ei , f 2E j )}

= 2
n∑

i, j=1

{R(E j , Ei , fEi , fE j ) − R(fE j , Ei , fEi , E j )},

we show that r + r∗ + 4ns2 = 0. This formula was proved in [21] for para-Sasakian
manifolds (case s = 1).

4 η-Einstein Para-S-manifolds

From (10), we easily deduce that Ric(ξα, ξβ) = −2n, for any α, β = 1, . . . , s.
Consequently,

Theorem 2 For s ≥ 2, there are not Einstein para-S-manifolds.

This motivates, as in the case of Sasakian geometry, to introduce the notion of
η-Einstein para-S-manifold.

Definition 2 A para-S-manifold M is said to be an η-Einstein manifold if its Ricci
tensor field satisfies

Ric = ag + b
s∑

α=1

ηα ⊗ ηα + (a + b)
s∑

α �=β

ηα ⊗ ηβ, (13)

where a and b are differentiable functions on M .

From this definition, it follows that Ric(ξα, ξβ) = a + b, for any α, β = 1, . . . , s.
In particular, from (10), we have that a + b = −2n. Moreover, by using (13) and
an f -basis, we deduce that the scalar curvature of M is given by r = tr(Ric) =
(2n + s)a + sb. On the other hand, observe that, when s = 1, that is, if M is a para-
Sasakian manifold, (13) reduces to g(X, Y ) = ag(X,Y ) + bη(X)η(Y ), which was
introduced in [21].

Example 2 It is straightforward to show that R2n+s with the para-S-structure given in
Example 1 is an η-Einstein manifold with functions a = 0 and b = −2n. To this end,
we put

Ei = 1√
2
(Xi + Yi ), 1 ≤ i ≤ n,

and we have that {E1, . . . , En, fE1, . . . , fEn, ξ1, . . . , ξs} is an f -basis.

123



L. M. Fernández, A. Prieto-Martín

Now, we can prove

Proposition 7 Let M be a (2n+s)-dimensional η-Einstein para-S-manifold. If n > 1,
then the functions a, b, and r are constant functions.

Proof Given X ∈ TM, since a + b = −2n, we deduce that Xa = −Xb. Moreover,
Xr = (2n + s)Xa + sXb = −2nXb. On the other hand, from Corollary 54 in [15],
we know that dr = 2divRic. By using an f -basis, the definition of the divergence of
the Ricci tensor field (see [15], p. 86) and (13), we obtain that

1

2
Xr = (divRic)X = Xa +

s∑

α=1

(ξαb)ηα(X),

where we have used that a + b is a constant function. Consequently,

(n − 1)Xb = −
s∑

α=1

(ξαb)ηα(X).

Putting X = ξβ, β ∈ {1, . . . , s}, we get from the latter formula that ξβb = 0, for
any β and so, if n > 1, Xb = 0, that is, b is a constant function. Therefore, a and r
are constant functions too and we complete the proof. ��

The Definition 2 is motivated by the following theorem.

Theorem 3 Let M be a (2n + s)-dimensional η-Einstein para-S-manifold. If we
assume that the foliation generated by the structure vector fields is regular, then M
projects onto an Einstein para-Kaehler manifold.

Proof First, notice that ξ1, . . . , ξs span an s-dimensional foliation ν on M . Indeed,
from (i) of Proposition 4, we have that [ξα, ξβ ] = 0, and hence, that foliation is an
integrable one. The assumption that such foliation is regular ensures that the leaf space
is a 2n-dimensionalmanifold. Let us denote byπ the global submersionπ : M −→ N .

Since each ξα is a Killing vector field, we get that ν is a Riemannian foliation. Thus,
the semi- Riemannian metric g projects onto a semi-Riemannian metric G on N and
π : (M, g) −→ (N ,G) is a semi-Riemannian submersion, that is

g(X, Y ) = G(π∗X, π∗Y ) ◦ π, (14)

for any X, Y basic vector fields on M (following the terminology of [16]). Since
Lξα f = 0, for any α = 1, . . . , s, f is also a projectable tensor, so that it projects onto
a well-defined tensor field J on N such that

π∗ ◦ f = J ◦ π∗. (15)

Using (14) and (15), it is easy to check that J 2 = I d, J �= I d and thatG(J X̃ , J Ỹ )+
G(X̃ , Ỹ ) = 0, for any X̃ , Ỹ ∈ TN. Next, if X is a vector field on M such that X is
orthogonal to ν and f X = X , we deduce that
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[ξα, X ] = [ξα, fX] = f [ξα, X ]

and this proves that [ξα, D+] ⊂ D+, where D+ denotes the eigendistribution of f
corresponding to the eigenvalue 1. Similarly, we obtain that [ξα, D−] ⊂ D− for each
α = 1, . . . , s. Thus, the distributions D+ and D− project onto two distributions D

′+
and D

′− on N which coincide with the eigendistributions of J corresponding to the
eigenvalues +1 and -1, respectively. It follows that dimD

′+ = dimD+ = n. Therefore,
(N , J,G) is an almost para-Hermitian manifold.

Moreover, let X̃ , Ỹ ∈ TN and let X, Y be basic vector fields on M such that
π∗X = X̃ and π∗Y = Ỹ . Then, denoting by ∇̃ the Levi-Civita connection associated
with G,

(∇̃X̃ J )Ỹ = π∗((∇X f )Y )h = 0

and (N ,G, J ) is a para-Kaehler manifold, where h is denoting the horizontal compo-
nent.

Now, we recall the O’Neill equation relating the Ricci tensor field Ric of the total
space and that one˜Ric of the base space of a semi-Riemannian submersion (see [7,16]
for more details). This equation is

Ric(X,Y ) =˜Ric(π∗X, π∗Y ) ◦ π + 1

2
(g(∇X N , Y ) + g(∇Y N , X))

−2
n∑

i=1

g(AX Ei , AY Ei ) + 2
n∑

i=1

g(AX f Ei , AY f Ei )

−
s∑

α=1

g(Tξα X, TξαY ), (16)

where

– {Ei , f Ei , ξα}{i=1,...,n, α=1,...,s} is an f -basis;
– A and T are the O’Neill tensor fields (see [16])

– N =
s∑

α=1

Tξα ξa .

However, since the leaves of ν are totally geodesic (because ∇ξa ξβ = 0, for any
α, β), in this case, we have T ≡ 0 and hence, N ≡ 0. In addition, for any X,Y
orthogonal to ν, we have [16]:

AXY = −AY X = 1

2

s∑

α=1

ηα([X, Y ])ξα = −
s∑

α=1

dηα(X,Y )ξα.

Thus, putting X̃ = π∗X and Ỹ = π∗Y , (16) becomes

Ric(X,Y ) =˜Ric(X̃ , Ỹ ) ◦ π + 2sg(X, Y ).
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From the fact of being M an η-Einstein manifold, Ric(X,Y ) = ag(X,Y ) (observe
that X and Y are orthogonal to each ξα). Then, the above relation implies that

˜Ric(X̃ , Ỹ ) ◦ π = Ric(X, Y ) − 2sg(X, Y )

= (a − 2s)g(X, Y ) = (a − 2s)G(X̃ , Ỹ ) ◦ π

and, therefore, (N ,G) is an Einstein manifold. This completes the proof. ��
For a m-dimensional Riemannian manifold (M, g), Weyl [19,20] introduced a

generalized curvature tensor field which vanishes whenever the metric is (locally)
conformally equivalent to a flat metric. For this reason, he called it the conformal
curvature tensor of the metric. Schouten [18] showed that for m > 3, the converse
is true. If m ≥ 3, the Weyl conformal curvature tensor is defined as a map C :
TM × TM × TM −→ TM such that

C(X,Y )Z = R(X,Y )Z

− 1

m − 2
{Ric(Y, Z)X + g(Y, Z)QX

−Ric(X, Z)Y − g(X, Z)QY }
+ r

(m − 1)(m − 2)
{g(Y, Z)X − g(X, Z)Y }, (17)

where Q is denoting the Ricci operator defined by g(QX, Y ) = Ric(X, Y ), for any
X,Y ∈ TM.

In this context, a (2n + s)-dimensional para-S-manifold M is said to be ξ -
conformally flat if the linear operator C(X,Y ) is an endomorphism of fTM, that is, if

C(X,Y )fTM ⊆ fTM.

Equivalently, ξ -conformally flatness means that the projection of the operator
C(X, Y )fTM onto the distribution spanned by the structure vector fields is zero. That
is, if C(X, Y )ξα = 0, for any X,Y ∈ TM and any α = 1, . . . , s.

Now, we can prove the following theorem.

Theorem 4 Let M be a (2n+s)-dimensional η-Einstein para-S-manifold with n ≥ 1.
Then

(i) If s = 1, that is, is M is a para-Sasakian manifold, M is ξ -conformally flat.
(ii) If s = 2, M is ξ -conformally flat if and only if a = −4n.
(iii) If s > 2, M cannot be ξ -conformally flat.

Proof Since M is η-Einstein, we know that a + b = −2n and r = (2n + s)a + sb =
2n(a − s). Furthermore, from (13),

QX = aX + b
s∑

α=1

ηα(X)ξα + (a + b)
∑

α �=β

ηα(X)ξβ, (18)

for any X ∈ TM.
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Firstly, if s = 1, the above formula reduces to QX = aX + bη(X)ξ . Moreover,
from (8), we deduce that R(X,Y )ξ = η(X)Y − η(Y )X . Then, a direct expansion
gives that C(X,Y )ξ = 0, for any X,Y ∈ TM and M is ξ -conformally flat.

If s = 2, from (8) and (18), since r = 2n(a − 2), we compute that

C(X, Y )ξ1 = a + 2b

2n

{
1

2n + 1
(η1(Y )X − η1(X)Y )

+ η1(X)η2(Y )ξ2 − η2(X)η1(Y )ξ2} ,

and

C(X,Y )ξ2 = a + 2b

2n

{
1

2n + 1
(η2(Y )X − η2(X)Y )

+ η2(X)η1(Y )ξ1 − η1(X)η2(Y )ξ1} ,

for any X,Y ∈ TM. Consequently, M is ξ -conformally flat if and only if a = −4n
(and b = 2n).

Finally, if s > 2, a long straightforward computation gives that, using (8) and (18)
again,

C(X,Y )ξ1

=
(
1 + 2a + b

2n + s − 2
+ r

(2n + s − 2)(2n + s − 1)

)
(η1(X)Y − η1(Y )X)

+ s − 2

2n + s − 2

s∑

α=2

(ηa(X)Y − ηα(Y )X)

+2 − s + a + 2b

2n + s − 2

s∑

α=2

(η1(X)ηα(Y )ξα − ηa(X)η1(Y )ξα)

+ 2 − s

2n + s − 2

(
s∑

α=2

(ηa(X)η1(Y ) − η1(X)ηα(Y )

)
ξ1

−
s∑

β,γ=2
β �=γ

(ηβ(X)ηγ (Y )ξγ − ηβ(X)ηγ (Y )ξβ)

− a + b

2n + s − 2

s∑

β,γ=2
β �=γ

(ηβ(X)η1(Y )ξγ − η1(X)ηβ(Y )ξγ ),

for any X, Y ∈ TM. Consequently, M cannot be ξ -conformally flat. ��
In Sasakian geometry, it is known that ξ -conformally flatness is equivalent to be

η-Einstein (see [6]). Now, we can prove the same result for para-Sasakian manifolds.

Theorem 5 A para-Sasakian manifold M is ξ -conformally flat if and only if an η-
Einstein manifold.
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Proof We only have to prove that ξ -conformally flatness implies to be η-Einstein.
But, from (8), (10), (17) and since s = 1, we deduce

QX =
(
1 + r

2n

)
X +

(
−1 − 2n − r

2n

)
η(X)ξ,

for any X ∈ TM. Thus, M is an η-Einstein manifold. ��
Finally, for s = 2 we have

Theorem 6 Let M be a ξ -conformally flat para-S-manifold with two structure vector
fields. Then, M is an η-Einstein manifold with a = −4n.

Proof Firstly, from (8), (10), (17) and since C(ξα, ξβ)ξβ = 0, we deduce that r =
−4n(2n + 1). Now, aplying the same formulas, C(X, ξ1)ξ1 = 0 implies that

QX = −4nX + 2n(η1(X)ξ1 + η2(X)ξ2)

−2n(η1(X)ξ2 + η2(X)ξ1),

for any X ∈ TM. This completes the proof. ��
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