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Resumen
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DOI:10.1016/j.difgeo.2011.11.008

e B.-Y. Chen, A. Prieto-Martin and Xianfeng Wang, “Lagragian subman-
ifolds in complex space forms satisfying an improved equality involving
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e .M. Fernandez and A. Prieto-Martin, “On n-Einstein para-S-mani-
folds”. Bull. Mal. Math. Sci. So. (2015);
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Abstract

In this memory we present five papers which have been published as a result of
our researching, part of which has been done at the Department of Geometry
and Topology of the University of Seville, thanks to a predoctoral grant of
“Fundacién Camara” (1/10/2010 - 31/12/2013) under the supervision of Drs.
Luis M. Fernédndez Fernandez and Pablo S. Alegre Rueda.

These papers are developed in the subject of Semi-Riemannian Geometry
being them the following;:

e A. Carriazo, J. Barrera, L.M. Fernandez and A. Prieto-Martin, “The
Maslov form in non-invariant slant submanifolds of S-space-forms”.
Ann. Mat. Pura Appl., 191 (2012), 803-818;

DOI 10.1007/s10231-011-0207-0

e B.-Y. Chen and A. Prieto-Martin, “Classification of Lagrangian sub-
manifolds in complex space forms satisfying a basic equality involving
d(2,2)”. Diff. Geom. Appl., 30(1) (2012), 107-123;
DOI:10.1016/j.difgeo.2011.11.008

e B.-Y. Chen, A. Prieto-Martin and Xianfeng Wang, “Lagrangian sub-
manifolds in complex space forms satisfying an improved equality in-
volving 6(2,2)”. Publ. Math. Debrecen, 82(1) (2013), 193-217.

e A.M. Fuentes, L.M. Fernandez and A. Prieto-Martin, “Generalized S-
space forms”. Publ. Inst. Math. (Beograd) N.S., 94(108) (2013),
151-161;

DOI:10.2998/PIM1308151P

e .M. Fernandez and A. Prieto-Martin, “On n-Einstein para-S-mani-
folds”. Bull. Mal. Math. Sci. So. (2015);
DOI 10.1007/s40840-015-0156-7



Introduction

This thesis consists of a compendium of papers, so, according to the current
regulations for this kind of thesis, we divide it in two different parts.

The first one is an introduction with three different sections; Goals, where
we set up our work historically, motivate its study and establish our objec-
tives. In the second section we summarize our main results and in the third
one we talk about some open problems.

The second part consists of five published papers:

e [A1] B.-Y. Chen and A. Prieto-Martin, “Classification of Lagrangian
submanifolds in complex space forms satisfying a basic equality involv-
ing §(2,2)”. Diff. Geom. Appl., 30(1) (2012), 107-123;
DOI:10.1016/j.difgeo.2011.11.008

e [A2] B.-Y. Chen, A. Prieto-Martin and Xianfeng Wang, “Lagrangian
submanifolds in complex space forms satisfying an improved equality
involving 6(2,2)”. Publ. Math. Debrecen, 82(1) (2013), 193-217.

e [A3] A. Carriazo, J. Barrera, .M. Ferndndez and A. Prieto-Martin,
“The Maslov form in non-invariant slant submanifolds of S-space-forms”.
Ann. Mat. Pura Appl., 191 (2012), 803-818;

DOIT 10.1007/s10231-011-0207-0

e [A4] AM. Fuentes, L.M. Ferndndez and A. Prieto-Martin, “General-
ized S-space forms”. Publ. Inst. Math. (Beograd) N.S., 94(108)
(2013), 151-161;

DOI:10.2998/PIM1308151P

e [A5] L.M. Ferndndez and A. Prieto-Martin, “On n-Einstein para-S-
manifolds”. Bull. Mal. Math. Sci. So. (2015);
DOI 10.1007/s40840-015-0156-7

They can be classify in two blocks, the so called [A1] and [A2] are referred
to the Submanifold Theory in Complex Space-forms and the rest correspond



to the study of manifolds with an f-structure (in the sense of K.Yano [52]),
in particular of those defined as S-manifolds by D.E. Blair [7].

1. Goals.

1.1 Papers [A1l] and [A2]

The study of submanifolds of a differential manifold is, from the very begin-
ning of Differential Geometry, one of the most studied topics and additionally,
one of those which has produced more interesting results and applications.
Furthermore, the study of submanifolds which present an homogeneous be-
havior with respect to the structure of the ambient manifold has become an
interesting research subject.

In particular, if the ambient space is an almost-Hermitian manifold, sub-
manifolds which present this behaviour with respect to the almost-complex
structure J are widely studied. So that, we can consider the so called com-
plex submanifolds, where JX is tangent for any tangent vector field X or the
totally real submanifolds, where JX is normal for any tangent vector field
X. Among these ones, Lagrangian submanifolds, whose dimension is the half
dimension of the ambient manifold, play an specially important role. Both
complex submanifolds and totally real submanifolds were generalized by B.-
Y. Chen [20, 21] when he introduced the notion of slant submanifold, where
the angle 6 between J, X,, and T),M is constant for any tangent vector field X
and any point p € M. Complex submanifolds and totally real submanifolds
are slant submanifolds with slant angles 8 = 0 and 6 = 7/2, respectively.

Lagrangian submanifolds appear naturally in the context of classical me-
chanics and mathematical physics. For instance, the systems of partial differ-
ential equations of Hamilton-Jacobi type lead to the study of Lagrangian sub-
manifolds and foliations in the cotangent bundle. Furthermore, Lagrangian
submanifolds play some important roles in supersymmetric field theories as
well as in string theory.

In Differential Geometry, theorems which relate intrinsic and extrinsic
curvatures always play important roles. Intrinsic and extrinsic invariants are
very powerful tools to study submanifolds of Riemannian manifolds and to
establish relationships between them is one of the most fundamental problems
in submanifolds theory. In this context, B.-Y. Chen [23, 24, 25] proved
some basic inequalities for submanifolds of a real space-form. Corresponding
inequalities have been obtained for different kinds of submanifolds (invariant,
anti-invariant, slant) in ambient manifolds endowed with different kinds of
structures (mainly, real, complex and Sasakian space-forms).



The famous Nash embedding theorem published in 1956 [43] was aiming
for the opportunity to use extrinsic help in the study of (intrinsic) Rieman-
nian geometry, since Riemannian manifolds could be regarded as Riemannian
submanifolds. However, this hope had not been materialized yet according

o [37]. The main reason for this was the lack of control of the extrinsic
properties of the submanifolds by the known intrinsic invariants. In or-
der to overcome such difficulties as well as to provide answers to an open
question on minimal immersions, B.-Y. Chen [22], introduced in the early
1990s new types of Riemannian invariants, denoted by §(nq,...,ny). For
an n-dimensional submanifold M™ in a real space form R™(c) of constant
sectional curvature ¢, he proved the following sharp general inequality,

n’(n+k—1- Zn])HQ 1< n—1)
(1)

d(ny,...,ng) <

HM@

2(n+k— > ny)

where H? is the squared mean curvature of M™.

An immersion satisfying the equality case of inequality (1) at every point
is called d(nq,...,ng)-ideal. Roughly speaking, an ideal immersion is an
immersion which produces the least possible amount of tension from the
ambient space.

It is known that inequality (1) holds for Lagrangian submanifolds in com-
plex space-forms of constant holomorphic sectional curvature 4c¢ as well (cf.
[26, 27, 30]). Also, B.-Y. Chen proved in [28, Theorem 1] that every ideal
Lagrangian submanifold of a complex space form is a minimal submanifold.
In this context, 0(2)-ideal submanifolds in real and complex space-forms have
been studied by many geometers since the invention of -invariants.

In 2000, it was proved by B.-Y. Chen [26] that every Lagrangian subman-
ifold M? of a complex space form M?(4¢) of constant holomorphic sectional
curvature 4c¢ satisfies o5

§(2,2) < §H2 + 8c, (2)
where §(2,2) is a d-invariant of M?.

Furthermore, it was proved in [29] that every Lagrangian submanifold M?®
of a complex space form M ®(4c) of constant holomorphic sectional curvature
4c satisfies the following optimal inequiality:

5(2,2) < %HQ + 8. (3)

Thus, in papers [A1] and [A2] we completely classify Lagrangian subman-
ifolds of complex space forms M?®(4c), for ¢ = 0,1, —1, satisfying the equality
case of the inequality (2) and we also classify Lagrangian submanifolds of
M?(4c) satisfying the equality case of the optimal inequality (3).
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1.2 Paper [A3]

A (2m + s)-dimensional Riemannian manifold (M, g) endowed with an f-
structure f (that is, a tensor field f of type (1,1) and rank 2m satisfying
2+ f =0 (see [52]) is said to be a metric f-manifold if, moreover, there
exist s global vector fields &, ..., & on M (called structure vector fields) such
that, if ny,...,ns are the dual 1-forms of &, ..., &, then

fga:O; 77a0f:0; f2:_[+zna®5a; (4)
a=1
g(X.Y) = g(f X, fY)+ > na(X)na(Y), (5)
a=1

for any X,Y tangent to M. From the definition, the metric g satisfies that

for any X,Y. Let F be the 2-form on M defined by F(X,Y) = g(X, fY).

Since f is of rank 2m, then nmy A --- Ang A F'™ # 0 and, particularly, M is
orientable. The f-structure f is said to be normal if

[f ] 4+2) &a@dn, =0,
a=1

where [f, f] denotes the Nijenhuis tensor of f.

A metric f-manifold is said to be a K-manifold [7] if it is normal and
dF = 0. In a K-manifold M , the structure vector fields are Killing vector
fields [7]. Furthermore, a K-manifold is called an S-manifold if F' = dn,, for
any «. Note that, if s = 0, a K-manifold would correspond to a Kaehlerian
manifold and, for s = 1, a K-manifold is a quasi-Sasakian manifold and an
S-manifold is a Sasakian manifold. When s > 2, non-trivial examples can be
found in [7, 38]. Moreover, the Riemannian connection V of an S-manifold

satisfies (see [7]), for any tangent vector fields X,Y and any o =1,...,s:
Viéa = —fX, (7)
(VxH)Y =D (9Uf X, FY)ba + 1a(Y) £2X). (8)
a=1

A plane section m on a metric f-manifold M is said to be an f-section
if it is determined by a unit vector X, normal to the structure vector fields
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and fX. The sectional curvature of m is called an f-sectional curvature.
An S-manifold is said to be an S-space-form if it has constant f-sectional
curvature ¢ and then, it is denoted by M(c). In such case, the curvature

tensor field R of M(c) satisfies [40]

S

R(X,Y,Z,W) = > (g(fX, fW)na(Y')ns(Z) = g(f X, fZ)na(Y )ns(W)+

a,f=1
+9(fY, FZ2)na(X)ns(W) — g(fY, fW)na(X)ns(Z))+

I (X SNV, £2) ~ 9K T2)a(TY, S+

(F(X,W)F(Y, Z) = F(X, Z)F(Y,W) = 2F(X,Y)F(Z,W)), (9)

+

c— S

for any tangent vector fields XY, Z, W.

On the other hand, for totally real submanifolds of almost Hermitian
manifolds, one can consider the so-called Maslov form, defined as the dual
form of the vector field JH, being J the almost Hermitian structure and
H the mean curvature vector of the submanifold, which has been widely
studied (for example, [8, 18, 19, 48] can be consulted). Thus, in [48], it
is proved that any Lagrangian submanifold of C™ has closed Maslov form
and, moreover, that the well-known Whitney sphere is the only compact
Lagrangian submanifold of C"™ with conformal Maslov form.

However, there are not too many papers devoted to study the Maslov form
in anti-invariant submanifolds of metric almost contact manifolds or, more in
general, of metric f-manifolds, considering such form as the dual form of the
vector field ¢H (resp. fH), where ¢ (resp., f) denotes the almost contact
structure (resp., the f-structure).

One of our main goals of paper [A3] is to deal with non-invariant slant
submanifolds of S-manifold. In such submanifolds, we define the Maslov
form as the dual 1-form of the tangent component of the vector field fH and
our purpose is to find conditions for it to be closed and conformal in the case
of being the ambient S-manifold an S-space-form, that is, of having constant
f-sectional curvature.

1.3 Paper [A4]

In Riemannian geometry, it is an interesting problem to analyze what kind of
Riemannian manifolds may be determined by special pointwise expressions
for their curvatures. For instance, it is well known that the sectional cur-
vatures of a Riemannian manifold determine the curvature tensor field com-
pletely. So, if (M,g) is a connected Riemannian manifold with dimension

b}



greater than 2 and its curvature tensor field R has the pointwise expression
R(X,Y)Z = Mg(X. 2)Y — (Y, Z)X}.

where \ is a differentiable function on M, then M is a space of constant
sectional curvature, that is, a real-space-form and \ is a constant function.

Further, when the manifold is equipped with some additional structure,
it is sometimes possible to obtain conclusions from the special form of the
curvature tensor field for this structure too. Thus, an almost-Hermitian
manifold (M, J, g) is said to be a generalized complex-space-form [51] if
its curvature tensor satisfies

R(X,Y)Z = fi{g(Y, 2)X — g(X, 2)Y'} +

+ 2 {g(X, J2)JY — g(Y,JZ)JX +29(X,JY)JZ}, (10)

where f; and fo are differentiable functions on M. This name derives from
the fact that, when M is a complex-space-form, that is, a Kaehlerian manifold
of constant holomorphic curvature equal to ¢, the curvature tensor field of
M satisfies (10) with f; = fo = ¢/4.

Since Sasakian-spaces-forms play a similar role in contact metric geometry
to that of complex-space-forms in complex geometry, P. Alegre, D.E. Blair
and A. Carriazo have defined and studied generalized Sasakian-space
forms [1] as those almost-contact metric manifolds (M, ¢, &, n, g) whose cur-
vature tensor field satisfies

R(X,Y)Z = fi{g(Y, 2)X — g(X, Z)Y'} +

+/2{9(X,02)0Y —g(Y,02)¢X + 29(X, 9Y)9Z} +
+ {n(X)n(2)Y —=n(Y)n(2)X + g(X, 2)n(Y)E — g(Y, Z)n(X)g},  (11)

f1, f2, f3 being differentiable functions on M. If M is actually a Sasakian-
space-form, that is a Sasakian manifold with constant ¢-sectional curvature
equal to ¢, then: X

flzcjl_g; f2:f3zc4 .

For these reasons, we consider that it is interesting to introduce a notion
of generalized S-space-form on metric f-manifolds. We observe that this
work was made in [15] for metric f-manifolds with two structure vector fields,
giving some interesting examples. In paper [A4], we present the definition for
any number of structure vector fields. To this end, we have followed the same
procedure as in almost complex and almost contact cases, that is, we have

substituted the constants in the expression of the curvature tensor field of
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an S-space-form (an S-manifold of constant f-sectional curvature) obtained
in [40] by certain differentiable functions on the manifold. So, S-space-forms
are natural examples of generalized S-space-forms. Furthermore, we check
that C-space-forms are also generalized S-space-forms.

1.4 Paper [A5]

Nowadays, one of the topics which has many applications and it is related to
some physical problems (the nice survey [20] can be consulted for more de-
tails)is the study of paracomplex structures. When, moreover, a compatible
pseudo-Riemannian metric is considered, we have the para-Hermitian and
para-Kaehler manifolds and their variants.

On the other hand, (almost) paracontact manifolds are semi-Riemannian
manifolds which can be viewed as the odd dimensional counterpart of (al-
most) paracomplex manifolds. They were introduced by Sato in [49] and
Kaneyuki and Williams in [39]. Recently, there seems to be an increasing
interest in paracontact geometry and, in particular, in para-Sasakian mani-
folds, due to its links to more consolidated theory of para-Kaehler manifolds
and to their role in geometry and mathematical physics (see, for instance,
[31, 32, 33]).

Actually, the notion of almost paracontact structure is an analogue of
that one of almost contact structure and is closely related to the almost
product structure. In this context, Bucki and Miernowski defined in [11]
the notion of an almost r-paracontact structure which generalizes almost
paracontact structure in a similar way to f-structures of co-rank greater
than one generalizes almost contact structures. They also started the study
of almost r-paracontact manifolds equipped with a Riemannian compatible
metric [9, 10, 42]

So, it is interesting to study what happens if instead of a Riemannian
metric we consider a pseudo-Riemannian metric and this is the goal of paper
[A5]. Zamkovoy in [53] has obtained a complete arrangement of all the theory
in the case of paracontact manifolds and recently, Brunetti and Pastore have
done a similar work in the context of indefinite globally framed f-manifolds
in [12]. For these reasons, we want to introduce in this work the notion of
para-S-manifold and begin the study of some of its properties. The name
is chosen to point out that it is the analogue of S-manifolds introduced by
Blair [7] in the setting of f-structures.



2. Main results.

In the paper [Al], we study Lagrangian submanifolds in a 5-dimensional
complex space form M?(4c), where this inequality (2) is verified.

By definition, a Lagrangian submanifold M?® in M?°(4c) is 6(2,2)-ideal
if and only if it satisfies the equality sign of (2) identically. A §(2,2)-ideal
submanifold in M?(4c) is called proper if it is not a 0(2)-ideal Lagrangian
submanifold in M5 (4c).

Our purpose is firstly, to classify proper §(2, 2)-ideal Lagrangian subman-
ifolds in C®, C'P?(4) and CH?(—4). Now, we present some of the main and
most original theorems of this work.

For C°, we prove:

Theorem. ([Al] 5.1) Let L : M® — C® be a Lagrangian immersion into the
complex Euclidean 5-space C®. Then L is a proper §(2,2)-ideal Lagrangian
immersion if and only if L is locally congruent to one of the following im-
MErsions:

(1) the direct product of an open interval I of the real line in C and two non-
totally geodesic Lagrangian minimal immersions ¢; : M? — C?(i = 1,2),
i.e.,

L:1x M} xM;—CxC?>xC?% (t,p,q) — (t,01(p), 92(q)) (12)

(2) a Lagrangian immersion defined by
L1 x M x, My — C* x C% (t,p,q) = (¢(p),1¢(q)), (13)

where ¢ : M? — C? is a non-totally geodesic Lagrangian minimal immersion
and ¢ : M} — S5(1) C C3? is a non-totally geodesic Legendrian minimal
immersion of M3 into S°(1).

For C'P°(4), we have:

Theorem. ([Al] 6.1) Let L : M® — CP°(4) be a Lagrangian immersion.
Then M?® is a proper §(2,2)-ideal Lagrangian submanifold if and only if L is
locally congruent to mo L, where w : SY(1) — C'P5(4) is the Hopf fibration,
L: M5 — S'(1) c C® is given by

L(t,p,q) = (cost)p1(p) + (sint)pa(q), t € R, (14)

and ¢; : M? — S°(1) € C3(i = 1,2) are non-totally geodesic Legendrian
minimal immersions into the Sasakian S°(1).

Finally, for CH®(—4), we prove:



Theorem. ([A1]7.1) Let L : M® — CH5(—4) be a Lagrangian immersion of
M? into CH?(—4). Then M? is a proper §(2,2)-ideal Lagrangian submanifold
of CH®(—4) if and only if L is locally congruent to moL, where 7 : HI'(—1) —
CH5(—4) is the Hopf fibration and either

(a) L: M5 — HM(=1) C CS is given by

L(t,p,q) = (cosht)p(p) + (sinht)i(q), t € R, (15)

and ¢ : M} — H°(—1) € C?} and ¢ : M3 — S°(1) € C3 are non-
totally geodesic Legendrian minimal immersions into the Sasakian H7(—1)
and S°(1), resp., or

(b) L: M> — HI*(—1) C CS$ is given by

L{t, @y, 2,w) = (sinht + ¢! (u(z, ) + v(z,w) - 1),

sinht -+ ¢! (u(e,y) + v(z, w)), eV (@, ), (2, 0)),
(16)
W M2 — C? (i = 1,2) are non-totally geodesic minimal Lagrangian immer-
sions, u,v are complex-valued functions satisfying the following PDE systems,
respectively:
(u:c:c - {(ln El)z + é}ﬂx — (ln El)yuy — E12,
1 .
ttey = (0 By )yt +{ (0 By = 5 fu,
i

kuyy = —{(lnEl)x + é}’% + (In Ey),u, — Ef,
1

(vzz = {(ln Ey) .+ EL}UZ — (In Ey) v, — E3,

2
2 .
Vzw = (11’1 E2>1UUZ + {(111 EZ)Z - é}vw’
Y R N
\ E2

and the metric tensors of M3, M3 are given respectively by
g1 = E{(da® + dy?), go = E3(d2* + dw?)
for some positive functions Ey = Ei(x,y) and FEy = Ey(z,w).

In addition, it was proved by B.-Y. Chen and F. Dillen in 2011 [30]
that every Lagrangian submanifold M® of a complex space form M?®(4c) of
constant holomorphic sectional curvature 4c satisfies the optimal inequality
(3). So, in paper [A2], we also classify Lagrangian submanifolds of M?®(4c)
satisfying this improved inequality.

First, we get:



Theorem. ([A2] 6.1) Let M be an improved §(2,2)-ideal Lagrangian sub-
manifold in C°. Then it is one of the following Lagrangian submanifolds:

(a) a 6(2,2)-ideal Lagrangian minimal submanifold;
(b) an H-umbilical Lagrangian submanifold of ratio 4;
(¢) a Lagrangian submanifold defined by
e%itan_l u3/(c2—p3)
L(,U,,UQ,...,U%>: — . ¢<
/2T — 2+ ip

where ¢ is a positive real number and ¢(us, ..., u,) is a horizontal lift
of a non-totally geodesic 6(2)-ideal Lagrangian minimal immersion in

CPY(4).

UQ,...,U,n), (17)

On the other hand, we obtain:

Theorem. ([A2] 7.1) Let M be an improved 6(2,2)-ideal Lagrangian subman-
ifold in C'P°(4). Then it is one of the following Lagrangian submanifolds:

(1) a d(2,2)-ideal Lagrangian minimal submanifold;
(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

Llpsa, o) = o (Vi 0, (/@ =@ == i), (19)

where ¢ is a positive real number, ¢ : N* — S°(1) C C® is a horizontal
lift of a non-totally geodesic §(2)-ideal Lagrangian minimal immersion

in CP*(4), and 0(p) satisfies

g 1
dp 23/t —p2 -1

(19)

Finally, we have:

Theorem. ([A2] 8.1) Let M be an improved 6(2,2)-ideal Lagrangian subman-
ifold in CH®(—4). Then M is one of the following Lagrangian submanifolds:

(i) a d(2,2)-ideal Lagrangian minimal submanifold;

(ii) an H-umbilical Lagrangian submanifold of ratio 4;

10



(i)

a Lagrangian submanifold defined by
1 - 5 . 3
L(/J,’LLI,...,U4) - E (\/ﬁ619¢<UQ,...,U4)7 _19( H—=p 8 —c? — 1M3)>7
(20)

where ¢ is a positive number, ¢ : N* — H}(—=1) C C? is a horizontal
lift of a non-totally geodesic 5(2) tdeal minimal Lagrangian immersion

in CH*(—4), and 0(t) satisfies 92 = =1/1—p2—cpt

a Lagrangian submanifold defined by

L(p,uy, ... uy) = 1( O — 3+ e — %),\/ﬁeie¢(u2,...,u4)>,

’ (21)

where ¢ is a positive number, ¢ : N* — S%(1) € C® is a horizontal lift

of a non-totally geodesic 5( ) 1deal minimal Lagmngz’an Immersion in
CP*(4), and 0(t) satisfies Z =Vl A

a Lagrangian submanifold defined by

1 1
L(t e = 2t i h 2t — - =
(b, ) cosht—isinht< —|—w—|—1<cos W) 4)’
1
U, 2t +w + i(cosh2t—(1/),¢> —1—1)) ,

(22)
where ¥ (uy, . .., uy) is a non-totally geodesic §(2)-ideal Lagrangian min-
imal immersion in C* and up to a constant w(uy, ..., uy) is the unique

solution of the PDE system: w,;= 2 <wuj, i@Z)>, 71=1,2,3,4;

a Lagrangian submanifold defined by

L(t,ul,...,u4) =

<2t+w+i<cosh2t—<w,w)—1),

cosht —isinht 4

Py, 1o, 2t+w+i(cosh2t—<1/z,¢)+1 ,

(23)
where ¥ = (Y1,14) is the direct product immersion of two non-totally
geodesic Lagrangian minimal immersions v, : N2 — C? a = 1,2,
and up to a constant w(uy,...,us) is the unique solution of the PDE
system: wy, = 2 <wuj, iw>, 3 =1234.
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Recall that, given a Riemannian manifold (M, g), a vector field X in M
is said to be closed in M if the 1-form w given by wx(Y) = g(X,Y") (the dual
1-form of X)) is closed. Then, X is closed if and only if

g(Y7vZX) :g(Z7vYX)7 (24)

for any vector fields Y, Z in M, where V is denoting the Riemannian con-
nection of M. On the other hand, X is called conformalin M (and the dual
1-form is also called conformal in M) if Lxg = pg, being p a differentiable
function on M. A closed vector field X is conformal if and only if

Vy X = hY, (25)

for any vector field Y in M, being h a differentiable function on M.

In paper [A3] we consider (m + s)-dimensional (being s the number of
structure vector fields) non-invariant slant submanifolds of an S-space-form
of dimension 2m + s and we prove the following two theorems:

Theorem. ([A3] 4.1) Let M™** be an (m + s)-dimensional S-slant subman-
ifold of an S-space-form M?*™*%(c) of dimension 2m + s. Then, the Maslov
form is closed if and only if ¢ = —3s.

Theorem. ([A3] 4.2) Let M™% be an anti-invariant submanifold of an S-
space-form M?™4(c) of dimension 2m + s, tangent to the structure vector
fields. Then, wg is closed if and only if c = —3s.

From above theorems we prove the following topological obstruction to
S-slant immersions as well as to anti-invariant immersions tangent to the
structure vector fields into an S-space-form of constant f-sectional curvature
c= —3s:

Theorem. ([A3] 4.3) Let M™% be a compact simply-connected (m + s)-
dimensional differentiable manifold. Then, M can not be immersed in any
S-space-form M?™5(—3s) of dimension 2m + s as a non-minimal anti-
mwvaritant submanifold tangent to the structure vector fields. Moreover, if
m is even, M can not be immersed in such a S-space-form as a non-minimal
S-slant submanifold either. In particular, if m = 2, M cannot be immersed
in M(—3s) as a non-minimal and non-invariant slant submanifold with no
minimal points.

Theorem. ([A3] 5.4) Let M™ be an (m + s)-dimensional anti-invariant
submanifold of an S-manifold M*™+s of dimension 2m + s, tangent to the
structure vector fields and such that its Maslov form is closed. Then, this
Maslov form is conformal in M if and only if the mean curvature vector is
parallel.

12



Finally, in this paper we prove:

Theorem. ([A3] 5.5) Let M™** be an (m + s)-dimensional anti-invariant

submanifold of an S-space-form M?*™5(—=3s) of dimension 2m + s, tangent
to the structure vector fields. If

P(X,Y) = (X Y — (g (X) + T Zna DY~
m+s+1
—(wu(Y) + m—H;na(Y))th (26)

for any tangent vector fields X,Y tangent to M, then the Maslov form of M
s L-conformal.

As we said before, generalized S-space-forms with two structure vector
fields were defined in [15], giving some interesting examples. Now, in paper
[A4], we present the definition for any number of structure vector fields. A
metric f-manifold (M, f, &, ..., &, m,...,Ns,g) is said to be a generalized
S-space-form if there exists a family of differentiable functions on M,

{F17F27F057Ga57 Haﬂ’}’}?

such that the curvature tensor field R of M satisfies

R= F1R1+F2R2+Z FagRapt+ Y GagRas+ Z HgyRopry, (27)
a,B=1 1<a<f<s a,B,y=1,
atf#rFa

where

Ri(X,Y, Z,W) =g(X,W)g(Y, Z) — g(X, Z)g(Y,W);
Ro(X,Y, Z,W) =F(X,W)F(Y, Z) — F(X, Z)F(Y,W)
—2F(X,Y)F(Z,W);
Ros(X,Y, Z,W) =g(Y, W)na(X)ms(Z) — g(X, W)n
+ 9(X, Z)na(Y)ns(W) — g(Y, Z (
Rap(X, Y, Z, W) =na(X)ns(Y)ns(Z)1a(W) — ng(X)na (Y )ns(Z)na(W)
+ 05(X)Na(Y)na(Z)ns(W) — na(X)ns(
Rapy (X, Y, Z,W) =00 (X0 (Y )1, (Z)00(W) — ns(X)0a(Y)1,(Z)100(W)
+77B(X)77a(y) o(Z)0, (W) = na(X)ns(

— 3
§ —~
—~ h<
~
< S
~—
3 /\
= N
~—
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for any X\ Y, Z, W € X(M).

So, S-space-forms are natural examples of generalized S-space-forms (see
[40]). Furthermore, we check that C-space-forms are also generalized S-
space-forms.

Now, let us suppose that M is a generalized S-space-form such that the
distribution spanned by the structure vector fields is flat (for instance, if M
is either a metric f-K-contact manifold or a K-manifold, see [34]).Then, we
prove the following results:

Theorem. ([A4] 5.1) Let M be a (2n + s)-dimensional generalized S-space-
form with functions {Fy, Fy, Fop, Gag, Hapy}, such that V&, = —f, for any
a=1,...,s. Then, M is an S-manifold and

F1:C+38;F2:C_S;Faazc+38—1;
4 4 4
c+ 3s
Fas = =1 (a # B); Gap = 22 =2 (a < )

Hopy = =1 (a # 8 #7#a),

where o, B,y € {1,...,s} and ¢ = Fy + 3F,. In particular, any generalized
S-space-form with a metric f-K-contact-structure is an S-manifold.

Theorem. ([A4] 5.2) Let M be a (2n + s)-dimensional generalized S-space-
form with functions {F1, F3, Fog, Gag, Hagy} and with an underlying C-struc-
ture. Then

F1=F2=Faa=GaB=£a

FaB:HaB'y:O> O‘#B#V%av

where o, 8,y € {1,...,s} and ¢ = Fy + 3Fy. Moreover, if n > 1, M is a
C-space-form.

a < 3

In paper [A5], we introduce the notion of para-S-manifold as follows:

Let M be a (2n + s)-dimensional smooth manifold. Tt is said to have
an almost para-f-structure (f,m1,...,0s,&1, ..., &) and it is called an almost
para-f-manifold if it admits a tensor field f of type (1,1), s global tan-
gent vector fields &1, ..., &, called the structure vector fields and s 1-forms
M, - .., Ns, satisfying the following compatibility conditions:

. f(éa):O,%Of:O,azl,...,s;

hd na(fﬁ) :6045’ a?B: 17---75;
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o f2=1d— Z Na ® &, and the eigendistributions of f corresponding to
a=1%

the eigenvalues 1 and -1, denoted by D and D~ respectively, have the
same dimension equal to n.

If an almost para-f-manifold M admits a pseudo-Riemannian metric g
such that

XY+ 9(XY) =3 na(X)na(Y), (20)

for any X,Y € TM, we say that M is a metric almost para-f-manifold and
g is called a compatible metric.

On a metric almost para-f-manifold, we define a 2-form by F(X,Y) =
g(X, fY), for any X,Y € TM. Moreover, an almost para-f-estructure is
said to be normal if

[fv f](X7 Y) - QZdna<X7Y>£a>

a=1

where [f, f] is denoting the Nijenhuis tensor of f

A para- K-manifold is a normal almost para- f-manifold such that dF" = 0.
A para-S-manifold is a normal para- f-manifold. In these cases, the structures
are called para- K-structure and para-S-structure, respectively.

In this context, we firstly prove the following theorem.

Theorem. ([A5] 2) For s > 2 there are not Einstein para-S-manifolds.

This motivates, as in the case of Sasakian geometry, to introduce the
notion of n-Einstein para-S-manifold. We say that a para-S-manifold M is
an n-Einstein manifold if its Ricci tensor field satisfies

Rz’c:ag—irbZna@na—l-(a—l-b)z77a®77,87 (30)
a=1 a#p

where a and b are differentiable functions on M.
Then, we obtain:

Theorem. ([A5] 3) Let M be a (2n + s)-dimensional n-Einstein para-S-
manifold. If we assume that the foliation generated by the structure vector
fields is regular, then M projects onto an Finstein para-Kaehler manifold.

Moreover, for &é-conformally flatness, we get:
Theorem. ([A5] 4) Let M be a (2n + s)-dimensional n-Einstein para-S-
manifold with n > 1. Then:

15



(i) If s = 1, that is, is M is a para-Sasakian manifold, M is &-conformally
flat.

(ii) If s =2, M is &-conformally flat if and only if a = —4n.
(i5i) If s > 2, M cannot be £-conformally flat.

Theorem. ([A5] 5) A para-Sasakian manifold M is &-conformally flat if and
only if it is an n-FEinstein manifold.

Finally, for s = 2 we have:

Theorem. ([A5] 6) Let M be a &-conformally flat para-S-manifold with two
structure vector fields. Then, M s an n-Einstein manifold with a = —4n.

3. Open problems.

As a consequence of all these results, we have now many interesting open-
problems that we have started to work on.

e We have proven charaterization theorems for the Maslov form in certain
submanifolds of S-spaces-forms to be closed. So now, we would like to
know what happens when the ambient manifold is a generalized S-
space-form.

e In 1985 J. Oubina in [45] introduced a new class of contact metric man-
ifolds, called trans-Sasakian manifolds. If there are smooth functions
(cr, B) on an almost contact metric manifold (M, ¢, &, n, g) satisfying

(Vo)(X,Y) = alg(X,Y)E=n(Y)X) + B(g(0 X, YV)E = n(Y)9X), (31)

then this is said to be a trans-Sasakian manifold, where (V¢)(X,Y) =
(Vxo)Y —opVxY, X|Y € X(M) and V is the Levi-Civita connection
with respect to the metric g.

Moreover, A.M. Fuentes, in her PhD thesis [36], develops the concept
of generalized S-space forms, giving some examples by using warped
products. In theses examples, we observe that Vf has an expres-
sion that seems to generalized (31), for s > 1. Therefore, we have
also introduced the notion of trans-S-manifolds in [4], as a generaliza-
tion of trans-Sasakian manifolds; so that now, trans-Sasakian mani-
folds are the particular case in which the f-metric manifold has one
structure vector field. As particular cases of trans-S-manifolds we have
S-manifolds and f-Kenmotsu manifolds.
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In fact, we have found non-trivial examples which justify this new no-
tion and we are now trying to prove some characterization theorems.
We would also like to study the submanifolds of these manifolds, spe-
cially when the trans-S-manifold has an additional structure of gener-
alized S-space-form and try to prove characterization theorems for the
Maslov form to be close in this case as well.

In relation to generalized S-space-forms, since the use of different ge-
ometrical constructions is a very important tool to obtain interesting
non-trivial examples of them, we want to consider other metric changes,
such as D-homothetic and D-conformal transformations. In the case
s = 1, this work has been done in [2].

Moreover, we think it is interesting to study submanifolds of gener-
alized S-space-forms. We want to highlight the case of the almost
semi-invariant submanifols, which has been recently studied in [3]. So,
we would like to obtain some inequalities where the Ricci curvature and
the Scalar curvature appear (not depending on the chosen metric).

In addition, in [5, 6] it was proven that an S-manifold endowed with
a semi-symmetric connection (metric or non-metric) is a generalized
S-space-form of constant sectional curvature if and only if it is a gener-
alized S-space-form with respect to the Levi-Civita connection. There-
fore, we want to check if there exist generalized S-space-forms endowed
with such a semi-symmetric connection and, if case, give examples. For
the case s = 1, this work has already been done in [50].

We also want to study para f-manifolds which are not para S-mani-
folds, giving new and interesting examples. In particular, topics as the
behaviour of the curvature tensor fields or D-homothetic transforma-
tions should be considered.
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1. Introduction

Let M™ be a Kihler n-manifold endowed with the complex structure J and with a Kihler metric g. The Kihler 2-form
o is defined by w(-,-) = g(J - ,-). An isometric immersion v : M" — M" of a Riemannian n-manifold M" into M" is called
Lagrangian if ¥ *w = 0. Lagrangian submanifolds appear naturally in the context of classical mechanics and mathematical
physics. For instance, the systems of partial differential equations of Hamilton-Jacobi type lead to the study of Lagrangian
submanifolds and foliations in the cotangent bundle. Furthermore, Lagrangian submanifolds play some important roles in
supersymmetric field theories as well as in string theory.

In differential geometry theorems which relate intrinsic and extrinsic curvatures always play important roles. Related
with Nash’s embedding theorem [16], the first author introduced in [3,4,6] a new type of Riemannian invariants, denoted
by §(nq,...,n). For an n-dimensional submanifold M" in a real space form R™(c) of constant sectional curvature c, he
proved the following sharp general inequality:

2 — 1= : k
nn+k—1 ZnJ)Her1 nn—1) -3 njn;—1c (1)

(. ... m) <
M) S =Sy 2

j=1

where H? is the squared mean curvature of M".
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An immersion satisfying the equality case of inequality (1.1) at every point is called §(ny, ..., ny)-ideal. Roughly speaking,
an ideal immersion is an immersion which produces the least possible amount of tension from the ambient space.

It is known that inequality (1.1) holds for Lagrangian submanifolds in complex space forms of constant holomorphic
sectional curvature 4c as well (cf. [6,9,10]). Also, the first author proved in [7, Theorem 1] that every ideal Lagrangian
submanifold of a complex space form is a minimal submanifold. §(2)-ideal submanifolds in real and complex space forms
have been studied by many geometers since the invention of §-invariants (see [1] and [9, Chapter 20] for details).

For Lagrangian submanifolds in a 5-dimensional complex space form M?>(4c), inequality (1.1) reduces to

25
8(2,2) < ?HZ + 8c. (12)

By definition, a Lagrangian submanifold 1\45 in M°(4c) is 8(2,2)-ideal if and only if it satisfies the equality sign of (1.2)
identically. A 8(2, 2)-ideal submanifold in M®(4c) is called proper if it is not a §(2)-ideal Lagrangian submanifold in M? (4c).
The main purpose of this paper is to classify proper §(2, 2)-ideal Lagrangian submanifolds in C>, CP>(4) and CH>(—4).

2. Preliminaries
2.1. Basic formulas

Let M"(4c) denote a complete simply-connected Kihler n-manifold with constant holomorphic sectional curvature 4c.
Then it is well-known that M"(4c) is holomorphically isometric to the complex Euclidean n-plane C", the complex projective
n-space CP"(4c), or a complex hyperbolic n-space CH"(—4c) according to c=0, ¢ > 0 or c <O0.

Let M" be a Lagrangian submanifold of M"(4c). We denote the Levi-Civita connections of M and M"(4c) by V and V,
respectively. The formulas of Gauss and Weingarten are given respectively by (cf. [2])

VxY = VxY +h(X,Y), (21)
Vx& = —Ag X + Dxé, (2.2)

for tangent vector fields X and Y and normal vector fields &, where h is the second fundamental form, A is the shape
operator and D is the normal connection.
The second fundamental form h is related to the shape operator A by

(R(X.Y), &) =(A:X,Y).

The mean curvature vector H of M" is defined by
1
H = - trace h,
n

and the squared mean curvature is given by H? = (ﬁ, ﬁ).
For Lagrangian submanifolds, we have (cf. [9,12])

Dx]JY =]JVxY,
AjxY =—Jh(X,Y) = Ay X.

Formula (2.4) implies that (h(X,Y), JZ) is totally symmetric.
The equations of Gauss and Codazzi are given respectively by

(RX,Y)Z, W)= (Any, )X, W) — (Anx, )Y, W)
+e((X, WYY, Z) — (X, Z)(Y, W)),

(Vxh) (Y, Z) = (Vyh)(X, Z) (2.6)
for X,Y, Z, W tangent to M, where R is the curvature tensor of M" and Vh is defined by

(Vxh)(Y,Z)=Dxh(Y,Z) —h(VxY,Z) —h(Y,VxZ). (2.7)

For an orthonormal basis {e1, ..., ey} of T,M" at a point p € M", we put

h§,<=<h(ej,ek), Jei), i.j.k=1,....n.

It follows from (2.4) that

i:hj

k
jk ik = hij' (2.8)
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2.2. Horizontal lift of Lagrangian submanifolds

The following link between Legendrian submanifolds and Lagrangian submanifolds is due to [17] (see [9, pp. 247-248]).

Case (i): CP"(4). Consider Hopf's fibration 7 : $2"*1 — CP"(4). For a given point u € S¥"*1(1), the horizontal space at u
is the orthogonal complement of iu, i = +/—1, with respect to the metric on S¥"*! induced from the metric on C™t!. Let
t: N — CP"(4) be a Lagrangian isometric immersion. Then there is a covering map T : N — N and a horizontal immersion
{:N — $2"*1 such that to T = 77 o i. Thus each Lagrangian immersion can be lifted locally (or globally if N is simply-
connected) to a Legendrian immersion of the same Riemannian manifold. In particular, a minimal Lagrangian submanifold
of CP"(4) is lifted to a minimal Legendrian submanifold of the Sasakian S2**1(1).

Conversely, suppose that f: N — $2"*1 js a Legendrian isometric immersion, then ¢ =77 o f : N — CP"(4) is again a
Lagrangian isometric immersion. Under this correspondence the second fundamental forms h/ and h* of f and ¢ satisfy
7.hf = ht. Moreover, h/ is horizontal with respect to 7.

Case (ii): CH"(—4). We consider the complex number space C’}“ equipped with the pseudo-Euclidean metric:

n+1
go=—dz1dz + ) _ dz;dz;.
j=2
Consider the anti-de Sitter spacetime
2n+1 2n+1.
H" (-1 ={ze " (z,2) = -1}
with the canonical Sasakian structure, where (,) is the induced inner product.
Put T, = {u € C"*': (u,z) =0}, H! = {x € C: A% =1). Then there is an Hl-action on H2"*!(—1), z+> Az and at each
point z € Hf”“ (—1), the vector & = —iz is tangent to the flow of the action. Since the metric go is Hermitian, we have

(&, &) = —1. The quotient space Hf““ (—1)/~, under the identification induced from the action, is the complex hyperbolic
space CH"(—4) with constant holomorphic sectional curvature —4 whose complex structure J is induced from the complex
structure J on Ci' via Hopf's fibration 7 : H3"*!(—1) — CH"(4c).

Just like case (i), suppose that ¢ : N — CH"(—4) is a Lagrangian immersion, then there is an isometric covering map
7:N— N and a Legendrian immersion f:N — Hf"“ (—=1) such that t ot = o f. Thus every Lagrangian immersion

into CH"(—4) can be lifted locally (or globally if N is simply-connected) to a Legendrian immersion into Hf”“ (=1). In
particular, Lagrangian minimal submanifolds of CH"(—4) are lifted to Legendrian minimal submanifolds of Hf”“ (-1).

Conversely, if f: N — Hf"“(—l) is a Legendrian immersion, then t = o f : N — CH"(—4) is a Lagrangian immersion.
Under this correspondence the second fundamental forms hf and h* are related by w.hf =h. Also, hf is horizontal with
respect to 7.

2.3. Existence and uniqueness theorem for Lagrangian minimal surfaces

We need the following theorem from [5, Corollary 3.6] for later use.

Theorem 2.1. Let L : M?2 — M2 (4c) be a Lagrangian minimal immersion without totally geodesic points. Then with respect to a
suitable isothermal coordinate system (x, y) we have

(1) the metric tensor of M2 is given by g = E2(dx® + dy?) such that E satisfies

2—cE® R L
(2) the second fundamental form of L satisfies
Jo Jo Jo
hox 00 = T30 hxdy) == h@y. 9y =—15 (2110)
1 1 1

Conversely, if E = E(x, y) is a positive function defined on a simply-connected domain U of the 2-plane R? satisfying (2.9) for some
real number c, then up to rigid motions there exists a unique Lagrangian minimal immersion from M2 = (U, g), g = E2(dx? + dy?),
into a complete simply-connected complex space form M? (4c) whose second fundamental form satisfies (2.10).

By applying Theorem 2.1 and the link via Hopf's fibration given in Section 2.2, we have the following.
Corollary 2.1. If E is a positive function defined on a simply-connected domain U of R? satisfying (2.9) for c = 1 (respectively c = —1)

then there exists a Legendrian minimal immersion from M? = (U, g), g = E2(dx? + dy?), into the Sasakian S° (1) (resp., the Sasakian
H ? (—1)) whose second fundamental form satisfies
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ax a ax
h(aXs Ox) = %, h(ax, ay):_%s h(ayvay)=—¢l(:,2)» (2-1])
1 1 1

where ¢ is the (1, 1)-tensor of S>(1) (resp., of H?(—l)) induced from the complex structure on C3 (resp., on C? ).
3. §-invariants and fundamental inequalities

Let M" be a Riemannian n-manifold. Denote by K(;r) the sectional curvature of M" associated with a plane section

7w C T,M", p e M". For any orthonormal basis e, ..., e, of T,M", the scalar curvature 7 at p is defined to be
T(p)=)Y K(eine)). (3.1)
i<j
Let L be an r-subspace of TyM" with r > 2 and {eq,...,e;} an orthonormal basis of L. The scalar curvature t(L) of the
r-plane section L is defined by
T(L)=)_ K(egnep), 1<a B<r. (32)
a<p
For given integers n > 3 and k > 1, we denote by S(n, k) the finite set consisting of all k-tuples (nq,...,n) of integers
satisfying
2<ny,...,m<n and ny+---+m<n.

Denote the union Uk>] S(n, k) by S(n). For each (nq,...,n,) € S(n), the first author introduced in [6] the Riemannian
invariant §(ny, ..., ng) defined by

s(ny,....m)(p) =t(p) —inf{r (L)) +---+Tp)}. peM", (33)
where Lq,..., Ly run over all k mutually orthogonal subspaces of T,M" such that dimLj=n;, j=1,..., k. The invariants
8(n1,...,ng) and the scalar curvature 7 are very much different in nature (cf. [8,9] for details).

The following fundamental relation between §(n, ..., n) and the squared mean curvature H2 was proved in [6].

Theorem A. Let M" be an n-dimensional submanifold in a real space form R™(c) of constant curvature c. Then for each k-tuple
(nq,...,n,) € S(n) we have

2 k

n“n+k—-1-%n;) , 1

S(ny,...,ng) < H 4+ -={n(n—1) — nin; —1) |c. 34

(m,om) € o S\ nn=1) ];1(] ) (34)
The equality case of inequality (3.4) holds at a point p € M if and only if there exists an orthonormal basis {e1, ..., en} at p such

that the shape operator of M™ in R™(c) at p with respect to {e1, ..., ey} takes the form:

Al ... 0
A e 0 1 (3.5)
= , r=n+4+1,...,m, .
=lo ... A
0 el

where I is an identity matrix and A; is a symmetric nj x nj submatrix satisfying

trace(A}) =- - - = trace(A}) = .

The same result holds for a Lagrangian submanifolds in a complex space form M™"(4c) of constant holomorphic sectional
curvature 4c. More precisely, we have

Theorem B. Let M™ be an n-dimensional Lagrangian submanifold in a complex space form M™(4c) of constant holomorphic sectional
curvature 4c. Then, for each k-tuple (nq, ..., n;) € S(n), we have

2 k
n“(n+k—1-"nj 5, 1
sS(ny,...,n,) < H —(nn—-1)— ni(n;i — 1) |c. 3.6
(M) S s H + S (=) J;J(J ) (36)
The equality case of inequality (3.6) holds at a point p € M if and only if, there exists an orthonormal basis {e1, ..., emn} at p, such

that the shape operators of M in M"(4c) at p with respect to {e1, . .., ey} take the form of (3.5).
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The following result was proved in [7] which extends a result in [10,11] on §(2).

Theorem C. Every Lagrangian submanifold of a complex space form M"(4c) that satisfies the equality case of (3.6) identically for a
k-tuple (nq, ..., ny) is minimal.

4. Some lemmas

Now we provide some lemmas to be used in the proofs of our main theorems.
Lemma 4.1. A Lagrangian submanifold M° of a complex space form M® (4c) satisfies
25 5
§(2,2) < ?H + 8c. (4.1)

If the equality sign of (4.1) holds identically, then M? is a minimal submanifold. Moreover, the second fundamental form h of M°
satisfies

h(e1,e1) =hi, Jer +h3; Jea,

h(e1,e2) =hi, Jer —hj, Jea,

h(ea, e2) = —h}, Jer —hi, Jea,

h(es, e3) = h3; Jes + h3; Jea,

h(es, eq) =h3s Jes — h33 e,

h(ea, e4) = —h33 Jes —h3; e,

h(ei,ej) =0, otherwise, (4.2)

with respect a suitable orthonormal frame {eq, ..., es}.
Proof. This is an immediate consequence of Theorems B and C. O

Assume that M™ is a Lagrangian submanifold of a complex space form M"(4c). Let p € M™ and V be a d-dimensional
subspace of T,M". Denote by 7y : T,M™ — V the orthogonal projection. For each v € V, we define a symmetric endomor-
phism A‘J’V on V by AY, =my o Ajy, where Aj, is the shape operator at Jv.

We need the following lemma from [7, Lemma 1].

Lemma 4.2. Let M" be a Lagrangian submanifold of a complex space form M"(4c) and V be a d-dimensional subspace of TpM" at
some point p € M™. Then there exists an orthonormal basis {€1, ..., &4} of V such that

@1) Al ei=hg i=1,....4d,

where Ay, ..., g satisfy Ay =24, j=2,...,d; A, > Ajforj=2,...,d.

Lemma 4.3. Let M° be a §(2, 2)-ideal Lagrangian submanifold of a complex space form M?® (4c). Then there exists an orthonormal
frame {eq, ..., es} such that

h(ei,e1)=aje;,  h(er,e2)=—ajes,  h(ez,ex)=—ajey,
h(es,e3) =bJes, h(es,eq) = —b Jey, h(e4,e4) = —bJes,
h(ei,ej) =0, otherwise (4.3)

for some functions a and b.
Moreover, M is proper 8(2, 2)-ideal if and only if a, b # 0.

Proof. By applying Lemma 4.2 to V = Span{eq, e} and V = Span{es, e4}, we obtain (4.3) with respect to a suitable or-
thonormal frame {eq, ..., es} on M>.
The second statement follows from the definition of proper §(2, 2)-ideal submanifolds, (4.3) and Theorem A. O

From now on, we assume that M® is a proper §(2,2)-ideal Lagrangian submanifold of a complex space form M?>(4c)
and we shall always choose the orthonormal frame {eq, ..., es} satisfying (4.3). Since M° is proper §(2,2)-ideal, we have
a,b#0.
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Let us put

5
Vxei=» o(X), XeTM>. (4.4)
j=1

J=_wl i, j=1,...,5.

Then we have wj; i

Lemma 4.4. Let M> be a proper §(2, 2)-ideal Lagrangian submanifold of a complex space form M?® (4c). Then we have

eia= —3au, exa = 3ah, esa=eqa=0, esa = ac, (4.5)

etb=eb=0, esb = —3bn, esb =3by, esb =bp, (4.6)
where «, B, A, |, @, n are defined by

=i,  p=wi). @=owie), 1=wi),

=i =wie), B =wi(es)=wjes) (4.7)
Moreover, we have a)ij(ek) =0,1,j,ke{1,...,5}, for those a)ij(ek) which do not appear in (4.7).

Proof. This was done by performing long computations on Codazzi’s equation via Lemma 4.3. 0O
By using (4.4) and Lemma 4.4 we obtain the following.

Lemma 4.5. Under the hypothesis of Lemma 4.4, the Levi-Civita connection V of M° satisfies
Ve, €1 = Aez +aes, Ve, €2 = —Aeq, Ve, €5 = —weq,
Ve, €1 = ez, Ve,€2 = —jie1 + aes, Ve, €5 = —aey,

Ve, €3 = @es + fes, Ve, €4 = —ge3, Vese5 = —fes,

Ve,e3 =1mes4,  Ve,eq=—ne3+ fes,  Ve,es5 =—fey,

Ve,ej =0, otherwise. (4.8)
We put

To = Span{es}, T1 = Span{eq, e2}, T, =Span{es, e4}. (4.9)

Lemma 4.6. Under the hypothesis of Lemma 4.4, we have

(a) Ty is a totally geodesic distribution, i.e. Ty is integrable whose leaves are totally geodesic submanifolds;

(b) To® Ty and To @ T, are totally geodesic distributions;

(c) Ty and T, are spherical distributions, i.e. T and T, are integrable distributions and their leaves are totally umbilical submanifolds
with parallel mean curvature vector.

Proof. Since the distribution Ty is of rank one, it is always integrable. Moreover, since Ve,es =0 according to Lemma 4.5,
the integral curves of es are geodesics in M. Thus we have statement (a). Statement (b) follows easily from (4.8).

To prove statement (c), first we observe that [eq, e;] € T1 and [e3, e4] € T, follow from (4.8). Thus T1, T, are integrable.
Also, it follows from (4.8) that the second fundamental form h; of a leave £ of T; in M? is given by

hX,Y)=o0g1(X1,Y1)es, Xi1,Y1€TLy, (4.10)
where g; is the metric of £1. Moreover, from (4.8), we find

Ve,e5 = —e;, i=1,2.
Thus we get

D} es=D; e5s=0, (4.11)

where D! denotes the normal connection of £; in M°. From the equation of Gauss and Lemma 4.3 we know that the
curvature tensor R of M> satisfies
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(R(e1,e2)eq,ej)=0, j=3,4,5. (412)

Thus we derive from (4.12) and Lemma 4.5 that

0=R(e1,ez)eq
= Ve, (€2) — Ve, (Aez +-aes) + AV, e1 + U Ve, €1
= —(epa)es (mod Tq). (4.13)

Hence we find ey = 0.

Similarly, by considering R(e, e1)ez, we also have eja = 0. By combining these with (4.11), we conclude that £; has
parallel mean curvature vector in M. Consequently, T; is a spherical distribution.

Similarly, we also have e38 = esf = 0. Moreover, we know that T, is a spherical distribution as well. Thus we obtain
statement (c) of the lemma. O

Lemma 4.7. Under the hypothesis of Lemma 4.4, the Lagrangian submanifold M? is a locally warped product I x o M f X pa(t) M%,
where t is function such that es = o (i.e., e5 = % ), p1 and p are two positive functions in t and M2, M% are Riemannian 2-manifolds.

Proof. It follows from Lemma 4.6 and result of Hiepko [14] (see also [13]). O

Lemma 4.8. Under the hypothesis of Lemma 4.4 and under the same notations as previous lemmas, we have

eja=ejf=0, j=1,2,34, (4.14)
e3h=eqh =e3pu =eq =0, esit =a U, (4.15)
e1A = —exl, (4.16)
e1o +3esu =3au, e — 3esA = —3a), (417)
elp=exp=ejn=exyn=0, esn = pn, (4.18)
e3p = —e4n), (419)
e3p+3esn=3pn,  esf—3esp=-3P¢p. (4.20)

Proof. The equations ejox = e;ax = e38 = e4f = 0 are already derived in the proof of Lemma 4.6. The other equations in
(4.14)-(4.20) are obtained by applying (4.5), (4.6), (4.8) and the compatibility conditions:

lei,ejlf = (Veej — Vesen)f, i,j=1,...,5,

for f =a,b. For instance, we find (4.16) from [e1, ex]a = (Ve,e2 — Ve,e1)a via (4.5) and (4.8); and e3A =0 from [ez, e3]la =
(Ve,€3 — Vesez)a. O

It follows from (4.14) and e5 = 5"—t in Lemma 4.7 that o« = (t) and 8 = B(t).

Lemma 4.9. Under the hypothesis of Lemma 4.4, we may choose isothermal coordinate systems {x, y} on M% and {z, w} on M% such
that the metric tensors g1, g5 of the Riemannian 2-manifolds M2, M% in Lemma 4.7 are given respectively by

g = E2(dC +dy?). g = E3(d2 + dw?). (4.21)
Proof. By using (4.5) in Lemma 4.4 and Lemma 4.5 we find

[07%61,(%62] =0. (4.22)
It follows from e3a =e4a =0 and esa = ao in Lemma 4.4 that
t
a= fel a®dt (4.23)
for some function f defined on M%. We conclude from (4.22) and (4.23) that there exists a coordinate system {x, y} on M%

with & = Eqe; and % — Eqes. Now, by putting E; = f~3(x, y), we obtain g = E3(dx? + dy?). After applying the same
argument to M3, we obtain a similar result for M3. O

It follows from Lemmas 4.7 and 4.9 that there is a coordinate system {t,x, y,z, w} on M> =1 x5, &) M3 X o,y M3 such
that the metric tensor g of M> is given by
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g=dt* + pf(OE(x, y)(dx* +dy?) + p3 (D E3(z, w)(dZ* + dw?). (4.24)

Lemma 4.10. The Levi-Civita connection of the metric tensor (4.24) satisfies

Py 0 a py o
=———, Vi—=——,

p1 0x wdy  p1 oy
_ d(Inky) 0 d(InEq) d 50

d
ax
8 /
% 9X Ix ox dy @—mp]ﬂ&,
d
oy
ad
ay

_ d(InEq) 0 d(lnEq) 0
T3y ox ax  dy’
o(InEq) 0 d(lnEq) 0 , 20
=— ™ - — PP ET .
y ox  0x Jdy dy at
Py v d py D

d
2z kW ppiw’

9 9(nEy) 8 a(nEy) 9 L 50
2= oz 9z ow aw PPEip
0 _a(lnEz) 0 d(InEy) o

Zow w0z 9z ow’
0 d(InEy) 9 o(InEy) o ;2
Vo = 2 B2
7w 9w 0z 9z ow aw 2525¢
d d 0 0
Vi—=Vy —=Vy3 —=V,; — =0
x 0z x 0w 3y 0Z y ow

Proof. It follows from (4.24) and direct computation. O

Lemma 4.11. Let M° be a proper §(2, 2)-ideal Lagrangian submanifold of a complex space form M> (4c). The with respect to metric
(4.24) the second fundamental form of M® satisfies

J0x Joy J0x
h(dx, 0x) = —-, h(dx, 0y) = ——, h(dy,dy) = ——-,
OB =12 Oty = =753 @09 =~
a d a
h(als 82) = ]_227 h(az’ 3w) = _]—ZW, h(aw, 8w) = _J—ZZ,
E2 E2 EZ

h(a)h 07) = h(ax» Ow) = h(ays 0z) = h(8y7 aw) =0,
h(dx, d) = h(dy, o) = h(dz, &) = h(dw, 3r) =0,

(4.25)
where o, = &, 9y = 57, etc.
Proof. It follows from the proof of Lemma 4.9 and (4.24) that
ox = p1Eqer, dy = p1Erez, 9; = mEjes, Oow = p2Eaey, 9 =es. (4.26)
By combining Lemma 4.4 and (4.25) we get
ox(Ina) = =301 E1, dy(Ina) =3p1E1A, o(Ina) =«,
0z(Inb) = =3 p2E2n, dw(Inb) =302E2¢, o (Inb) = B. (4.27)

On the other hand, by applying (4.7), (4.8) and Lemma 4.10, we find

a =—3(npq), B =—0t(Inpy),
_ ox(InEq) 5= dy(InEq)
- pEy - piEr
_ 9,(InEy) _ dw(nEy)

= . 4.28
pEy pE> (428)
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Now, we obtain from (4.27), (4.28) and Lemma 4.4 that

d(na)=d(nE?),  dy(na)=dy(InE;°),  d(na)=a(Inp; "),
d;(Inb) =3;(InE;>),  dw(nb)=dw(InE;?),  8(nb)=a(Inp,"). (4.29)
Therefore, after combining (4.29) with esa = e4a =e1b = e;b =0 from Lemma 4.4, we obtain

C1 C2

= - (4.30)
P1 E? ,0253

for some real numbers c1, c; # 0. Without loss of generality, we may choose c; = ¢y =1 by rescaling Eq, E, if necessary.
Consequently, we obtain (4.25) from (4.3) of Lemma 4.3, (4.26) and (4.30). O

5. Proper §(2, 2)-ideal Lagrangian submanifolds in C°

First, we classify all proper §(2, 2)-ideal Lagrangian submanifolds in C°.

Theorem 5.1. Let L : M® — C° be a Lagrangian immersion into the complex Euclidean 5-space C°. Then L is a proper §(2, 2)-ideal
Lagrangian immersion if and only if L is locally congruent to one of the following immersions:

(1) the direct product of an open interval I of the real line in C and two non-totally geodesic Lagrangian minimal immersions ¢; :
M? - (i=1,2),ie,

L:IxM2xM;—CxCxC (t,p,q+ (t,d1(p), p2(@). (5.1)

(2) aLagrangian immersion defined by

L:lxM2x M3—CxC; (t,p,q)  (6(p),t£(@), (5.2)

where ¢ : M% — C2 is a non-totally geodesic Lagrangian minimal immersion and ¢ : M% — §$°(1) C C is a non-totally geodesic
Legendrian minimal immersion of M3 into S(1).

Proof. Let L : M> — C° be a proper §(2, 2)-ideal Lagrangian immersion. Then, by applying Lemma 4.10, we find

(R(ax, 027)9z, ax) =—p )OZIO{ péE%E%. (5.3)

On the other hand, we find from the equation of Gauss and Lemmas 4.3 and 4.9 that (R(d, d;)9;, dx) = 0. Combining
this with (5.3) gives pjp} = 0. Hence either p; is constant or p, is constant. Without loss of generality, we may assume
that p;p is constant. Thus we may assume p; =1 by rescaling E; if necessary.

Next, by computing (R(9;, 9;)9;, d;) using Lemma 4.10, we find

(R(3z, )k, 3z) = —p2p5 Y. (5.4)

On the other hand, it follows from Lemma 4.3 and equation of Gauss that (R(d, 9;)9¢, 9;) = 0. By combining this with
(5.4), we get pJ =0. Thus p; = ct +k for some constant c, k, not simultaneous zero. Hence, after rescaling E; and applying
a suitable translation in t if necessary, we have either p, =t or p; =1.

Case (i): p1 = pp = 1. In this case, M> is the Riemannian product I x M% X M% of an open interval [ and two Riemannian
2-manifolds M%, M3. Since the second fundamental form of M° in €3 is mixed-totally geodesic (i.e., h(X,Y) =0 for any X, Y
tangent to two different factors of I x M2 x M5), Moore’s lemma [15] implies that L : M> — C> is the direct product of three
immersions. Moreover, since L is Lagrangian whose second fundamental form satisfies (4.25), each of the three immersions
are Lagrangian. Thus, we obtain case (1) of the theorem.

Case (ii): p1 =1 and p; =t. It follows from (4.24) that the metric tensor of M® is

g =dt* + E2(x, y) (dx* +dy?) + t2E3(z, w)(dZ* + dw?). (5.5)

Thus M is the Riemannian product of a Riemannian 2-manifold M? and the warped product N3 :=1 x; M3. It follows
from Lemma 4.11 that the second fundamental form of M% x N3 is mixed-totally geodesic. So, L is the direct product of a
Lagrangian immersion M2 — € and a Lagrangian immersion of N*> — C3.
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On the other hand, it follows from Lemmas 4.10, 4.11 and Gauss’s formula that L satisfies

i
Lxx={(lnEl)x‘f‘E—%}Lx_(lnEl)yLy, (5.6)
i
ny:(lnEl)ny"l‘{(lnEl)x_P}Lya (5.7)
1
i
LyyZ—{(lnE1)x+F}Lx‘i‘(lnE])yLya (5.8)
1
i 2
Lzz=1(nEy); + P L; — (InE3)wLlw — tE5Le, (5.9)
2
i
Lzw=(nEx)wlz + {(mE2)z— ?}Lm (5.10)
2
i
Lyw = —{(m Ey), + ?}LZ + (InE3)wly — tE3L;, (5.11)
2
Lyz=Lxw=Ly;=Lyw =0, (512)
Ly =Ly =0, (5.13)
L L
Ly = sz Lwe = TW, (5.14)
Ly =0. (5.15)

The compatibility condition of this PDE system is given by

A(lnE)—2 A —82+ 2 (5.16)
1 1 —E?, 1= 555 22y’ .
Ax(InEp) 2 A 32+ ” (5.17)
n = , =— 4+ ——. .
2T 2T 922w
After solving Eqgs. (5.12)-(5.15), we obtain
L=¢x y)+ti(z,w) (5.18)
for some vector functions ¢ (x, y) and ¢(z, w).
By substituting (5.18) into (5.6)-(5.11), we find
i
Pxx = [(ln Evx+ P }¢x —(In E1)yoy,
1
i
¢xy=(lnE1)y¢x+[(lnEl)x_F}(ﬁyv (5.19)
1
i
Pyy = _[(ln Ev)x+ ? }¢x + (In E1)ydy,
1
i
$zz = {(ln Ez); + ? }fz —(nE)wiw — E%Z,
2
i
Low =(NE2)wiz + i(ln Ez)z; — 2 }Cw, (5.20)
2
i
Sww = —{(ln Ej); + ﬁ }Cz + (nE)wlw — E%§~
2

The compatibility condition of systems (5.19) and (5.20) are given respectively by (5.16) and (5.17).

It follows from system (5.19) that ¢ : M% — €% is a non-totally geodesic Lagrangian minimal immersion. Also, it follows
from (5.17) and (5.20) that ¢ : M3 — €3 maps M3 into S°(1) C €3 as a non-totally geodesic Legendrian minimal submanifold
(see Theorem 2.1 and Corollary 2.1). Therefore, we obtain case (2).

The converse can be verified by direct computation. O
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6. Proper §(2, 2)-ideal Lagrangian submanifolds in C P> (4)

Now, we classify proper §(2, 2)-ideal Lagrangian submanifolds in CP>.

Theorem 6.1. Let L : M° — C P5(4) be a Lagrangian immersion. Then M? is a proper (2, 2)-ideal Lagrangian submanifold if and only
if L is locally congruent to 7 o L, where 7w : S'1(1) — CP5(4) is the Hopf fibration, L : M® — S1(1) c C® is given by

L(t, p,q) = (cost)p1(p) + (sint)p2(q), teR, (6.1)

and ¢ : M? — S°(1) C € (i =1, 2) are non-totally geodesic Legendrian minimal immersions into the Sasakian S°(1).

Proof. Let L : M®> — CP>(4) be a proper 8(2, 2)-ideal Lagrangian immersion. Then we may assume the metric tensor of M>
is given by (4.24) (cf. Section 4). From Lemma 4.3 and Gauss’ equation we find

(R(dx, 3, Bx) = pi.
On the other hand, by applying Lemma 4.10 we also find

(R(a)h at)atv 8)() = _10110{/.

Hence pg/ + p1 =0, which implies that p; =rcos(t + tg) for some real numbers tg and r > 0. So we obtain p; = cost after
applying a suitable translation in t and a rescaling of E; if necessary. Similarly, we have p, = cos(t + tp). Now, it follows
from (4.28), Lemma 4.11, and the equation of Gauss that

(R(dx, 3,)3;, dx) = cos® t cos(t + to) ETE3. (6.2)
On the other hand, it follows from Lemma 4.10 and the definition of R that

(R(3x, 8,)9;, 8x) = — sint costsin(t + to) cos(t + to) E{E3. (6.3)
By combining (6.2) and (6.3) we find costp = 0. Thus we may choose ty = —% which gives cos(t + tp) = sint. Consequently,
(4.24) becomes

g =dt? + (cos t) E2(x, y)(dx* + dy?) + (sin® t) E3(z, w)(dz* +dw?). (6.4)
Next, by applying Lemmas 4.10, 4.11, (6.4) and Gauss’ formula, we obtain

L= {(m Ex+ = }LX — (InEp)yLy + (cost)E3(sintL; — costL), (6.5)

1
- - i)-
Lyy = (InEy)yLx + {(lnEl)x_P}Lya (6.6)
1
. i . oL .
Ly, = —{(ln E1)x + 2 }Lx + (InEq)yLy + (cost)E3(sintL; — costL), (6.7)
1
L,= {(ln E2);+ — }Lz — (InEz)wLw — (sint)E3(cos L + sintL), (6.8)
2
- ~ i])-
Low =(nEz)wl; + {(ln Ez); — I }Lw, (6.9)
2
- i]- - ~ -
Lyw= —{(ln Ez), + 2 }Lz + (InE)wLw — (sint)E3(cos L + sintL), (6.10)
2

Lv=Liw :iyz:zyw =0, (6.11)

Ly = —tantLy, iyt:—tantiy, (6.12)

Ly = cottLy, Lyt =cottLy, (6.13)

L =—L. (6.14)
The compatibility conditions of system (6.5)-(6.14) are given by

2—E8 2—ES
A1(InEq) = 2 Ax(InEp) = Iz (6.15)

1 2
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After solving (6.11)-(6.14), we get
L = (cost)p1(x, y) + (sint)dz(z, w) (6.16)

for some C®-valued functions ¢, ¢,. Substituting (6.16) into (6.5)-(6.10) yields

(@) = {(ln Enx+ é}«m )x— (NE1)y (@1)y — E2¢1,

1
(@1)xy = (AN E1)y (@1)x + {anfox - é}((lh)y, (617)
1
(¢1)yy = _{(lnEl)x + é}(d’])x + (lnEl)y(¢l)y - E%(f)]a
1

(92)zz = {(ll’l E); + é}((m)z —(nE)w(d2)w — E§¢2,
2

(@1)zw = (INE2)w(h2); + {(11’1 Ez); — é}(fm)w, (6.18)
2

i

(@2)ww = —((ln Ex): + 2 } ($2)z + (INE2)w ($2)w — E3¢2.
2

It follows from system (6.17) and the first equation in (6.15) that ¢ :M% — C3 gives rises to a Legendrian minimal

surface in the Sasakian S°(1) C €3. Similarly, system (6.18) and the second equation in (6.15) imply that ¢ : M2 — €3 gives

a Legendrian minimal surface in $°(1) too. Now, because M? is proper §(2, 2)-ideal, both Legendrian minimal submanifolds
in $3(1) are non-totally geodesic.
The converse can be verified by direct long computation. O

The following provides a simple example of proper §(2, 2)-ideal Lagrangian submanifold in CP>(4) associated with E; =
E;=1.

Example 6.1. Consider the map L : M®> — €% defined by

- 1 : _ix 3 _ix 3
L:—(e‘ﬁ"cost,\/ie ﬁcostcos(£y>,\/§e ﬁcostsin(£y>,
V3 V2 V2

. _ iz 3 _ iz 3
e‘ﬁzsint, V2e ﬁsintcos(£w>,«/§e ﬁsintsin(£w>>.
2 2

It is direct to verify that L(M°) lies in the unit hypersphere S1(1) c €% and that the composition 77 o L : M®> — CP3(4) is a
proper 8(2, 2)-ideal Lagrangian submanifold of CP>(4).

7. Proper §(2, 2)-ideal Lagrangian submanifolds in C H>(—4)

Finally, we classify all proper 8(2, 2)-ideal Lagrangian submanifolds in CH?>.

Theorem 7.1. Let L : M®> — CH?(—4) be a Lagrangian immersion of M® into CH>(—4). Then M® is a proper §(2, 2)-ideal Lagrangian
submanifold of CH®(—4) if and only if L is locally congruent to 7t o L, where 7t : H}' (—1) — CH?(—4) is the Hopf fibration and either
(@) L: M> — HI'(=1) c €8 is given by

L(t, p,q) = (cosht)¢(p) + (sinht)y(q), teR, (7.1)
and ¢ : M% — H(-1) C C? and  : M% — $5(1) ¢ C® are non-totally geodesic Legendrian minimal immersions into the
Sasakian H3(—1) and S°(1), resp., or

(b) L:M> — HI'(—1) c €8 is given by
L(t,x,y,z,w) = (sinht + €' (u(z, y) + v(z, w) — 1),
sinht + €' (u(x, y) + v(z, w)), €'Y (x, y), e P (z, W), (7.2)

v M,.2 — C2 (i = 1, 2) are non-totally geodesic minimal Lagrangian immersions, u, v are complex-valued functions satisfying
the following PDE systems, respectively:
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i
Upx = {(lnE1)x+ ?}ux — (InEy)yuy — E1,
1

i
Uxy = (InEq)yux + {(ln E1)x — ?}uy,
1

i
Uyy = —{(lnE1)x + E}ux‘f‘ (InE1)yuy — E%’
1

i
Vzz = {(IHEZ)Z + ?}vz —(InE)wvw — EZ,
2

i
Vow =(nEy)ywv; + {(11’1 Ej)z — ?}Vw,

z

i
Vww = _{(ln Ez): + P}Vz +(nEx)wvw — E3.
2

and the metric tensors of M%, M% are given respectively by
g1= E%(dx2 +dy2), g =E3 (dz2 +dw2)
for some positive functions E1 = E1(x, y) and E; = E»(z, w).

Proof. Let L : M®> — CH’(—4) be a proper §(2, 2)-ideal Lagrangian immersion. Then we may assume that the metric tensor
of M? is given by (4.24) according to Section 4. From Lemma 4.3 and Gauss’ equation we find

(R(3x, 80)dr, 8) = —p?.
On the other hand, by applying Lemma 4.10 we also have

(R(3x, 80)dr, Bx) = —p17 .-

Hence p{ = p1, which implies that

p1 =rcosht + ssinht (7.3)

for some real numbers r and s, not both zero.

If s=0 (resp., r =0, or r = =+s), then (7.3) reduces p; = rcosht (resp., p; = ssinht, or p; = re®t). If r> > s (resp.,
2 < s2), then (7.3) reduces to p; = c cosh(t +tg) (resp., p1 = csinh(t+tp)) for some real numbers ¢ = 0 and to. Thus without
loss of generality, we may assume that p; is one of the functions: cosht,sinht, e‘, by applying a suitable translation and
or reflection in t and a suitable rescaling of E; if necessary. Similarly, we may also assume that p, is one of functions:
cosh(t + t1), sinh(t +t1), e, t; eR.

Case (i): p1 =cosht and p, = cosh(t + t1). It follows from (4.28), Lemma 4.11 and the equation of Gauss that

(R(dx, 9,)0;, 8) = — cosh? t cosh® (¢ + t1)EZ E3. (74)
On the other hand, it follows from Lemma 4.10 that
(R(dx, 8,)3;, ) = — sinht cosht sinh(t + t1) cosh(t + t1) E3E3. (7.5)

By combining (7.4) and (7.5) we obtain cosht; = 0 which is impossible.
Case (ii): p; = cosht and p; = sinh(t 4 t1). By considering the two different expressions of (R(dy, d;)d;, dx) via Lem-
mas 4.10 and 4.11 in the same way as in case (i), we get sinht; = 0. Therefore, t; =0 and (4.24) reduces to

g =dt* + (cosh? t)E3 (x, y)(dx® + dy?) + (sinh?t) EZ(z, w) (dZ* + dw?). (7.6)
Therefore, after applying Lemmas 4.10 and 4.11, (6.2) and Gauss’ formula, we have
L= {(ln Eix+ é }ix — (InEq)yLy + (cosht)E3(coshtL — sinhtLy), (7.7)
1
- - i)~
ny:(lnEl)ny+{(lnEl)x_E_%}Lys (7.8)

Lyy = —{(ln EDx+ é }Zx 4+ (InE1)yLy + (cosht)E3(coshtL — sinhtL), (7.9)
1
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L= {(ln Ey), + é }ZZ — (InE2)wLy + (sinht)E3(sinhtL — coshtLy), (7.10)
2
- - i)~
Lyw=(nEx)wl; + {(IHEZ)Z— ?}LW7 (711)
2
Lyw= —{(m Ez), + é }iz + (InE2)wLw + (sinht)E3(sinh¢tL — coshtLy), (7.12)
2
f-xz:ixw:iyz:iyw:o’ (7.13)
Ly = tanhtL,, Zyt =tanh tl:y, (7.14)
Ly = cothtL,, Lwt = cothtL,, (7.15)
Li=1L. (7.16)
The compatibility conditions of system (7.7)-(7.16) are given by
2+ E$ 2—ES
A1(InEq) = s Ax(InEp) = . (717)
E4 E4
1 2
After solving (7.13)-(7.16) we obtain
L = (cosht)¢p(x, y) + (sinh )y (z, w) (718)
for some vector-valued functions ¢, ¥. Substituting (7.18) into (7.7)-(7.12) gives
i
Pxx = {(11‘1 E{)x+ F }¢x —(n EDyoy + E%(bv
1
i
¢xy:(]nE1)y¢x+{(lnEl)x—F}qbyv (7.19)
1
i
Qyy = _{(ln E{)x+ F }¢x +(nE1)yoy + E%(be
1
i
Y2z = {(ln E):+ 3 }wz — (nEx)wirw — E3¥,
2
i
Yzw = (INE2) w7 + {(ln Ez)z — I }ww, (7.20)
2
i
"rww = —{(ln Ez)z + E}l/’z +(nEx)wirw — E%Vf
2

It follows from (7.19) and the first equation in (7.17) that ¢ gives rises to a Legendrian minimal surface in H?(—l) C C?.
Similarly, (7.20) and the second equation in (7.17) imply that ¥ gives rises to a Legendrian minimal surface in $°(1) c C3.
Now, because M? is a proper 8(2, 2)-ideal Lagrangian submanifolds in CP>(4), both Legendrian submanifolds are non-totally
geodesic. Consequently, we obtain case (a) of the theorem.

Case (iii): p; =cosht and p, =e'*!1. It follows from (4.28), Lemmas 4.10, 4.11, and the equation of Gauss that

(R(dx, 3,)3;, 3x) = —(cosh® t)e* T2 E2EZ, (7.21)
(R(dx, 3,)3;, ) = —(sinht cosht)e* T#1 E{E3, (7.22)

which is impossible.

Case (iv): p1 = sinht and p, = sinh(t + t1). Using the same arguments as in case (i), we find cosht; = 0, which is
impossible.

Case (v): p1 =sinht and p, =e!™1. By applying the same arguments as in case (iii), we get sinht = cosht, which is also
impossible.

Case (vi): p; =sinht and p; = cosh(t 4 t1). As case (ii), this also gives case (a) of the theorem.

Case (vii): p; =e' and py = cosh(t + t1). Using the same arguments as in case (iii), we conclude that this case is
impossible.

Case (viii): p; =e' and pp = sinh(t 4 t1). This is impossible by applying the same arguments as in case (v).
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Case (ix): p1 =e' and p = et Since p, = elle!, without loss of generality we may assume that the metric tensor of
M? is given by

g=dt* + e E3(x, y) (dx® + dy?) + e* E3(z, w) (dZ? + dw?). (7.23)
So, after applying Lemmas 4.10, 4.11, (6.2) and Gauss’ formula, we obtain
- i]- - - -
L= {(m E1)x + = }Lx —(InEp)yLy +e*E3(L — Ly, (7.24)
1
- - i)~
Lyy=(nEq1)yLx+ {(lnE1)x—P}Ly, (7.25)
1
- i)- - - -
L= _{(m E{x+ E—%}Lx + (nEq1)yLy + e EX(L —Ly), (7.26)
- i]- - - -
L= {(ln Ez); + ? }Lz —(nEx)wly + EZIE%(L —Lp), (7.27)
2
- ~ i]-
Lyw=(nEp)wl; + {(ln Ez)z — P }Lw, (7.28)
2
- i]- - -~ -
Lyw = —{(ln Ey), + F }Lz + (nE)wlw + GZtEé(L — L), (7.29)
2
Lo=Lw= iyz = Zyw =0, (7.30)
I:xt :zm i—yt :zys I:zt :]:zy Zwt:’:w, (7-31)
Le=L. (7.32)
The compatibility conditions of system (7.24)-(7.32) are given by
2 2
A1(InEq) = —;, Ay(InEy) = —. (7.33)
E4 E}
1 2
After solving (7.30)-(7.32) we get
L=e'(¢(x, y) + ¥(z, w)) + cosinht (7.34)

for some vector-valued functions ¢, . Since L maps M> into H}l(—l) C C? as a Legendrian minimal submanifold, we find
from (7.34) that

~1=e"(¢+V.¢+ V) + (€% —1){co. ¢ + V) + (co, co) sinh?¢. (7.35)
Thus we have

(co,c0) =0, (co.d+¥)=1, (p+V,¢+¥)=—1. (7.36)

It follows from the first equation in (7.36) that either co =0 or cq is a light-vector.
If co =0, it follows from (7.34) and (7.36) that

—1=e*@+ 7. ¢+ v) =—e*,
which is impossible. Thus cg must be a light-like vector. Therefore we may put

co=(1,1,0,0,0,0) € CS. (7.37)
Since (cg, ¢ + ¥) =1 from (7.36), in views of (7.34) we may also put

L= (sinht +e'(f — 1), sinht + e f, e (Y1 (x, y) + ¥2(z, w))) (7.38)

for some complex-valued functions f with f; =0 and some vector-valued functions 1, 1. It follows from (7.23) and (7.38)
that

(W, (W2)2) = (W1)x, G2)w) = (1) y, W2)2) = {1y, (Y2)w) =0.

Thus, for simplicity we may put
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L= (sinht +e'(f — 1), sinht + e f, ey (x, ), e'Pa(z, w)). (7.39)

From (7.39) we get

[-IL;=(—¢" —€0,00,0). (7.40)

By substituting (7.39) into (7.24)-(7.29), we obtain

W) = {(lnEl)x + Ei%}a/n)x — (N Ey)y (),

W)y = (NE1)y (Y1)x + {(lnsnx - Ei%}(wl)y, (741)
W)y = —{(lnEl)x + Ei%}(wnx )y (Un)y,

(¥2)zz = {(ln Ex). + Ei%}wz)z — (I E2)w (Y2,

(V2)zw = (INE2)w (¥2)z + {(ln Ez): - é}(lﬁz)w, (7.42)
2

V) ww = —{(ln Eo); + é}(wz)z + (N Ex)w (Y2

2

It follows from (7.39), (7.41) and (7.42) that v; : M% — C? (i=1,2) are Lagrangian minimal. Since L is proper §(2, 2)-ideal,
both ¢ and ¢ are non-totally geodesic.

In order to determine the function f in (7.38), we only need to consider the second components from (7.24)-(7.29). First,
we know from (7.30) and (7.38) that f =u(x, y) + v(z, w) for some complex-valued functions u, v. Thus (7.39) becomes

L= (sinht +e'(u+v—1),sinht +e'u+v),e'p(x,y), ey (z, w)). (7.43)
Now, by substituting (7.43) into (7.24)-(7.29) and using (7.40), we find from the second components of (7.24)-(7.29) that

i
Uxx = i(lnEl)x + ﬁ}ux —(n Ep)yuy — E%v
1

i
uxy:(lnEl)yux+{(lnEl)x—E}uys (7.44)
1

i
Uyy = —{(lnEl)x+ ?}UX'F (1n51)y”y - E%’
1

i
Vzz = {(IHE2)Z + ?}Vz —(InE))wvw — E%,
2

i
Vow =(nEx)wv; + {(IHEZ)Z_ P}VWa (7.45)

z

i
Vww = _{(lnEZ)z + F}VZ +(nE)wvw — E%-
2

It is direct to verify that the compatibility condition of system (7.44) (resp., system (7.45)) is exactly the compatibility
condition of (7.41) (resp., (7.42)). Hence, for any two given Lagrangian minimal surfaces 1, ¥, in C%, there always exist
solutions u and v of (7.44) and (7.45). Consequently, we obtain case (b) of the theorem.

The converse can be verified by direct long computation. 0O

Finally, we provide a simple example of type (b) proper §(2, 2)-ideal Lagrangian submanifold in CH>(—4).

Example 7.1. Let E = +/2 coshx. Then E satisfies (2.9) with ¢ = 0. Hence there is a non-totally geodesic Lagrangian minimal
immersion v into €% according to Theorem 2.1. In fact, up to congruences, /1 (x, y) is given by

o3 () (2) 502 () -50(2))
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Similarly, for E = v/2coshz, there exists a non-totally geodesic Lagrangian minimal immersion v, into C? such that
Yo (z, w) is given by

o) o5 -3 2 3) () -

Also, it is easy to verify that u = 4ix — coshx and v = 4iz — coshz are solutions of systems (7.44) and (7.45), respectively.
Thus if we define L: M5 — H]!(—1) c €§ by

L(t,z,y,z,w) = <sinht + 4e(ix + iz — coshx — coshz) — ef,

sinht + 4e’ (ix + iz — coshx — cosh 2), 2/2¢t cos(%) (cosh(%) — isinh(%)),

()5 5] 5 ) ) ).
s 3) o) ()

then 7 o L : M® — CH®(—4) is a proper §(2, 2)-ideal Lagrangian submanifold.
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Lagrangian submanifolds in complex space forms satisfying
an improved equality involving 4(2, 2)
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and XIANFENG WANG (Tianjin)

Abstract. It was proved in [8], [9] that every Lagrangian submanifold M of a
complex space form M?® (4c) of constant holomorphic sectional curvature 4c satisfies the
following optimal inequality:

8(2,2) < 24—51{2 + 8¢, (A)

where H? is the squared mean curvature and 0(2,2) is a d-invariant on M introduced by
the first author. This optimal inequality improves a special case of an earlier inequality
obtained in [B.-Y. CHEN, Japan. J. Math. 26 (2000), 105-127].

The main purpose of this paper is to classify Lagrangian submanifolds of M5(4c)
satisfying the equality case of the improved inequality (A).

1. Introduction

Let M™ be a K&hler n-manifold with the complex structure .J, a Kihler
metric ¢ and the Kéhler 2-form w. An isometric immersion ¢ : M — M™ of a
Riemannian n-manifold M into M™ is called Lagrangian if ¢*w = 0.
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Let M"(4c) denote a Kihler n-manifold with constant holomorphic sectional
curvature 4c, called a complez space form. A complete simply-connected complex
space form M "(4c) is holomorphically isometric to the complex Euclidean n-plane
C", the complex projective n-space CP™(4c), or a complex hyperbolic n-space
CH™(4¢) according to ¢ =0, ¢ > 0 or ¢ < 0, respectively.

B.-Y. CHEN introduced in 1990s new Riemannian invariants §(nq,...,ng).
For any n-dimensional submanifold M in a real space form R™(c) of constant
curvature ¢, he proved the following sharp general inequality (see [5], [7] for de-
tails):

n*(n+k—1-3n;) ~
o) £ S H2+ = ( z:: —1) (1.1)

For Lagrangian submanifolds in a complex space form M (4c¢), we have

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a com-
plex space form M™(4c) of constant holomorphic sectional curvature 4c. Then
inequality (1.1) holds for each k-tuple (ny,...,ng) € S(n).

The following result from [6] extends a result in [10] on §(2).

Theorem B. Every Lagrangian submanifold of a complex space form M "(4c)
is minimal if it satisfies the equality case of (1.1) identically.

Theorem B was improved recently in [8], [9] to the following inequality.

Theorem C. Let M be an n-dimensional Lagrangian submanifold of M"(4c).
Then, for an (nq,...,n) € S(n) with Z _,n; < n, we have

nz{(n — Zle n; + 3k — 1) — 62?21(2 +”i)_1}H2
2{(n— % ni+3k+2) -6 1(2+ni )~}

+1{ no 1) an n; }c. (1.2)

The equality sign holds at a point p € M if and only if there is an orthonormal

o(ny,...,ng) <

basis {e1,...,e,} at p such that the second fundamental form h satisfies

30,8
h(ea;;ep;) Zha g, J€y; + +’Z’_ Aen4ti, Z h)w, =
(2

a;=1

h(eai7€(¥j) = Oa 1 7é .]7 h(eaweN-‘rl) = 7_‘]6&1’ h(eaweu) = 07
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h(eN+17€N+1):3)\JeN+1; h(eNJrheu):)\Jeu, N:n1+--~+nk,

h(ey,ey) = ANupJent1, 4,5=1,...,k; w,v=N-+2,...,n (1.3)

For simplicity, we call a Lagrangian submanifold of a complex space form
d(nq,...,nk)-ideal (resp., improved §(ni,...,ng)-ideal) if it satisfies the equality
case of (1.1) (resp., the equality case of (1.2)) identically.

For k = 2 and n; = ng = 2, Theorem C reduces to the following.

Theorem D. Let M be a Lagrangian submanifold in a complex space form
M?5(4c) of constant holomorphic sectional curvature 4c. Then we have

2
§(2,2) < Z‘F’H2 + 8c. (1.4)
If the equality sign of (1.4) holds identically, then with respect some suitable
orthonormal frame {ey,...,e5} the second fundamental form h satisfies
h(ei,e1) = aJey + BJes + puJes, h(e,ez) = BJe; — ades,

h(es,eq) = —aJey — BJes + pJes,

h(eg,eg) = ")/J63 + 5J€4 + }LJ65, h(eg, 64) = 5]63 - ’7J64,
h(eq,eq) = —yJes — 6Jeq + pdes, h(es,es) = 4dudes,
h(ei,es) = ude;, i € A; h(e;,e;) =0, otherwise, (1.5)

for some functions «, f3, 7y, 0, u, where A = {1,2,3,4}.

The classification of §(2, 2)-ideal Lagrangian submanifolds in complex space
forms M®(4c) is done in [13]. In this paper we classify improved d§(2,2)-ideal
Lagrangian submanifolds in M> (4c¢). The main results of this paper are stated as
Theorem 6.1, Theorem 7.1 and Theorem 8.1.

2. Preliminaries

2.1. Basic formulas. Let M "(4c) denote a complete simply-connected Kéhler
n-manifold with constant holomorphic sectional curvature 4c. Then M™(4c) is
holomorphically isometric to the complex Euclidean n-plane C", the complex pro-
jective n-space C'P™(4c), or a complex hyperbolic n-space CH™(—4c) according
toc=0,c>0o0rc<0.



196 Bang-Yen Chen, Alicia Prieto-Martin and Xianfeng Wang

Let M be a Lagrangian submanifold of M "(4c). We denote the Levi-Civita
connections of M and M™(4c) by V and V, respectively. The formulas of Gauss
and Weingarten are given respectively by (cf. [7])

VxY =VxY +h(X,Y), Vx&=—AX + Dxé, (2.1)
for tangent vector fields X and Y and normal vector fields &, where h is the second

fundamental form, A is the shape operator and D is the normal connection.
The second fundamental form and the shape operator are related by

(h(X,Y),§) = (AeX,Y).
The mean curvature vector ﬁ of M is defined by ﬁ = % trace h and the squared
mean curvature is given by H? = <ﬁ, ﬁ>

For Lagrangian submanifolds, we have (cf. [7], [12])

DxJY = JVyxY, (2.2)
A;xY = —Jh(X,Y) = Ay X. (2.3)

Formula (2.3) implies that (h(X,Y), JZ) is totally symmetric.
The equations of Gauss and Codazzi are given respectively by

(RX,Y)Z,W) = (Any,2) X, W) — (Apx,2)Y, W)
+C(<X,W><Y,Z>—<X,Z><Y,W>), (2'4)

(Vxh)(Y, Z) = (Vyh)(X, 2), (2.5)
where R is the curvature tensor of M and Vh is defined by
(Vxh)(Y.Z) = Dxh(Y,Z) = h(VxY,Z) — h(Y,Vx Z). (2.6)
For an orthonormal basis {e1,...,e,} of T,M, we put
;k = (h(ej,ex), Jei), 1,5,k=1,...,n.

It follows from (2.3) that h;k = th = hfj
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2.2. é-invariants. Let M be a Riemannian n-manifold. Denote by K (7) the
sectional curvature of a plane section # C T,M, p € M. For any orthonormal
basis e, ..., e, of T, M, the scalar curvature 7 at p is 7(p) = ZKJ. K(e; Nej).

Let L be a r-subspace of T, M with r > 2 and {eq,...,e,} an orthonormal
basis of L. The scalar curvature 7(L) of L is defined by

7(L) = Z K(eaNeg), 1<a, B< (2.7)
a<lf

For given integers n > 3, k > 1, we denote by S(n, k) the finite set consisting

of k-tuples (nq,...,ny) of integers satisfying 2 < ny,...,ng <n and Zlei <n.
Put S(n) = Ug>18(n, k). For each k-tuple (ng,...,nx) € S(n), the first
author introduced in 1990s the Riemannian invariant (nq,...,ng) by

6(na, ..., m)(p) = 7(p) —inf{7(L1) +--- +7(Lx)}, peM, (28

where Ly, ..., L run over all £ mutually orthogonal subspaces of T, M such that
dimL; =nj, j=1,...,k (cf. [7] for details).

2.3. Horizontal lift of Lagrangian submanifolds. The following link be-
tween Legendrian submanifolds and Lagrangian submanifolds is due to [16] (see
also [7, pp. 247-248]).

Case (i): CP™(4). Consider Hopf’s fibration 7 : $?"*1 — CP™(4). For a given
point u € S?"T1(1), the horizontal space at u is the orthogonal complement of
1, 1 = /—1, with respect to the metric on S?"*! induced from the metric on
C"l Let ¢ : N — CP"(4) be a Lagrangian isometric immersion. Then there is
a covering map T : N — N and a horizontal immersion i : N — $2"+1 such that
to1 = moi. Thus each Lagrangian immersion can be lifted locally (or globally
if N is simply-connected) to a Legendrian immersion of the same Riemannian
manifold. In particular, a minimal Lagrangian submanifold of C P™(4) is lifted to
a minimal Legendrian submanifold of the Sasakian S*"1(1).

Conversely, suppose that f : N — §27F! is a Legendrian isometric immer-
sion. Then t =7wo f: N — CP"(4) is again a Lagrangian isometric immersion.
Under this correspondence the second fundamental forms h/ and h* of f and ¢
satisfy m,h/ = h*. Moreover, h/ is horizontal with respect to .

Case (ii): CH"(—4). We consider the complex number space CJ' equipped
with the pseudo-Euclidean metric: g = —dz1dz; + 27:21 dz;dz;.

Consider H"*1(—1) = {z € C"*!' : (2,2) = —1} with the canonical
Sasakian structure, where ( , ) is the induced inner product.
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Put T/ = {u € C"*!: (u,z) = 0}, H} = {\ € C: A\ = 1}. Then there is an
Hl-action on H?""'(—1), z — Az and at each point z € H:""'(~1), the vector
& = —1z is tangent to the flow of the action. Since the metric gy is Hermitian,
we have (£,€) = —1. The quotient space H2""!(—1)/ ~, under the identification
induced from the action, is the complex hyperbolic space C H"(—4) with constant
holomorphic sectional curvature —4 whose complex structure J is induced from
the complex structure J on C} ! via Hopf’s fibration 7 : H2" (1) — CH™(4c).

Just like case (i), suppose that « : N — CH™(—4) is a Lagrangian immersion,
then there is an isometric covering map 7 : N — N and a Legendrian immersion
f: N — H>™1(-1) such that to7 = 7o f. Thus every Lagrangian immer-
sion into CH™(—4) an be lifted locally (or globally if N is simply-connected)
to a Legendrian immersion into Hf”"'l(—l). In particular, Lagrangian mini-
mal submanifolds of CH™(—4) are lifted to Legendrian minimal submanifolds of
H?"F1(~1). Conversely, if f : N — H?""!(~1) is a Legendrian immersion, then
t=mof: N — CH"(—4) is a Lagrangian immersion. Under this correspondence
the second fundamental forms hf and h* are related by m,hf = h*. Also, h' is
horizontal with respect to 7.

Let & be the second fundamental form of M in S?*+1(1) (or in HZ"t1(-1)).
Since S?"*1(1) and H;"*!(—1) are totally umbilical with one as its mean curva-
ture in C™"*! and in C?H, respectively, we have

VxY =VxY +h(X,Y)—¢L, (2.9)

where € = 1 if the ambient space is C"*!; and e = —1 if it is C?'H.

3. H-umbilical Lagrangian submanifolds and complex extensors

3.1. H-umbilical Lagrangian submanifolds.

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kéahler
n-manifold is called H-umbilical if its second fundamental form satisfies

h(ej, ej) = pJen, h(ej,en) = pdej, j=1,....,n—1,
h(en,en) = pJen, h(ej,er) =0, 1<j#k<n-1, (3.1)
for some functions p, ¢ with respect to an orthonormal frame {ey, ..., e,}. If the

ratio of ¢ : p is a constant r, the H-umbilical submanifold is said to be of ratio r.
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If G : N»~! — E" is a hypersurface of a Euclidean n-space E® and v : I — C*
is a unit speed curve in C* = C — {0}, then we may extend G : N*~! — E" to
an immersion I x N"™1 - C" by y® G : I x N*7! - C®E" = C", where
(y® G)(s,p) = F(s) ® G(p) for s € I, p € N"~1. This extension of G via tensor
product ® is called the complezr extensor of G via the generating curve ~.

H-umbilical Lagrangian submanifolds in complex space forms were classified
in a series of papers by the first author (cf. [2], [3], [4]). In particular, the following
two results were proved in [2].

Theorem E. Let ¢ : S"~' C E" be the unit hypersphere in E" centered at
the origin. Then every complex extensor of v via a unit speed curve vy : I — C*
is an H-umbilical Lagrangian submanifold of C™ unless 7y is contained in a line
through the origin (which gives a totally geodesic Lagrangian submanifold).

Theorem F. Let M be an H-umbilical Lagrangian submanifold of C™ with
n > 3. Then M is either a flat space or congruent to an open part of a complex
extensor of 1 : S"~1 C E" via a curve v : [ — C*.

3.2. Legendre curves. A unit speed curve z : [ — S3(1) € C? (resp., 2 : I —
H}(—1) c C?) is called Legendre if (/,iz) = 0. It was proved in [3] that a unit
speed curve z in S3(1) (resp., in H7(—1)) is Legendre if and only if it satisfies

!

2" =iX — 2z (resp., 2 =i\ +2) (3.2)

for a real-valued function A. It is known in [3] that A is the curvature function of
z in S3(1) (resp., in H{(—1)) (see also [1, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio. We provide a general
method to construct H-umbilical Lagrangian submanifolds with any given ratio
in CP"(4) via curves in S?(3) (resp., in CH"(—4) via curves in H?(—1)).

Proposition 3.2. For any real number r there exist H-umbilical Lagrangian
submanifolds of ratio r in CP"™(4) and in CH™(—4).

PROOF. If r = 2 this was done in [3, Theorems 5.1 and 6.1]. If r # 2,
H-umbilical Lagrangian submanifolds of ratio r can be constructed as follows:

Case (a): CP"(4). Let 5?(3) = {x € E% (x,x) = ;}. The Hopf fibration
7 from $3(1) onto S%(1) = CP'(4) is given by (cf. [1])

’/T(Zl,ZQ) = (2’122, %(|Zl|2 — ZQ|2)> s (21,22) c 53(1) C Cz. (33)
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For a Legendre curve z in S$3(1), the projection v, = 7o 2 is a curve in 52(%).
Conversely, each curve 7 in S?(1) gives rise to a horizontal lift 5 in S*(1) via m
which is unique up to a factor €%, € R. Notice that each horizontal lift of v is
a Legendre curve in S3(1). Moreover, since the Hopf fibration is a Riemannian
submersion, each unit speed Legendre curve z in S3(1) is projected to a unit speed
curve v, in S2 (%) with the same curvature.

It was known in [3, Lemma 7.2] that, for a given H-umbilical Lagrangian

submanifold of ratio r # 2 in M"(4c), the function y in (3.1) satisfies

" = (:—g> w2+ (r=2)p*((r = p* +¢) = 0. (3.4)

If 1 is a non-trivial solution of (3.4) with ¢ = 1, then there is a unit speed
curve vy in Sz(%) whose curvature equals to ru. Let z be a horizontal lift of v in
S$3(1). Then z is a unit speed Legendre curve satisfying 2 (x) = iruz’(z) — z(z)
(cf. [3, Theorem 4.1] or [1, Lemma 3.1]).

Consider the map v : M® — S (1) C CS defined by

5
Yz, Y1, ys) = (21(2), 22(2)y1y - ooy - ooy 22(2)Y5), ny =1 (3.5)
j=1

It follows from [3, Theorem 4.1 and Lemma 7.2] that 7 o ¢ is a H-umbilical
Lagrangian submanifold of ratio r in C'P™(4) such that

h(ej,e;) = pJes, hej,en) = Je;,
h(en,en) =ruden, hiej,er) =0, 1<j#k<n-1, (3.6)
with respect to suitable orthonormal frame {eq,...,e5}.

Case (b): CH™(—4). For a non-trivial solution of (3.4) with ¢ = —1, we
can construct an H-umbilical Lagrangian submanifold of CH™(—4) via the Hopf

fibration 7 : H}(—1) — CH'(—4) = H?*(— 1) in a similar way as case (a), where

1
(21, 22) = (21227 §(|Zl|2 + |Z2|2)) ., (21,22) € H{(—1) C CF, (3.7)

and H?(— %) = {(z1,22,23) € E} : 2 — 23 — 2} = 1, 21 > 3} is the model of

the real projective plane of curvature —4. O
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3.4. Classification of H-umbilical submanifolds of ratio 4. The equation
of Gauss and (3.1) imply that H-umbilical Lagrangian submanifolds of ratio r # 4
in complex space forms contain no open subsets of constant sectional curvature.
Hence we conclude from [3, Theorems 4.1 and 7.1] and §3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in
CP>(4) is congruent to an open portion of 7 o1, where 7 : S1*(1) — CP5(4) is
Hopf’s fibration, v : M — S(1) ¢ CS is given by

Yt y1,..ys) = (21(1), 2(D)y), {y €E°: (y,y) =1}, (3.8)

and z = (z1,22) : I — S83(1) C C? is a unit speed Legendre curve satisfying
" =4ipz’ — z, and p is a nonzero solution of 2uu” — p'* + 4p®(3u® + 1) = 0.

Let M be an H-umbilical Lagrangian submanifold in CH®(—4) satisfying
(3.1). We may assume that u is defined on an open interval I 3 0. Since H-
umbilical submanifolds of ratio 4 in C'H5(—4) contain no open subsets of constant
curvature, Theorems 4.2 and 9.1 of [3] and results in §3.3 imply the following
classification of H-umbilical submanifolds of ratio 4 in C H?(—4).

Lemma 3.4. An H-umbilical Lagrangian submanifold M of ratio 4 in
CHS5(—4) is congruent to an open part of w o, where 7 : Hi'(—1) — CH?®(—4)
is Hopf’s fibration and ¢ : M — H{}'(—1) C C$ is either one of

Dty pa) = (2(1), 22(0)y), {y €E°: (y,y) =1}, (3.9)
1/)(75,&/1, s 5y4) - (Zl(t)YVZZ(t))a {y € Ei} : <Y7y> = 71}7 (310)

where z is a unit speed Legendre curve in H(—1) satisfying 2" = 4iuz’ + z and
w is a non-trivial solution of 2uu’ — u'? + 4p?(3u? — 1) = 0; or 1 is

1 1 1
Yt ug, ... ug) = Melfou(t)dt<1+22u?—it+2#—

s
(o) - 255 (;

where z = (21, 22) : I — H$(—1) C C? is a unit speed Legendre curve and p is a

j=1

. 1
ZU —|—2'u/—2u(0)> Ul,...7U4>, (311)

Jj=1

non-trivial solution of '? = 4p?(1 — p?).
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Ezxample. It is easy to verify that u = sech2t is a non-trivial solution of
w'? = 4p%(1 — p?). Using pu = sech 2t, (3.11) reduces to

itan~!(tanht) 1 1 4 h 2t
e _ 5 COS

Ly, ... Uy) = ——— 771t+72 us + ,
P(t,w a) oot (2 2447 2

i i< icosh 2t
Z 2
t_7+72] 1U]+2,U/1,.7u4> (312)

It is direct to verify that (3.12) satisfies (¢0,%) = —1 and the composition 7 o 9
gives rise to an H-umbilical Lagrangian submanifold of ratio 4 in C H(—4).

4. Some lemmas

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved 6(2,2)-ideal Lagrangian submanifold

of M5 (4c). Then with respect to some orthonormal frame {ey, ..., es} we have
h(e1,e1) = ade; + pJes, h(e1,ez) = —ades,
h(es,ex) = —adey + pJes, h(es,e3) = bJes + uJes,
h(es,eq) = —bJey, h(eq,eq) = —bJes + uJes,
h(ei,es) = pde;, i € A, h(es,es) = 4dudes,
h(e;,e;) =0, otherwise. (4.1)

PROOF. Under the hypothesis, we have (1.5) with respect to an orthonormal
frame {ej,...,e5}. Thus, after applying [6, Lemma 1] to V = Span{e;, ea} and

V = Span{es, e4}, we obtain (4.1). O
Let us put
5 .
Vxei=» 0/(X)ej, i=1,....,5, X e TM°, (4.2)
j=1

Then ¢} = =0, i,j =1,...,5.
If 4 = 0, then M is a minimal Lagrangian submanifold according (4.1). Such
submanifolds in complex space forms M?(4c) have been classified in [13].
Ifa=b=0and p # 0, then M is an H-umbilical Lagrangian submanifold
with ratio 4. Therefore, from now on we assume that a, u # 0.
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Lemma 4.2. Let M be a Lagrangian submanifold of M®(4¢) whose second
fundamental form satisfies (4.1) with a,b, u # 0. Then we have

€aa €20 e1a

Ve e1 = g €2 T Vs Ve, e2 = 3. Ve,e1 = T35
e1a eqb esb
Ve,e2 = g €1 T Vs Vese3 = 35 64 T Ves Veseq = 3 o
€3b €3b .
Ve, €3 = —564, Ve, 04 = Eeg — ves, Ve,e5 =ve;, © € A,
Ve.e; =0, otherwise 4.3
k-] b 9

with v = %e5(ln p) = —es(Ina) = —e5(Inbd), where A = {1,2,3,4}. Moreover, we
have

ejp=0,j €A, eb=ed=e3a=eqa=0. (4.4)

PROOF. This lemma is obtained from Codazzi’s equations via Lemma 4.1

and (4.2) and long computations. O

Lemma 4.3. Under the hypothesis of Lemma 4.2, we have

(a) Ty is a totally geodesic distribution, i.e. Ty is integrable whose leaves are
totally geodesic submanifolds;

(b) To @ Ty and Ty ® T» are totally geodesic distributions;

(¢) Ty and T» are spherical distributions, i.e. Ty, Ty are integrable distributions
whose leaves are totally umbilical submanifolds with parallel mean curvature
vector,

where Ty = Span{es}, T1 = Span{e;, ez} and Ty = Span{es, eq}.

PROOF. Since the distribution T} is of rank one, it is integrable. Moreover,
since V¢ e5 = 0 by Lemma 4.2, the integral curves of e5 are geodesics in M. Thus
we have statement (a). Statement (b) follows easily from (4.3).

To prove statement (c), first we observe that [e1,es] € Th and [es, eq4] € Th
follow from (4.3). Thus T3, T5 are integrable. Also, it follows from (4.3) that the
second fundamental form h; of a leaf £ of T} in M is given by

hi(X,Y) = —vgi(X1,Y1)es, X1,Y1 €TLy, (4.5)
where g7 is the metric of £1. From (4.3) we obtain V., e5 = ve;, i = 1,2. Thus

Déle5 = D;z es = 0, where D! is the normal connection of £; in M. It follows
from Gauss’ equation and Lemma 4.1 that the curvature tensor R satisfies

<R(61,€2)€1,€j> = O7 j = 3,4,5. (46)

Thus (4.6) and Lemma 4.2 imply that 0 = R(e1,e2)e1 = (eav)es (mod T7). Hence
eov = 0. Similarly, by considering R(ez,e1)es, we also have eya = 0. After
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combining these with D'es = 0, we conclude that £, has parallel mean curvature
vector in M. Hence T} is a spherical distribution. Similarly, 75 is also a spherical
distribution. Consequently, we obtain statement (c). O

Lemma 4.4. Under the hypothesis of Lemma 4.2, M is locally a warped
product I X, M? X o (£) M3, where t is function such that es = 0, (i.e., e5 = %),
p1 and ps are two positive functions in t and M#, M3 are Riemannian 2-manifolds.

PRrROOF. This lemma follows from Lemma 4.3 and a result of Hiepko [15] (see
also [7, Theorem 4.4, p. 90]). O

Lemma 3.3 and (4.4) imply that p depends only on t. Thus p = u(t).

Lemma 4.5. Let M be a Lagrangian submanifold of M®(4¢) whose second
fundamental form satisfies (4.1) with a,b, i # 0. Then we have ¢ = —v? —p? < 0.
Thus p satisfies pi/ (t)? = —4u?(t)(c + p(t)).

ProOOF. Under the hypothesis, it follows from Gauss’ equation and Lem-
ma 4.1 that (R(e1,e3)es,e1) = ¢+ p?. On the other hand, the definition of
curvature tensor and Lemma 4.2 imply that (R(eq,e3)es, e;) = —v2. Thus ¢ =

—12 — 1?2 < 0. By combining this with the definition of v, we obtain the lemma.
O

5. More lemmas

Next, we consider the case a,p # 0 and b =0

Lemma 5.1. Let M be a Lagrangian submanifold of M®(4¢) whose second
fundamental form satisfies (4.1) with a,p # 0 and b = 0. Then we have

e esa 1Q
Ve,e1 = ——ex + ——e3 + 764 ves,
3a a 3a
e
V61€2 = _gel — 3@1(63) €3 — 3@?(64)64,
esa
Ve, €3 = —761 + 3@1(63)62 + (33(61)64,
€4a 4
Veeq = ——eat 305 (es)ea — 3 (e1)es,
e1a
Ve,e1 = 3 2 + 397 (e3)es + 07 (e2)ea,
e1a €3a 1Q
Ve,e2 = —e1 + ——e3 + 764 — ves,
3a a
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esa
Ve,e3 = *3(25%(63)61 - %62 + ¢§(62)64,
eqa
Ve,eq = —07(e2)er — - 2 3 (e2)es,
Ve,e1 = 01(e3)es, Ve,eo = —061(e3)er,
Vese3 = 03(e3)es — ves, Vegeqs = —03(e3)es,
Ve,e1 = 01 (ea)ez, Ve e2 = =07 (es)en,
V.,e3 = 03(eq)eq, Ve,e4 = —05(eq)es — ves,
Vese3 = 03(es5)eq, Veses = —03(es)es,
Ve, €5 =ve;, 1 € A, Ve.€5 =0, otherwise. (5.1)
with v = Les(Inp) = —es(Ina). Moreover, we have
en=0, jeA=1{1,2341} (5.2)
ProOF. Follows from Codazzi’s equations via Lemma 4.1 and (4.2). O

Lemma 5.2. Under the hypothesis of Lemma 5.1, we have
(i) Ty is a totally geodesic distribution;
(ii) T3 is a spherical distribution,
where Ty = Span{es} and T3 = Span{ey, ea, e3,e4}.

Proor. Clearly, T is integrable. Moreover, since V¢ es = 0 by Lemma 5.1,
integral curves of es are geodesics in M®. Thus statement (i) follows. To prove
statement (ii), we observe that the integrability of T3 follows from (5.1). Also,
(5.1) implies that the second fundamental form h of a leaf £ of T3 in M? is given
by h(X,Y) = —v§(X,Y)es for X,Y € TL, where § is the metric of £. Since
lej,eslp =0 by (5.1) and eju = 0, for j € A, we find e;e5pu — ese;pu = 2e3v = 0.
Therefore T3 is a spherical distribution. (Il

Lemma 5.3. Under the hypothesis of Lemma 5.1, M is locally a warped
product I X ) N*, where t is function such that e; = % and p is a positive
function in t and N* is a Riemannian 4-manifold.

PRrROOF. Follows from Lemma 5.2 and Hiepko’s theorem. ([l

It follows from (5.2) and the definition of v that p = u(t) and v = v(t).
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Lemma 5.4. Under the hypothesis of Lemma 5.1, we have

dv 9 9 dp
—_— = — — — —_— = 2 . .
o 3u® — v’ —g, pr uv (5.3)

PROOF. From Gauss’ equation and (5.1) we find (R(e1, es5)es, e1) = 3u® + c.
On the other hand, (5.1) of Lemma 5.1 yields (R(ey1, e5)es, e1) = —esv —v2. Thus

we find the first equation of (5.3). The second one follows immediately from the
definition of v given in Lemma 5.1. O

6. Improved §(2, 2)-ideal Lagrangian submanifolds of (o}

Theorem 6.1. Let M be an improved §(2, 2)-ideal Lagrangian submanifold
in C®. Then it is one of the following Lagrangian submanifolds:

(a) a d(2,2)-ideal Lagrangian minimal submanifold;
(b) an H-umbilical Lagrangian submanifold of ratio 4;

(¢) a Lagrangian submanifold defined by

6%1 tan™1 \/u3/(c2—pu3)

Lp,ug,...,uy) = o(ug, ..., un), (6.1)

where ¢ is a positive real number and ¢(us,...,u,) is a horizontal lift of a
non-totally geodesic §(2)-ideal Lagrangian minimal immersion in C'P*(4).

PROOF. Assume that M is an improved §(2, 2)-ideal Lagrangian submanifold
in C°. Then there exists an orthonormal frame {ey, ..., e5} such that (4.1) holds.
If w = 0, then M is a minimal 6(2,2)-ideal Lagrangian submanifold. Thus, we
obtain case (a). If 4 # 0 and a = b = 0, we obtain case (b).

Now, let us assume a, u # 0. Then Lemma 4.5 implies b = 0. So, by Lem-
mas 5.1 we have (5.1) and e;u = 0, j € A. Further, by Lemma 5.3, M is locally
a warped product I X, N 4 with e5 = 9;. Moreover, 4.1 shows that the second
fundamental form satisfies

h(e1,e1) = aJe + pJes, h(ey,ez) = —ades,

€9, € —aJer + pJes,

(
(e3,e3) = h(eq,eq) = pJes,

)
)
)
)

hiei,es) = pde;, i € A,
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h(es,e5) = duJes, h(ei,e;) =0, otherwise. (6.2)

From Lemma 5.4 we have the following differential system:

dv

pri —3u? — 1%, A 2uv. (6.3)

Let ¢(t) be a function satisfying ‘;—f = —4u. Consider the map

¢ = e'¥es. (6.4)

Then (¢, ¢) = 1. It follows from V. es = 0, 42 = —4y1 and (6.2) that V. ¢ = 0,
where V is the Levi-Civita connection of C. Thus ¢ is independent of ¢.
Let L denote the Lagrangian immersion of M in C°. Then (6.4) yields

=L =e %h(uy,. .., ug), (6.5)

where uy,...,u4 are local coordinates of N*. For each j € A, we obtain from
V,e5s = ve; of Lemma 5.1 and the first equation of (6.3) that

bule;) = Ve, 0 = €9V, e5 = €2 (1 + ip)e;. (6.6)
Thus
Ve, (6u(es)) = €9 (v + i) Ve, . (6.7)

In view of V. e5 = ve; and (6.2), we may put

<Z Fk + lhk )ek - (1/ - iu)dije5, 1,] € A, (68)

for some functions I'};. Now, it follows from (6.4), (6.6), (6.7), and (6.8) that

n

Ve, (¢:(e:)) = Z (T + 1hy;) duler) — (W2 +v°)i50

=2

Z (T + ihi))du(er) — (Da(ei), du(e)) o (6.9)

Since M is a Lagrangian submanifold in C%, (6.4) and (6.6) show that i¢
is perpendicular to each tangent space of M. Hence ¢ is a horizontal immersion
in the unit hypersphere S°(1) C C5. Moreover, it follows from (6.9) that the
second fundamental form of ¢ is the original second fundamental form of M
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respect to to the second factor N4 of the warped product I X p(t) N*. Hence, ¢
is a minimal horizontal immersion in S°(1). Therefore, ¢ is a horizontal lift of a
minimal Lagrangian immersion in C'P*(4). Now, it follows from (6.2) that ¢ is a
horizontal lift of a §(2)-ideal minimal Lagrangian submanifold of C'P*(4).

By direct computation we find

@GQ(L— el ):o, a=1,...,5. (6.10)
v+ 1u

Thus, by (6.4), up to translations the Lagrangian immersion L is

L= V+iu¢(u17...,u4), (6.11)

where ¢ is a horizontal minimal immersion in $°(1) and v, o, u satisfy

dv 9 5 dp du
o t -, — poo oy =200 (6.12)
From (6.12) we find
d 3
AR (6.13)

dp ' 2 2w

After solving (6.13) we get v = £4/c2u~! — p? for some real number ¢ > 0.

Replacing e5 by —es if necessary, we have

v=+/cut — 2. (6.14)

It follows from (6.12) an (6.14) that ¢'(u) = —2/4/c2p~1 — p?. By solving the
last equation we find ¢ = —3itan™' \/u3/(c? — p3) + ¢o for some constant cq.
Therefore, we have the theorem after applying a suitable translation in p. O

Remark 6.2. Minimal §(2, 2)-ideal Lagrangian submanifolds in complex space
forms C%, CP® and C H® are classified in [13]. Also §(2)-ideal minimal Lagrangian
submanifolds in CP* and CH* have been classified recently in [14].

Let v(t) be a unit speed curve in C*. We put
Y(t) =rt)e?®, A (t) =W, (6.15)

The following result gives H-umbilical submanifolds of C® with ratio 4.

Proposition 6.3. If M is an H-umbilical Lagrangian submanifold of C® of
ratio 4, then M is an open part of a complex extensor y® ¢ of the unit hypersphere
¢ : S%(1) C S via a generating curve vy : I — C* whose curvature satisfies k = 46’
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PROOF. If M is an H-umbilical Lagrangian submanifold of C® with ratio 4,
then the second fundamental form satisfies

hiej,e;) = pJes, hiej,es) = pJej, jE€A,
h(€5, e5) = 4/1/J657 h(ej7 ek) =0, 1 S] 7é k< 47

for a nonzero function g. Thus Gauss’ equation yields K (e; Aes) = 3u?. Hence M
is non-flat. Therefore, according to Theorem F, M is an open part of a complex
extensor of ¢ : S"~1(1) C E" via a generating curve v : I — C*. It follows from [2]
that the functions ¢ and p in (4.1) are related with the two angle functions ¢ and
by ¢ = ('(t) = k and p = €'(t). Thus whenever ~ is a unit speed curve satisfying
K = 46’ the complex extensor ¥ ®¢ is an H-umbilical Lagrangian submanifold of
ratio 4. Conversely, every H-umbilical Lagrangian submanifold of ratio 4 in C™
can be obtained in such way. |

7. Improved §(2, 2)-ideal Lagrangian submanifolds of C P5

Theorem 7.1. Let M be an improved 6(2, 2)-ideal Lagrangian submanifold
in CP%(4). Then it is one of the following Lagrangian submanifolds:

(1) a d(2,2)-ideal Lagrangian minimal submanifold;
(2) an H-umbilical Lagrangian submanifold of ratio 4;

(3) a Lagrangian submanifold defined by

L(M)”Qa s ,U4) = %(\/ﬁeia¢ae3ie( \% c? — /1/3 - IM%))? (71)

where c is a positive real number, ¢ : N* — S9(1) C C5 is a horizontal lift of
a non-totally geodesic §(2)-ideal Lagrangian minimal immersion in C'P*(4),
and 6(u) satisfies

de 1
— = . (7.2)
dp  2\/p T —p2—1

PROOF. Under the hypothesis there is an orthonormal frame {e;,...,e5}

such that (4.1) holds. If p = 0, then M is a §(2,2)-ideal Lagrangian minimal
submanifold. Thus we obtain case (1). If 4 # 0 and a,b = 0, then M is an
H-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that a,p # 0. Then Lemma 4.5 implies b = 0. So, by Lem-
mas 5.1 we obtain (5.1) and (5.2). Also, in this case M is locally a warped product
I X N* with e5 = 8; according to Lemma 5.3. From Lemma 4.1, we find

h(ei,e1) = aJey + pJes, h(e1,ez) = —ades,
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h(es,e2) = —aJey + uJes,
h(es,e3) = h(es,es) = pJes, h(es,e5) = 4utes,
h(ei,es) = pde;, i € A, h(e;,e;) =0, otherwise. (7.3)

By Lemma 5.4 we have the following ODE system:

dv dp
— =—1-02-3u% —= =2uw. A4
; ve —3u°, n v (7.4)

Let 6(t) be a function on M satisfying

o' (t) = p. (7.5)

Let L denote the horizontal lift in S'1(1) C C° of the Lagrangian immersion
of M in C'P?(4) via Hopf ’s fibration. Consider the maps:

e 0(es — (v+ip)L) e L+ (v —ip)es) 76
Y vy Eu BV v ru B

Then (¢,§) = (¢,¢) = 1. From V. e5 = ve;, j € A, and (7.4), we find @ejf =0.
Moreover, it follows from Lemma 5.1 and (7.3) that V., es = 4iues — L. Thus we

also have @esg = 0. Hence ¢ is a constant unit vector in C%. Similarly, we also
have V¢ ¢ = 0. So ¢ is independent of t. Therefore, by combining (7.6) we find

_ =M i

/1+M2+V2

Since ¢ is orthogonal to &, i€, after choosing ¢ = (0,...,0,1) € C® we obtain

L

(7.7)

L= ——L (%, e¥(u - ip)) (78)

V14 p? 402
It follows from (7.4) and (7.5) that

d 1+v2+3u%  d 1
v __M’ = (7.9)

@ N 2uv du  2v

Solving the first differential equation in (7.9) gives

v=+cRpl—p2 -1, ceR™ . (7.10)
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By replacing e5 by —es5 if necessary, we have v = \/c2u~—1 — u2 — 1. Consequently,

1 4 .
L=- (\/ﬁeledn et (\/c2 —pP - iﬂg)) ; (7.11)
c
It follows from (5.1), (7.3) and the second formula in (7.6) that

R 06710

v€j¢ = \/ﬁ
Thus after applying (6.11) and (7.12) we derive that

e, jEA. (7.12)

VeyVead = Y (T + 1hl)ou(er) = (0u(er). dule;))o, ij €A (7.13)
=2

Hence ¢ is a horizontal immersion in S%(1). Moreover, it follows from (7.13)
that the second fundamental form of ¢ is a scalar multiple of the original second
fundamental form of M restricted to the second factor of the warped product
I x, N. Consequently, ¢ is a minimal horizontal immersion in S%(1) of a non-
totally geodesic §(2)-ideal Lagrangian minimal submanifold of C'P*(4).

The converse is easy to verify. (I

8. Improved §(2, 2)-ideal Lagrangian submanifolds of C H®

Theorem 8.1. Let M be an improved §(2, 2)-ideal Lagrangian submanifold
in CH®(—4). Then M is one of the following Lagrangian submanifolds:

(i) a d(2,2)-ideal Lagrangian minimal submanifold;
(ii) an H-umbilical Lagrangian submanifold of ratio 4;

(iii) a Lagrangian submanifold defined by

L(p,uy,y ..., uq) = % (\/ﬁei9¢(u2,...7U4),e_i9 (VN — 3 —c2— i,u%)) , (8.1)

where c is a positive number, ¢ : N* — H)(—1) C C3 is a horizontal lift of a
non-totally geodesic §(2)-ideal minimal Lagrangian immersion in CH*(—4),
and 6(t) satisfies % =1/1—p2—cut;

(iv) a Lagrangian submanifold defined by

L(p,ug, ... ug) = % (e_ie (\/,u — 3+ — iu%) ,\/ﬁew(b(ug, ... ,u4)) , (8.2)

where c is a positive number, ¢ : N* — S%(1) C C® is a horizontal lift of
a non-totally geodesic §(2)-ideal minimal Lagrangian immersion in C'P*(4),

and 0(t) satisfies % =1/1—p2+cu;
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(v) a Lagrangian submanifold defined by

1
L(t e = — (2t i h 2t — - =
(b ua) cosht — isinht ( —|—w—|—1(cos (¥, 9) 4)’
1
UV, 2t +w+ i (costh — (W, ) + 4)) , (8.3)
where 1 (uy,...,us) is a non-totally geodesic §(2)-ideal Lagrangian minimal
immersion in C* and up to a constant w(ui,...,us) is the unique solution

of the PDE system: wy; = 2(1y;,iv), j = 1,2,3,4;
(vi) a Lagrangian submanifold defined by

L(t,ui,...,uy) = <2t+w+i(cosh2t—<w,w>—1),

cosht —isinht 4

1,0, 2t +w + 1 (cosh2t (W, ) + i)) , (8.4)

where b = (11,19) Is the direct product immersion of two non-totally ge-

odesic Lagrangian minimal immersions 1, : N2 — C2? a = 1,2, and
up to a constant w(uy,...,us) is the unique solution of the PDE system:
Way = 2ty 10), § = 1,2,3,4.

PROOF. Under the hypothesis there exists an orthonormal frame {eq, ..., e5}

such that (4.1) holds.
Case (1) u = 0. In this case, we obtain case (i) of the theorem.

Case (2): p # 0 and a,b = 0. In this case M is an H-umbilical Lagrangian
submanifold with ratio 4, which gives case (ii).

Case (3): p # 0 and at least one of a, b is nonzero. Without loss of generality,
we may assume a # 0 and p > 0. We divide this into two cases.

Case (3.a): a,pu # 0 and b = 0. By Lemmas 5.1 we obtain (5.1) and (5.2).
Also, M is locally a warped product I X, N* with es = 0, according to Lemma
5.3. From Lemma 4.1 we find

h(ei,e1) = aJey + uJes, h(e1,ez) = —ades,

h(es,ex) = —adey + pJes,

h(es,e3) = h(es,eq) = pJes, h(es,es) = 4udes,

h(ei,es) = pde;, i € A, h(e;,e;) =0, otherwise. (8.5)
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Let L be a horizontal immersion of M in H{l(—1) C C{ of the Lagrangian
immersion of M in CH®(—4) via Hopf ’s fibration and 6(¢) a function satisfying

do
From Lemma 5.4 we obtain the following ODE system:

dv du
— =1-3u> 1%, — =2u. .
7 3u” — v, 7 1% (8.7)

It follows from (8.6) and (8.7) that

d 1-3u?2—-v? df 1
wo_ poy o w_ (8.8)
du 2uv du  2v

Solving the first differential equation in (8.8) gives v = £+/1 — p2 — ku~1 for
some real number k. By replacing e5 by —es if necessary, we find

v=+/1-—p2—kp1, ﬁ: L . (8.9)
dp 231 —p2 — kp—t

It follows from (8.7) that 4 (1 — p? — %) = —2u(1 — p? — v?). Since this
equation for y(t) = 1 — u? —v? = ku~! has a unique solution for each given initial

condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): p? +v? < 1. In this case, (8.9) implies & > 0. Thus we may
put k = c%, ¢ > 0. Consider the maps:

e Mes — (v +ip)) e (v — ip)es — L)
K 1— 2 =12 ’ T—p2—12

Then (n,n) =1 and (¢, #) = —1. From V. e5 = ve;, j € A, and (8.5), we obtain
@ejf = 0, where V is the Levi-Civita connection of C¢. Lemma 5.1 and (8.5)
give 66565 = 4ipes + L. Thus we find 6655 = 0. So n is a constant unit vector.
Also, we find @esgb = 0. Hence ¢ is independent of ¢. From (8.10) we get

¢ =

(8.10)

o+ e (v —ip)n
/1—p2 =12 ’
Since ¢ is orthogonal to 7, in and 7 is a constant unit space-like vector, we

conclude from (8.9) and (8.11) that L is congruent to (8.1). Next, by applying
the same method of the proof of Theorem 7.1, we conclude that ¢ is a horizontal

L=

(8.11)
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immersion in H}(—1) whose second fundamental form is a scalar multiple of
the original second fundamental form restricted to the second factor of I x,
N. Consequently, ¢ is a minimal horizontal immersion in H{(—1) of a non-
totally geodesic §(2)-ideal Lagrangian minimal submanifold of C'H*(—4). This
gives case (iii).

Case (3.a.2): p? +v? > 1. In this case (8.8) implies k¥ < 0. Thus we may put

k= —c?, ¢ > 0. Now, we consider the maps:
7’ — 673i9(e5 - (V + i/‘l’)L) d) — efie((y - i/”’)es - L) (8 12)
w242 -1 ’ ViR —1

instead. Then (¢,¢) = —(n,n) = 1. By applying similar arguments as case
(3.a.1), we know that 7 is a constant time-like vector and ¢ is independent of ¢
and orthogonal to 7,in. Moreover, we may prove that ¢ is a minimal Legendre
immersion in S%(1). Therefore we have case (iv) after choosing n = (1,0,...,0).
Case (3.a.3): p?+v% = 1. In this case system (8.7) gives % = 2(v? — 1) and

1= +v1— 2. Solving these and applying a suitable translations in ¢, we find
u=sech2t, v =—tanh?2t. (8.13)

It follows from V. es = 0, (8.5) and (8.13) that the horizontal lift L of the
Lagrangian immersion of M in CH®(—4) C C§ satisfies

Ltt - 4i(S€Ch Qt)Lt —L=0. (814)

Solving this second order differential equation gives

¢(U1,...7U4) +B(U1,,U4)(2t+ icosh2t)

L= cosht — isinht ’ (8.15)
where ¢(u1,...,us) and B(us,...,us) are C§-valued functions.
On the other hand, it follows from Lemma 5.1, (8.5) and (8.13) that
Ly, = (isech2t —tanh 2t)L,,, j € A. (8.16)
Substituting (8.15) into (8.16) shows that B is a constant vector ¢. Thus
Ll ) = d(ur, ..., uq) (2t + icosh 2t) c (8.17)

cosht —isinht cosht —isinht

Since (L, L) = —1, (8.17) implies

—cosh 2t = (¢, @) + (¢, (4t + 2i cosh 2¢)¢) + (4t + cosh?(2))((,¢).  (8.18)
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Since ¢; = 0, by differentiating (8.18) with respect t we find
— sinh 2t = 2t(¢, ¢) + 2sinh 2¢t(¢, i¢) + (4t + sinh 4¢)(¢, (). (8.19)
We find from (8.19) at ¢ = 0 that (¢, () = 0. Thus (8.19) gives
0 = sinh 2¢(1 + (¢, i()) + (4t + sinh 4¢) (¢, ¢). (8.20)

Differentiating (8.20) gives (¢,i¢) = —5 —2((,¢). Thus (8.17) yields (¢,i¢) = —3
and (¢,¢) = 0. Now, we find from (8.18) that (¢, ») = 0. Consequently we have

1
(@,0) =((,C) = (0, () =0, (¢,i() = 5 (8:21)
Since ( is a constant light-like vector, we may put
C:(l,(),...,(),l), ¢=(a1—|—ib1,...,a6—|—ib6). (822)

It follows from (8.21) and (8.22) that ag = a1 and bs = by + &. Therefore

1
(b:<a1+ib1,a2—|—ib2,...,a1—|—i<b1—|—2)>. (823)

Now, by using {¢,®) = 0 and (8.23), we find ¥ = (ag + ibs,...,a5 + ibs) and
by = —1 — (¢,). Combining these with (8.23) yields

6= (w=itw.9) - gvw—ite.)+ 1) (324

with w = a;. It follows from (8.22) and (8.24) that (¢u,, () = (¢u;,i¢) = 0. Thus,
by applying (L.,,iL) =0, j € A, we find from (8.17) that (¢,,,ip) = 0.
On the other hand, (8.24) implies that

(bu,,10) = —%wuj b (b, i) (8.25)

with w,; = g—x. Therefore w satisfies the PDE system: w,, = 2(¢,;, i9)).
Now, we derive from (8.17), (8.22) and (8.23) that

1

i 1
L= cosh? — isinht <2t+w+1 ((:05h2t—<¢7¢>_4>7

P, 2t +w+i <cosh2t — (W, ¥) + le)) . (8.26)
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It follows from (8.26) that

Luy = — e (w10 0y g, — i(00),). (820)

cosht —isinht
Thus we find (1, Yu, ) = cosh 26(Ly;, Ly, ) which implies that ¢ is an immersion
in C*. Also, we find from (8.27) and (Ly,,iLy,) = 0 that (1, ,it,,) = 0. Thus
1 is a Lagrangian immersion. Now, by applying an argument similar to the last
part of the proof of [11, Theorem 6.1], we conclude that

4

i=1

Therefore, according to (8.5), ¥ is a §(2)-ideal minimal Lagrangian immersion
in C*. Consequently, we obtain case (v) of the theorem.

Case (3.b): a,b,u # 0. We obtain case (vi) of the theorem by applying the
same argument as case (3.a.3). O
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Abstract We present a characterization theorem for the Maslov form in certain non-invari-
ant slant submanifolds of S-space-forms to be closed and, from it, we deduce a topological
obstruction for these types of non-invariant slant immersions. Moreover, we also give con-
ditions for an anti-invariant submanifolds of an S-manifold, tangent to the structure vector
fields, to have closed and conformal Maslov form.
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1 Introduction

The study of submanifolds which present a homogeneous behavior with respect to the struc-
ture of the ambient manifold has become an interesting research subject. In particular, slant
submanifolds, defined by B.-Y. Chen in complex geometry as a natural generalization of
both holomorphic and totally real submanifolds [10,11], have this homogeneous behavior,
and they can be considered in more general situations (see, for instance, [6,7,12,15]).
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804 J. Barrera et al.

On the other hand, for totally real submanifolds of almost Hermitian manifolds, one can
consider the so-called Maslov form, defined as the dual form of the vector fields J H, being
J the almost Hermitian structure and H the mean curvature vector of the submanifold,
which has been widely studied (for example, [3,8,9,19] can be consulted). Thus, in [19], it
is proved that any Lagrangian submanifold of C™ has closed Maslov form and, moreover,
that the well-known Whitney sphere is the only compact Lagrangian submanifold of C™
with conformal Maslov form. However, there are not too many papers devoted to study the
Maslov form in anti-invariant submanifolds of metric almost contact manifolds or, more in
general, of metric f-manifolds, considering such form as the dual form of the vector field
¢H (resp. fH), where ¢ (resp. f) denotes the almost contact structure (resp. the f-struc-
ture). In fact, the more significative results can be found in [17, 18] for integral submanifolds
of Sasakian manifolds (that is, anti-invariant submanifolds normal to the structure vector
field).

In the present paper, we deal with non-invariant slant submanifolds of S-manifold. These
S-manifolds were introduced by D.E. Blair in [1] and, for manifolds endowed with a
general f-structure, they play the role of the Kaehlerian manifolds in complex geometry
and of the Sasakian manifolds in contact geometry. In such submanifolds, we define the
Maslov form as the dual 1-form of the tangent component of the vector field fH, and
our purpose is to find conditions for it to be closed and conformal in the case of being
the ambient S-manifold an S-space-form, that is, of having constant f-sectional curva-
ture.

To this end and after two preliminary sections containing basic notions of Riemannian
submanifolds theory and some definitions and formulas concerning metric f-manifolds and
their submanifolds for later use, in Sect. 4 we consider (m + s)-dimensional (being s the
number of structure vector fields) non-invariant slant submanifolds of an S-space-form of
dimension 2m + s, and we prove that, in the particular cases of S-slant submanifolds and
anti-invariant submanifolds tangent to the structure vector fields, the Maslov form is closed
if and only if the constant f-sectional curvature equals to —3s (this holds for R>"*$ with its
usual structure of S-manifold [13]) and, as a consequence, we get a topological obstruction
to S-slant immersions as well as to anti-invariant immersions tangent to the structure vec-
tor fields into an S-space-form of constant f-sectional curvature ¢ = —3s. To obtain these
results, we use special local orthonormal frames for the ambient S-space-form adapted to the
structure of the submanifolds in each case, which cannot be deduced one from the other and
thus, even though the mentioned final results are the same, the computations have to be done
independently for the two cases.

Finally, in Sect. 5, we first prove that the Maslov form of an (m + s)-dimensional anti-
invariant submanifold tangent to the structure vector fields of an S-manifold of dimension
2m + s, if it is closed, is also conformal if and only if the mean curvature vector is parallel.
Then, we introduce the more restrictive notion for the Maslov form to be £-conformal, with £
the distribution orthogonal to the structure vector fields, and present a sufficient condition for
such type of submanifolds to have £-conformal Maslov form when the ambient S-manifold
has constant f-sectional curvature ¢ = —3s, giving examples of submanifolds satisfying this
condition.

2 Preliminaries

Let (M , ) a Riemannian manifold. A vector field X in M is said to be closed in M if the
I-form w given by wx (Y) = g(X, Y) (the dual 1-form of X) is closed. Then, X is closed if

@ Springer



The Maslov form in non-invariant slant submanifolds of S-space-forms 805

and only if
g(Y,VzX) = g(Z, Vy X), 2.1)

for any vector fields Y, Z in M , where Vis denoting the Riemannian connection of M. Onthe
other hand, X is called conformal in M (and the dual 1-form is also called conformal in M )
if Lxg = pg, being p a differentiable function on M. A closed vector field X is conformal
if and only if

VyX = fY, (2.2)

for any vector field Y in M, being f a differentiable function on M.

Now, let M be a Riemannian manifold isometrically immersed in a Riemannian manifold
M. Let g denote the metric tensor of M as well as the induced metric tensor on M. If V
denotes the Riemannian connection of M, the Gauss—Weingarten formulas are given by

VxY =VyxY +0(X,Y), VxV=—AyX + DxV, (2.3)

for any vector fields X, Y (resp., V') tangent (resp., normal) to M, where D is the normal
connection, o is the second fundamental form of the immersion, and Ay is the Weingarten
endomorphism associated with V. Then, Ay and o are related by:

g(AvX,Y)=g(0(X,Y), V). (2.4)

The curvature tensor fields of V and V are denoted by R and R, respectively. Then, R
satisfies the Codazzi equation

(R(X,V)2)* = (Vxo) (Y, Z) — (Vyo) (X, Z), 2.5)
for any X, Y, Z tangent to M, where
(Vxo) (Y, Z) = Dxo(Y,Z) —o(VxY,Z) — o (Y,VxZ) (2.6)

and (ﬁ(X, Y)Z)* is denoting the normal component of E(X, Y)Z.
The mean curvature vector H is defined by

1
H = —tracea = Za(e,, e),

where dimM = m and {eq, ..., e, } is alocal orthonormal basis of tangent vector fields to M.
This mean curvature vector is said to be parallel if Dy H = 0, for any vector field X tangent
to M. The submanifold M is called minimal if H vanishes identically or, equivalently, if
traceAy = 0, for any vector field V normal to M. Moreover, M is said to be fotally geodesic
inMifo =0.

Next, we assume that m > 2. If dim(l\71 ) = m, a local orthonormal basis of X’ (A7I )

let, ..., em,emyt, ..., €5}
can be chosen such that, restricted to M, the vector fields e, ..., e, are tangent to M and
SO, €m+1, - - -, € are normal to M. Let {w!, ..., "} be the field of dual frames. Then, for

any vector field X tangent to M, it can be written that

Vyea = D wf(X)ep, @7)
B=1

@ Springer



806 J. Barrera et al.

forany A =1, e m. The 1-forms w/’f , defined by the Eq. (2.7), are called the connection
forms of M in M, and t~hey satisfy a)g + wf =0, forany A, B =1, ..., m. Moreover, the
structure equations of M are given by

m m
de:—ng/\wB, da)é:—Zwé/\wg-f-QA, (2.8)
B=1 c=1

where Q’g are the so-called curvature forms, defined by
| m
Q‘g = 5 Z RchwC A a)D, (2.9)
C,D=1

with1 < A, B,C,D < m.

3 Submanifolds of metric f-manifolds

A (2m + s)-dimensional Riemannian manifold (A7I , g) endowed with an f-structure f (that
is, a tensor field f of type (1,1) and rank 2m satisfying 3 + f = 0 (see [20]) is said to be

a metric f-manifold if, moreover, there exist s global vector fields &1, ..., & on M (called

structure vector fields) such that, if iy, ..., n, are the dual 1-forms of &1, ..., &, then

s
fea=0; ngof=0 fi=-I+D na®é&; (3.10)
a=I
N
gX,Y) = g(f X, f¥)+ D na(X)na(Y), (3.11)
a=1

for any X, Y tangent to M. From the definition, the metric g satisfies that
8(fX,Y)=—g(X, fY), (3.12)

forany X, Y. Let F be the 2-form on M defined by F(X,Y) = g(X, fY).Since f is of rank
2m, then n A --- A ng A F™ # 0 and, particularly, M is orientable. The f-structure f is
said to be normal if

L, f142D & ®dny =0,

a=l1

where [ f, f] denotes the Nijenhuis tensor of f.

A metric f-manifold is said to be a K-manifold [1] if it is normal and dF = 0. In
a K-manifold M , the structure vector fields are Killing vector fields [1]. Furthermore, a
K -manifold is called an S-manifold if F = dn,, for any «. Note that, if s = 0, a K-manifold
would correspond to a Kaehlerian manifold and, for s = 1, a K-manifold is a quasi-Sasakian
manifold and an S-manifold is a Sasakian manifold. When s > 2, non-trivial examples can
be found in [1,13]. Moreover, the Riemannian connection V of an S-manifold satisfies (see

[1]), for any tangent vector fields X, Y andanyow =1, ..., s:
Vxéy = —fX, (3.13)
(Vx )Y =D @ X, [V + na(Y) [2X). (3.14)
a=1
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A plane section 7 on a metric f-manifold M is said to be an [f-section if it is determined
by a unit vector X, normal to the structure vector fields and f X. The sectional curvature of
7 is called an f-sectional curvature. An S-manifold is said to be an S-space-form if it has
constant f-sectional curvature ¢ and then, it is denoted by M (¢). In such case, the curvature
tensor field R of M (c) satisfies [14]:

RX,Y,Z, W)= D (fX, fWina(V)np(Z) — g(fX, f Z)na(Y)np(W)
o, =1
+8(fY, f 2 (X)np(W) — g(fY, fW)ne(X)np(2))

c+

3
+— YUK fWIg(FY. £2) = g(fX. F2)g(fY. W)

+ S (FXUCW)F(Y. 2) = FLZ)F (Y. W) = 2F (X Y)F(Z, W),
(3.15)

for any tangent vector fields X, Y, Z, W.

Next, let M be a isometrically immersed submanifold of a metric f-manifold M. Given a
differentiable function on M , we also denote by F the composition Fox, wherex : M —> M
is the corresponding immersion. For any vector field X tangent to M, we write

fX =TX+ NX, (3.16)

where T X and N X are the tangential and normal components of f X, respectively. The sub-

manifold M is said to be invariant if N is identically zero, that is, if fX is tangent to M,

for any vector field X tangent to M. On the other hand, M is said to be an anti-invariant

submanifold if 7 is identically zero, that is, if fX is normal to M, for any X tangent to M.
Similarly, for any vector field V normal to M, we have

fV =tV +nV, (3.17)

where tV (resp., nV) is the tangential component (resp., the normal component) of fV.
From (3.12), by using (3.16) and (3.17), we get

g(TX,Y)=—g(X,TY) (3.18)
and

for any X, Y tangent to M and V normal to M. Moreover, if M is a S-manifold and the
structure vector fields are tangent to M, from (2.3), (3.13) and (3.16), it is easy to show that

Vxéo = —-TX, o(X, &) =—-NX, (3.20)
for any X tangent to M and any @ = 1, ..., s and, in particular, since &, = 0, for any «:
06w, 68) =0, a,B=1,...,5. (3.21)

Also, if we extend formula (3.14), taking into account (2.3), the tangent component gives

AnyX = (VxT)Y —10(X.Y) = > [8(f X, fV)Ew +1a (V) f2X],  (3.22)
a=1

for any X, Y tangent to M, where (VxT)Y = VxTY — TVxY.
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808 J. Barrera et al.

Concerning the behavior of the second fundamental of a submanifold in a metric f-man-
ifold, we know that the study of totally geodesic submanifolds of S-manifolds reduces to
the study of invariant submanifolds (see [7]). It is necessary, then, to use a variation of this
concept, more related to the structure, namely fotally f-geodesic submanifolds, introduced
by Ornea [16]. Thus, a submanifold of an S-manifold, tangent to the structure vector fields, is
said to be a totally f-geodesic submanifold if the distribution L is totally geodesic, that is, if
o0(X,Y)=0,forany X, Y € L. Thus, from (3.20), the submanifold M is totally f-geodesic
if and only if

o(X,Y) = —Z(na(X)NY—i—na(Y)NX), (3.23)

a=1

forany X, Y tangentto M. Itis easy to show that a totally f-geodesic submanifold is minimal.

From now on, we will always suppose that all the structure vector fields are tangent
to the submanifold M. Then, the distribution on M spanned by the structure vector fields is
denoted by M, and its complementary orthogonal distribution is denoted by £. Consequently,
if X € £,thenny(X) =0,foranya =1,...,s andif X € M, then fX = 0.

The submanifold M is said to be a slant submanifold if, forany x € M andany X € T\ M,
linearly independenton &y, ..., &, the angle between f X and T, M isaconstant6 € [0, /2],
called the slant angle of M in M (see [4] for a general survey concerning slant submanifolds
in different geometric structures). Moreover, invariant and anti-invariant submanifolds are
slant submanifolds with slant angle & = 0 and 6 = 7 /2, respectively. A slant immersion
which is not invariant nor anti-invariant is called a proper slant immersion, and the subman-
ifold is said to be proper slant. If M is a non-anti-invariant 6-slant submanifold (that is, if
0 € [0, /2)), then it was proved in [12] that

(7’515"'7%-‘?7 7715""77X7g)

is a metric f-structure on M, where ? = (sec )T, which implies that, if dim(M) = m + s
then, m is even. Moreover, in a #-slant submanifold of a metric f-manifold, we have [6]:

g(TX, TY) = cos? 0(g(X, ¥) = > na(X)na(¥)), (3.24)
a=1

g(NX,NY) =sin’6(g(X.Y) —Zna(x)na(Y)), (3.25)
a=1

for any vector fields X, Y tangent to the submanifold.
We say that a proper slant submanifold of an S-manifold is an S-slant submanifold if

(VxT)Y =cos?0 > ((f X, [¥)éu + 1a(¥) F2X), (3.26)

a=1

for any tangent vector fields X, Y to M, where 6 is the slant angle. Note that, if X, Y € L,
then (VxT)Y = (VyT)X. Furthermore, it has been proved [6] that every (2 + s)-dimen-
sional proper slant submanifold of an S-manifold is an S-slant submanifold. Observe that
2 + s is the minimum possible dimension for a submanifold of an S-manifold, tangent to the
structure vector fields, to be proper slant.
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4 Closed Maslov form

Let M™7S be an (m 4+ s)-dimensional slant submanifold, with slant angle 6, of an S-manifold
M?"+5 of dimension 2m + s. By following the analogy with totally real submanifolds of
Kaehlerian manifolds, we define the Maslov form wy of M as the dual form of the vector
field t H, that is,

wn(X) = g(X, tH), 4.27)

for any tangent vector field X to M. In this section, our goal is to give a characterization for
wpy to be closed when the ambient S-manifold is an S-space-form M (¢). First, we consider
the case of M being a proper slant submanifold. As we have already pointed out, then m has
to be even and so, we can write m = 2k.

Now, we are going to define an special local frame for M. Let e; be a unit tangent vector
field of M, orthogonal to the structure vector fields. We put:

er = (secO)Tey, ejx = (cscO)Ney, exe = (cscH)Neo.

Since k > 1, then, by using an induction procedure, for each/ = 1, ...,k — 1, we can
choose a unit tangent vector field ey;11 of M such that ep;4 is normal to

e, ea,...,e-1,€,81,...,&]}
and we put:
ex42 = (secO)Tepry1, er+1yx = (csCO)Neaj+1, e1+2)x = (cscO)Neoj1.

Thus, by using (3.24) and (3.25), we have a local orthonormal frame of tangent vector
fields of M,

fer,....em &1, ..., &, €15, ..., e},
suchthatey, ..., e, € Land ejx, ..., ey are normal to M. Furthermore, a direct computa-
tion gives:
Teyj—1 = (cosB)erj, Terj = —(cosB)ezj_1,j=1,...,k; (4.28)
Ne; = (sinf)ejy, tej, = —(sinf)e;, i =1,...,m; (4.29)

neQj—1yx = —(COS 9)6(2])*, nepjyx = (COS 0)6(2j_1)*,j = 1, P k. (4.30)

We call such an orthonormal frame an adapted slant frame of M in M.
Now, we define a canonical 1-form on M by:

O = wa*. 4.31)

We are going to compute d®. By following the same line of reasoning as in [5], we have,

(2))%* Qj—=D* _  (2i)x 2i—1)%

Wy twyl = w,; + Wiy (4.32)
Qj)# Qj-Dx _ 2j 2j-1

Boiyx — PRilyx = Wi ~ W1 (4.33)
2i—1 2j—=Dx _  2j-1 (2j—Dx

Wy O =Wy TG, (4.34)
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foranyi, j =1, ..., k. On the other hand, (2.9), (3.15), (4.28)—(4.30) and a straightforward
computation, give

i c—S . . . .
Q)" = — - sing cos O(—w™ ™1 A 0¥ + @@ mDx A D%y

c+3s c¢c—s : : c—s . .
- ( —Z + sin? 9) @ A @D* 4 T cos? w2 =1 A i —D*
c—s <&
+ 5 - Z:{sinecose(—a)z”_1 A 2P 4+ w@P=D* A 2P)%)
p=1
—sin? 0(0?? A w?P* 4 ?P7L A PP Dy (4.35)

and

- c—s . - . . .
952].]711)* =3 sin @ cos O(—w? 1 A + 07D A 0B%)

c+3s c—s ; ; c—s : ;
_(t + sin? @ ) VA 0T 4 22 cos? 0w A 0@D*
4 4 4
c—s
+ Z{sin 0 cos0(—?? N A @?P + 0PPDF A P
p=1
—sin? 0(@?*" A 0PP* 4 0?P71 A PP DHY, (4.36)
forany j = 1, ..., k. By using these results, we can prove:

Lemmal Ler M mES be an (m + s)-dimensional (m = 2k) proper slant submanifold of an
S-space-form M>"+5(c) of dimension 2m + s. Then, the 1-form © satisfies

k
4 = —sin2 g M De—stm =3 3@ A0V g A @)
2 <

k
—sin6 cos 6 (m + De —s(m = 3) Z(wzf*I Al — @i~ A D%
2 <

(4.37)
where 0 is the slant angle of M. Hence, ® es closed if and only if:
s(m —3)
c=———.
m+1
Proof By using (2.8) for an adapted slant frame, we get:

m s om m
i* j ix J* ix m+a i*
de = — E (wj ANw; + ol AN o; ) — E E Wy N + E Q;", (4.38)
i,j=1 a=1i=1 i=1

where we are denoting ¢+ = &y, @ = 1,...,s. Now, from (4.32)—(4.34) and following
the same steps as in the proof of Theorem 3.1 of [10], we obtain:

m
> (@ Aol + ot Aol =0. (4.39)
i,j=1
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Moreover, since from (2.7), (3.12) and (3.13),

Wl (X) = g(Vxy, eix) = —g(f X, er) = g(X, feix)

and
o T(X) = g(Vxei, £) = —glei. Vxéa) = g(fX. &) = —g(X, fe;),
for any vector field X in 1\~4, anyi = 1,...,mand any @ = 1, ..., s, we have that, from
(4.28)—(4.30):
,(,,2_{;1)* = —sinfw? ! — cos 0w @)*; w,(f_{_zk = —sinfBw?¥ + cosha @ ~V*, (4.40)
w'znjt"‘l = —cosOw? — sin O ~D*, wg’j+“ = cos0w™ ! —sin0w®*,  (4.41)
forany j = 1,...,kand any @« = 1, ..., s. Consequently, taking into account (4.40) and
(4.41), we compute
m k
— Zwi,f_m A a)f’”r“ = 2sinf cos Z(—a)2j—1 At 4 P TDF A 2D%)
i=1 j=1
k
—i—(cos2 6 — sin? 0) Z(—wzf—l Aw@I=Dx L 20 A w(ZJ)*)’
j=1
(4.42)
foranyw = 1, ..., s. Finally, from (4.35), (4.36), (4.38), (4.39) and (4.42), we deduce (4.37).
The remaining part of the proof follows directly from (4.37). m}

Observe that the above lemma does not give a closed 1-form on M if the constant f-sec-
tional curvature of the ambient S-space-form is equal to —3s (for instance, R?”"** with the
S-structure given in [13]). However, we can define another 1-form on M:

s
®=0+msind D 1. (4.43)

a=1

For this form, we can prove:

Lemma 2 Let M m+S be an (m + s)-dimensional (m = 2k) proper slant submanifold of an
S-space-form M+ (¢) of dimension 2m + s. Then, the I-form w satisfies

k
do = — sin 0 cos 6 (%2(0*"35)) S A0 — @D A 2%
=1

k
—sine (Mﬂ) S@H A @ T  2 A 02D, (444)
j=1

where 0 denotes the slant angle of M. Hence, w is closed if and only if c = —3s.
Proof Since from (2.7), (3.12) and (3.13),

ol (X) = g(Vxeis, £a) = —g(eix. Vxéa) = g(f X, €ix) = —g(X, feis),
and, from (3.10),

of(X) = g(Vxép, &) = —g(f X, &) =0,
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for any vector field X tangentto M,anyi = 1,...,m and any o, 8 = 1, ..., s, we have
that, from (4.28)-(4.30),

W51, = sin00” ! 4 cos 00 Wi = sinfw? — cosfw* D", (4.45)
forany j =1,...,kandanya =1, ..., s. Thus, from (2.8) and taking into account (4.45),
we compute

m
d?’]a = — Z(w;n+a A wi +wlf’;lk+(1 A wi*)
i=1
k
=2 (cos6’(a)2/_1 A w2 — @@ =Dx A 2D%)

j=1

+sin0(@? ! A @@V 4 2 A w(21'>*)) : (4.46)
forany o = 1, ..., s. Next, since M is an S-manifold, we know that F' = dng, for any o
too. Consequently, by using (4.37), (4.43) and (4.46), we obtain (4.44). The rest of the proof
is immediate. O

For S-slant submanifolds, the Maslov form wy and w are related by the following theorem.

Theorem 4.1 Let M™ T be an (m + s)-dimensional S-slant submanifold of an S-space-form
MZ+5(¢) of dimension 2m + s. Then,

sin 0 @47)
wH = — .
" m+s
where 6 is the slant angle. Consequently, the Maslov form is closed if and only if c = —3s.
Proof We consider an adapted slant frame {eq, ..., e, &1, ..., &, €14, - .., €ms} Of M in M.

Then, from (2.4), (3.19), (3.21) and the definition of H, we have, foranyi =1, ..., m:
1 m
wonle) = ———— Zlg(Aquj,ep. (4.48)
j=

But, from (3.22), (3.26) and the symmetry of o, we get
g(Aneej,ej) = g((VejT)ei, ej) —g(to(ei,ej), ej)
=g((Ve;T)ej,ej) — g(to(ei,ej), ej) = g(ANgjei, ej), (4.49)

foranyi, j =1, ..., m. Thus, replacing (4.49) into (4.48) and taking into account (2.7) and
4.29),

1 m ) m
onle) = == > g(Ane € e)) = = sind > g(o(ei, ), ¢jx)
j=1 j=1

m+s

1 m 1 m 2m-+s
— ; V o o) — ; Ac,. .
= s sin 6 Zg(veie],ej*) f—— s1n92 Z w; (ei)glea, ejs)

j=1 j=1 A=1

1 o ;
— : J*e, N — : .
= sm@jzla)j (e) = = —sin 00 (e), (4.50)
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forany i =1, ..., m, where we have denoted 2,4« = &y, @ = 1, ..., s and used (4.31).
On the hand, by using (2.3), (2.7), (3.20), (4.29) and (4.31), we compute

m m
Oernta) = D 8(Ver, utis €in) = D 2(0(€2mtas €i), €ix)
i=1 i=1

m
- Zg(Nei, ejx) = —msinf,
i=1

forany o = 1, ..., s. Consequently,
m s
D 0w =0 +msind D n,=o. 4.51)
i=l1 a=1
Finally, since from (3.10) we easily get that wy (ean+o) = 0, foranya =1, ..., s, (4.50)
and (4.51) give
sin 0 : sin 6
= — Oe)w' = —
wy m_’_s; (ej)w m—i—sw
and we complete the proof. O

Now, we are going to consider an (m + s)-dimensional anti-invariant submanifold M™+$
of an S-space-form M2m+s (c), tangent to the structure vector fields &, ..., &, which is a
particular case of slant immersion. In this situation, t H = f H. Moreover, we cannot use an
adapted slant frame, but, if we take any local orthonormal frame

{et, ..., em, &1, ..., &)

on M, it is easy to show that

{er, ... em, 81, .. &8 e, ..o, e,

where e;x = fe;,foranyi =1, ..., m,isalocal orthonormal frame on M , called an adapted
anti-invariant frame of M in M. Observe that adapted anti-invariant frames are not particular
cases of adapted slant frames. So, it is necessary to make all the computations again, although
we can use the same line of reasoning. So, we do not explicit them as detailed as above. First,
we get that, for an adapted anti-invariant frame,

a)ij* = w;-*, wij: = —wij, (4.52)
forany i, j =1, ..., m. Furthermore, from (3.15), the curvature forms are given by
% c+s s c—S ! : x
Q =———0' no’ - — jz_;w~/Aw~/ : (4.53)

foranyi = 1, ..., n. Therefore, for the 1-form ®, defined as in (4.31), by using (2.8), (4.52)
and (4.53), we have:

Lemma 3 Let M m+S be an (m + s)-dimensional anti-invariant submanifold of an S-space-
form M3 (¢) of dimension 2m + s, tangent to the structure vector fields. Then, the 1-form
O satisfies:

(m + 1)c—s2(m —1)—2s i‘,wi o

de = — (4.54)

i=1
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Consequently, © is closed if and only if:

s(m —3)
c= ———.
m—+ 1
The above lemma implies that the 1-form ® is not closed if ¢ = —3s. Then, we consider

the 1-form

s
w:@—}—mz%

a=1
and we can prove:
Lemma 4 Let M™% be an (m + s)-dimensional anti-invariant submanifold of an S-space-
form M3 (¢) of dimension 2m + s, tangent to the structure vector fields. Then, the 1-form
w satisfies:

m

_(m+ 1)(c + 35) Zwi ot

d =
@ 2

(4.55)
i=1
Consequently, w is closed if and only if c = —3s.

The relationship between w and the Maslov form is given in the following theorem.

Theorem 4.2 Let M"Y be an (m + s) an anti-invariant submanifold of an S-space-form
M?"+5 (¢) of dimension 2m + s, tangent to the structure vector fields. Then:
1

_m—i—s

. (4.56)

O =
Consequently, wp is closed if and only if c = —3s.
Proof Considering an adapted anti-invariant frame

{er, .. em &1, & el o, Cons)

of M in M and taking into account the Gauss formula, (2.4) and (3.21), we have

] m
wg(e) = —rﬂng(Ae[*ej,ej-), (4.57)
j=
foranyi =1, ..., n.. Now, from (3.22), since T = 0 and o is symmetric:
8(Ac,ej.ej) = g(Ac e, €)). (4.58)

Then, replacing (4.58) into (4.57) and from (2.3), we get

1 <« = 1 & 1
) = — Veej,ejx) = — Me) =———0(e), (4.59
wn (er) m—i—s;g( ¢€j> €jx) mﬂgw, (e) ==~ 0(e), (459
forany i = 1, ..., n. On the other hand, by using (2.7), (3.20) and that M is an anti-invariant
submanifold:

Oa) = D g(Ve,ei ein) = D g(olei, &), eiv)

i=1 i=1

=D g(ein. i) = —m. (4.60)
i=1
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Finally, by using (4.59) and (4.60) and since it is easy to show that wy (§,) = 0, for any
a=1,...,s5, we get:

m m
: 1 :
oy = i; wp (e’ = - El (e

1 : 1
- (® = —
! +m;na) ol

m}

From Theorems 4.1 and 4.2, we can prove the following topological obstruction to S-slant
immersions as well as to anti-invariant immersions tangent to the structure vector fields into
an S-space-form of constant f-sectional curvature ¢ = —3s:

Theorem 4.3 Let M™ S be a compact simply connected (m + s)-dimensional differentia-
ble manifold. Then, M cannot be immersed in any (2m + s)-dimensional S-space-form
M2m+s (—3s) as an anti-invariant submanifold tangent to the structure vector fields with no
minimal points. Moreover, if m is even, M cannot be immersed in such a S-space-form as
an S-slant submanifold with no minimal points either. In particular, if m = 2, M cannot be
immersed in M(—3s) as a non-invariant slant submanifold with no minimal points.

Proof Let us suppose that M is an anti-invariant submanifold of M(=3s), tangent to the
structure vector fields, with no minimal points. Then, H is nowhere zero and, consequently,
the Maslov form wp is also nowhere zero because M has codimension m (to check this, it
is enough to consider an adapted anti-invariant frame). From Theorem 4.2, wg is closed and
so, it represents a cohomology class [wy] € H (M, R). Since M is compact, wy cannot
be exact. Therefore, [wy] is a non-trivial cohomology class and then, the first cohomology
group H'(M, R) is non-trivial. Hence, M is not simply connected, which is a contradiction.

In the case of being m even, the second part of the proof follows analogously from
Theorem 4.1.

5 Conformal Maslov form

In this section, we want to study whether the Maslov form of an (m + s)-dimensional (s > 1)
anti-invariant submanifold of an S-space-form M Zm+s(_3g) of dimension 2m + s, tangent
to the structure vector fields, can be conformal in M. First, we have a more general result:

Theorem 5.4 Let M™% be an (m + s)-dimensional anti-invariant submanifold of an
S-manifold MPmts of dimension 2m + s, tangent to the structure vector fields and such
that its Maslov form is closed. Then, this Maslov form is conformal in M if and only if the
mean curvature vector is parallel.

Proof From (2.1) and (3.20), if Y is a tangent vector field to M, we get,
8(Ve, fH,Y) =g(Vy fH, &) =—g(fH,Vy&) =g(fH,TY) =0
and so:

Ve, fH=0.
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Consequently, by using (2.2), we have that @y is conformal in M if and only if
VxfH =0,

for any vector field X tangent to M. But, since from (3.14), (6;( f)H = 0, taking into
account the tangent component of this formula, we obtain Vx fH — fDxH = 0, that is,
wy is conformal in M if and only if Dx H = 0 and the proof is complete. O

Due to the above theorem, it is necessary to introduce a more restrictive notion, and we say
that the Maslov form is £-conformal if Vy f H = hY,forany Y € L, being h a differentiable
function. Then, we can prove the following theorem.

Theorem 5.5 Let M™S be an (m + s)-dimensional anti-invariant submanifold of an
S-space-form M>"+S(=3s) of dimension 2m + s, tangent to the structure vector fields.

If

m—+s m+s+1 <
o(X,Y) = m {g(fX, SYH — (o (X) + Tﬂéﬂa(x))fY
—(on(n) + 1 Zna(Y))fX] (5.61)

for any tangent vector fields X, Y tangent to M, then the Maslov form of M is L-conformal.
Proof Let X,Y € L be two orthogonal vector fields such that g(Y, Y) = 1. Then, from
(5.61):
m—+s
o(Y,Y) = ——— {H +2g(fY, H)fY}. (5.62)
m-+s+1
Differentiating (5.62) with respect to X:
m—+s
Dxo (Y, ¥) = —————{DxH +2Xg(fY, ) fY +28(fY, H)Dx fY}. (563)

Now, since from (3.14), we have thgt (6 x f)Y = 0, then, by using the Weingarten formula
(2.3), we deduce Xg(fY, H) = g(fVxY, H) + g(fY, Dx H) and, substituting into (5.63):

Dxo(V.Y) = —" 5 Dy H +28(fVx Y, H) fY
m4+s+1
+2g(fY, DxH)fY +2g(fY, H)Dx fY}. (5.64)
On the other hand, from (5.61) and by using that g(VxY,Y) = 0 = n4(VxY), we get:
m+s
o(VxY,Y) = ﬁ{g(foY H)fY +g(fY, H)fVxY}. (5.65)
Thus, from (2.6), (5.64) and (5.65):

(Fxo) (Y. ¥) = #{DXH +20(FxY, H)FY +24(FY, Dy H) fY

+2¢(fY, H)Dx Y —2g(fVxY, H)fY —2g(fY, H)fVxY}.
(5.66)
But, sin(f f H is a tangent vector field to M and (§X f)Y =0, from (2.3) and (3.12), we
obtain g(fVxY, H) = g(fVxY, H)and Dx fY = fVxY, so (5.60) reduces to:
m-+s

(Vxo)(Y,Y) = ey 1 (PxH - 28(Dx H, fV)fY). (5.67)
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Next, from (2.6) again and by using a similar line of reasoning to above, a straightforward
computation gives:

m+s
——{g(fX,DyH) fY + g(fY, DyH) f X}. (5.63)
m+s+1

Consequently, since from ~(3.15) we have tllat (ﬁ(X ,Y)Y)+ = 0, then, from the Codazzi
Eq. (2.5), we deduce that (Vxo)(Y,Y) — (Vyo)(X,Y) = 0 and subtracting (5.68) from
(5.67):

(Vyo)(X,Y) =

DxH =g(fX,DyH)fY +g(fY,DyH)fX —2¢(DxH, fY)fY. (5.69)
Moreover, since from (3.14), ﬁfo = f%x H, taking into account (2.3) and (3.12), we

get g(DxH, fY)=—g(Vx fH,Y)and g(DyH, fX) = —g(Vy fH, X). But, from (2.1),
since wy is closed, g(Vx fH,Y) = g(Vy fH, X), therefore (5.69) reduces to:

DxH =g(DyH, fY)fX —g(DxH, fY)fY.

Thus, g(DxH, fY) = —g(DxH, fY), because g(fX, fY) = 0and g(fY, fY) =1,
that is, g(Dx H, fY) = 0. Then, we obtain:

DxH = g(DyH, fY)fX. (5.70)
Finally, from (2.3), (3.12), (3.14) and (5.70), we easily check that
g(VxfH,Z)=—g(DyH, fY)g(X, Z),

for any vector field Z tangent to M. This implies that Vx fH = —g(DyH, fY)X, which
completes the proof. O

Notice that, from Theorem 5.4, this result cannot be improved. However, it is interesting to
ask about examples of submanifolds satisfying (5.61). Firstly, we have the totally f-geodesic
submanifolds. It is easy to show that these submanifolds are minimal. Thus, (3.20) and (3.23)
imply that any anti-invariant and totally f-geodesic submanifold satisfies (5.61).

On the other hand, in the case s = 1, if we consider R¥"t1 ag the ambient Sasakian
manifold, A. Carriazo and D. E. Blair proved in [2] that the condition (5.61) characterizes
anti-invariant (m + 1)-dimensional submanifolds satisfying the equality case of

Pe_2mtd
TR

where 7 denotes the scalar curvature of the submanifold.

1H
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GENERALIZED S-SPACE-FORMS

Alicia Prieto-Martin,
Luis M. Fernandez, and Ana M. Fuentes

ABSTRACT. We introduce and study generalized S-space-forms. Moreover, we
investigate generalized S-space-forms endowed with an additional structure
and we obtain some obstructions for them to be S-manifolds.

1. Introduction

It is an interesting problem to analyze what kind of Riemannian manifolds may
be determined by special pointwise expressions for their curvatures. For instance, it
is well known that the sectional curvatures of a Riemannian manifold determine the
curvature tensor field completely. So, if (M, g) is a connected Riemannian manifold
with dimension greater than 2 and its curvature tensor field R has the pointwise
expression

R(X,Y)Z =X{g9y(X,2)Y —g(Y,Z)X},
where A is a differentiable function on M, then M is a space of constant sectional
curvature, that is, a real-space-form and A is a constant function.

Further, when the manifold is equipped with some additional structure, it is
sometimes possible to obtain conclusions from the special form of the curvature
tensor field for this structure too. Thus, an almost-Hermitian manifold (M, J, g) is
said to be a generalized complex-space-form [9] if its curvature tensor satisfies

(1.1) R(X,Y)Z = fi{g(Y,Z2)X — g(X,Z)Y'}
+ fo{9(X, JZ)JY — g(Y,JZ)JX +29(X,JY)JZ},

where f1 and f> are differentiable functions on M. This name derives from the fact
that, when M is a complex-space-form, that is, a Kaehlerian manifold of constant
holomorphic curvature equal to ¢, the curvature tensor field of M satisfies (L)

with fl = fQ = 0/4
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Since Sasakian-spaces-forms play a similar role in contact metric geometry to
that of complex-space-forms in complex geometry, Alegre, Blair and Carriazo have
defined and studied generalized Sasakian-space forms [1] as those almost-contact
metric manifolds (M, ¢, &, 7, g) whose curvature tensor field satisfies

R(X,Y)Z = fi{g(Y,Z2)X — g(X,Z)Y} +
+ fo{9(X,0Z)pY — g(Y,0Z)pX + 29(X, ¢Y )9 Z}
+ f3 (n(X)n(2)Y —n(Y)n(Z)X + g(X, Z)n(Y)E — g(Y, Z)n(X)E}

f1, f2, f3 being differentiable functions on M. If M is actually a Sasakian-space-
form, that is a Sasakian manifold with constant ¢-sectional curvature equal to c,
then f1 = 3(c+3), fo=fa = 3(c—1).

More in general, Yano [10] introduced the notion of f-structure on a (2n + s)
-dimensional manifold as a tensor field f of type (1,1) and rank 2n satisfying
2+ f=0. Almost complex (s = 0) and almost contact (s = 1) structures are
well-known examples of f-structures. In this context, Blair [2] defined K-manifolds
(and particular cases of S-manifolds and C-manifolds) as the analogue of Kaehle-
rian manifolds in the almost complex geometry and of quasi-Sasakian manifolds
in the almost contact geometry and he showed that the curvature of either S-
manifolds or C-manifolds is completely determined by their f-sectional curvatures.
Later, Kobayashi and Tsuchiya [8] got expressions of the curvature tensor field of S-
manifolds and C-manifolds when their f-sectional curvature is constant depending
on such a constant.

For these reasons, we consider that it is interesting to introduce a notion of gen-
eralized S-space-form on metric f-manifolds (see Section 2l for a precise definition of
these manifolds). We observe that this work was made in [5] for metric f-manifolds
with two structure vector fields, giving some interesting examples. Now, we present
the definition for any number of structure vector fields. To this end, we have fol-
lowed the same procedure as in almost complex and almost contact cases, that is,
we have substituted the constants in the expression of the curvature tensor field of
an S-space-form (an S-manifold of constant f-sectional curvature) obtained in [§]
by certain differentiable functions on the manifold. So, S-space-forms are natural
examples of generalized S-space-forms. Furthermore, we check that C-space-forms
are also generalized S-space-forms.

We have organized the communication in the following way. In Section 2l we
review definitions and formulas concerning metric f-manifolds which we shall use
later. In Section [B] we define generalized S-space-forms and study the sectional
curvatures of such manifolds. Moreover, we establish that the writing of the cur-
vature tensor field is unique in terms of a family of differentiable functions on the
manifold if and only if the dimension of the manifold is greater than 2 + s, s being
the number of structure vector fields. In Section 4 we consider a different defini-
tion given by Falcitelli and Pastore in [6], comparing both definitions. Finally, in
Section [B], we study generalized S-space-forms endowed with an additional struc-
ture and the relationships between the functions in such a case. Thus, we prove
that any generalized S-space-form with a metric f-K-contact structure is actually
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an S-manifold and we deduce an obstruction for a generalized S-space-form to be
an S-manifold, depending on the functions. The same result holds for a metric f-
contact structure with some additional conditions on the functions. We also study
generalized S-space-forms with an underlying C-structure and, more in general,
with a K-structure.

2. Metric f-manifolds

A Riemannian manifold (M, g) of dimension 2n + s and endowed with an f-
structure f (that is, a tensor field of type (1,1) and rank 2n satisfying f2 + f =0
[10]) is said to be a metric f-manifold if, moreover, there exist s global vector fields
&1,...,& on M (called structure vector fields) such that, if ny,...,ns are the dual
1-forms of &1,...,&s, then

fgoz:O; naOfZO; f2:_I+Z77a®§a;
a=1

9(X,Y) = g(f X, FY) + 3 na(X)na(Y),
a=1
for any X,Y € X(M) and « = 1,...,s. The distribution on M spanned by
the structure vector fields is denoted by M and its complementary orthogonal
distribution is denoted by L. Consequently, TM = L & M. Moreover, if X € L,
then 1, (X) =0, forany a =1,...,s and if X € M, then fX =0.

Let F be the 2-form on M defined by F(X,Y) = g(X, fY), for any X,V €
X(M). Since f is of rank 2n, then my A--- Ans A F™ # 0 and, particularly, M is
orientable. A metric f-manifold is said to be a metric f-contact manifold if F =
dnq, for any o = 1,...,s. On the other hand, a metric f-contact manifold is said
to be a metric f-K -contact manifold if the structure vector fields are Killing vector
fields. When s = 1, metric f-contact manifolds correspond to contact manifolds and
metric f-K-contact manifolds to K-contact manifolds. Furthermore, in a metric
f-K-contact manifold it easy to show that:

(2.1) Vxéo=—fX, X € X(M), a=1,...,s.

The f-structure f is said to be normal if [f, f]+2>°"_, £a ® dno = 0, where
[f, f] denotes the Nijenhuis tensor of f. Then, a metric f-manifold is said to be
a K-manifold [2] if it is normal and dF = 0. In a K-manifold M, the structure
vector fields are Killing vector fields [2] and:

(22) Vgafﬁzo, Oz,ﬂ:L...,S.

A K-manifold is called an S-manifold if F' = dn,, for any « (that is, if it is also
a metric f-K-contact manifold) and a C-manifold if dn, = 0, for any «. Note that,
for s = 0, a K-manifold is a Kaehlerian manifold and, for s = 1, a K-manifold is a
quasi-Sasakian manifold, an S-manifold is a Sasakian manifold and a C-manifold
is a cosymplectic manifold. When s > 2, non-trivial examples can be found in
[2, B, [7]. Moreover, a K-manifold M is an S-manifold if and only if

Vxéa=—fX, X €eXM), a=1,...,s,
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and it is a C-manifold if and only if Vf =0 [2].
On the other hand, the curvature tensor field R of a K-manifold M satisfies

(23) R(gocaXa gﬁay) = _g(vX§ﬁ7VY€Q)7

forany X, Y € X(M) and o, 5 =1,...,s [].

A plane section 7 on a metric f-manifold M is said to be an f-section if it is
determined by a unit vector X € £ and fX. The sectional curvature K () of 7 is
called an f-sectional curvature. An S-manifold (resp., a C-manifold) is said to be
an S-space-form (resp., a C-space-form) if it has a constant f-sectional curvature
¢ and then, it is denoted by M (c). In such cases, the curvature tensor field R of
M (c) satisfies

RX,Y,Z,W) = (g(f X, fW)na(Y)ns(2) — g(f X, fZ)na(Y)ns(W)
T g, P2 (X s (W) = g(fY, FW)na(X)ns(2))

(2.4) + I X, WY £2) - 9(F X F2)g 1Y, W)
2 (F(X,W)F(Y, Z) — F(X, Z)F(Y, W)
—2F(X,Y)F(Z,W)),
(resp.,

R(X,Y.Z,W) =2 (g X.JW)g(fY, [Z) = g(FX, [ 2)g( Y. [W)
(2.5) + F(X,W)F(Y,Z) - F(X,Z)F(Y,W)
—2F(X,Y)F(Z,W))),

for any X, Y, Z, W € X(M) [g].

3. Generalized S-space-forms

A metric f-manifold (M, f,&1,...,&,m,...,7s,9) is said to be a generalized
S-space-form if there exists a family of differentiable functions on M,

{F1;F2;Faﬁ;Gaﬁ;Haﬁ’)’};

such that the curvature tensor field R of M satisfies

(3.1) R=FiR1 + F>sRs + Z FogRap + Z GQBEQIQ + Z H.gyRag,
o f=1 1<a<f<s o f=1,
a#BEYFo
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where

(3.2)
RI(XJ Yu Za W) = g(X7 W)g(yu Z) - g(X, Z)Q(Y, W)v

Rap(X,Y, Z,W) = g(Y, W)na(X)ns(Z) — g(X, W)na(Y)ns(Z)
+9(X, Z)na(Y)ng(W) — g(Y, Z)na(X)ns(W);

Rap(X,Y, Z,W) = na(X)ns(Y)ns(Z)10a(W) = ns(X)na(Y)ns(Z)n.(W)

+ 18(X)Na(Y)1a(Z)1s(W) = 1a(X)15(Y )10 (Z)1s(W);
Rapy (X, Y, Z,W) = 0o (X)ng (V)1 (Z)110(W) = 15(X)1a(Y )1y (Z)na (W)
+ 18(X)1a(Y)1a(Z)0y (W) = na(X)ns(Y )10 (Z)ny (W),
for any X, Y, Z, W € X(M).

This kind of manifold appears as a natural generalization of S-space-forms
because a straightforward computation from (24]) gives that any S-space-form M (c)
is a generalized S-space-form with functions

Fy=X(c+3s); Fo=1(c—5); Fao=1(c+3s)—1;
Fop=—1 (a#B); Gap=1(c+3s)—2 (a<p);

Hopy = =1 (a# B # 7 # ),
where a, 8,7 € {1,...,s}. Moreover, any C-space-form M (c) is also a generalized
S-space-form. In fact, from (23], we only have to take

F1:F2:Faa:Ga,8:% (Oé<6);
FaB =0 (Oé 7é 6)7

Hopy =0 (a # B #7 # a),
where o, 8,7 € {1,...,s}. N _ _ N

From ([B.2) we easily deduce that Raq = 0; Rag = Rga; Raps = Ras; Raaa =
Roap =0, for any o, 5 =1,...,s. Furthermore, from (3.I]) we get that
(3.3) R(X,&a; X, &p) = Fag,

(34) R(§as 8,8y €a) = Hapy — Figy,
for any unit vector field X € £ and any o, 8,7 =1,...,s, a # B # v # «. Then, by

using the symmetries of the curvature tensor field R, from [B.3]) and 4] together,
we obtain Fig = Fgo and Hogy = Hovg,o, B,y =1,...,5, a # B # v # a.

Now, we observe that, if s = 2, B agrees with (3.1) of [5]. In that pa-
per, more examples of generalized S-space-forms with two structure vector fields
were given and they can be generalized to any s. Thus, pseudo-umbilical, totally
contact-umbilical, totally contact-geodesic, totally umbilical and totally geodesic
hypersurfaces of a generalized S-space-form are also generalized S-space-forms and,
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moreover, the bundle space of a principal toroidal bundle over a Kaehlerian mani-
fold and the warped product of R times a generalized S-space-form are generalized
S-space-forms too.

Next, for the sectional curvatures of a generalized S-space form and by using
BI) and 32)), we can prove the following proposition.

PROPOSITION 3.1. Let M be a generalized S-space-form with functions:
{Fla F2; Faﬁa Gaﬁa Haﬁ'y}-
Then, for any orthonormal vector fields X, Y € L and o, 8 € {1,...,s}, we have
(i) K(X,Y)=R(X,Y,Y,X) = Fi +3Fg(X, fY)*.

(i) H(X) = (XfX%;ﬂ+3H.
(lll) K(X ga) - - Faa
(V) (gong,@) _Faa_F,BB+Ga,87 (Oé<ﬂ).

We are going now to study if the writing of the curvature tensor field of a
generalized S-space-form is unique. First, we can prove:

PROPOSITION 3.2. Let M be a (2n + s)-dimensional generalized S-space-form.
If n > 2, the writing of the curvature tensor field R of M in terms of a family of
functions is unique.

PROOF. Let us suppose that there exist two families of differentiable functions,

{F1,F>,F.3,Gag, Hap} and {F}, Fy, a,@’Ga67HaB'y} such that

(3.5) R=FiR1 + FoRs + Z FogRap + Z Gaﬂﬁaﬂ + Z HopgyRapy

a,f=1 1Sa<p<s a,B,7=1,
0175,37577501
= F{ R+ F;Ry + Z wgRop+ Y GhgRap+ Z H} g\ Rag.-
a,B=1 1<a<pB<s a,B,v7=1,
aFBAva
Since n > 2, we can consider a pair of orthonormal vector ﬁelds X,Y € L such
that ¢g(X, fY) = 0. From (B38) we get that R(X,Y, fX, fY) = = F5 and so,

R(X,Y,Y,X) = Fy = F}. From (iii) and (iv) of Proposition le we deduce that

Foo =F},, forany a=1,...,s and Gag :G(’;B, forany a, 6 =1,...,s, a<pf.
Finally, if X € £ is a unit vector field and o, = 1,...,s, a # 3, from (B5)

again, we get that R(X, &a, X,€p) = Fap = F;5 and, by using 84), Hapy = H 5.,

for any a, B,y € {1,...,s}, a £ B £ v # . O

Next, what about (2 + s)-dimensional generalized S-space-forms? In this case,
the writing of the curvature tensor field is not unique. Actually, if M is a generalized
S-space-form of dimension 2 4+ s such that its curvature tensor field R can be
simultaneously written as

R=FRy+FRy+ Z FopgRap + Z Gagéa,@ + Z HOZB’YROQBV
af=1 1<a<f<s aB=1,
a#p#EYF
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and

R=F;Ri + FfRy + Z ngRop+ Y GigRap+ Z H 4 Ragy,
a,B=1 1<a<pB<s a,B,v7=1,
a# By

then, given a unit vector field X € £ and «, 8,7 € {1, ..., s}, from B3), 34) and
Proposition [3I] we obtain the system
F1 - Fl* = 3(F2* - FQ)
Fy — Ff = Foo — F*;
B)
a < ﬂ)
a<pf)

a#tBAv#a)

Fop — ;,8:0; (c
Faa_F;a:Ga/B_GZ/ﬁ; (
HOZB’Y - H;,Bv =0, (

whose general solution is given by
Ff=F+h, F;:FQ—%h7 E),=Fuoo+h,
(36) Gzﬁ = Gaﬁ + h, F aB = Faﬁ, H;ﬁ'y = Haﬁfy,

where h is a differentiable function on M. Consequently, if h # 0, the writing of R
in not unique and the functions of two different writings are related by (B-6I).

On the other hand, if M is a (2+ s)-dimensional generalized S-space-form with
functions {F1, Fs, Fop, Gag, Hapy} and we define the functions

{Fl*’F;’ a*B’ ZB’H;BW}

as in ([B.6]), for any differentiable function h on M, then we deduce:

R=FRi+FRy+ Y FapRag+ > GapRag+ Y, HopyRapy,

a,f=1 1<a<f<s a,8,y=1,
aFBEr#a
—‘FiRl*‘FéRQ+‘§: wgBRop+ ) GaBRa5+'§: Hg g Rapy
a,f=1 1<a<f<s a,B,v7=1,
a#BAra
h
—hRy + = Rz—hZRM —h > Rap.
1<a<pB<s

But it is straightforward to check that

h - ~
hBy = SRy +h) Rao+h Y Rap=0
a=1 1<a<BLs

and, consequently, M is also a generalized S-space-form with functions

{F1*7F2*7 a*ﬁu :;ﬁu ;ﬁ'y}'
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4. A different definition

In [6], Falcitelli and Pastore defined a generalized f.pk-space-form as a metric
[f.pk-manifold M of dimension 2n + s (actually, a metric f- mamfold) endowed
with a fannly of differentiable functions {Fl,FQ,Faﬁ7 a,B =1,...,s}, such that
Falg = F,@a, for any «, 8 € {1,...,s} and such that the curvature tensor field R of
M can be written as
(4.1)  RX,Y)Z=F{g(fX DY —g(fY.[2)1*X}

+ ﬁz{g X, f2)fY +9(Y, f2) X +29(X, fY)fZ}

+2Faﬂ{’7a 21 = na(Y)m(2) X

oo +g(foZ)77a(X)§ﬁ— 9(FX, fZ)na(Y)Es ),

for any X,Y, Z € X(M). This definition is more restrictive than the one concerning
generalized S-space-form. In fact, we observe that, from @), R(¢a,&5)¢, = 0, for
any «, 8,7 € {1,...,s} (this means that the distribution M is flat), but some
examples of generalized S-space-forms not satisfying this condition were presented
in [5].

Moreover, if M is a generalized f.pk-space-form, a straightforward computation
using ([B.2)) gives

R:ﬁ1R1+ﬁ2R2+ﬁ1{zRaa_ Z Ea,@}

a=1 1<a<pB<s
=3 Fushas = 3% Foafos = 32 Fusf 3 o}
a,f=1 a,f=1 a,f=1,
a#B a#v#ﬂ
Consequently, M is a generalized S-space form with functions
Flzﬁl; F2:ﬁ2; Faa—Fl Faay Faﬁ:_Naﬁ (Oz;éf)’),

Gaﬁ = ﬁl — Faa — Fﬁﬁ; Haﬁfy = _ﬁﬁ’Y'
Conversely, if M is a generalized S-space-form with functions
{F15F27Faﬁ7Gaﬁ7Haﬁ'y}

such that the distribution M is flat, then, from (3.4)) we get that Hag, = Fj,, for
any o, 8,y = 1,...,8, a # f # v # « and from (v) of Proposition Bl G5 =
Foo +Fg — F1,1 < a < B <s. Then, it is easy to check that M is a generalized
f.pk-space-form with functions:

ﬁlel; ﬁ2:F2; ﬁaa:Fl_Faa; ﬁaﬂz_ a,@ (047&6)

5. Generalized S-space-forms with additional structures

Taking into account the results of the above section, if M is a generalized
S-space-form such that the distribution M is flat (for instance, if M is either a
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metric f-K-contact manifold or a K-manifold), we can apply the results of [6] to
it. Firstly, we can prove:

THEOREM 5.1. Let M be a (2n+ s)-dimensional generalized S-space-form with
functions {F1, Fa, Fog, Gag, Hap~}, such that V&, = —f, for any o = 1,...,s.
Then, M is an S-manifold and

F, = i(0+38); Fy = %(C_ 3); Foo = %(04_38) -1
Fop=—1 (a#B); Gap=1(c+3s)—2 (a<p);
Hagy = =1 (0 # B #7 # a),
where «, B,y € {1,...,s} and ¢ = F1 +3F5. In particular, any generalized S-space-

form with a metric f-K-contact-structure is an S-manifold.

PROOF. Since, the condition of the statement implies that the distribution M
is flat, we deduce that M is a generalized f.pk-space-form and we apply Proposition
7 of [6]. For metric f-K-contact manifolds we only have to consider (2.1). O

We point out here that, if n > 2, ¢ becomes constant (see, for example, [7])
and M is actually an S-space-form. Moreover, we deduce:

COROLLARY 5.1. Let M be a (2n + s)-dimensional generalized S-space-form
with functions {F1, Fa, Fag, Gag, Hapy}. If M is an S-manifold, then Fy — F5 = s.

For C-manifolds, we have:

THEOREM 5.2. Let M be a (2n+ s)-dimensional generalized S-space-form with
functions {F1, F», Fop,Gag, Hapy} and with an underlying C-structure. Then
(5.1) Fi=F=Fo =Gap=c/4, a<p;

(5.2) Fop=Hapy =0, a#B#y#a,
where o, B,y € {1,...,s} and ¢ = Fy + 3F,. Moreover, ifn > 1, M is a C-space-

form.

PROOF. Since M is a C-manifold and so, a K-manifold, from (22), the dis-
tribution M is flat and M is also a generalized f.pk-space.form. Furthermore, the
structure vector fields are parallel and, by using Proposition 8 and Remark 2 of
[6] and applying the relationships obtained in the above section we get the desired
results. Finally, from (31]), the Ricci tensor field S and the scalar curvature p of
M are given by

s06v) = P2 (4001) = S () )

and p = n(n + 1)c. Now, from the second Bianchi identity,

Vip=2> V;5,
J

where Sf denotes the components of the Ricci tensor of type (1,1). Consequently,
(n —1)dc =0 and hence, dc =0 if n > 1. O
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Next, we are going to study generalized S-space-forms with more general struc-
tures. First, we get

THEOREM 5.3. Let M be a generalized S-space-form with functions
{F\, Fa, Fop, Gap, Hapy }-
If M is a K-manifold, then
Fi+Gag = Foa +Fpp; F1 —Foaa 20, withl <a<f<s;
Hopy = Fgy, forany o, B,y =1,...,5 such that o # 8 # v # a.

PROOF. Since M is a K-manifold, from (Z2]) we get that the distribution M is
flat. Thus, M is a generalized f.pk-space-form and by using the results of Section
4, we deduce that Gog = Foo + Fgg — F1, 1 < a < f < s and Hopy = Fpy,
a # B # v # a. Now, from (Z3) together (iii) of Proposition B.I], we complete the
proof. O

Finally, for metric f-contact structures, we can prove the following theorem.

THEOREM 5.4. Let M be a (2n+ s)-dimensional generalized S-space-form with
functions {F\, F», Fop, Gag, Hapy}. If M is a metric f-contact manifold and

Fl_Faa:F,BB_GaB:L 1<a<ﬂ<s;
Fooa = Fag, foranyo,f=1,...,s,
then M is an S-manifold.

PROOF. First, from (v) of Proposition Bl and the hypothesis, we deduce
that K(&q,&3) = 0. Moreover, a direct computation by using (31 shows that
S(€a,&a) =2n(F1 — Fon) =2n, a =1,...,s, where S is the Ricci curvature tensor
of M. Then, by using Theorem 3.8 of [4], we obtain that the structure vector fields
are Killing vector fields, that is, M is a metric f-K-contact manifold. Thus, from
Theorem (1] it is an S-manifold. (|
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Abstract We introduce para-S-manifolds and obtain some results concerning the
curvature of these manifolds. In particular, we prove that there does not exist Einstein
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1 Introduction

The study of paracomplex structures is a subject which has many applications to
different topics and it is related to some physical problems (the nice survey [9] can
be consulted for more details). When, moreover, a compatible pseudo-Riemannian
metric is considered, we have the para-Hermitian and para-Kaehler manifolds and
their variants.
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On the other hand, (almost) paracontact manifolds are semi-Riemannian manifolds
which can be viewed as the odd dimensional counterpart of (almost) paracomplex
manifolds. They were introduced by Sato in [17] and Kaneyuki and Williams in [12].
Recently, there seems to be an increasing interest in paracontact geometry and, in
particular, in para-Sasakian manifolds, due to its links to more consolidated theory of
para-Kaehler manifolds and to their role in geometry and mathematical physics (see,
for instance, [8,10,11]).

Actually, the notion of almost paracontact structure is an analog of that one of almost
contact structure and is closely related to the almost product structure. In this context,
Bucki and Miernowski defined in [5] the notion of an almost r-paracontact structure
which generalizes almost paracontact structure in a similar way to f-structures of co-
rank greater than one generalize almost contact structures. They also started the study
of almost r-paracontact manifolds equipped with a Riemannian compatible metric
[3,4,13].

So, it is interesting to study what happens if instead of a Riemannian metric we
consider a pseudo-Riemannian metric. Zamkovoy in [21] has obtained a complete
arrangement of all the theory in the case of paracontact manifolds, and recently,
Brunetti and Pastore have done a similar work in the context of indefinite globally
framed f-manifolds in [2]. For these reasons, we want to introduce in this paper the
notion of para-S-manifold and begin the study of some of its properties. The name is
chosen to point out that it is the analog of S-manifolds introduced by Blair [1] in the set-
ting of f-structures. We also observe that para-S-manifolds generalize para-Sasakian
manifolds.

Firstly and after some preliminaries on almost para- f-structures, we define para-
S-manifolds and obtain some results concerning the curvature tensor field and the
Ricci tensor field of them. Since we show that they are not Einstein para-S-manifolds
when the co-rank of the structure is greater than one, we also define n-Einstein para-
S-manifolds and we prove that if the foliation generated by the structure vector fields
is regular, then they project onto Einstein para-Kaehler manifolds and, consequently,
their study is justified. Finally, if we consider the conformal curvature tensor field of
the metric, introduced by Weyl in [19,20], we analyze the existence of &-conformally
flat n-Einstein para-S-manifolds.

2 Preliminaries on (Almost) Para- f-manifolds

From now on, given a smooth manifold M, we shall denote by TM the Lie algebra of
its tangent vector fields.

A (2n + s)-dimensional smooth manifold M is said to have an almost para- f -
structure (f,n1, ..., s, &1,...,&s) and it is called an almost para- f -manifold if it
admits a tensor field f of type (1, 1), s global tangent vector fields &1, . . ., &, called the
structure vector fields and s 1-forms nq, . . ., 1y, satisfying the following compatibility
conditions:

- f&) =0,n00 f=0,a=1,...,5;
- naép) =dup,a, B=1,...,5;
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- 2 =1d - Z;:l ne ® &, and the eigendistributions of f corresponding to

the eigenvalues 1 and —1, denoted by D+ and D™, respectively, have the same
dimension equal to n.

An immediate consequence of the above definition is that the endomorphism f
has rank 2n. In particular, any almost s-paracontact manifold in the sense defined by
Bucki and Miernowski (see [5]) is an almost para- f-structure.

If an almost para- f-manifold M admits a pseudo-Riemannian metric g such that

gUX, fY)+8(X,¥) =D na(X)na(Y), e
a=1

for any X, Y € TM, we say that M is a metric almost para-f-manifold and g is called
a compatible metric. Putting Y = &, in (1), we have that n,(X) = g(X, &), for any
a=1,...,s.

Any compatible metric with a given almost para- f-structure is of signature (n +
s, n). Moreover, any almost para- f -structure admits a compatible metric. In fact, given
ametric G on M, if we put

GX,Y)=G(f>X, f7Y)+ D na(X)na(Y),

a=1

then, the metric g defined as

XY—l(_}XY G(fX, fY S X)ne (Y
gX. V) = 2| GX.Y) = G(f X, fY) + D na(X)a(¥)

a=1

is a compatible metric with the structure. Observe that G(X, &) = ne(X), for any o.
We should like to mention here that A. Bucky and A. Miernoski defined an almost
s-paracontact metric structure (see [5]) if it admits a Riemannian metric g such that

g(fX, fY)=g(X,¥) = D na(X)na(Y),

a=l1

for any tangent vector fields X, Y. For our interest, in this paper, the metric will be
always pseudo-Riemannian and it will satisfy (1).

For amanifold M endowed with a metric almost para- f -structure, we can construct
a very useful local orthonormal basis. To this end, let U be a coordinate neighborhood
on M and E; any unit vector field on U orthogonal to the structure vector fields.
Then, f E is a vector field orthogonal to E; and to the structure vector fields too.
Moreover, g(fE1, fE1) = —1. Now, if it is possible, we choose a unit vector field
E, orthogonal to the structure vector fields, to Eq and to fEq. Then, fE, is also a
vector field orthogonal to the structure vector fields, to Eq, to fE; and to E; and
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g(fEs, fEy) = —1. Proceeding in this way, we obtain a local orthonormal basis
{Ei, fEi, &), i=1,...,nanda =1, ...,s,called an f-basis.

On a metric almost para- f-manifold, we define a 2-form by F (X, Y) = g(X, fY),
for any X, Y € TM, and we consider the following tensor fields,

- NOX,Y) =[f, f1IX,Y) =232 dne(X, V)&,
- NPX,Y) = (Lixna)Y — (Lyna)X,
NP X) = (Le, )X,

4
- NSO = (Le,np)X,
forany X,Y e TManda = 1, ..., s, where [ f, f] is denoting the Nijenhuis tensor

of f and Ly the Lie derivative with respect to the tangent vector field X. Firstly, we
can prove the following proposition.

Proposition 1 Let M be a metric almost para- f -manifold. Then, the covariant deriv-
ative V f of f with respect to the Levi-Civita connection V of g is given by

26((Vx /)Y, Z) = =3dF (X, fZ) — 3dF (X, fY, fZ) — g(NV(¥, 2), fX)

+ D INP Y, Z)io(X) — 2dne (£ Z, X)na (Y)

a=1

+2dno (1Y, X)na(2)}, @)
forany X, Y, Z € TM.

Proof We know that the Levi-Civita connection V of g is given by

28(VxY,Z2) = Xg(Y, )+ Yg(Z, X) — Zg(X. Y) + g([X, Y], Z)
+¢([Z, X].Y) = g([Y, Z], X),

forany X, Y, Z € TM. On the other hand, dF can be expressed by

3dF(X,Y,Z) = XF(Y, Z) +YF(Z,X) + ZF(X,Y) — F(X, Y], Z)
—F(Z,X1,Y) - F(Y, Z], X).

These two equations imply (2). O

If F =dny, forany o = 1, ..., s, then we say that M is a para- f -manifold, and
the structure (f, &1,...,&,n1,...,ns, g) is called a para- f-structure. In this case,
we have

Proposition 2 Let M be a para- f-manifold. Then, No((z) vanishes, for any o =
1,...,s. Consequently, (2) simplifies to
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26((Vx )Y, Z) = —g(NV(Y, 2), fX)

2D UF(fZ, X)na(Y) = F(fY, X)11a(2)}.

a=1

Proof Since the structure is a para- f-structure, N(iz) can be written as
NP (X, Y) = 2dne (fX, Y) + 2dno (X, fY) = 2F (fX,Y) +2F (X, fY)
=28(fX, fY) +28(X, f?7)

=28(fX, fY)+28(X,¥) = 2> np(X)np(¥) =0,
p=1

for any X, Y € TM, where we have used (1). O

An almost para- f-structure is said to be normal if NV vanishes.

Proposition 3 [5] Let M be a normal almost para- f -manifold. Then, No(lz), NO(?), and
N vanish =1
w,p vanish too, foranyo, B =1,...,5s.

3 Para-S-manifolds

In this section, we are going to introduce para-S-manifolds and study some basic
properties of them.

Definition 1 A para-K-manifold is a normal almost para- f-manifold such that dF =
0. A para-S-manifold is a normal para- f-manifold. In these cases, the structures are
called para-K -structure and para-S-structure, respectively.

Observe that, if s = 1, a para-S-manifold is a para-Sasakian manifold (see, for
instance, [21]). In general, it is clear that any para-S-manifold is a para- K -manifold.
To find a necessary and sufficient condition for the converse, we have first to prove
the following proposition.

Proposition 4 Let M be a para-K -manifold and denote the para-K -structure by
(fimi,...,ns, &1, ..., &, g). Then, we have

(1) [6a. €1 =0, foranya, B =1,...,s.
(ii) The structure vector fields &1, . .., & are Killing vector fields with respect to the
metric g.
(iii) dne(fX,Y) +dny(X, fY) =0, forany X,Y e TMandanya = 1,...,s.

Proof For (i), by using the normality of the structure, we obtain

0=NYX, &) = X, &)= fIfX,E] =2 dn, (X, E)E,

y=I1

= [X, &l — fIfX, &l + D (Gany (X)E,, 3)

y=1
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for any X € TM and any o = 1, ..., s. Consequently, putting &g in place of X, we
deduce (i) from (3).

Now, since dFF = 0 and F(X,&,) =0, forany X € TM ando = 1, ..., s, from
the well-known formula Lg, F' = dig, F + ig, dF, we get that Lg, F = 0. Moreover,
given any X, Y € TM, it is easy to show that

0= (Le, )X, Y) = (Lg, &)X, fY) + (X, (Lg, f)Y).

But, since the structure is normal, by using Proposition 3, (Lg, )Y = 0 and so,
(Le,8)(X, fY) = 0. Putting fY in place of Y and applying the definition of almost
para- f-structure, we have

(Le, (X, Y) = D np(¥)(Le,8) (X, &p).
B=1

But, a direct expansion gives that

(Lg,8)(X, &) = (Lg,np) X — g(X, [£a, §5])

and we get (ii) from (i) and Proposition 3.
Finally, (iii) is a direct consequence from the fact that No(tz) = 0, for any o =
1,...,s. O

Next, from (2) we have:

Proposition 5 Let M be a para-S-manifold. Then,

N

(VxNY = D s X, D +na)F2X ] )

a=1
forany X, Y € TM.

In this context, we can proof the desired characterization theorem.

Theorem 1 A para-K-manifold M is a para-S-manifold if and only if (4) holds for
any X,Y € TM.

Proof Let us denote by (f, &1, ..., &, n1,..., 1, g the para-K -structure. We only
have to prove that F = dn,, for any « = 1,...,s. But, from (4), we get that
(Vixf)ée = fX,forany « = 1,...,5s and X € TM. On the other hand, from
(2), we obtain that g((Vyx f)éx, Y) = —dng(fY, fX), for any Y € TM. Therefore,
F(X,Y) = —dne(fX, [Y).

Now, from (iii) of Proposition 4,

e (X, Y) = —dna(X, £2Y) = —dia(X. ¥) + > np(V)dna(X. &),
p=1

but, by using (3), 2dne (X, £g) = —&na(X) — 1o ([X, €g]) = O and this completes
the proof. O
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Example 1 Let R2"+S with coordinates x1, . . . , Xy, VisevesVnrZ21»---,2s- Wedefine

1 - 9
Tlazi(dza—izllyidxi),é‘a:2£; a=1,...,s,

) n
g=D (1 ®na)+ D (dx ®dy; +dy; ® dx;).

a=1 i=1

Then, we consider the basis {X1, ..., X,, Y1,..., Yy, &1, ..., &}, where

and we define
fXi=X;, fYi=-Y;, f6a=0,1<i<n 1<ac=s.
Observe that we deduce

g(Xi, X;) = gY;,Y;) =0, g(X;,Y;) =65, 1 <i, j <m;
8(u.88) = 8up, 1 <, B <,
8(Xi, &) =81 ,6)=0,1<i<n 1<ac=<s

and ny = g(., &), foranya =1,..., .
In this context, it is straightforward to compute that (f, &, ny, g) is a para-S-

structure on R¥15,

From now on, M will always be a (2n +s)-dimensional para-S-manifold with para-

S-structure given by (f, &1, ..., &, 01, ..., ns, g). If we denote by R the curvature
tensor field associated with the Levi-Civita connection V of M, from (4), a direct

expansion gives that
R(X,Y.fZ, W)+ R(X,Y, Z, fW)

= D (Xe(Y.f2na(W) = g(fY. [2)8 (X, W)

a=1

— X0 (2)g(fY. fW) + na(2)g(Vx f2Y, W)

+8(X, fVyZ)nge(W) — no(Vy 2)g(fX, fW)

—Yg(UX, fOna (W) + g(IX, fO) g (fY, W)

+ Y1 (Z)8(fX. fW) — 0o (2)g(Vy f2X, W)

—8(fY, fVXZ)na (W) + 1o (Vx 2)g(fY, fW)
+8(fVxY.f2ne(W) — g(fVy X, fD1a(W)

— 1 (Z)8(fVxY. W) + 1o (2)g(fVy X, W)}, )
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forany X, Y, Z, W € TM. Therefore, if we choose these four vector fields orthogonal
to the structure vector fields, from (5) we easily prove the following proposition.

Proposition 6 Let M be a para-S-manifold. Then,
R(X,Y,Z, W)+ R(X, Y, fZ, fW)

= s{g(X, 2)g(Y.fW) — g(X, W)g(Y.fZ)
+8(X.f2)g(Y, W) — g(X,fW)g(Y, Z)}, 6)

for any vector fields X, Y, Z, W orthogonal to the structure vector fields.

On the other hand, by using the fact of being the structure vector fields of M Killing
vector fields, from (4) again, we deduce that

Vxée = —fX, (N

forany X € TM andany o = 1, ..., s. Therefore, R(X, V)&, = (Vy /)X —(Vx f)Y,
forany X,Y € TM and any @ = 1, ..., s. Thus, from (4), we get

ROX. V)& = 3 {np0 L2 = g0 2] ®)
p=1

If we consider now an f-basis {E;, fE;, &y }{1<i<n,1<a<s) of TM, the Ricci tensor
field of M is defined by

Ric(X,Y) = Z{R(E,-,X, Y,E;)—R(fE;,.X,Y, fE})}

i=1

+ D R X, V.80, ©

a=1

forany X, Y € TM. So, by using (8) we obtain

N
Ric(X, &) = —2n D ng(X), (10)
B=1
forany X € TM and ¢ = 1, ..., s. Moreover, taking into account (6) and (8) again

and by using the symmetries of the curvature tensor field, we have
Ric(Ei, Ej) = R(Ei,fE;, Ej, fE;) —s(2n — 1) (11

and

Ric(fE;. fE;) = —Ric(E;, E)), 12)
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foranyi =1, ..., n. Denoting by r the scalar curvature of M and, following [14], r*
by

r* = > (R(Ej, Ei, fE;, fE}) — RUE;, Ei, fE;, f*E}))

i=1,j

— D AR(E;.fE;, f*Ei. fE)) — R(E; . fE;, f*Ei, f*Ej))

i,j=1

=2 > {R(Ej, Ei.fE;.fE}) — R(fE;, E;. fE;. E})},

ij=1

we show that » + r* + 4ns? = 0. This formula was proved in [21] for para-Sasakian
manifolds (case s = 1).

4 5-Einstein Para-S-manifolds

From (10), we easily deduce that Ric(§y,é5) = —2n, for any a, 8 = 1,...,s.
Consequently,

Theorem 2 For s > 2, there are not Einstein para-S-manifolds.

This motivates, as in the case of Sasakian geometry, to introduce the notion of
n-Einstein para-S-manifold.

Definition 2 A para-S-manifold M is said to be an n-Einstein manifold if its Ricci
tensor field satisfies

S S
Ric=ag+b)> ne®na+(@+b) D na®ng, (13)
a=1 a#p

where a and b are differentiable functions on M.

From this definition, it follows that Ric(§y,48) =a + b, foranya, B =1, ...,s.
In particular, from (10), we have that a + b = —2n. Moreover, by using (13) and
an f-basis, we deduce that the scalar curvature of M is given by r = tr(Ric) =
(2n 4 s)a + sb. On the other hand, observe that, when s = 1, that is, if M is a para-
Sasakian manifold, (13) reduces to g(X,Y) = ag(X,Y) + bn(X)n(Y), which was
introduced in [21].

Example 2 Ttis straightforward to show that R?**S with the para-S-structure given in
Example 1 is an n-Einstein manifold with functions @ = 0 and b = —2n. To this end,
we put

_ L
V2

and we have that {E1, ..., E,, fE;, ..., fE,, &1, ..., &} is an f-basis.

E; (X; +7Y), 1 <i <n,
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Now, we can prove

Proposition 7 Let M be a (2n+s)-dimensional n-Einstein para-S-manifold. Ifn > 1,
then the functions a, b, and r are constant functions.

Proof Given X € TM, since a + b = —2n, we deduce that Xa = —Xb. Moreover,
Xr = 2n+s)Xa+ sXb = —2nXb. On the other hand, from Corollary 54 in [15],
we know that dr = 2divRic. By using an f-basis, the definition of the divergence of
the Ricci tensor field (see [15], p. 86) and (13), we obtain that

%Xr = (divRic)X = Xa + ) _(Eab)1a(X),

a=1

where we have used that a + b is a constant function. Consequently,

(n=1)Xb == (Exb)ne(X).

a=1

Putting X = &g, B € {1,..., s}, we get from the latter formula that §gb = 0, for
any § and so, if n > 1, Xb = 0, that is, b is a constant function. Therefore, a and r
are constant functions too and we complete the proof. O

The Definition 2 is motivated by the following theorem.

Theorem 3 Let M be a (2n + s)-dimensional n-Einstein para-S-manifold. If we
assume that the foliation generated by the structure vector fields is regular, then M
projects onto an Einstein para-Kaehler manifold.

Proof First, notice that &1, ..., & span an s-dimensional foliation v on M. Indeed,
from (i) of Proposition 4, we have that [&,, £g] = 0, and hence, that foliation is an
integrable one. The assumption that such foliation is regular ensures that the leaf space
is a2n-dimensional manifold. Let us denote by 7 the global submersion7 : M —> N.

Since each &, is a Killing vector field, we get that v is a Riemannian foliation. Thus,
the semi- Riemannian metric g projects onto a semi-Riemannian metric G on N and
m:(M,g) — (N, G) is a semi-Riemannian submersion, that is

8(X,Y)=G@m X, mY)om, (14)
for any X, Y basic vector fields on M (following the terminology of [16]). Since
Le, f =0,foranya =1, ..., s, f is also a projectable tensor, so that it projects onto
a well-defined tensor field J on N such that

meo f=Jom,. (15)
Using (14) and (15), itis easy to check that J2 = Id, J # Id andthat G(J X, JY)+

G(X,Y) =0, forany X,Y € TN. Next, if X is a vector field on M such that X is
orthogonal to v and fX = X, we deduce that
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[Sar X1 = [0, fX] = fl&a, X]

and this proves that [£,, D] C D™, where DT denotes the eigendistribution of f
corresponding to the eigenvalue 1. Similarly, we obtain that [§,, D] C D~ for each
a =1,...,s. Thus, the distributions D+ and D~ project onto two distributions D't
and D'~ on N which coincide with the eigendistributions of J corresponding to the
eigenvalues +1 and -1, respectively. It follows that dimD't = dimD™* = n. Therefore,
(N, J,G)isan alrllogg para-Hermitian manifold.

Moreover, let X,Y € TN and let X, Y be basic vector fields on M such that
X = X and .Y = Y. Then, denoting by V the Levi-Civita connection associated
with G,

(Vz DY = (Vx ))Y)" =0

and (N, G, J) is a para-Kaehler manifold, where ” is denoting the horizontal compo-
nent.
Now, we recall the O’Neill equation relating the Ricci tensor field Ric of the total

space and that one Ric of the base space of a semi-Riemannian submersion (see [7,16]
for more details). This equation is

— 1
Ric(X,Y) = Ric(m X, mY) o + E(g(VXN, Y)+ g(VyN, X))
n n
—2>" ¢(AxEi, AyE)) +2> ¢(Ax fEi, Ay fE))
i=1 i=1

_Zg(TSaX’ TEotY)’ (16)

a=1
where

—{Ei, fE;i,&}i=1,..n,a=1,....s) is an f-basis;
— A and T are the O’Neill tensor fields (see [16])

N
- N =) Tk
a=1

However, since the leaves of v are totally geodesic (because Vg, &g = 0, for any
o, B), in this case, we have T = 0 and hence, N = 0. In addition, for any X, Y
orthogonal to v, we have [16]:

1 N N
AXY = —AyX = 2 3 a(X, Y Db = = 3 dna(X, Yo

a=1 a=1
Thus, putting X = X and Y = .Y, (16) becomes

Ric(X,Y) = Ric(X,¥) o + 2s8(X, Y).

@ Springer



L. M. Fernandez, A. Prieto-Martin

From the fact of being M an n-Einstein manifold, Ric(X, Y) = ag(X, Y) (observe
that X and Y are orthogonal to each &,). Then, the above relation implies that

Ric(X,Y)om = Ric(X,Y) — 25g(X, Y)
=(a—-29)gX,Y)=(a—29)G(X,Y)or

and, therefore, (N, G) is an Einstein manifold. This completes the proof. O

For a m-dimensional Riemannian manifold (M, g), Weyl [19,20] introduced a
generalized curvature tensor field which vanishes whenever the metric is (locally)
conformally equivalent to a flat metric. For this reason, he called it the conformal
curvature tensor of the metric. Schouten [18] showed that for m > 3, the converse
is true. If m > 3, the Weyl conformal curvature tensor is defined as a map C :
TM x TM x TM — TM such that

C(X,Y)Z=R(X,Y)Z
—;{Ric(Y, HX+glY,2)0X
m—2
—Ric(X,2)Y — g(X,2)QY}

;
o D=3 8 DX —s(X. DY), 17

where Q is denoting the Ricci operator defined by g(QX,Y) = Ric(X,Y), for any
X,Y e TM.

In this context, a (2n + s)-dimensional para-S-manifold M is said to be &-
conformally flat if the linear operator C (X, Y) is an endomorphism of fTM, that is, if

C(X, Y)fTM < fTM.

Equivalently, £-conformally flatness means that the projection of the operator
C (X, Y)fTM onto the distribution spanned by the structure vector fields is zero. That
is, if C(X,Y)éy, =0, forany X,Y e TMandanyo =1, ...,s.

Now, we can prove the following theorem.

Theorem 4 Let M be a (2n+s)-dimensional n-Einstein para-S-manifold withn > 1.
Then

(i) If s = 1, that is, is M is a para-Sasakian manifold, M is & -conformally flat.
(ii) If s =2, M is &-conformally flat if and only if a = —4n.
(iii) If s > 2, M cannot be &-conformally flat.

Proof Since M is n-Einstein, we know thata +b = —2n and r = (2n + s)a + sb =
2n(a — s). Furthermore, from (13),

OX =aX +b ) na(X)ex + (a+b) D na(X)Ep, (18)
a=I atp

forany X € TM.
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Firstly, if s = 1, the above formula reduces to QX = aX + bn(X)&. Moreover,
from (8), we deduce that R(X, YY) = n(X)Y — n(Y)X. Then, a direct expansion
gives that C(X, Y)& =0, forany X, Y € TM and M is £-conformally flat.

If s = 2, from (8) and (18), since r = 2n(a — 2), we compute that

cox e =12 [2n1+ (1 (NX = (07)
+ m(X)m(¥)& — n(X)nm (Y)é2},
and
cx g = 12 {Zni (X — n2(0Y)

+ XM X)E —n(X)n2(Y)ér},

for any X, Y € TM. Consequently, M is £-conformally flat if and only if a = —4n
(and b = 2n).

Finally, if s > 2, a long straightforward computation gives that, using (8) and (18)
again,

C(X, V)
_ 1 261 + b + r 0y YIx
_( m+s =2 (2n+s—2)(2n+s—1))(m( ¥ =mrX)

r Z(na(X)Y — (V) X)
2—s+a+2b
ﬁ Z(m(X)na(Y)Ea — (XM (¥)éa)

2-—
+F (Z(na(X)m(Y) - m(X)na(Y))é

- Z p(X)n, ()&, — np(X)n, (Y)ép)

B,y=2
B#y
a+b °
s X)m(YV)E, — ni(X)ng(Y)E,),
s 5 2 COmME = mXnp()Ey)
B.y=2
B#y
for any X, Y € TM. Consequently, M cannot be &-conformally flat. O

In Sasakian geometry, it is known that £-conformally flatness is equivalent to be
n-Einstein (see [6]). Now, we can prove the same result for para-Sasakian manifolds.

Theorem 5 A para-Sasakian manifold M is &-conformally flat if and only if an n-
Einstein manifold.
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Proof We only have to prove that &-conformally flatness implies to be n-Einstein.
But, from (8), (10), (17) and since s = 1, we deduce

0X = (1+%)X+(—l—2n—é) n(X)E,

for any X € TM. Thus, M is an n-Einstein manifold. O
Finally, for s = 2 we have

Theorem 6 Let M be a &-conformally flat para-S-manifold with two structure vector
fields. Then, M is an n-Einstein manifold with a = —4n.

Proof Firstly, from (8), (10), (17) and since C(§y, £5)ép = 0, we deduce that r =
—4n(2n + 1). Now, aplying the same formulas, C (X, &1)&; = 0 implies that

0X = —4nX 4+ 2n(n1 (X)&1 + 12 (X))
—2n(m1(X)& + na(X)é1),

for any X € TM. This completes the proof. O
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