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MAXIMAL EQUILATERAL SETS

KONRAD J. SWANEPOEL AND RAFAEL VILLA

Abstract. A subset of a normed space X is called equilateral if the distance between any
two points is the same. Let m(X) be the smallest possible size of an equilateral subset
of X maximal with respect to inclusion. We first observe that Petty’s construction of a
d-dimensional X of any finite dimension d ≥ 4 with m(X) = 4 can be generalised to give
m(X⊕1R) = 4 for any X of dimension at least 2 which has a smooth point on its unit sphere.
By a construction involving Hadamard matrices we then show that for any set Γ, m(ℓp(Γ))
is finite and bounded above by a function of p, for all 1 ≤ p < 2. Also, for all p ∈ [1,∞)
and d ∈ N there exists c = c(p, d) > 1 such that m(X) ≤ d + 1 for all d-dimensional X with
Banach-Mazur distance less than c from ℓdp. Using Brouwer’s fixed-point theorem we show

that m(X) ≤ d+1 for all d-dimensional X with Banach-Mazur distance less than 3/2 from ℓd
∞
.

A graph-theoretical argument furthermore shows that m(ℓd
∞
) = d+ 1.

The above results lead us to conjecture that m(X) ≤ 1 + dimX for all finite-dimensional
normed spaces X.

1. Introduction

Vector spaces in this paper are over the field R of real numbers. Write [d] := {1, 2, . . . , d}

for any d ∈ N and
(V
k

)
:= {A ⊆ V : |A| = k} for any set V and k ∈ N. Consider d-dimensional

vectors to be functions x : [d] → R denoted using the superscript notation x = (x(1), . . . ,x(d)).
Similarly, write x = (x(n))n∈Γ for any function x : Γ → R. Write o for zero vectors and zero
functions. For any γ ∈ Γ, let eγ denote the indicator function of {γ}, i.e., eγ(γ) = 1 and

eγ(δ) = 0 for all δ ∈ Γ \ {γ}. Given a = (a(1), . . . ,a(d)) ∈ Rd and b ∈ X with X any vector

space, define the Kronecker product or tensor product a⊗ b by (a(1)b, . . . ,a(d)b) ∈ Xd.
Let X denote a real normed vector space with norm ‖·‖ = ‖·‖X . We also use space or

normed space to refer to such spaces. We will use the multiplicative Banach-Mazur distance
between two normed spaces X and Y of the same finite dimension, denoted by dBM(X,Y ) and
defined to be the infimum of all c ≥ 1 such that

‖x‖X ≤ ‖Tx‖Y ≤ c‖x‖X for all x ∈ X

for some invertible linear transformation T : X → Y .
Let Γ be any set. For p ∈ [1,∞) let ℓp(Γ) denote the Banach space of all functions x : Γ → R

such that
∑

n∈Γ|x
(n)|p < ∞ with norm ‖x‖p =

(∑

n∈Γ|x
(n)|p

)1/p
. Let ℓ∞(Γ) denote the Banach

space of all bounded scalar-valued functions on Γ with norm ‖x‖∞ := supn∈Γ|x
(n)|. As usual,

for any p ∈ [1,∞] we write ℓp for the sequence spaces ℓp(N) and ℓdp for ℓp([d]). If X and Y
are two normed spaces, their ℓp-sum X ⊕p Y is defined to be the direct sum X ⊕ Y with
norm ‖(x,y)‖p := ‖(‖x‖X , ‖y‖Y )‖p. Denote the sphere and ball in X with center c ∈ X and
radius r > 0 by

S(c, r) = SX(c, r) := {x ∈ X : ‖x− c‖ = r}
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and

B(c, r) = BX(c, r) := {x ∈ X : ‖x− c‖ ≤ r},

respectively. See [6] for further background on the geometry of Banach spaces.

Definition 1. A subset A ⊆ X is λ-equilateral if ‖x − y‖ = λ for all {x,y} ∈
(A
2

)
. A set

A ⊆ X is equilateral if A is λ-equilateral for some λ > 0. An equilateral set A ⊆ X is maximal
if there does not exist an equilateral set A′ ⊆ X with A $ A′.

It is clear that a λ-equilateral set is a maximal equilateral set if and only if it does not lie on a
sphere of radius λ. Also, A is λ-equilateral if and only if the balls B(c, λ/2), c ∈ A, are pairwise
touching. It follows (as observed by Petty [11] and P. S. Soltan [15]) by a result of Danzer and
Grünbaum [3] that an equilateral set in a d-dimensional normed space has cardinality at most
2d with equality only if the unit ball is an affine cube, that is, only if the space is isometric to
ℓd∞, and in that case only if the set consists of all the vertices of some ℓd∞-ball. For a survey on
equilateral sets, see [17]. See also [18] for recent results on the existence of large equilateral sets
in finite-dimensional spaces. This paper will be exclusively concerned with maximal equilateral
sets.

Definition 2. Let m(X) denote the minimum cardinality of a maximal equilateral set in the

normed space X.

It follows from the above-mentioned result of Danzer and Grünbaum that m(X) ≤ 2d if
dimX = d.

We first dispose of the 2-dimensional case. By a simple continuity argument, any set of two
points in a normed space of dimension at least 2 can be extended to an equilateral set of size 3.
It is also possible to find a maximal equilateral set of size 3 in any 2-dimensional X. In fact,
if X is not isometric to ℓ2∞ then by [3], any equilateral set has cardinality < 4, which implies
that any equilateral set of size 3 is already maximal. Furthermore, by [3] the only equilateral
sets of size 4 consist of the vertices of an ℓ∞2 -ball, so any equilateral set of size 3 not consisting
of three vertices of an ℓ∞2 -ball (such sets exist by extending an appropriate equilateral set of 2
points), is maximal. It follows that m(X) = 3 for all 2-dimensional X.

Now suppose that the dimension of X is at least 3. Using a topological result, Petty
[11] showed that any equilateral set of size 3 in X can be extended to one of size 4. He
also constructed, for each dimension d ≥ 3, a d-dimensional normed space with a maximal
equilateral set of size 4. Below (Proposition 9) we modify his example to show for instance
that ℓd1 and ℓ1 also have this property.

A simple linear algebra argument shows that m(ℓd2) = d + 1. Brass [2] and Dekster [4]
independently showed that if dBM(X, ℓd2) ≤ 1 + 1/(d + 1), then m(X) ≥ d + 1 (see also [17,
Theorem 8]). By a theorem of Schütte [13] (as pointed out by Smyth [14]) if dBM(X, ℓd2) ≤
1+1/(d+1) then m(X) ≤ d+1. In particular, using dBM(ℓdp, ℓ

d
2) = d|1/p−1/2| (see for instance

[6]) it follows that

m(ℓdp) = d+ 1 if
∣
∣
∣
1

p
−

1

2

∣
∣
∣ ≤

1 + o(1)

d ln d
. (1)

Even though ℓd∞ has an equilateral set of size 2d, it turns out to have a maximal equilateral
set of size d+ 1. More generally, we show the following:

Theorem 3. If dBM(X, ℓd∞) < 3/2, then m(X) ≤ d+ 1. In addition, m(ℓd∞) = d+ 1.

Theorem 3 will follow from Proposition 10 in Section 3 and Proposition 12 in Section 4.
A similar result holds for the ℓdp spaces, 1 ≤ p < ∞.

Theorem 4. For all p ∈ [1,∞) and all d ∈ N, m(ℓdp) ≤ d+ 1.
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Range of p C(p) d0(p) Proof

1 ≤ p <
log(5/2)

log 2
≈ 1.32 5 4 Proposition 19

p =
log(5/2)

log 2
6 4 Proposition 19

log(5/2)

log 2
< p <

log 3

log 2
≈ 1.58 8 6 Prop. 23 with (k1, k2) = (2, 2)

log 3

log 2
≤ p ≤

log(13/4)

log 2
≈ 1.70 12 10 Prop. 23 with (k1, k2) = (2, 4)

log(13/4)

log 2
< p <

log(7/2)

log 2
≈ 1.81 16 14 Prop. 23 with (k1, k2) = (4, 4)

log(7/2)

log 2
≤ p ≤

log(29/8)

log 2
≈ 1.86 24 22 Prop. 23 with (k1, k2) = (4, 8)

log(29/8)

log 2
< p <

log(15/4)

log 2
≈ 1.907 32 30 Prop. 23 with (k1, k2) = (8, 8)

log(15/4)

log 2
≤ p ≤

log(91/24)

log 2
≈ 1.923 40 38 Prop. 23 with (k1, k2) = (8, 12)

log(91/24)

log 2
< p <

log(23/6)

log 2
≈ 1.939 48 46 Prop. 23 with (k1, k2) = (12, 12)

Table 1. Values of C(p) and d0(p) in Theorem 6

Theorem 5. For each p ∈ (1,∞) and d ≥ 3 there exists c = c(p, d) > 1 such that m(X) ≤ d+1
for any d-dimensional X with dBM(X, ℓdp) < c.

Theorems 4 and 5 will be proved in Section 5. Our main result is a surprising property of
ℓp where 1 ≤ p < 2. It gives many examples of finite and infinite dimensional spaces with
finite maximal equilateral sets. These examples are essentially different from Petty’s example
alluded to above (which we also generalise in Proposition 9 below).

Theorem 6. For each p ∈ [1, 2) there exist C = C(p) ∈ N and d0 = d0(p) ∈ N such that

m(ℓdp) ≤ C for any d ≥ d0, and in fact, for any (finite or infinite dimensional) normed space

X and any q ∈ [1,∞), also m(ℓdp ⊕q X) ≤ C.

When p → 2, we have C(p) = O(1/(2 − p)) and d0(p) = O(1/(2 − p)). Upper bounds are

given in Table 1 for all p ∈ [1, log(23/6)log 2 ).

In particular, we obtain the following surprising corollary.

Corollary 7. For any set Γ and any p ∈ [1, 2), m(ℓp(Γ)) is bounded above by a constant

depending only on p.

The asymptotic bounds on C(p) and d0(p) for p → 2 in the above theorem are close to
optimal, as (1) implies that

C(p) = Ω

(
1

(2− p) ln ((2− p)−1)

)

and d0(p) = Ω

(
1

(2− p) ln ((2− p)−1)

)

.

Theorem 6 and Corollary 7 will be proved in Section 6 below.
We do not know of any d-dimensional space X for which m(X) > d+1. The above theorems

give some evidence for the following conjecture:
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Conjecture 8. For any d-dimensional normed space X, m(X) ≤ d+ 1.

2. A generalisation of Petty’s example

Petty [11] showed that m(ℓd2 ⊕1 R) = 4 for all d ≥ 2. In his argument ℓd2 can in fact be
replaced by any, not necessarily finite-dimensional, normed space which has a smooth point

on its unit sphere, that is, a point where the norm is Gâteaux differentiable, or equivalently,
a point on the unit sphere which has only one supporting hyperplane [6, 12]. By a classical
theorem of Mazur [10] any separable normed space enjoys this property [12, Theorem 10].

Proposition 9. Let X be a normed space of dimension at least 2 with a norm which has a

smooth point on its unit sphere. Then m(X ⊕1 R) = 4.

Proof. Since X ⊕1 R is at least 3-dimensional, m(X ⊕1 R) ≥ 4 by Petty’s theorem mentioned
in Section 1. For the upper bound, let u ∈ X be a smooth point on the unit sphere of X.
Let A := {(o, 1), (o,−1), (u, 0), (−u, 0)}. Then A is a 2-equilateral set in X ⊕1 R. If there
exists a point (x, r) ∈ X ⊕1 R at distance 2 to each point in A, then it easily follows that
r = 0, ‖x‖ = 1 and ‖x± u‖ = 2. Then ±x, ±u and ±1

2x± 1
2u are all unit vectors in X and

by convexity the unit ball of the subspace Y of X generated by u and x is the parallelogram
with vertices ±u and ±x. In particular, the unit ball of Y has more than one supporting line
at u, and so by the Hahn-Banach theorem, the unit ball of X has more than one supporting
hyperplane at u. �

As special cases, m(ℓ1) = m(ℓd1) = 4 for d ≥ 3. However, if Γ is an uncountable set, then
it is well known that no point on the unit sphere of ℓ1(Γ) is smooth. (This can be seen as
follows: Let u ∈ ℓ1(Γ) have norm 1. Then u : Γ → R has countable support U ⊂ Γ, say.
Choose any i ∈ Γ \ U . Then ‖u± ei‖1 = 2 and the intersection of the unit ball of ℓ1(Γ) with
the subspace generated by u and ei is the parallelogram with vertices ±u and ±ei, as in the
proof of Proposition 9.) Nevertheless, Theorem 6 gives the upper bound m(ℓ1(Γ)) ≤ 5 for any
set Γ.

3. Applying Brouwer’s fixed point theorem

Proposition 10. If dBM(X, ℓd∞) < 3/2, then there exists a maximal equilateral set with d+ 1
elements. As a consequence, m(X) ≤ d+ 1.

Proof. As preparation for the proof, we first exhibit a 2-equilateral set A of d+1 points in ℓ∞
such that S(o, 1) is the unique sphere (of any radius) that passes through A. For i ∈ [d + 1]
and n ∈ [d], let

p
(n)
i :=







−1 if n = i,

0 if n > i,

1 if n < i,

and set A = {p1, . . . ,pd+1}. Suppose that A ⊂ S(x, r) for some x ∈ X and r > 0. Then for
each n ∈ [d], |x(n) ± 1| ≤ r, hence |x(n)| ≤ r − 1 and r ≥ 1. If we can show that r = 1, we
would also get x = o. Suppose for the sake of contradiction that r > 1.

We first show that x = (r − 1, r − 1, . . . , r − 1). If not, let m be the smallest index such

that x(m) 6= r − 1. Then for all n < m, |x(n) − p
(n)
m | = |r − 1 − 1| < r, and for n > m,

|x(n)−p
(n)
m | = |x(n)| ≤ r−1. It follows that r = ‖x−pm‖∞ = |x(m)+1|. Thus x(m) = −1± r,

which contradicts |x(n)| ≤ r − 1 and the choice of m. Therefore, x = (r − 1, r − 1, . . . , r − 1).
Since r = ‖x − pd+1‖∞ = |r − 1 − 1| < r, we have obtained a contradiction. Therefore, A

lies on a unique sphere. As this sphere has radius 1, A is maximal equilateral. This shows that
m(ℓd∞) ≤ d+ 1.
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We now prove the general result. Let D := dBM(X, ℓd∞) < 3/2, and assume without loss of
generality that X = (Rd, ‖·‖) such that

‖x‖ ≤ ‖x‖∞ ≤ D‖x‖ for all x ∈ Rd. (2)

We will prove that m(X) ≤ d + 1 by finding a perturbation of the above set A that will be
maximal equilateral in X. We use Brouwer’s fixed-point theorem as in [2] and [18]. Consider

the space R(
[d+1]

2 ) of vectors indexed by unordered pairs of elements from [d + 1]. Write z{i,j}

for the coordinate of z ∈ R(
[d+1]

2 ) indexed by {i, j}. Given z ∈ I := [0, 1](
[d+1]

2 ) ⊂ R(
[d+1]

2 ),
define d+ 1 points p1(z), . . . ,pd+1(z) ∈ Rd as follows. For i ∈ [d+ 1] and n ∈ [d], let

p
(n)
i (z) :=







−1 if n = i,

0 if n > i,

1 + z{n,i} if n < i.

(3)

Define the mapping ϕ : I → I by setting

ϕ{i,j}(z) := ‖pi(z)− pj(z)‖∞ − ‖pi(z) − pj(z)‖ = 2 + z{i,j} − ‖pi(z)− pj(z)‖

for each {i, j} ∈
(
[d+1]
2

)
. Then by (2), ϕ{i,j}(z) ≥ 0 and

ϕ{i,j}(z) ≤ ‖pi(z)− pj(z)‖∞ −
1

D
‖pi(z)− pj(z)‖∞

=

(

1−
1

D

)

(2 + z{i,j}) <

(

1−
2

3

)

(2 + 1) = 1.

Thus ϕ is well-defined. It is clearly continuous, and so has a fixed point z0 ∈ I by Brouwer’s
theorem:

2 + z
{i,j}
0 − ‖pi(z0)− pj(z0)‖ = z

{i,j}
0 for all {i, j} ∈

(
[d+ 1]

2

)

.

Therefore, {p1(z0), . . . ,pd+1(z0)} is 2-equilateral in X.
From now on, write pi for pi(z0). Suppose that {p1, . . . pd+1} is not maximal equilateral.

Then there exists x ∈ X such that ‖x − pi‖ = 2 for each i ∈ [d + 1]. We first show that all
|x(n)| < 2, then that all x(n) ≥ 1, and then obtain a contradiction.

By (2),

2 ≤ ‖x− pi‖∞ ≤ 2D for each i ∈ [d+ 1].

In particular, |x(n) − p
(n)
n | = |x(n) + 1| ≤ 2D, which gives x(n) ≤ 2D − 1 < 2 for all n ∈ [d].

Also, |x(n) − p
(n)
n+1| ≤ 2D, that is, |x(n) − 1− z

{n,n+1}
0 | ≤ 2D, which gives

x(n) ≥ 1 + z
{n,n+1}
0 − 2D > −2.

It follows that |x(n)| < 2 for all n ∈ [d].

Next let m be the smallest index such that x(m) < 1. For all n < m,

x(n) − p(n)
m = x(n) − (1 + z

{n,m}
0 ) ≥ −z

{n,m}
0 ≥ −1

and

x(n) − p(n)
m < 2− (1 + z

{n,m}
0 ) = 1− z

{n,m}
0 ≤ 1,

hence |x(n) − p
(n)
m | ≤ 1. For all n > m, |x(n) − p

(n)
m | = |x(n)| < 2. It follows that 2 ≤

‖x− pm‖∞ = |x(m) + 1|. However, x(m) + 1 < 2 by assumption and x(m) + 1 > −2 + 1, so we
obtain a contradiction.

It follows that x(n) ≥ 1 for all n ∈ [d]. Then |x(n) − p
(n)
d+1| = |x(n) − 1− z

{n,d+1}
0 | ≤ 1 since

1 ≤ x(n) < 2 and 0 ≤ z
{n,d+1}
0 ≤ 1. It follows that ‖x− pd+1‖∞ ≤ 1, a contradiction. �
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4. Using graphs

In their studies of neighbourly axis-parallel boxes, Zaks [19] and Alon [1] modelled a cer-
tain geometric problem as a problem about covering a complete graph by complete bipartite
subgraphs. We use the same technique when showing that an arbitrary equilateral set of at
most d points in ℓd∞ can be extended to a larger equilateral set. Our proof in fact shows that
any collection of at most d pairwise touching, axis-parallel boxes in Rd can be extended to a
pairwise touching collection of d+ 1 axis-parallel boxes.

The graph-theoretical result needed is the following simple lemma which states in particular
that if the edges of a complete graph on k vertices are covered by at least k complete bipartite
subgraphs Gi, then for each Gi we may choose one of its two parts such that the chosen parts
cover all k vertices. For technical reasons we have to allow one, but not more than one, of the
classes of the complete bipartite subgraphs to be empty. Thus we define the join of A,B ⊆ [k]
to be A ∨B := {{a, b} : a ∈ A, b ∈ B} whenever A ∩B = ∅ and A ∪B 6= ∅.

Lemma 11. Let d ≥ k ≥ 1 be integers. For each n ∈ [d] let A0
n, A

1
n ⊆ [k] be given such

that A0
n ∩ A1

n = ∅ and A0
n ∪ A1

n 6= ∅. Suppose that
⋃

n∈[d](A
0
n ∨ A1

n) =
([k]
2

)
. Then there exist

σ1, . . . , σd ∈ {0, 1} such that Aσ1
1 ∪ · · · ∪Aσd

d = [k].

Proof. We use induction on k ∈ N. The case k = 1 is trivial, so we assume that k ≥ 2 and
that the theorem holds for k − 1. If for each j ∈ [k], some A0

n ∨ A1
n equals ∅ ∨ {j}, take σn

such that Aσn
n = {j} for each of these n. Then choose all remaining σn arbitrarily to obtain

the required covering of [k].
Thus assume without loss of generality that ∅ ∨ {k} does not occur as a A0

n ∨A1
n. Without

loss of generality, {1, k} ∈ A0
d ∨ A1

d (note k ≥ 2). Thus k ∈ Aσd

d for some σd ∈ {0, 1}. Set

B0
n := A0

n \ {k} and B1
n := A1

n \ {k} for each n ∈ [d − 1]. Then
⋃

n∈[d−1](B
0
n ∨ B1

n) =
([k−1]

2

)
.

Since all A0
n ∨ A1

n are different from ∅ ∨ {k}, we still have B0
n ∪ B1

n 6= ∅, so we may apply the
induction hypothesis to obtain Bσn

n , n ∈ [d−1], with union [k−1]. Together with Aσd

d we have
obtained the required covering of [k]. �

Proposition 12. m(ℓd∞) ≥ d+ 1.

Proof. We show that any 1-equilateral set {p1, . . . ,pk} ⊂ ℓd∞ of size at most k ≤ d can be
extended. Without loss of generality, k ≥ 1.

Since |p
(n)
i − p

(n)
j | ≤ 1 for all {i, j} ∈

([k]
2

)
and n ∈ [d], we may assume after a suitable

translation that all pi ∈ [0, 1]d. For each n ∈ [d], define A0
n := {i : p

(n)
i = 0} and A1

n :=

{i : p
(n)
i = 1}. Again by making a suitable translation we may assume that each A0

n ∪A1
n 6= ∅.

Since {p1, . . . ,pk} is 1-equilateral, each {i, j} ∈
([k]
2

)
is in some A0

n ∨ A1
n, n ∈ [d]. Indeed,

since ‖pi − pj‖∞ = 1, there exists an n ∈ [d] with |p
(n)
i − p

(n)
j | = 1. Since 0 ≤ p

(n)
i ,p

(n)
j ≤ 1,

it follows that
{

p
(n)
i ,p

(n)
j

}

= {0, 1}, which gives {i, j} ∈ A0
n ∨A1

n.

By Lemma 11 Aσ1
1 ∪ · · · ∪Aσd

d = [k] for some σ1, . . . , σd ∈ {0, 1}. Define q = (1, 1, . . . , 1) −

(σ1, . . . , σd). We show that for each i ∈ [k], ‖pi − q‖∞ = 1. Since q ∈ [0, 1]d, ‖pi − q‖∞ ≤ 1.

There exists n ∈ [d] such that i ∈ Aσn
n , i.e., p

(n)
i = σn. It follows that |p

(n)
i − q(n)| = 1, which

gives ‖pi − q‖∞ = 1. �

5. A calculation

Convexity of the function x 7→ |x|p for p ≥ 1 readily implies the following lemma.

Lemma 13. For any p ∈ [1,∞) and λ > 0 the function f(x) = |x + λ|p − |x|p, x ∈ R, is

increasing, and strictly increasing if p > 1.
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Proposition 14. For any p ∈ (1,∞) and d ≥ 3, the 21/p-equilateral set of standard unit

vectors S = {ei : i ∈ [d]} in ℓdp can be extended in exactly two ways to equilateral sets S ∪ {p}

and S ∪ {q}. Furthermore, ‖p− q‖p > 21/p.

Proof. Let p be equidistant to all points of S, say ‖p − ei‖p = c for all i ∈ [d] where c > 0 is

fixed. Then |p(i)|p − |p(i) − 1|p = ‖p‖pp − cp for all i. By Lemma 13, p(1) = · · · = p(d), i.e., p is
a multiple of j := (1, 1, . . . , 1) ∈ Rd.

Suppose now p = xj satisfies ‖p− ei‖p = 21/p for all i ∈ [d]. It follows that

|x− 1|p + (d− 1)|x|p = 2. (4)

Consider the function f(x) = |x − 1|p + (d − 1)|x|p. It is easily checked that f has a unique
minimum at a point x0 ∈ (0, 1) and is strictly decreasing on (−∞, x0) and strictly increasing
on (x0,∞). Since f(−1) = 2p + d − 1 > 2 and f(0) = 1 and f(1) = d − 1 ≥ 2, equation (4)
has a unique negative solution x = −µ ∈ (−1, 0) and a unique positive solution x = λ ∈ (0, 1].

We have to show that ‖−µj − λj‖p > 21/p, that is, λ+ µ > (2/d)1/p. Since λ is a solution to

(4), it follows that 2 = (1− λ)p + (d− 1)λp < 1 + dλp, hence λ > (1/d)1/p. It remains to show

that µ ≥ (21/p − 1)/d1/p. Suppose to the contrary that

µ <
21/p − 1

d1/p
. (5)

Since x = −µ is a solution of (4),

2 = (1 + µ)p + (d− 1)µp

< (1 + µ)p − µp + (21/p − 1)p by (5),

hence
(21/p − 1 + 1)p − (21/p − 1)p < (µ+ 1)p − µp.

By Lemma 13, 21/p − 1 < µ, which contradicts (5). �

Proof of Theorem 4. We have already observed in Section 1 that m(X) = 3 for any two-dimen-
sional X, so we may assume that d ≥ 3. We have also observed in Section 2 that m(ℓd1) = 4
for all d ≥ 3, so we may assume that p ∈ (1,∞). Then the theorem follows from Proposi-
tion 14. �

Proposition 15. Let 1 < p < ∞, d ≥ 3, 0 < ε ≤ (2d − 4)−1/(p−1), and R = (1 + p−1
2 ε)1/p.

Suppose that X = (Rd, ‖·‖) is given such that

‖x‖ ≤ ‖x‖p ≤ R‖x‖ for all x ∈ Rd.

Then X has a λ-equilateral set {p1, . . . ,pd}, where λ = (2 + (d− 2)εp)1/p, such that p
(i)
i = 1

for all i ∈ [d], −ε < p
(j)
i < 0 for all i, j ∈ [d] with j < i, and p

(j)
i = 0 for all i, j ∈ [d]

with j > i.

Proof. Let β, γ > 0 be arbitrary (to be fixed later). For i ∈ [d] define pi : R(
[d]
2 ) → Rd by

setting for each n ∈ [d],

p
(n)
i (z) =







z{n,i} if n < i,

−γ if n = i,

0 if n > i.

That is,

pi(z) = (z{1,i}, . . . , z{i−1,i},−γ, 0, . . . , 0).

Let I = [0, β](
[d]
2 ) and define ϕ : I → I by

ϕ{i,j}(z) = 1 + z{i,j} − ‖pi(z)− pj(z)‖ for each {i, j} ∈

(
[d]

2

)

.
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It is clear that ϕ is continuous. We next show that ϕ is well defined if R, β, and γ are chosen

appropriately. Let z ∈ I. Then 0 ≤ z{i,j} ≤ β for all {i, j} ∈
([d]
2

)
. We first bound ‖pi(z) −

pj(z)‖p. Without loss of generality, i < j. Then

‖pi(z)− pj(z)‖
p
p =

i−1∑

k=1

|z{k,i} − z{k,j}|p + |γ + z{i,j}|p

+

j−1
∑

k=i+1

|z{k,j}|p + γp

≤ (i− 1)βp + (γ + z{i,j})p + (j − 1− i)βp + γp

= (j − 2)βp + γp + (γ + z{i,j})p (6)

and

‖pi(z)− pj(z)‖
p
p ≥ γp + (γ + z{i,j})p. (7)

Thus

ϕ{i,j}(z) ≥ 1 + z{i,j} −
(
(j − 2)βp + γp + (γ + z{i,j})p

)1/p
.

Let f(x) = 1 + x− ((j − 2)βp + γp + (γ + x)p)1/p for 0 ≤ x ≤ β. Then

f ′(x) = 1−

(
(γ + x)p

(j − 2)βp + γp + (γ + x)p

)1− 1
p

> 0.

It follows that f is strictly increasing, which gives that

ϕ{i,j}(z) ≥ f
(
z{i,j}

)
≥ f(0) = 1−

(
(j − 2)βp + 2γp

)1/p

≥ 1−
(
(d− 2)βp + 2γp

)1/p
.

If we require that

(d− 2)βp + 2γp = 1 (8)

then ϕ{i,j}(z) ≥ 0 for all z ∈ I.
Also,

ϕ{i,j}(z) ≤ 1 + z{i,j} −
1

R
‖pi(z)− pj(z)‖p

≤ 1 + z{i,j} −
1

R

(

γp + (γ + z{i,j})p
)1/p

.

Let g(x) = 1 + x− 1
R (γp + (γ + x)p)1/p for 0 ≤ x ≤ β. Then

g′(x) = 1−
1

R

(
(γ + x)p

γp + (γ + x)p

)1− 1
p

> 1−
1

R
> 0.

Therefore, g is strictly increasing, which gives that

ϕ{i,j}(z) ≤ g
(
z{i,j}

)
≤ g(β) = 1 + β −

1

R

(
γp + (γ + β)p

)1/p
.

In order to conclude that ϕ{i,j}(z) ≤ β, it is sufficient to require that

γp + (γ + β)p ≥ Rp. (9)

Suppose for the moment that we can find β, γ > 0 such that (8) and (9) are satisfied. Then
ϕ : I → I is well defined, and by Brouwer’s fixed point theorem ϕ has a fixed point, that is,
for some z0 ∈ I we have ϕ(z0) = z0, which implies that {pi(z0) : i ∈ [d]} is 1-equilateral.

Since p
(i)
i (z0) = −γ, we have to scale each pi(z0) by −γ. Set γ = 1/λ and β = γε. Then
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{−(1/γ)pi(z0) : i ∈ [d]} is λ-equilateral, the requirement (8) becomes the definition of λ,
namely

(d− 2)εp + 2 = λp

and the requirement (9) becomes

1 + (1 + ε)p

2 + (d− 2)εp
≥ Rp. (10)

It remains to verify (10) given that 0 < ε ≤ (2(d − 2))−1/(p−1) and Rp = 1 + p−1
2 ε. Since

(d− 2)εp = (d− 2)εp−1ε ≤ ε/2

and ε ≤ 2−1/(p−1) < 1, it is sufficient to show that

f(ε) := 1 + (1 + ε)p −

(

1 +
p− 1

2
ε

)(

2 +
ε

2

)

≥ 0

for all ε ∈ [0, 1]. A calculation gives that f(0) = 0, f ′(0) = 1/2, f ′′(ε) = p(p − 1)(1 + ε)p−2 −
(p − 1)/2, f ′′(0) = (p − 1

2)(p − 1) > 0 and f ′′(1) = p−1
2 (p2p−1 − 1) > 0. Thus f ′′ is monotone

and positive at the endpoints of [0, 1], hence positive on the whole [0, 1], and it follows that f ′

is positive on [0, 1] and f(ε) ≥ 0 for all ε ∈ [0, 1]. �

Proof of Theorem 5. Suppose that the theorem is false. Then for some fixed p ∈ (1,∞) and
d ≥ 3 and for all c > 1, there exists a d-dimensional X such that dBM(X, ℓdp) < c and

m(X) ≥ d+ 2. Choose a sequence Xn = (Rd, ‖·‖(n)) such that m(Xn) ≥ d+ 2 and

‖x‖(n) ≤ ‖x‖p ≤

(

1 +
1

n

)1/p

‖x‖(n) for all x ∈ Rd.

If n is sufficiently large, in particular if

n >
2(2d − 4)1/(p−1)

p− 1
,

and if we choose ε = 2/(n(p− 1)), then 1/n = (p− 1)ε/2 and ε < (d− 2)−1/(p−1), and we may

apply Proposition 15 to obtain an equilateral set {pi(n) : i ∈ [d]} in Xn such that p
(i)
i (n) = 1

for all i ∈ [d] and −ε < p
(j)
i (n) ≤ 0 for all i, j ∈ [d], i 6= j. Since m(Xn) ≥ d + 2, there exist

points pd+1(n),pd+2(n) ∈ Xn such that {pi(n) : i ∈ [d + 2]} is equilateral. By passing to a
subsequence we may assume without loss of generality that pd+1(n) → p and pd+2(n) → q

as n → ∞. Since pi(n) → ei and dBM(Xn, ℓ
d
p) → 1 as n → ∞, it follows that {e1, . . . ,ed,p, q}

is equilateral in ℓdp. This contradicts Proposition 14. �

6. A construction with Hadamard matrices

In [16] Hadamard matrices were used to construct equilateral sets in ℓdp of cardinality greater
than d + 1, for all p ∈ (1, 2) and sufficiently large d depending on p. The construction used
here is a more involved version of this idea. Before introducing the properties of Hadamard
matrices that will be needed, we first consider a special case to illustrate the construction.

Lemma 16. Let 1 ≤ p ≤ 2. For each λ ∈ [21−1/p, 21/p] there exist linearly independent unit

vectors u,v ∈ ℓ2p such that ‖u+ v‖p = ‖u− v‖p = λ.

Proof. Let u = (α, β) and v = (−β, α) where α, β ≥ 0 and αp + βp = 1. Then ‖u ± v‖pp =

|α+β|p+|α−β|p, which ranges from 2 when α = 0 and β = 1, to 2p−1 when α = β = 2−1/p. �

Lemma 17 (Monotonicity lemma). Let u and v be linearly independent unit vectors in a

strictly convex 2-dimensional normed space. Let p 6= o be any point such that u is between 1
‖p‖p

and v on the boundary of the unit ball. Then ‖p − u‖ < ‖p− v‖.
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For a proof, see [9, Proposition 31]. For non-strictly convex norms the above lemma still holds
with a non-strict inequality. On the other hand, the following corollary of the monotonicity
lemma is false when the norm is not strictly convex, as easy examples show.

Lemma 18. Let u and v be linearly independent unit vectors in a strictly convex 2-dimensional

normed space. Suppose that x is such that ‖x − u‖ = ‖x + u‖ and ‖x − v‖ = ‖x + v‖.
Then x = o.

Proof. Without loss of generality, x = αu+ βv with α, β ≥ 0. If x 6= o, then by Lemma 17,

‖x− v‖ < ‖x+ u‖ = ‖x− u‖ < ‖x+ v‖,

a contradiction. �

Proposition 19. Let X be any normed space, d ≥ 4, q ∈ [1,∞), and 1 ≤ p < log(5/2)
log 2 . Then

m(ℓdp ⊕q X) ≤ 5. If p = log(5/2)
log 2 , then m(ℓdp ⊕q X) ≤ 6.

Proof. Consider the following subset of ℓdp ⊕q X =
(
ℓ4p ⊕p ℓ

d−4
p

)
⊕q X:

S = { ( 1, 1, 1, 0, o, o ),
( 1,−1,−1, 0, o, o ),
(−1, 1,−1, 0, o, o ),
(−1,−1, 1, 0, o, o ),
( 0, 0, 0, λ, o, o ) }.

By setting λ = (2p+1−3)1/p, the set S becomes 21+1/p-equilateral. We show that S is maximal
equilateral if p < log(5/2)/ log 2 and can be uniquely extended if p = log(5/2)/ log 2.

Suppose that (α1, α2, α3, α4,x,y) has distance 21+1/p to each point in S. Then (α1, α2, α3)
has the same distance in ℓ3p to the points

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1),

which gives

‖(α1, α2)− (1, 1)‖p = ‖(α1, α2)− (−1,−1)‖p

and

‖(α1, α2)− (1,−1)‖p = ‖(α1, α2)− (−1, 1)‖p.

It follows (from Lemma 18 if p > 1) that (α1, α2) = (0, 0). Thus |α3 − 1| = |α3 + 1|, which
gives α3 = 0 and 3 + |α4|

p = |α4 − λ|p. By Lemma 13, the function f(x) = 3 + |x|p − |x− λ|p

is increasing (strictly increasing if p > 1). Since f(α4) = 0 and f(−λ) = 2p+1(52 − 2p) ≥ 0 (> 0
if p = 1), it follows that α4 ≤ −λ. Then by assumption,

21+1/p = ‖(0, 0, 0, α4 ,x,y)− (1, 1, 1, 0,o,o)‖

=
(

(3 + |α4|
p + ‖x‖pp)

q/p + ‖y‖q
)1/q

≥ (3 + λp)1/p = 21+1/p,

and equality holds throughout, which implies that α4 = −λ, x = o and y = o. Also, by

assumption, 21+1/p = ‖(0, 0, 0,−λ,o,o) − (0, 0, 0, λ,o,o)‖ = 2λ, which implies p = log(5/2)
log 2 .

Therefore, S is a maximal equilateral set unless p = log(5/2)
log 2 , and then S ∪ {(0, 0, 0,−λ,o,o)}

is maximal. �

An n × n matrix H is called a Hadamard matrix of order n if each entry equals ±1 and
HHT = nI. It is well known [8, Chapter 18] that if an Hadamard matrix of order n exists,
then n = 1, n = 2 or n is divisible by 4. It is conjectured that there exist Hadamard matrices
of all orders divisible by 4. This is known for all multiples of 4 up to 664 [7]. The next lemma
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summarises the only results (all well known) on the existence of Hadamard matrices that we
will use.

Lemma 20.

(1) There exist Hadamard matrices of orders 1, 2, 4, 8, 12.
(2) Let x ≥ 1. The interval (x, 2x) contains the order of some Hadamard matrix iff x /∈

{1, 2, 4}.
(3) Let H(x) be the largest order n of an Hadamard matrix with n < x. Then

lim
x→∞

H(x)/x = 1.

Proof. (1) is well-known.
(2) Given Hadamard matrices H1 of order n1 and H2 of order n2, the Kronecker product

H1 ⊗H2 is an Hadamard matrix of order n1n2 [8, Chapter 18]. Starting with the (essentially
unique) Hadamard matrices of orders 2 and 12, we obtain Hadamard matrices of orders 2k and
6 · 2k for all k ≥ 1. This is sufficient to cover every interval (x, 2x) except for (1, 2), (2, 4) and
(4, 8).

(3) The Paley construction [8, Chapter 18] gives an Hadamard matrix of order q + 1 for
any prime power q ≡ 3 (mod 4). By the prime number theorem for arithmetic progressions
[5] the number of primes less than x that are congruent to 3 modulo 4 is (1 + o(1))x/(2 ln x).
This implies that the largest such prime less than x is ≥ (1 + o(1))x, which gives H(x)/x → 1
as x → ∞. �

An Hadamard matrix is normalised if its first column are all +1s. Note that any Hadamard
matrix can be normalised by multiplying each row by its first entry. If

H =








1 h1

1 h2
...

...
1 hn








is a normalised Hadamard matrix we say that {h1, . . . ,hn} ⊂ Rn−1 is a Hadamard simplex.
In the sequel we repeatedly use the fact that each hi has n − 1 coordinates, each ±1, and
that any two hi differ in exactly n/2 coordinates. In particular, the distance between any two

vertices of an Hadamard simplex in ℓn−1
p equals n1/p21−1/p and all vertices lie on a sphere with

centre o and radius (n − 1)1/p. The next lemma shows in particular (by taking X = R) that
an Hadamard simplex cannot lie on any other sphere of ℓn−1

p if p ∈ [1,∞).

Lemma 21. Let {h1, . . . ,hn} ⊂ Rn−1 be an Hadamard simplex, p ∈ [1,∞), X a normed space

and u ∈ X. Suppose that

(x1, . . . ,xn−1) ∈

n− 1 summands
︷ ︸︸ ︷

X ⊕p · · · ⊕p X

has the same distance to each point of {hi ⊗ u : i ∈ [n]} ⊂ X ⊕p · · · ⊕p X. Then ‖xi − u‖ =
‖xi + u‖ for all i ∈ [n].

Proof. Let hi = [hi,1, hi,2, . . . , hi,n−1] for i ∈ [n]. We may assume without loss of generality
that h1 = [−1,−1, . . . ,−1]. Since x = (x1,x2, . . . ,xn−1) is equidistant to all hi ⊗ u, there

exists D ≥ 0 such that
∑n−1

j=1 ‖xj − hi,ju‖
p = Dp for each i ∈ [n]. Subtract the first of these

equations from the others to obtain the system







h2 − h1

h3 − h1
...

hn − h1















‖x1 − u‖p − ‖x1 + u‖p

‖x2 − u‖p − ‖x2 + u‖p

...
‖xn−1 − u‖p − ‖xn−1 + u‖p







=








0
0
...
0








(11)
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The Hadamard matrix H is invertible. If we subtract the first row from all the other rows, the
resulting matrix








1 o

0 h2 − h1
...

...
0 hn − h1








is still invertible. It follows that (11) has the unique solution

‖xj − u‖p − ‖xj + u‖p = 0 for all j ∈ [n− 1]. �

Lemma 22. Let {h1, . . . ,hn} ⊂ Rn−1 be an Hadamard simplex and p ∈ [1,∞). Let u and v be

linearly independent unit vectors in a strictly convex 2-dimensional normed space X. Suppose

that

x = (x1, . . . ,xn−1) ∈

n− 1 summands
︷ ︸︸ ︷

X ⊕p · · · ⊕p X

has the same distance in the p-norm to each point of {hi⊗u : i ∈ [n]}, and the same distance

to each point of {hi ⊗ v : i ∈ [n]}. Then x = o.

Proof. Combine Lemmas 18 and 21. �

Proposition 23. Let p ∈ [1, 2), q ∈ [1,∞), and X any normed space. Let k1, k2 ∈ N be such

that there exist Hadamard matrices of orders k1 and k2 and such that

2− 2p−1 <
1

k1
+

1

k2
< 4− 2p, (12)

(1− 2−p)(2 − 2p−1) < (1− 21−p)
1

k1
+

1

k2
, (13)

and (1− 2−p)(2− 2p−1) <
1

k1
+ (1− 21−p)

1

k2
. (14)

Then m(ℓdp ⊕q X) ≤ 2(k1 + k2) for all d ≥ 2(k1 + k2 − 1).

Proof. It is sufficient to construct an equilateral set S of cardinality 2(k1 + k2) in ℓ
2(k1+k2−1)
p

that does not lie on any sphere. Then (S⊕{o})⊕{o} will be maximal equilateral in ℓdp⊕qX =
(

ℓ
2(k1+k2−1)
p ⊕p ℓ

d−2(k1+k2−1)
p

)

⊕q X for any q ∈ [1,∞).

Let α1, α2, λ1, λ2 ∈ R (to be fixed later) such that

α1, α2 > 0 and 21−1/p ≤ λ1, λ2 ≤ 21/p. (15)

By Lemma 16 there exist unit vectors u1,u2,v1,v2 ∈ ℓ2p such that {ui,vi} is linearly indepen-

dent and ‖ui ± vi‖p = λi for i = 1, 2. Let {gi : i ∈ [k1]} ⊂ ℓk1−1
p and {hi : i ∈ [k2]} ⊂ ℓk2−1

p

be Hadamard simplices. Consider the following subsets of ℓ
2(k1+k2−1)
p = R⊕p ℓ

2(k1−1)
p ⊕p R⊕p

ℓ
2(k2−1)
p :

S−
1 =

{(
−α1 , k

−1/p
1 gi ⊗ u1 , 0 , o

)
: i ∈ [k1]

}
,

S+
1 =

{(
α1 , k

−1/p
1 gi ⊗ v1 , 0 , o

)
: i ∈ [k1]

}
,

S−
2 =

{(
0 , o , −α2 , k

−1/p
2 hi ⊗ u2

)
: i ∈ [k2]

}
,

S+
2 =

{(
0 , o , α2 , k

−1/p
2 hi ⊗ v2

)
: i ∈ [k2]

}
.

We would like to choose α1, α2, λ1, λ2 so as to make S = S−
1 ∪ S+

1 ∪ S−
2 ∪ S+

2 equilateral and
non-spherical. Note that then |S| = 2(k1 + k2), since all the points will be distinct.

The pth power of the distance between points
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• in the same set S±
1 equals

k1
2

1

k1
‖2u1‖

p
p =

k1
2

1

k1
2p = 2p−1,

• in the same set S±
2 similarly equals k2

2
1
k2
2p = 2p−1,

• in S−
1 and S+

1 equals

(2α1)
p + (k1 − 1)

1

k1
‖u1 ± v1‖

p
p = (2α1)

p +
(

1−
1

k1

)

λp
1,

• in S−
2 and S+

2 similarly equals (2α2)
p + (1− 1

k2
)λp

2,

• in S−
1 ∪ S+

1 and S−
2 ∪ S+

2 equals

αp
1 +

k1 − 1

k1
+ αp

2 +
k2 − 1

k2
= αp

1 + αp
2 + 2−

( 1

k1
+

1

k2

)

.

For S to be equilateral, we therefore need

(2α1)
p +

(

1−
1

k1

)

λp
1 = 2p−1, (2α2)

p +
(

1−
1

k2

)

λp
2 = 2p−1 (16)

and

αp
1 + αp

2 + 2−
( 1

k1
+

1

k2

)

= 2p−1. (17)

The set S will lie on some sphere iff some (β,x, γ,y) is equidistant to S. This implies that x is

equidistant to all k
−1/p
1 gi ⊗u1 and also equidistant to all k

−1/p
1 gi ⊗ v1. By Lemma 22, x = o.

Similarly, y = o. Then |−α1 − β| = |α1 − β|, which gives β = 0. Similarly, γ = 0. Thus S can
only lie on a sphere with centre o and radius (αp

1 + (k1 − 1)/k1)
1/p = (αp

2 + (k2 − 1)/k2)
1/p.

Therefore, for S not to lie on a sphere, we need

αp
1 −

1

k1
6= αp

2 −
1

k2
. (18)

It turns out that the hypotheses (12), (13), (14) are sufficient for the three simultaneous
equations (16) and (17) to have a solution in α1, α2, λ1, λ2 given the constraints (15) and (18).
This can be seen as follows. First use (16) to eliminate α1 and α2 from (15), (17) and (18),
and set x1 = (1 − 1

k1
)λp

1 and x2 = (1 − 1
k2
)λp

2 to obtain that the simultaneous solvability of

(15), (16), (17) and (18) is equivalent to the existence of x1, x2 ∈ R such that

x1 + x2 = 2p
(

3− 2p−1 −
1

k1
−

1

k2

)

, (19)

2p−1
(
1−

1

k1

)
≤ x1 ≤ 2

(

1−
1

k1

)

, (20)

2p−1
(
1−

1

k2

)
≤ x2 ≤ 2

(

1−
1

k2

)

, (21)

x1, x2 < 2p−1, (22)

and x1 − x2 6= 2p
(

1

k2
−

1

k1

)

. (23)

Geometrically, it is sufficient to show that the line ℓ in the x1x2-plane with equation (19)
intersects the interior of the rectangle R with bottom-left corner a = 2p−1(1− 1

k1
, 1− 1

k2
) and

top-right corner

b =

(

min
{

2p−1, 2
(

1−
1

k1

)}

,min
{

2p−1, 2
(

1−
1

k2

)})

.
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Indeed, if ℓ intersects the interior of R then it intersects R in infinitely many points, among
which one can be chosen that satisfies (23). That ℓ intersects the interior of R is equivalent to
a lying below ℓ:

2p−1
(

1−
1

k1

)

+ 2p−1
(

1−
1

k2

)

< 2p
(

3− 2p−1 −
1

k1
−

1

k2

)

(24)

and b lying above ℓ:

2p
(

3− 2p−1 −
1

k1
−

1

k2

)

< min
{

2p−1, 2
(

1−
1

k1

)}

+min
{

2p−1, 2
(

1−
1

k2

)}

. (25)

Inequality (24) is equivalent to the second inequality in (12).
Inequality (25) can be split into four simultaneous inequalities:

2p
(

3− 2p−1 −
1

k1
−

1

k2

)

< 2
(

1−
1

k1

)

+ 2
(

1−
1

k2

)

, (25a)

2p
(

3− 2p−1 −
1

k1
−

1

k2

)

< 2p−1 + 2p−1, (25b)

2p
(

3− 2p−1 −
1

k1
−

1

k2

)

< 2
(

1−
1

k1

)

+ 2p−1, (25c)

2p
(

3− 2p−1 −
1

k1
−

1

k2

)

< 2p−1 + 2
(

1−
1

k2

)

. (25d)

Each of (25a) and (25b) is equivalent to the first inequality in (12). Inequality (25c) is equiv-
alent to (13) and (25d) is equivalent to (14).

It follows that α1, α2, λ1, λ2 can be chosen so that S is equilateral and non-spherical. �

Proof of Theorem 6. By Lemma 20 the interval
(
2/(4 − 2p), 4/(4 − 2p)

)
contains the order of

some Hadamard matrix except if 2/(4 − 2p) ∈ {1, 2, 4}. Therefore, unless

p ∈

{

1,
log 3

log 2
,
log(7/2)

log 2

}

,

if we let k1 = k2 = k be the order of such an Hadamard matrix, conditions (12), (13) and (14)
are satisfied, and Proposition 23 gives a maximal equilateral set of size C(p) = 2(k1+k2) = 4k
in all dimensions at least d0(p) = 2(k1 + k2 − 1) = 4k − 2.

Asymptotically when p → 2, we may choose k to be the largest order of an Hadamard matrix
such that k < 4/(4− 2p). Then by Lemma 20, 4k < 16/(4− 2p) ∼ 4/((2− p) ln 2), which gives
the required asymptotic upper bounds for C(p) and d0(p).

The exceptional case p = 1 has already been dealt with in Proposition 19. For p = log 3/ log 2
we may use (k1, k2) = (2, 4) in Proposition 23 and for p = log(7/2)/ log 2 we may use (k1, k2) =
(4, 8). This covers the existence of C(p) and d0(p) for all p ∈ [1, 2).

The last column of Table 1 indicates how each line in that table is obtained: Proposition 19

covers the case 1 ≤ p ≤ log(5/2)
log 2 , and in the remaining cases Proposition 23 is applied with

Hadamard matrices of various orders k1 and k2. �

Proof of Corollary 7. Let p ∈ [1, 2) and let Γ be any set. If Γ is infinite, then by Theorem 6
where X is chosen to be ℓp(Γ) and q = p, m(ℓdp ⊕p ℓp(Γ)) ≤ C(p) for large enough d. However,

since Γ is infinite, ℓdp ⊕p ℓp(Γ) is isometrically isomorphic to ℓp(Γ).

For the remaining case where Γ is finite, it is sufficient to bound m(ℓdp) for all d. Again

by Theorem 6 where X is chosen to be the zero space, m(ℓdp) ≤ C(p) for all d ≥ d0(p). For

d < d0(p), we apply the Danzer-Grünbaum-Petty-Soltan result to obtain m(ℓdp) < 2d0(p).
Thus for fixed p ∈ [1, 2), we have found an upper bound to m(ℓp(Γ)) uniform over all Γ. �
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