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Abstract
We consider a modification of moment functionals for the Hahn classical polynomials
of a discrete variable by adding two mass points at the ends of the interval, i.e., in z =0
and * = N — 1. We obtain the resulting orthogonal polynomials and identify them as
hypergeometric functions. The corresponding three term recurrence relation and tridiagonal
matrices are also studied.

§1 Introduction.

The study of orthogonal polynomials with respect to a modification of a linear functional
in the linear space of polynomials with real coefficients via the addition of one or two delta
Dirac measures has been performed by several authors [5] [6], [15]. A special emphasis is given
to the modifications of classical linear functionals (Hermite [15], Laguerre [11], Jacobi [12] and
Bessel [10]). Very recently appear some works related to modifications of the discrete classical
measures, more concretly the Charlier, Kravchuk and Meixner measures, via addition of one
delta Dirac measures at = 0 [1], [2], [3], [4] and [9].

In this paper we study the polynomials orthogonal with respect to the modification of the
weight function of the classical Hahn polynomials via the addition of two different masses at the
ends of the interval. In fact we find one expression for the perturbed or generalized monic Hahn
polynomials ﬁﬁ’B’a’ (z) as well as their representation in terms of the 5 4 hypergeometric series.
We also analyze the relation between tridiagonal matrices of these perturbed Hahn izﬁ’B’“’ﬁ(x)
and classical ilg’ﬁ(x, N) polynomials.

The structure of the paper i1s as follows. In Section 2, we provide the basic properties of
the classical orthogonal Hahn polynomials. In Section 3 we deduce expressions of the monic
generalized Hahn polynomials in terms of the classical ones ﬁg’ﬁ(x, N) and the first backward
difference derivatives of the polynomials ﬁg_l’ﬁ(x) and ﬁg’ﬁ_l(x). In Section 4 we find their
representation as hypergeometric functions 5 /4 and in Section b we analyze two particular cases:
A#0B=0and A =0, B # 0. Finally, in Section 6, from the three term recurrence relation
(TTRR) of the classical orthogonal polynomials we find the TTRR which satisfy the perturbed
ones and analyze the relation between tridiagonal matrices associated with the perturbed monic
orthogonal polynomial sequence (PMOPS) {izﬁ’B’“’ (x, N)YNZ] as a rank-one perturbation of
the tridiagonal matrices associated with the classical monic orthogonal polynomial sequence
(CMOPS) {ﬁgﬁ(x, N) N-1 The two special cases are also analyzed.

n=0 "
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§2 Some Preliminar Results.

Here we enclose some formulas for the classical Hahn polynomials which are useful in order
to obtain the generalized polynomials orthogonal with respect to the linear functional ¢/ defined
as a modification of the first ones troughtout the addition of two mass points. All the formulas
for the classical Hahn polynomials can be found in a lot of books ( see for instance the excellent
monograph Orthogonal Polynomials in Discrete Variables by A.F. Nikiforov, S. K. Suslov, V. B.
Uvarov [16], Chapter 2.)

The classical orthogonal polynomials of a discrete variable in the uniform lattice x(s) = s,
where s belongs to the set of non-negative integers, are the polynomial solution of a second order
linear difference equation of hypergeometric type

o() AT Pa(2) + 1(2) A Py(x) + Ay Po(x) =0, (1)
where
V(@) = fle) = f(z = 1), Af(e) = fle+1) = f(z).
Here o(x) and 7(x) are polynomials in  of degree at most 2 and 1, respectively, and A, is a

constant.

These polynomials are orthogonal with respect to the linear functional H on the linear space
of polynomials with real coefficients defined as

<H,PQ> = p(x)P(z)Q(x), N=1{01,2.7}, (2)

where p(x) is some non-negative function ( weight function ) supported in a countable set of the
real line and such that

The orthogonality relation is

Y Pa(@)Pul(2)p(z) = Sumds, (3)

zeIN

where d2 denotes the square of the norm of these classical polynomials.

The polynomial solutions of equation (1) are uniquely determined, up to a normalized factor
(Bn), by the difference analog of the Rodrigues formula (see [16] page 24 Eq.(2.2.7)):

Py(x) = p?;) V" |p(x+n) H o(x+k)|. (4)

They satisfy a three term recurrence relation of the form
rPp(z) = anPpy1(z) + B Po(z) + ¥ Paa(z), >0
P_1(z)=0 and Py(z) =1

and the Christoffel-Darboux formula

ZPm(x)sz(y): I any Pn(x)Pn_l(y)z—Pn(y)Pn_l(x) n=1,23,... . (6
0 dm r—Y an dn—l



Here a, is the leading coefficient of the polynomial, i.e., the coefficient of the n-th power of z in
the expansion:

Po(x) = anae™ 4+ byt 4+ .. (7)

We will consider the classical Hahn polynomials h2#(z, N) (see [16] section 2.4 page 30 and
table 2.1 page 42) which are solutions of the difference equation (1) and they are orthogonal
with respect to the weight function p(z) supported on [0, N), with

ox)=w(x+a—-N), 7(@)=@B+H(N-D—-z(a+8+2) , d=nla+f+N+1),
and

a4+ N—-—2)[(3+1+x)
(N —2)['(1+2) ’

B, = , plz) = a>-=1, g>-1.

His norm d2 and his leading coefficient a,, are equal to.

2 - HNa+n+DI(B+n+ DI (a+ 8+ N+n+1) _ Tla+p+2n+1)
" (et B+2n+ DN —n—-DIM(a+B+n+1) n = nT(a+B+n+1)

The coefficients of the TTRR (5) are

(n+D(a+p+n+1)

T ettt )atftont2)
_a—(F+2N -2 (8% —aH)(a+ B+ 2N g
bn = 4 Cda+ G+ 2n)(a+B+2n+2) ®)

_(a+n)(f+n)a+F+N+n)(N—n)
" (a+B8+2n)(a+p+2n+1)

These classical polynomials can be represented in terms of the hypergeometric function gF»
(see [16] page 49, section 2.7)

N 1) (N — D)IT(B 40+ 1 adfentln
o, N) = ( n!)(]\(f— n—)l)ff(ﬁ—l— 1) : F ( 1_+J\€7;+-I1— ’1)’ (9)

where the hypergeometric function is defined by

ay,asz,...,a (al)k(a2)k e (Clp)k a*
F ) ) ) P’:L, — -,
Pty (bl,bQ,...,bq ) kZ:O (b1)x(b2)g - - - (bq)k k!

(a)o =1, (a)y:=ala+1)(a+2)---(a+k—-1), k=1,2,3, ..

Notice that the Hahn polynomials constitute a finite set of polynomials defined for n =

0,1,..., N —1 (see [7] or [16] .

As a consequence of these representations we can deduce

(=1 T(B+n+ 1)(N — 1)!
nl T+ D(N—n—1) (10)

heP(0,N) =

They satisfy the following differentiation formula:

AhSP(x, N)=(a+B+n+ AT (e N - 1), (11)



and the symmetry property:
RN —1—a,N)=(=1)"h2"(z,N). (12)
Let us now to prove the following Lemma:

Lemma 1 The Classical Hahn polynomials satisfy the relation

(a+B4+2n)(N—n—1)x
a+B+n

Vhy TP (e, N) = n(N —n— DR3P (2, N)+ (n+ 8)hy 7 (2, V). (13)

Proof: Using the hypergeometric representation (9) for the Hahn polynomials we observe that
the right side of (13) is equal to:

( )n(N — 1)'F(6+ n+ 1) -z, n+l,—n, —z,a n,l—n
=DV —n—2) TG+ 1) | 3F2( ) sFy (e )|

oQ

(—)"(N = DI (B+n+1) Z o)+ B4 n) [oz—i—ﬁ—l—n—i—k_n—k]:

(n=DN—-—n=-2IT(B+1) pa—s kﬁ—i—l)kk' a+pB+n n

oQ

(—)"(N = DIT(B+n+1) a+8+2n Z Je(a+ B+ n)y
(n— DN —n—2)T(B+1)n(a+B+n) ﬁ+1) k— 1)

1

Using the identity (a)r = a(a + 1);—1 the last expression becomes

(=D)"(N =DIT(B+n+1) xoz—l—ﬁ—l—?n i (1 =n) 1—1‘) (a+B+n+ 1)
(= DIV —n— DTG+ 1) (1- M)(B +1) 2= 03+ k!

(a+B+20)(N —n—1) iﬁ”&éﬁ:?'ﬁfﬁ&gig;:&F (tmseatmrian ).

Taking into account the representation

a L, o DTN = 2)T (B4 l—z,atf+n+1,1-n,
WA = LN =) = e e T ) S (‘aevEs ),

and the difference equation (11), as well as the identity Af(z — 1) = 7 f(x) the lemma follows:
W(N = — DGO (e, N) = (n + BREZ, (2, N) =
=(a+B+20)(N—n— D" (e—-1,N-1)=

_ (a4 f4+2)(N-n—-1) o\ 1p
= P B < hy (z,N). ]

Next, we will obtain an useful property of the kernels Kerff’_ﬁl(x, 0) and Ker, " P (e, N =1).
First at all, we have the following

n—1 n—17 7
heB (2, NYR®P(0, N heB(x, NYhSP(0, N
Ker,’ (l‘ 0)= G ngn © ): n (e, Ezn © ), (14)
k=0 n k=0 dn



where by ilg’ﬁ(x, N) and CZTZL we denote the corresponding monic polynomials and its squared
norm. Using this fact, the Christoffel-Darboux formula, as well as relation (13) we obtain the
following expression for the kernels of the Hahn polynomials:

n—1
heoB NYRSB(0. N .
[(67“2’_&1(1"0)5 g m (l‘, ) m (07 )_ Up—1 y
m=0

2 - 2
dz, zand; _,

« (;!1();__(5 :S?lrr((gﬁjf;) [0V =0 = DR, M)+ (OB e, W) = (19)

an—1 (=1)" YN — DIT(B+ n)(a + B+ 2n) a1

= and?_; NN —n—=2)IT(B+1)(a+B+n) v hy (z,N).

a,f

To obtain a representation for the kernel Ker, " (z, N — 1) we can use the above expression

for the kernel Ker, ﬁl(x, 0) and (12):

)

n—1
h&P(z, NYh&P(N — 1, N
ﬁ(l‘,N—l):Z m(xa )m( ) )

Kery”, e =
m=0 m
n—1
ho (N — l—x,N)hﬁf“(O,N) . o
= el :Ixerg’_l(N—x—l,O):
m=0 (16)

_ Op-1 (=1)""Y(N = DT (a+ n)(a + B+ 2n)
T and? (N —n—-2)T(a+1)(a+5+n)

n—1

vhETLA(N =1 — 2, N) =

 Gp (=1)""Y(N = DT (a+ n)(a + B+ 2n)
T and? (N —n—-2)T(a+1)(a+5+n)

n—1

(=1)" L A 2Pz, N,

If we denote by &p(«, 7) the following quantities:

(=)~ YN - DT (a+ 3+ 2n)

n\&, = s 17
(e ) = G e Tl (a T 9+ N 1) (17
then the formulas (15) and (16) can be rewriten in the form:
n—1 7 3
heP(z, NYh2P(0, N 3 e
( ?2 ( ) :H”(O"B)vhn 175(%]\])’
m=0 dm
(18)
n—1 7 3
heo (2, NYRSP(N = 1, N )
m ($’ ) Cri); ( ) ) — Ifn(ﬁ, a)(_l)n—l Ahg’ﬁ_l(x,]\f).
m=0 m

§3 The definition and orthogonal relation.

Consider the linear functional ¢ on the linear space of polynomials with real coefficients
supported on the interval [0, N') defined as

<U,PQ> =<H,PQ>+AP(0)Q(0)+BP(N-1)Q(N-1), ze€IN, A, B>0 , (19)



where H is a classical moment functional (2) associated with the classical Hahn polynomials:

<H,PQ> = Z_: P)Q(z) 2 ;r(x = g?gf:;r D asol g>—1. ()

We will determine the monic polynomials ﬁﬁ’B’“’ﬁ(x, N) which are orthogonal with respect
to the functional ¢/ and prove that they exist for all positive values of the masses A and B.

Let us write the Fourier expansion of such generalized polynomials in terms of the classical
monic orthogonal Hahn polynomials h:’ﬁ(l‘, N).

hABl(z NY = heP (2, N)+ Y an phi? (2, N). (21)
In order to obtain the unknown coefficients a,,  we will use the orthogonality of the polyno-
mials ﬁﬁ’B’“’ﬁ(x, N) with respect to U, i.e.,
<U,ilﬁ’B’a’ﬁ(x,N)izg’ﬁ(x,N) >=0 0<k<n.
Now putting (21) in (19) we find:

0= <M, hAB>P (e, NYhS (e, N) > +
(22)
+ ARZBB (0, NYRSP(0, N) + BhABS(N — 1, N)hSP(N — 1, N).
If we use the decomposition (21) and taking into account the orthogonality of the classical

orthogonal polynomials with respect to the linear functional H, then the coefficients a,  are
given by:

haB.sB (0, NYhEP(0, N) 5 hABaB(N — 1, NYA$P(N — 1, N)

Ap k= —A = - (23)
di di
Finally the equation (21) provides us the expression
. . . = AP0, NYhSP(x, N)
B o N) = b, N) = AR R(0,N) 3 e S
k=0 dk
(24)
) RPN =1, N)AP (e, N)
—BhhBof(N —1,N) Y & AL B
k=0 dl%‘

To obtain the unknown values of h245#(0, N) and hB*F(N —1, N) it is enough to evaluate
(24) in # = 0 and # = N — 1 and solve the resulting system of two equations. The solution of
these equations yields to:

ha# (0, N) BEKer®? (0, N = 1)

h&P(N —1,N) 1+ BKer®? (N —1,N —1)
1+ AKer®”(0,0) BEKer®? (0, N 1)

hitBelo,N) =

AKer®P (0,N —1) 14 BKer®” (N —=1,N —1)



and

1+ AKer®” (0,0) hP(0, N)

AKerW (0,N —1) h®P(N —1,N)
1+ AKer®” (0,0) BEKer®? (0, N = 1)

hABaB(N — 1, N) =

AKer®P (0,N —1) 14 BKer®” (N —1,N —1)

From (24) and the last two expressions we can conclude that ilﬁ’B’“’ﬁ(x, N) exists for any positive
value of the masses A and B. To prove it notice that the denominator is always positive:

n—1

h“ﬁozvh“ﬁ(o N) = AEP0, NYRSF(N =1, N)
1+AZ BZ 7

n=l ja,p pa,p n=1 ja,p pa,p

h 0,N)h N-—-1N h N —1,N)h N-1N
AE: k (’ )k( ’ ) 1—|-B§: k( ’ )k( ’ )
k=0

dl%‘ k=0 dl%‘

n-1 7ap 7o, p n-1 7ap 7o, p
_ hy " (0, NYhy" (0, N) hy " (N =1, N)hy"(N —1,N)
=144 = +B> = +

k=0 k k=0 k

n—1 2o, f 9 n—1 7,8 2 n—1 70,03 7a,8 2

(hy"(0,N)) (hy"(N —1,N)) hy"(0, N)hy " (N — 1, N)

+AB Z q2 Z q2 - Z a2

k=0 k k=0 k k=0 k

Now if we take into account (12) and the Cauchy inequality (3" arbg)? < > ai > b7 the desired
result follows.

In this way we have proved the following proposition:

Proposition 1 The generalized Hahn polynomials ﬁﬁ’B’“’ﬁ(x, N) exist for all non-negative val-
ues of the masses and they admit a representation formula in terms of the classical ones as

follows:

hAB.h (g Ny= h&P(x, N)— AhAB4P (0, N)ky(ar, ) 7 he~ 1P (2, N)—
(27)
—BhAB@B(N — 1, Nk (8, 0)(—1)""L A h2F=1(z, N).

where k(e 3), ﬁﬁ’B’“’ﬁ(O,N) and ﬁﬁ’B’“’ﬁ(N — 1, N) are given in (17), (25) and (26), respec-

twely, or

hABl(z Ny = b (2, N)+ 7057 7 ha VP (2, N) — 3™ ARG P~ N, N, (28)
where Z%’ﬁ = —ARABP (0, N)kp(a, B) and TB’ﬁ * = —BREAB (0, N)kn(B, ).
Proposition 2 The orthogonal polynomials ﬁﬁ’B’“’ﬁ(x, N) satisfy the following symmetry prop-

erty:
hf,A,ﬁ,a(N _ 1 —z, N) — (_1)”hﬁ,B,O&yﬁ(x’ N)



Proof: Firstly, using the following two straightforward relations:

h“fj 0,N) — (R (N — 1,N))?
Ker! Z (A (0, N))* :Z( (N -LN)) = Kerl® (N —1,N — 1)
=0 k=0

ol

and

n—1 7,3 7 a,p -1z kp B«
h NYRPP(N —1,N hi P (0, N)(—1)kh N
Kert? (0,N —1) = e (0. Nk ’ )ZE: ", )(CZ?) e ON) _
k

n—lAﬁya 708,
RN =1, NYRp*(0, N
:Z’“( ’)k(’)zher (0, N = 1),

dj
and (25) and (26) we obtain
AP (N =1, N) = (1) byt PP (0, V). (29)

If we use the representation (28) where we interchange o —— 5, 4 —— B and taking into
account (29) and the symmetry property for the classical Hahn polynomials (12) we obtain

hBABA(N — 1 — g N)=
=hP N —1—2,N)— BhBAL(0, N)kn(8,0) 7 B V(N — 2 — 1, N)+
+ARBABA(N — 1, N)kp(ar, B)(=1)" A hPo=Y (N —2 —1,N) =
= (=1)"hyP(x, N) = Ahp P2l (0, N)kn(a, B)(=1)" 7 by =P (2, N)+
+BRABAB(N — 1, N)kn(B, a)(—1)" A h%F=1(x, N) =

= (“1) hAEI ().

64 The hypergeometric representation.

Now we can establish the following representation as hypergeometric function for the gen-
eralized Hahn polynomials :

Proposition 3 The orthogonal polynomials izﬁ’B’“’ﬁ(x,N) are, up to a constant factor, a gen-
eralized hypergeometric function sFy. More precisely

i —D"(N =D+ 5+ n+1D(F+ D oL
hA’B’a’ﬁ N) = ( F ( z,a+p+n,—n,vo+1,71+ 1)
" (&, N) (N—n—-DT(a+5+2n+1) 1=N,6+1,70,71 g

Proof: The proof is very similar to the proof provided in [2]. To obtain the desired result we
need to put the hypergeometric representation of these polynomials:

A BB _ Pla+p+n+l) ()"(N-DIT(B+n+1) —,a4B4n+1,-n.
g (&, N) = Pla+B+2n+1) (N—n-DIT(B+1) F ( 1=N.f+1 ’1)’



in formula (28) and do some algebraic calculations. In fact
hit PP (@, N) = by P, N) + 7357 7 b ™5 (e, N) = 70 A by~ (2, N)

where 7))’ %’ﬁ = —Aﬁﬁ’B’“’ﬁ(O, N)kp(a, 7). Then
hABab(z N) =

L F(adfintl) (—1)(N—1)T(E4nt1) = (—)k(—2)p(a + B+ n + 1)

= + 7
Tlatht2ntl N—n-L)IT(A+1 AB
( ) MT(B+1) P (1= N)p(B + Dgk!
C(at84n) (=1)"(N=1)IT(B+n+1) (a+B+n)
XTlatbt2n)  (N—n-DT(F+1) LB+ Dkl [(=2)r = (1 —@)k]+

n i Tlatftn) (—1)"(N=1)T(a4n) N~ (Ce(a + B+ n)
+TB A T(a+p+2n) (N—n—-1)'T(8) P (1 _ N)k(ﬁ)kk' [(—l‘ - 1)k - (_x)k]

(UMD (et stn) N~ (CE(a A+ B4 ) (= — 1y
= (N—n- 1)‘F<ﬁ+l>F<a+ﬁ+2n+1> —~ (1 — N)p(B+ 1)gk!

o [et1- k)(cx-l-i-l-n-l-k)(ﬂ-l-n) +Tncxﬂ(ﬁ+n)(a+ﬁ+2 ) bz +1-k) nﬂa(ﬁ+k)(a+ﬁ+2n)

oz + 1) 1

k
Here we use the identities: [(—z)r — (1 — )] = —(—2)r and
x

a+k(a)k or (/c—i—a):aM

lod ="y (@

(30)

As the expression inside the square brackets is a polynomial of second order, i.e., ak® + bk + ¢,
then it can be factorized in the form

(84 n)(a+ B+ n)

a

alk +y0)(k+71),  with 5y =
Using this and (30) we can rewrite the expression inside the square brackets in a form:

(vo + Dy + D
(’Yo)k(’h)k

(@+F+n)(F+n)

and then
Ta+pFf+n+1) (-D)"(N-DIT(B+n+1) "
TFa+/+2n+1) (N—n-DIT(E+1)

/}ﬁ,B,a,ﬁ(x’ N) =

X N (O‘+5+”) (vo + Di(y1 + D
Z;) ) (6"1'1) ( )k('}/l)kk!

_ W D04t DEL D o, (-rottn oowiint )
(N—n—1D)T(a+ 8+ 2n+1) 1=N.f+1,70.m )

Here the coefficients 7y and 7; are, in general, complex numbers. In the case when they are
nonpositive integers we need to take the analytic continuation of the hypergeometric series.

It is straightforward to show that for A = B = 0 the hypergeometric functions of the
proposition 3 yield to classical polynomials (9).



§5 Some special cases.

We will start from the representation formula (28)

hb BB (e NY = h&P (e, NY 4+ 7057 7 he 1P (e, NY — 70 A RSP~ (x, N),

B

. n n,B,a
where the coefficients TA'B and 75"

)

are equal to
Tg;gﬁ = —ARYBP 0, Nk (r, B) T = —BREALY(0, Nkn(8, o),

respectively. We will consider the following two special cases:

1. The case when we add only one mass at the point x = 0,1.e., A > 0 and B = 0.

2. The case when we add only one mass at the end point x = N —1,1.e., A=0and B > 0.

1. The case B = 0. For the first case we deduce that
e _ A D(a+B+n+DI(GE+n+ )(a+ 8+ 2n)"" [(N— 1)!]2
4,0 (14 AKer®(0,0)) ni(N—=n—-1D)T(a+8+n+N)T(a+n) [T@E+1)]

T&f’a =0.
Then the following representation formulas hold:
hip (e, N) = iy, N) o+ 7367 7 B =P e, ).
and

ﬁﬁ’o’“’ﬁ(x, N) — (_1)71(]\] - 1)'(6'1' 1)nr(a + 6 +n+ 1)4F (—x,a+ﬁ+n,—nﬁu+1. 1) ’

(N—n—DT(a+3+2n+1) 1=Nf+lye 0
where 79 = — 2(3;— Btn) .
471y (a+ B+ 2n)
2. The case A =0. For this case we have that
T&ﬁ’ﬁ =0,
npa _ B D(a+B+n+ Dl(a+n+1)(a+ 8+ 2n)"" [(N—l)!r
8,0 (14 BKer?%(0,0)) nl(N—n—DT(a+f+n+N)T(a+p8) [T(a+1)] "’

and then, we obtain the representation formulas:
hy PP (@, N) = iy P (2, N) =m0 7 by P (e, V).

and

. —)"(N = )T (a+ B+n+1)(B+ 1)y _ vt g1
hOB @By NY = ( F ( z,at+f4n,—n,vo+1,71+ ,1)
" (2, ) (N=n-DT(a+8+2n+1) 1=N.A+1,70m )

where —yy and —~; are the solutions of the equation:

(x+1—k)(a+B8+n+k)(F+n)
x+1

— T30 (B4 k) (o + B+ 2n)

k
=0
x—i—l]

10



§6 The Three Term Recurrence Relations and Relation

. qe . A,B
between tridiagonal matrices 7,,, and 7,7 .

The generalized polynomials satisfy a three term recurrence relation (TTRR) of the form

x]AlﬁyB,a,ﬁ(x’ N) — ]Alﬁ_’l_al’ﬁ(l‘, N) + 6;;\,Bﬁﬁ,3,aﬁ($’ N) + 'Y;?’Bilﬁ’_al’ﬁ(l‘, N) n>0

(31)
PAPP (@, Ny=0  and  AMPOP(a N) =1

This is a simple consequence of their orthogonality with respect to a positive linear functional
(see [7] or [16]). To obtain the explicit formula for the recurrence coefficients we can compare
the coefficients of ™ in the two sides of (31). Let b22 be the coefficient of 2”1 in the expansion
hAB.ch (g Ny =" 4+ bAP 27~ 4 then:

614 _ bA’B _ bA,B

n n n+1-

To calculate 742 is sufficient to evaluate (31) in = 0 and remark that 22?0, N') # 0.

In order to obtain a general expression for the coefficient 342 we can use the representation
formula (28) for the generalized polynomials. Doing some algebraic calculations we find that
bAB = b, —|—nTZ’%’ﬁ — nrg’i’a, where b, denotes the coefficient of the n — 1 power in the classical

monic orthogonal Hahn polynomials ﬁg’ﬁ(x, N)y=a"+b,a"~t + ...

Using these formulas and (8) we obtain for generalized Hahn polynomials the following TTRR
coefficients:

a—f+2N-2 (8% —aH)(a+ B+ 2N
4 Ha+B4+2n)(a+L+2n+2)

BA,B —
S =

+n(r g = TR = (n 4+ DA — o),

1A4,B,a, 7 a
VAB e ’(0,N) a0, N)
" ha 57 (0,) ha 57 (0,)
Now we will find the relation between the tridiagonal matrices 7,41 corresponding to the

classical polynomials ﬁg’ﬁ(x, N) and the tridiagonal matrices Tf_{f corresponding to the per-

turbed ones ilﬁ’B’“’ﬁ(x, N).

n

If we rewrite the TTRR (31) in the matrix form we obtain

A B 7A B« n+1
v h2B =T nAB g bRl N)e O (32)

where the corresponding tridiagonal matrix and the perturbed polynomaial vector are denoted by

Tf_{f and hﬁ’B, respectively (n > 0) :
41 0 0 ... 0 0 hg 7 (2, N)
wWopt 1 o0 . 00 0 JABS ()
AP 0 AL 0 0| g wAB o | AP N |
0 0 0 0 ...~ A p4 ;lﬁ,B,a,'@(x’N)
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and for a given positive integer n > 1 by e §n+1) (0 <j<n+1), we denote :

e .=(00 ...010 ..0) eRr+.

A similar notation will be used for the tridiagonal matrix 7,41, with the ﬁi’s and v;’s replaced
by the corresponding coefficients of the three term recurrence relation for h%?(z, N') and for the
polynomial vector Thy:

B 1 0 0 ... 0 0 h’(x, N)
w /10 0 0 hi P (z, N)
Thi1 = 0 72 B2 1 0 0 and h, = hg’ﬁ(x, N)
0O 0 0 0 Yo B heol (x, N)

From the relation (24) and using (25) and (26), we deduce
7A B a 7« 7«
hn-yl-ly M@(l" N) = hnf1($’ N) + Z Cln+1,jh]' M@(l" N) ) (33)
j=0
or in the matrix form :

WP =R, hy, (34)

where R, 1 denotes the lower triangular matrix with 1 entries in the main diagonal :

1 0 0 0 0 0
a1,0 1 0 0 0 0

Rpy1=| @20 @21 1 0 0 0 ’
ap 0 An 1 Gp2 0dAnp 3 Ap n—1 1

and afl’? for all jin 0 < j < m — 1 are equal to:

an_ PO NSO, N) PPN — 1 N)RTP(N — 1, N)

m,j = 32 79
dk dk

Now putting (34) in (32) and using (33) we find
tRopt hn=THY Rugr b+ [ B30 (2, M)+ angr ;57 (2, N) | e 01D
j=0

from where, using the TTRR in the matrix form for the classical Hahn polynomials z h, =

Tot1 hy + ﬁzfl(x, N)e (Eii) , we find

Tor ho= R T Ragt b+ ) anyrPi(a)e b U
j=0

Finally from this equation and using the fact that Rng—lAn+1 = Ap41 we obtain the following
. L. K A
relation between the tridiagonal matrices T}, 11 and T

ThY = Rog1 (Tng1 + Anyr) By

n+1 (35)
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where A, 41 1s the rank-one matrix

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
41,0 Gnd1,1 An41,2 An413 .. Apndln—1 Opitln

Then we can conclude that Tf_{f is a rank-one perturbation of T, 1.

Finally, we obtain explicitly the corresponding elements of the matrices R,41 and A,y for
the perturbed Hahn orthogonal polynomials in the special cases when B =0 or A = 0:

a

)

A0 _ (D7 T =Dt
ok A(1 + Ker®? . (0,0)) [F(ﬁ + 1)]
(36)

y Fm+ g+ Dl (a+B+2k+2)T(a+F+m+1)
ET(a+k+D0(a+ B3+2m+2)T(a+ 8+ N+ k+ 1)(N —m— 1)1

For the second case using the symmetric propreties for the ilﬁ’B’“’ﬁ(x, N) and ilg’ﬁ(l‘, N) poly-
nomials we find

_ —_111?
LSE g 1 [(N 1).] y
(14 Ker2®,(0,0)) LT(a+1)

y I'm+a+ DI (a+5+2k+2)T(a+F+m+1)
TG+ k+ )l(atB+2m+2T(at B+ N+k+ (N —m— 1)1
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