
ON THE PROPERTIES FOR MODIFICATIONS OF CLASSICALORTHOGONAL POLYNOMIALS OF DISCRETE VARIABLES.1R. �Alvarez-Nodarse, A.G.Garc��a and F. Marcell�anDepartamento de Ingenier��a. Escuela Polit�ecnica Superior.Universidad Carlos III de Madrid.Butarque 15, 28911,Legan�es,Madrid.Key words and phrases: Meixner,Charlier and Kravchuk polynomials, discrete measures,hypergeometric functions, associated polynomials.AMS (MOS) subject classi�cation: 33A65AbstractWe consider a modi�cation of moment functionals for some classical polynomialsof a discrete variable by adding a mass point at x = 0. We obtain the resulting or-thogonal polynomials, identify them as hypergeometric functions and derive the secondorder di�erence equation which these polynomials satisfy. The corresponding tridiagonalmatrices and associated polynomials were also studied.x1 Introduction.The study of orthogonal polynomials with respect to a modi�cation of a linear func-tional in the linear space of polynomials with real coe�cients via the addition of one or twodelta Dirac measures has been performed by several authors. In particular, Chihara [5] hasconsidered some properties of such polynomials in terms of the location of the mass pointwith respect to the support of a positive measure. More recently Marcell�an and Maroni [10]analyzed a more general situation for regular ( quasi-de�nite ) linear functionals, i.e., suchthat the principal submatrices of the corresponding in�nite Hankel matrices associated withthe moment sequences are nonsingular.A special emphasis is given to the modi�cations of classical linear functionals (Hermite,Laguerre, Jacobi and Bessel). Koornwinder [9] considered a system of polynomials orthogonalwith respect to the classical weigtht function for Jacobi polynomials with two extra pointmasses added at x = �1 and x = 1. For generalized Laguerre polynomials fL�;An (x)g1n=0that are orthogonal on [0;1) with respect to the linear functional C on the linear space ofpolynomials with real coe�cients de�ned as< C; P > = Z 10 P (x)x�e�xdx+ AP (0) ; � > �1; A � 0 ;Koekoek and Koekoek [8] found a di�erential equation of the formA 1Xi=0 ai(x)y(i)(x) + xy00(x) + (�+ 1� x)y0(x) + ny = 0;where the coe�cients ai(x); i 2 f1; 2; 3; :::g, are independent of n and a0 depends on n butis independent of x. In the above paper, representation formulas for the new orthogonal1October 29, 1996 1



polynomial sequences, as well as the second order di�erential equation that such polynomialssatisfy were deduced.In the open problem section of the Proceedings of the Third International Symposiumon Orthogonal Polynomials and their Applications held in Erice (Italy), R. Askey raised thefollowing question [1]:Consider the Meixner Polynomials M
;�n (x), add or substract a mass point at x = 0 and�nd the resulting polynomials. Identify them as hypergeometric functions and show that thesepolynomials satisfy a di�erence equation in x.In [3] Bavinck and van Haeringen gave the solution to the problem of �nding the secondorder di�erence equation for generalized Meixner polynomials, as well as the in�nite orderdi�erence equation which these polynomials satisfy. For generalized Charlier polynomialsBavinck and Koekoek [4] found the corresponding in�nite order di�erence equation.In the paper [2] we obtained the representation for such generalized Meixner polynomialsas an hypergeometric function 3F2, as well as the corresponding second order di�erenceequation. Now we generalize this result for the Kravchuk and Charlier polynomials andcontinue the algebraic approach presented by Godoy, Marcell�an, Salto, Zarzo ( see [7] ) inthe framework of a more general theory based in the addition of a delta Dirac measureto a discrete semiclassical linear functional. We analyze the relation between tridiagonalmatrices of the perturbed or generalized PAn (x) and classical Pn(x) polynomials, as well asthe associated polynomials corresponding to the sequence fPAn (x)g1n=0.The structure of the paper is as follows. In Section 2, we provide the basic propertiesof the classical orthogonal polynomials of discrete variable which will be needed, as wellas the main data for the Meixner, Kravchuk and Charlier polynomials. In Section 3 wededuce expressions of the generalized Meixner, Kravchuk and Charlier polynomials and its�rst di�erence derivatives, as well as their representation as hypergeometric functions inthe direction raised by Askey. In Section 4, we �nd the second order di�erence equationwhich these generalized polynomials satisfy. In Section 5, from the three term recurrencerelation (TTRR) of the classical orthogonal polynomials we �nd the TTRR which satisfythe perturbed ones. In Section 6, from the relation of the perturbed polynomials PAn (x)as a linear combination of the classical ones, we �nd the tridiagonal matrices associatedwith the perturbed monic orthogonal polinomial sequence (PMOPS) fPAn (x)g1n=0 as a rank-one perturbation of the tridiagonal matrices associated with the classical monic orthogonalpolynomial sequence (CMOPS) fPn(x)g1n=0. Finally, in Section 7 we �nd the associatedpolynomials P (1);An (x) corresponding to fPAn (x)g1n=0 in terms of the associated polynomialsP (1)n (x) corresponding to fPn(x)g1n=0 and the classical ones.x2 Some Preliminar Results.Firstly, we enclose some formulas for the classical Meixner, Kravchuk and Charlier poly-nomials which are useful in order to obtain the generalized polynomials orthogonal withrespect to the linear functional U de�ned as a modi�cation of the �rst ones troughtout theaddition of a mass point. All the formulas and other properties for the classical Meixner,Kravchuk and Charlier polynomials can be found in a lot of books ( see for instance theexcellent monograph Orthogonal Polynomials in Discrete Variables by A.F. Nikiforov, S. K.Suslov, V. B. Uvarov [11], Chapter 2.)We will use monic polynomials, i.e., polynomials with leading coe�cient equal to 1. Theclassical orthogonal polynomials of a discrete variable in the uniform lattice x(s) = s are the2



polynomial solution of a second order linear di�erence equation of hypergeometric type�(x)45Pn(x) + � (x)4 Pn(x) + �nPn(x) = 0 ; (1)where 5f(x) = f(x) � f(x � 1); 4f(x) = f(x + 1)� f(x):Here �(x) and � (x) are polynomials in x of degree at most 1 and 2, respectively, and �n is aconstant.These polynomials are orthogonal with respect to the linear functional L on the linearspace of polynomials with real coe�cients de�ned as< L; P > = Xx2IN �(x)P (x); IN = f0; 1; 2; :::g ; (2)where �(x) is some non-negative function ( weight function ) supported in a countable set ofthe real line and such that 4[�(x)�(x)] = � (x)�(x):The orthogonality relation isXx2IN Pn(x)Pm(x)�(x) = �nmd2n; (3)where d2n denotes the square of the norm of these classical polynomials.The polynomial solutions of equation (1) are uniquely determined, up to a normalizedfactor (Rn), by the di�erence analog of the Rodrigues formula (see [11] page 24 Eq.(2.2.7)):Pn(x) = Rn�(x) 5n "�(x + n) nYk=1�(x+ k)# : (4)They satisfy a three term recurrence relation of the formxPn(x) = Pn+1(x) + �nPn(x) + 
nPn�1(x); n � 0P�1(x) = 0 and P0(x) = 1: (5)and the Christo�el-Darboux formulan�1Xm=0 Pm(x)Pm(y)d2m = 1x� y Pn(x)Pn�1(y) � Pn(y)Pn�1(x)d2n�1 n = 1; 2; 3; ::: : (6)We will consider the following three classical monic orthogonal polynomials (CMOP)which are solutions of the di�erence equation (1).I. The Meixner polynomials, orthogonal with respect to the weight function �(x) sup-ported on [0;1), with�(x) = x; � (x) = 
� � x(1� �) ; 0 < � < 1; 
 > 0; �n = n(1� �);and Rn = 1(� � 1)n ; �(x) = �x�(
 + x)�(
)�(1 + x) ; d2n = n!(
)n�n(1 � �)
+2n :II. The Kravchuk polynomials, orthogonal with respect to the weight function �(x) sup-ported on [0; N ], with n � N�(x) = x; � (x) = Np� x1� p ; 0 < p < 1; �n = n1� p;3



and Rn = (p � 1)n; �(x) = pxN !(1� p)N�x�(N + 1� x)�(1 + x) ; d2n = n!N !pn(1� p)n(N � n)! :III. The Charlier polynomials, orthogonal with respect to the weight function �(x) sup-ported on [0;1), with �(x) = x; ; � (x) = �� x ; � > 0; �n = n;and Rn = (�1)n; �(x) = �xe���(1 + x) ; d2n = n!�n:They satisfy the so called structure relationsxn 5M
;�n (x) = �(1� 
 � n)�� 1 M
;�n�1(x) +M
;�n (x); (7)xn 5Kpn(x) = p(N � n+ 1)Kpn�1(x) +Kpn(x); (8)xn 5C�n(x) = �C�n�1(x) + C�n(x): (9)These classical polynomials can be represented as hypergeometric functions (see [11] page49, section 2.7) M
;�n (x) = (
)n �n(�� 1)n 2F1 ��n;�x
 ����1� 1�� ; (10)Kpn(x) = (�p)nN !(N � n)! 2F1 ��n;�x�N ����1p� ; (11)C�n(x) = (��)n 2F0 ��n;�x� ����� 1�� ; (12)where the hypergeometric function is de�ned bypFq �a1;a2;:::;apb1;b2;:::;bq jx) = 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k xkk! ;(a)0 := 1; (a)k := a(a+ 1)(a + 2) � � � (a + k � 1); k = 1; 2; 3; :::As a consequence of these representations we can deduceM
;�n (0) = �n(�� 1)n �(n+ 
)�(
) ; Kpn(0) = (�p)nN !(N � n)! ; C�n(0) = (��)n: (13)We have proved (see [2] formula (26)) the following property for the kernels of the Meixnerpolynomials.KerMn�1(x; 0) � n�1Xm=0 M
;�m (x)M
;�m (0)d2m = (�1)n�1(1� �)n+
�1n! 5M
;�n (x): (14)It is straightforward to show that the kernels of Kpn(x) and C�n(x) verify the followingrelations: KerKn�1(x; 0) � n�1Xm=0 Kpm(x)Kpm(0)d2m = (p� 1)1�nn! 5Kpn(x); (15)KerCn�1(x; 0) � n�1Xm=0 C�m(x)C�m(0)d2m = (�1)n�1n! 5C�n(x): (16)4



x3 The de�nition, orthogonal relation and representationas hypergeometric series.Consider the linear functional U on the linear space of polynomials with real coe�cientsde�ned as < U ; P > =< L; P > +AP (0); x 2 IN; A � 0 ; (17)where L is a classical moment functional (2) associated to some classical polynomials of adiscrete variable.We will determine the monic polynomials PAn (x) which are orthogonal with respect tothe functional U and prove that they exist for all positive A (see (22) from below).To obtain this, we can write the Fourier expansion of such generalized polynomialsPAn (x) = Pn(x) + n�1Xk=0 an;kPk(x); (18)where Pn denotes the classical monic orthogonal polynomial (CMOP) of degree n.In order to �nd the unknown coe�cients an;k we will use the orthogonality of the poly-nomials PAn (x) with respect to U , i.e.,< U ; PAn (x)Pk(x) >= 0 8k < n:Now putting (18) in (17) we �nd:< U ; PAn (x)Pk(x) > = < L; PAn (x)Pk(x) > + APAn (0)Pk(0): (19)If we use the decomposition (18) and taking into account the orthogonality of the classicalorthogonal polynomials with respect to the linear functional L, then the coe�cients an;k aregiven by: an;k = �A PAn (0)Pk(0)d2k : (20)Finally the equation (18) provides us the expressionPAn (x) = Pn(x)� APAn (0) n�1Xk=0 Pk(0)Pk(x)d2k : (21)From (21) we can conclude that the representation of PAn (x) exists for any positive valueof the mass A. To obtain this it is enough to evaluate (21) in x = 0, 1 + A n�1Xk=0 (Pk(0))2d2k !PAn (0) = Pn(0) 6= 0; (22)and use the fact that 1 + A n�1Xk=0 (Pk(0))2d2k > 0 n = 1; 2; 3; :::From (22) we can deduce the values of PAn (0) as follows5



PAn (0) = Pn(0)1 +A n�1Xk=0 (Pk(0))2d2k : (23)Now in order to obtain an explicit expression for these polynomials we need some prop-erties of the kernels of the CMOP. In [2] we solved this problem for the classical Meixnerpolynomials. In this work we will prove a similar result for Charlier and Kravchuk polyno-mials.Doing some algebraic calculations in (21) and taking into account formulas (14)-(16) weobtain the following three expressions for the generalized polynomials :For Meixner polynomials:M
;�;An (x) = M
;�n (x)� AM
;�;An (0) (�1)n�1(1� �)n+
�1n! 5M
;�n (x): (24)For Kravchuk polynomials:Kp;An (x) = Kpn(x)�AKp;An (0) (p� 1)n�1n! 5Kpn(x): (25)For Charlier polynomials:C�;An (x) = C�n(x) �AC�;An (0) (�1)n�1n! 5C�n(x): (26)In the above formula the values of the polynomials in x = 0 could be deduced from(23). Then, we obtain the following analytic expression for the Perturbed Monic OrthogonalPolynomials (PMOP) PAn (x) for x 6= 0 (when x = 0 we can use (23) )M
;�;An (x) = M
;�n (x) + Bn5M
;�n (x) = (I +Bn5)M
;�n (x); (27)Kp;An (x) = Kpn(x) + An5Kpn(x) = (I + An5)Kpn(x); (28)C�;An (x) = C�n(x) +Dn5C�n(x) = (I +Dn5)C�n(x); (29)where An; Bn and Dn are constants given by:Bn = A �n(1� �)
�1(
)nn!(1 +AKerMn�1(0; 0)) ;An = A N !n!(N � n)! pn(1� p)1�n(1 + AKerKn�1(0; 0)) ;Dn = A �nn!(1 +AKerCn�1(0; 0)) :Remark: Using the Rodrigues formula (4), some extension of it follows in a straightforwardway. M
;�;An (x) = (I +Bn5) � �n(1� �)n �(x+ 1)�x�(
 + x) 5(n) �x�(x+ 
 + n)�(x+ 1) � ;Kp;An (x) = (I + An5) � (�1)n�(x+ 1)�(N � x+ 1)px (1� p)�x 5(n) px (1� p)�x�(x+ 1)�(N � x� n+ 1)� ;6



C�;An (x) = (I +Dn5) � (�1)n�(x+ 1)�x 5(n) �x+n�(x+ 1)� :Now we can establish the following representation as hypergeometric functions for thegeneralized polynomials:Proposition 1 The orthogonal polynomials M
;�;An (x), Kp;An (x) and C�;An (x) are, up to aconstant factor, generalized hypergeometric functions. More preciselyM
;�;An (x) = (
)n �n(� � 1)n 3F2 ��n;�x;1+xB�1n
; xB�1n ����1� 1�� ; (30)Kp;An (x) = n!(�p)n N !n!(N � n)! 3F2 ��n;�x;1+xA�1n�N; xA�1n ����1p� ; (31)C�;An (x) = (��)n 3F1 ��n;�x;1+xD�1nxD�1n ����� 1�� : (32)Sketch of the Proof: The proof of this Proposition is similar to the proof for the Meixnercase (see [2]). To obtain the desired result we need to put the hypergeometric representationof these polynomials in formulas (27), (28) and (29) and do some algebraic calculations.Here the coe�cients xA�1n ,xB�1n and xC�1n are real numbers. In the case when they arenonpositive integers we need to take the analytic continuation of the hypergeometric series(30), (31) and (32).It is straightforward to show that for A = 0 the hypergeometric functions (30), (31) and(32) yield to classical polynomials (10), (11) and (12).x4 A second order di�erence equation.In [2] we proved that the Meixner polynomials satisfy a second order di�erence equation.To prove this result we only used that in the di�erence equation of hypergeometric type forMeixner polynomials the function �(x) is equal to x. Taking into account that, for Charlierand Kravchuk polynomials, �(x) = x, then the following Theorem holds:Theorem 1 The polynomials M
;�;An (x);Kp;An (x) and C�;An (x) satisfy a second order lineardi�erence equation[x+C(C�n + �n � � (x))](x� 1)45PAn (x) + (x� 1)� (x)4 PAn (x)++C[(� (x)� C�n)(�n � 1� � (x� 1)) + �n(�n + C) + (x+C�n)4 � (x)]4 PAn (x)+(x � 1)�nPAn (x) +C�n[�n � 1� � (x� 1) +C(4� (x) + �n)]PAn (x) = 0 ; (33)where x = 0; 1; 2; :::; 5f(x) = f(x) � f(x � 1); 4f(x) = f(x + 1)� f(x);and by PAn we denote the generalized Meixner, Kravchuk or Charlier polynomials and C isthe constant Bn; An or Dn, respectively, which is a function of n (see Section 3 ).The proof of this Theorem for the Meixner case was given in [2]. Here we provide theproof for both three cases. 7



Proof: We will start from the representations (27), (28) and (29) for the generalized polyno-mials PAn (x) = Pn(x) +C5Pn(x). Multiplying this expression by x, using the second orderdi�erence equation that these classical polynomials satisfyx45Pn(x) + � (x)4 Pn(x) + �nPn(x) = 0 ; (34)and using the identity 5Pn(x) = 4Pn(x) �45 Pn(x) we obtainxPAn (x) = (x+C�n)Pn(x) + C(x+ � (x))4 Pn(x): (35)Now if we apply the operator 4 to (35), from (34) the equationx4 PAn (x) = [x�C� (x)]4 Pn(x)�C�nPn(x) (36)follows. In the same way if we apply in (36) the operator 5 and using (34) we �ndx(x� 1)45PAn (x) == �[(x� 1)� (x) +C� (x)(�n � � (x� 1)� 1) + Cx(�n +4� (x))]4 Pn(x)��[x� 1 +C(�n � � (x� 1)� 1)]�nPn(x): (37)Now from (35),(36) and (37) the following determinant vanishes������ xPAn (x) a(x) b(x)x4 PAn (x) c(x) d(x)x(x� 1)45PAn (x) e(x) f(x) ������ = 0 ; (38)wherea(x) = (x +C�n); b(x) = C(x+ � (x)); c(x) = �C�n;d(x) = x� C� (x); e(x) = �[x� 1 +C(�n � 1� � (x� 1))]�n;f(x) = �[(x� 1)� (x) +C[� (x)(�n � 1� � (x� 1)) + x(�n +4� (x))]:Expanding the determinant in (38) by the �rst column and dividing by x2; the Theoremfollows.The di�erence equation of the previous theorem (33) takes the form:Meixner case M
;�;An (x)fx+Bn[(1� �)(x + n+ nBn)� 
�]g(x� 1)45M
;�;An (x)+(x� 1)[
�� x(1� �)]4M
;�;An (x)++Bnf(1� �)[
�(n + nBn + 2x� 1) + (1� �)(x+ n2 � (x+ nBn)(x+ n))++2nBn]� 
�(1 + 
�)g 4M
;�;An (x) + (x� 1)n(1� �)M
;�;An (x)+nBn(1� �)[(1� �)(x+ n+ nBn � Bn � 1) � 1� 
�]M
;�;An (x) = 0 : (39)
8



Kravchuk case Kp;An (x)fx+An[x+ n+ nAn1� p � Np1� p ]g(x� 1)45Kp;An (x)+(x� 1)[Np� x1� p ]4Kp;An (x)++Anf 11� p [ Np1� p (n+ nAn + 2x� 1) + x+ n2 � (x+ nAn)(x+ n)1� p ++2nAn]� Np1� p (1 + Np1� p )g 4Kp;An (x) + n1� p (x� 1)Kp;An (x)+nAn1� p [x+ n+ nAn � An � 1� Np1� p � 1]Kp;An (x) = 0 : (40)Charlier case C�;An (x)[x+Dn(x+ n+ nDn � �)](x� 1)45C�;An (x)+(x� 1)(�� x)4C�;An (x)++Dn[n2 + x� 2�+ 2nDn � (n� x� �)(x � �+ nDn)]4C�;An (x)++(x � 1)nC�;An (x) + nDn(x+ n� � � 2 + nDn �Dn)C�;An (x) = 0 : (41)x5 Three Term Recurrence Relations.The generalized polynomials satisfy a three term recurrence relation (TTRR) of the formxPAn (x) = PAn+1(x) + �AnPAn (x) + 
An PAn�1(x) ; n � 0PA�1(x) = 0 and PA0 (x) = 1: (42)This is a simple consequence of their orthogonality with respect to a positive functional(see [6] or [11]). To obtain the explicit formula for the recurrence coe�cients we can com-pare the coe�cients of xn in the two sides of (42). Let bAn be the coe�cient of xn�1 in theexpansion PAn (x) = xn + bAn xn�1 + :::, then : �An = bAn � bAn+1. To calculate 
An is su�cientto evaluate (42) in x = 0 and remark that PAn (0) 6= 0.In order to obtain a general expression for the coe�cient �An we can use the formulas (27),(28) and (29) for the generalized polynomialsPAn (x) = Pn(x)+C5Pn(x), where C = Bn; AnorDn respectively. Doing some algebraic calculations we �nd that bAn = bn+nC, where bn de-notes the coe�cient of the n�1 power in the classical polynomialsPn(x) = xn+bnxn�1+ : : :.Using these formulas and the main data [11] for classical polynomials we obtain for gen-eralized Meixner, Kravchuk and Charlier polynomials the following TTRR coe�cients :I Meixner polynomials:bn = n��� 1(
 + n� 12 �+ 1� ) ; �n = n+ �(n + 
)1� 
 ;bAn = n��� 1(
 + n� 12 �+ 1� ) +A �n(1� �)
�1(
)n(n� 1)!(1 +AKerMn�1(0; 0)) ;9



and then�An = n+ �(n+ 
)1� 
 �A�n(1� �)
�1(
)nn! � �(
 + n)(1 + AKerMn (0; 0) � n1 +AKerMn�1(0; 0)� ;
An = �M
;�;An+1 (0)M
;�;An�1 (0) � �An M
;�;An (0)M
;�;An�1 (0) :II Kravchuk polynomialsbn = �n[Np+ (n� 1)(12 � p)] ; �n = n+ p(N � 2n) ;bAn = �n[Np+ (n � 1)(12 � p)] + A N !(n� 1)!(N � n)! pn(1� p)1�n(1 +AKerKn�1(0; 0)) ;and then�An = n+ p(N � 2n) +AN !pn(1 � p)�nn!(N � n)! � n(1� p)1 + AKerKn�1(0; 0) � p(N � n)1 + AKerKn (0; 0)� ;
An = �Kp;An+1(0)Kp;An�1(0) � �An Kp;An (0)Kp;An�1(0) :III Charlier polynomialsbn = �n(�+ n� 12 ) ; �n = n+ � ;bAn = �n(� + n� 12 ) + A �n(n� 1)!(1 + AKerCn�1(0; 0)) ;and then �An = n+ �+A�nn! � n1 +AKerCn�1(0; 0) � �1 +AKerKn (0; 0)� ;
An = �C�;An+1(0)C�;An�1(0) � �An C�;An (0)C�;An�1(0) :x6 Relation between tridiagonal matrices Jn+1 and JAn+1.In this section we are interested to �nd the relation between the tridiagonal matricescorresponding to the CMOP Pn(x) and generalized polynomials PAn (x), which we denote byJn+1 and JAn+1, respectively. It is well-known the crucial role that the tridiagonal matricesplay in the numerical study of zeros of orthogonal polynomials de�ned on the real line,because they are its eigenvalues.If we rewrite the TTRR (42) for PMOP in the matrix form we obtainxPAn = JAn+1PAn + PAn+1(x)e (n+1)n+1 ; (43)where the corresponding tridiagonal matrix and the perturbed polynomial vector are denotedby JAn+1 and PAn , respectively (n � 0) :JAn+1 = 0BBBBB@ �A0 1 0 0 : : : 0 0
A1 �A1 1 0 : : : 0 00 
A2 �A2 1 : : : 0 0... ... ... ... . . . ... ...0 0 0 0 : : : 
An �An 1CCCCCA and PAn = 0BBBBB@ PA0 (x)PA1 (x)PA2 (x)...PAn (x) 1CCCCCA ;10



and for a given integer n � 1 by e (n+1)j (0 � j � n+ 1), we denote :e (n+1)j := � 0 0 : : : 0 1 0 : : : 0 �T 2 IRn+1:A similar notation will be used for the tridiagonal matrix Jn+1, with the �i's and 
i's replacedby the corresponding coe�cients of the three term recurrence relation for Pn(x) and for thepolynomial vector Pn:Jn+1 = 0BBBBB@ �0 1 0 0 : : : 0 0
1 �1 1 0 : : : 0 00 
2 �2 1 : : : 0 0... ... ... ... . . . ... ...0 0 0 0 : : : 
n �n 1CCCCCA and Pn = 0BBBBB@ P0(x)P1(x)P2(x)...Pn(x) 1CCCCCAFrom the relation (21) and using (23), we deducePAn+1(x) = Pn+1(x) + nXj=0 an+1;jPj(x) ; (44)or in the matrix form : PAn = Rn+1Pn ; (45)where Rn+1 denotes the lower triangular matrix with 1 entries in the main diagonal :Rn+1 = 0BBBBB@ 1 0 0 0 : : : 0 0a1;0 1 0 0 : : : 0 0a2;0 a2;1 1 0 : : : 0 0... ... ... ... . . . ... ...an;0 an;1 an;2 an;3 : : : an;n�1 1 1CCCCCA ;and am;j are: am;j = �A Pm(0)1 + Am�1Xk=0 (Pk(0))2d2k Pj(0)d2j ; 0 � j � m � 1:Now putting (45) in (43) and using (44) we �ndxRn+1Pn = JAn+1Rn+1Pn + (Pn+1(x) + nXj=0 an+1;jPj(x))e (n+1)n+1from where, using the TTRR in the matrix form for the classical polynomials Pn(x), we �ndJn+1Pn = R�1n+1JAn+1Rn+1Pn + nXj=0 an+1;jPj(x)e (n+1)n+1 :Finally from this equation we obtain the following relation between tridiagonal matricesJn+1 and JAn+1 JAn+1 = Rn+1 (Jn+1 + �n+1)R�1n+1 ; (46)11



where �n+1 is a rank-one matrix0BBBBBBB@ 0 0 0 0 : : : 0 00 0 0 0 : : : 0 00 0 0 0 : : : 0 0... ... ... ... . . . ... ...0 0 0 0 : : : 0 0an+1;0 an+1;1 an+1;2 an+1;3 : : : an+1;n�1 an+1;n 1CCCCCCCA :We conclude that JAn+1 is a rank-one perturbation of Jn+1. Finally, we obtain the cor-responding elements of the matrices Rn+1 and �n+1 in the three studied cases, i.e., theMeixner, Kravchuk and Charlier perturbed orthogonal polynomials.Meixner case : aMm;k = A (�1)m+k+1�m(
)mk!(1� �)m�k�
(1 +KerMm�1(0; 0)) : (47)Kravchuk case : aKm;k = A (�1)m+k+1pmN !k!(1� p)k(N �m)!(1 +KerKm�1(0; 0)) : (48)Charlier case : aCm;k = A (�1)m+k+1�mk!(1 +KerCm�1(0; 0)) : (49)x7 Associated Polynomials.In this section we study the monic associated polynomials corresponding to PMOPSfPAn (x)g1n=0. They are de�ned as follows [6]P (1);An (x) = 1cA0 U �PAn+1(x)� PAn+1(y)x� y � ; (50)where it is understood U operates on y and cA0 is the �rst moment of the functional, i.e.,cA0 = U(1). Taking into account that UfPAn (x)g = LfPAn (x)g+APAn (0) and using the relation(44) for the generalized polynomials, as well as the linearity of the classical functional L, weobtain the following relation:P (1);An (x) = c0cA0 "P (1)n (x)�APAn+1(0) nXk=0 Pk(0)P (1)k�1(x)d2k #+ AcA0 PAn+1(x)� PAn+1(0)x : (51)Lemma 1 For all integer n � 1(x� y) nXk=0 Pk(x)P (1)k�1(y)d2k = Pn+1(x)P (1)n�1(y) � Pn(x)P (1)n (y)d2n + 1
1 :Proof: We will use the recurrence relation (5) for the classical polynomials Pn(x)xPn(x) = Pn+1(x) + �nPn(x) + 
nPn�1(x); n � 1P�1(x) = 0 and P0(x) = 112



and the corresponding for the associated ( see [6] page 85, Eq.(4.3) )yP (1)n�1(y) = P (1)n (y) + �nP (1)n�1(y) + 
nP (1)n�2(y); n � 1P (1)�1 (x) = 0 and P (1)0 (x) = 1:If we multiply the �rst equation by P (1)n�1(y) and the second one by Pn(x), subtract both anddivide the resulting expression by d2n, then(x�y)Pk(x)P (1)k�1(y)d2k = Pk+1(x)P (1)k�1(y) � Pk(x)P (1)k (y)d2k � Pk(x)P (1)k�2(y) � Pk�1(x)P (1)k�1(y)d2k�1 :Summing from k = 2 to n we �nd:(x� y) nXk=2 Pk(x)P (1)k�1(y)d2k = Pn+1(x)P (1)n�1(y) � Pn(x)P (1)n (y)d2n � P2(x)� P1(x)P (1)1 (y)d21 :But (x� y) nXk=0 Pk(x)P (1)k�1(y)d2k = (x� y)P1(x)P (1)0 (y)d21 + (x � y) nXk=2 Pk(x)P (1)k�1(y)d2k :Using the previous expression for the last sum, the identities xP1(x) = P2(x) + �1P1(x) +
1 andP (1)1 (y) = y � �1 and doing some straightforward computations, the lemma follows.Lemma 2 If for the generalized polynomials the following relation holdsPn(x)Pn+1(0)� Pn+1(x)Pn(0) = xD5 Pn(x); n � 1where D is some constant independent of x (but in general it could be a function of n ), thenP (1)n�1(x)Pn+1(0)� P (1)n (x)Pn(0) = xD5 P (1)n�1(x):Proof: From the hypothesis of the lemma, we have for 8n � 1Pn(x)Pn+1(0)� Pn+1(x)Pn(0) = xD(Pn(x)� Pn(x� 1));Pn(y)Pn+1(0)� Pn+1(y)Pn(0) = yD(Pn(y) � Pn(y � 1)):Substracting them, dividing by x� y, applying the functional L and taking into account theidentities (n � 1)L�xPn(x)� yPn(y)x� y � = xP (1)n�1(x) and L�xPn(x� 1)� yPn(y � 1)x� y � = xP (1)n�1(x� 1)the lemma follows.Now we can consider the former expression for the monic associated polynomials corre-sponding to PMOPS fPAn (x)g1n=0. From (51) and using the previous lemmas we �ndP (1);An (x) = c0cA0 "P (1)n (x) �APAn+1(0) Pn+1(0)P (1)n�1(x) � Pn(0)P (1)n (x)d2n + 1
1!#++ AcA0 PAn+1(x) � PAn+1(0)x ; (52)13
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