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Abstract

We consider a modification of moment functionals for some classical polynomials
of a discrete variable by adding a mass point at # = 0. We obtain the resulting or-
thogonal polynomials, identify them as hypergeometric functions and derive the second
order difference equation which these polynomials satisfy. The corresponding tridiagonal
matrices and associated polynomials were also studied.

§1 Introduction.

The study of orthogonal polynomials with respect to a modification of a linear func-
tional in the linear space of polynomials with real coefficients via the addition of one or two
delta Dirac measures has been performed by several authors. In particular, Chihara [5] has
considered some properties of such polynomials in terms of the location of the mass point
with respect to the support of a positive measure. More recently Marcelldin and Maroni [10]
analyzed a more general situation for regular ( quasi-definite ) linear functionals, i.e., such
that the principal submatrices of the corresponding infinite Hankel matrices associated with
the moment sequences are nonsingular.

A special emphasis is given to the modifications of classical linear functionals (Hermite,
Laguerre, Jacobi and Bessel). Koornwinder [9] considered a system of polynomials orthogonal
with respect to the classical weigtht function for Jacobi polynomials with two extra point
masses added at * = —1 and # = 1. For generalized Laguerre polynomials {L%4(z)}5%,
that are orthogonal on [0, 00) with respect to the linear functional C on the linear space of
polynomials with real coefficients defined as

<C, P> :/ P(z)z“e ™®de+ AP(0) ,a>—-1,A>0,
0
Koekoek and Koekoek [8] found a differential equation of the form
A Z ai(a:)y(i)(x) +zy’(z) +(a+1—2)y(z)+ny =0,
i=0

where the coefficients a;(#), ¢ € {1,2,3,...}, are independent of n and ag depends on n but
is independent of x. In the above paper, representation formulas for the new orthogonal
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polynomial sequences, as well as the second order differential equation that such polynomials
satisfy were deduced.

In the open problem section of the Proceedings of the Third International Symposium
on Orthogonal Polynomials and their Applications held in Erice (Italy), R. Askey raised the
following question [1]:

Consider the Meizner Polynomials M)*(x), add or substract a mass point at x = 0 and
find the resulting polynomials. Identify them as hypergeometric functions and show that these
polynomaials satisfy a difference equation in x.

In [3] Bavinck and van Haeringen gave the solution to the problem of finding the second
order difference equation for generalized Meixner polynomials, as well as the infinite order
difference equation which these polynomials satisfy. For generalized Charlier polynomials
Bavinck and Koekoek [4] found the corresponding infinite order difference equation.

In the paper [2] we obtained the representation for such generalized Meixner polynomials
as an hypergeometric function sF5, as well as the corresponding second order difference
equation. Now we generalize this result for the Kravchuk and Charlier polynomials and
continue the algebraic approach presented by Godoy, Marcelldn, Salto, Zarzo ( see [7] ) in
the framework of a more general theory based in the addition of a delta Dirac measure
to a discrete semiclassical linear functional. We analyze the relation between tridiagonal
matrices of the perturbed or generalized PA(x) and classical P,(z) polynomials, as well as
the associated polynomials corresponding to the sequence {PA(z)}5% .

The structure of the paper is as follows. In Section 2, we provide the basic properties
of the classical orthogonal polynomials of discrete variable which will be needed, as well
as the main data for the Meixner, Kravchuk and Charlier polynomials. In Section 3 we
deduce expressions of the generalized Meixner, Kravchuk and Charlier polynomials and its
first difference derivatives, as well as their representation as hypergeometric functions in
the direction raised by Askey. In Section 4, we find the second order difference equation
which these generalized polynomials satisfy. In Section b, from the three term recurrence
relation (TTRR) of the classical orthogonal polynomials we find the TTRR which satisfy
the perturbed ones. In Section 6, from the relation of the perturbed polynomials P2 (z)
as a linear combination of the classical ones; we find the tridiagonal matrices associated
with the perturbed monic orthogonal polinomial sequence (PMOPS) {PA(x)}22, as a rank-
one perturbation of the tridiagonal matrices associated with the classical monic orthogonal

polynomial sequence (CMOPS) {P,(z)}>2,. Finally, in Section 7 we find the associated
(

polynomials Pnl)’A(x) corresponding to {PA(x)}52, in terms of the associated polynomials

7(11)(1‘) corresponding to { Py (#)}2L, and the classical ones.

§2 Some Preliminar Results.

Firstly, we enclose some formulas for the classical Meixner, Kravchuk and Charlier poly-
nomials which are useful in order to obtain the generalized polynomials orthogonal with
respect to the linear functional & defined as a modification of the first ones troughtout the
addition of a mass point. All the formulas and other properties for the classical Meixner,
Kravchuk and Charlier polynomials can be found in a lot of books ( see for instance the
excellent monograph Orthogonal Polynomials in Discrete Variables by A.F. Nikiforov, S. K.
Suslov, V. B. Uvarov [11], Chapter 2.)

We will use monic polynomials; 1.e., polynomials with leading coefficient equal to 1. The
classical orthogonal polynomials of a discrete variable in the uniform lattice #(s) = s are the



polynomial solution of a second order linear difference equation of hypergeometric type
o(x) A Po(x)+ m(x) A Po(x) + Ap Po(z) =0, (1)
where
V(@)= fle) = fx = 1), Af(e) = fle+1) = f(z).

Here o(x) and 7(x) are polynomials in x of degree at most 1 and 2, respectively, and A, is a
constant.

These polynomials are orthogonal with respect to the linear functional £ on the linear
space of polynomials with real coefficients defined as

<L, P> =" p(x)P(x), N ={0,1,2,..}, (2)
zeN

where p(z) is some non-negative function ( weight function ) supported in a countable set of

the real line and such that
Alo(e)p(z)] = 7(x)p(x).
The orthogonality relation is

Y Pal@)P(e)p(x) = bumds, (3)

zeN

where d? denotes the square of the norm of these classical polynomials.

The polynomial solutions of equation (1) are uniquely determined, up to a normalized
factor (Ry,), by the difference analog of the Rodrigues formula (see [11] page 24 Eq.(2.2.7)):

Pu(z) = p?;) T ol 4 m) [ oo+ b)) (4)

They satisfy a three term recurrence relation of the form

P_1(x)=0 and Py(x)=1.
and the Christoffel-Darboux formula
n—1
P,(x)P,, 1 P,(x)P,_ — P, (y)P,_
S Ln(0)Puly) @PW) = PP ®) 93 ()
m=0 dm -y d”_l

We will consider the following three classical monic orthogonal polynomials (CMOP)
which are solutions of the difference equation (1).

I. The Meixner polynomials, orthogonal with respect to the weight function p(x) sup-
ported on [0, c0), with

olx)y=u, T@)=yp—2(l—p) ,0<pu<]l, y>0, A, =n(l—-p),
e ! G+ )
Pl (y + n!(y)np”
— p(r) = ———=——, dizw~
(n—1) Iy + ) (1—p)
II. The Kravchuk polynomials, orthogonal with respect to the weight function p(x) sup-
ported on [0, N], with n < N

R, =

Np—
ole)=w, 7(x)= 1p_px O<p<l, A= n ,




and
pr!(l—p)N_x 5 nINIp*(1—p)”

R, =(p-1", = , =
A TS s e S (N —n)!
II1. The Charlier polynomials, orthogonal with respect to the weight function p(x) sup-
ported on [0, c0), with

olx)y=z, ,7(@)=p—2 ,u>0, A,=mn,

and .
Ro= (- =g d=
They satisfy the so called structure relations
2 g (e = M A (o) 4 ), @
= Kb () = p(N = n+ DEL (@) + KE (@), (8)
=7 Ch(a) = Ol (@) + Ch(a). (9)

These classical polynomials can be represented as hypergeometric functions (see [11] page

49, section 2.7)
1
1— =), 10
ﬂ) (10)

n

2F1 (—nly—x

M @)= (On g

(=p)" N!

[(p(x) = m

4 B (TN |-

Cr(w) = (=p)" 2 (77

where the hypergeometric function is defined by
0 k

ay,ag,...,a (al)k(a2)k e (Clp)k x
F ) ) P — _—
plyq (bl,bQ,...,bq %) kZ:O (b1)x(b2)r - (bg)p kI’

(a)o =1, (a)y :=ala+1)(a+2)---(a+k—-1), k=1,2,3 .

As a consequence of these representations we can deduce

pt Tln+7) - (=p)" N!
, K2(0) = ———, CH0) = (—p)". 13
et =52 0= (0. (3)
We have proved (see [2] formula (26)) the following property for the kernels of the Meixner
polynomials.

M) = ¢

n

n—1

. MU () ME#(0) (=111 — )7t

Ker (2,00= Y (d)2 © _ =D (n' 1 v MIH(z). (1)
m=0 m :

It is straightforward to show that the kernels of KE () and C#(z) verify the following
relations:

n—1

Kerf (0= Y SEERO 0o U ) (15)
KerS [(x,0) = Z_: Cﬁl(il)fﬁl(o) = (_171)!”_ v CR(z). (16)



63 The definition, orthogonal relation and representation
as hypergeometric series.

Consider the linear functional ¢/ on the linear space of polynomials with real coefficients

defined as

<U,P> =<L,P>+AP0), =2z€IN, A>0 |, (17)

where £ is a classical moment functional (2) associated to some classical polynomials of a
discrete variable.

We will determine the monic polynomials P2(z) which are orthogonal with respect to
the functional & and prove that they exist for all positive A (see (22) from below).

To obtain this, we can write the Fourier expansion of such generalized polynomials

n—1

PAx) = Py(2) + Z tn 1 Pr(2), (18)

where P, denotes the classical monic orthogonal polynomial (CMOP) of degree n.

In order to find the unknown coefficients a, ; we will use the orthogonality of the poly-
nomials P2(z) with respect to U, i.e.,

<U,PA(x)Py(x) >=0 Yk < n.
Now putting (18) in (17) we find:

<U,PMx)Py(z) > = < L, PMNx)Pp(z) > + AP2(0)P(0). (19)

If we use the decomposition (18) and taking into account the orthogonality of the classical
orthogonal polynomials with respect to the linear functional £, then the coefficients a,, ; are
given by:

PA(O)P
Ay p = —A M (20)
) dk
Finally the equation (18) provides us the expression
n—1
Pr(0) Pe(x)
Af oy _ A k &
Pi(x) = Pa(z) — AP(0) ; & (21)

From (21) we can conclude that the representation of P2 (z) exists for any positive value
of the mass A. To obtain this it is enough to evaluate (21) in # = 0,

n—1
Pr(0))?
(1 +AY %) P2(0) = P,(0) #0, (22)
k=0 k
and use the fact that
n—1
(Pr(0))?
1+AZT > 0 n=123,..
k=0

From (22) we can deduce the values of P;;‘(O) as follows



P,(0)

1443 O

P (0) (23)

Now in order to obtain an explicit expression for these polynomials we need some prop-
erties of the kernels of the CMOP. In [2] we solved this problem for the classical Meixner
polynomials. In this work we will prove a similar result for Charlier and Kravchuk polyno-
mials.

Doing some algebraic calculations in (21) and taking into account formulas (14)-(16) we
obtain the following three expressions for the generalized polynomials :

For Meixner polynomials:

(~1)" (1= )]

A — ) _ A )

MI#A() = MI# () = AMP#A(0) - VM@ (1)

For Kravchuk polynomials:
KPA(z) = KP(x) — AKPvA(O)M KP(z) (25)

For Charlier polynomials:
A Jz A (_1)n_1 Jz

O ) = Ot — ACEA(0) T g ). (26)
In the above formula the values of the polynomials in & = 0 could be deduced from

(23). Then, we obtain the following analytic expression for the Perturbed Monic Orthogonal
Polynomials (PMOP) P2(z) for x # 0 (when z = 0 we can use (23) )

MY A (x) = MIH(e) + By v M () = (1 + Ba V)M (2), (27)
KA (x) = KR (x) + An 7 K (2) = (I + A7) KE (2), (28)
Cht(x) = Ci(x) + D v Cli(x) = (I + Dp7)Ch(2), (29)

where A,, B, and D, are constants given by:

n _ v—1
By = A A=) (e
n!l(1+ AKerM (0,0))

N[ pn(l _p)l—n

A, = A ,
n!(N —n)l (14 AKerX (0,0))

n

I
D, =A .
n!(14+ AKerS 1(0,0))

Remark: Using the Rodrigues formula (4), some extension of it follows in a straightforward
way.

M) = (14 By | P D g L )

(L= p)" pT(y + x) I(z+1)
P ALy (=D)"T@+ DIV —z+1) ¢, p"(l—p)"
1 (@—(”A”V)[ o (l—p)® v )F(x—l—l)F(N—x—n—l—l)]’



(=D"T@+1) oy _p"t"
p Ple+1)]
Now we can establish the following representation as hypergeometric functions for the
generalized polynomials:

Ci(e) = (I + Dnv)

Proposition 1 The orthogonal polynomials M) *4(x), K2-4(z) and CHA(x) are, up to a
constant factor, generalized hypergeometric functions. More precisely

n _ _ 1 1
M’Y’M’A — " H I ( n, x,l-l_—aern 1_ 2 30
2 (@) = (1) o U e 2 (30)
N! Zno— -1 |1
p,A o\ Y n,—e,l4+zA;t |1
REAW) = 0l e, 3By (T p), (31)
—n,— zD ! 1
Clot() = (—=p)" 3F1( IS —;). (32)

Sketch of the Proof: The proof of this Proposition is similar to the proof for the Meixner
case (see [2]). To obtain the desired result we need to put the hypergeometric representation
of these polynomials in formulas (27), (28) and (29) and do some algebraic calculations.
Here the coefficients At 2B, ! and xC;! are real numbers. In the case when they are
nonpositive integers we need to take the analytic continuation of the hypergeometric series

(30), (31) and (32). ]

It is straightforward to show that for A = 0 the hypergeometric functions (30), (31) and
(32) yield to classical polynomials (10), (11) and (12).

§4 A second order difference equation.

In [2] we proved that the Meixner polynomials satisfy a second order difference equation.
To prove this result we only used that in the difference equation of hypergeometric type for
Meixner polynomials the function () is equal to x. Taking into account that, for Charlier
and Kravchuk polynomials, o(#) = «, then the following Theorem holds:

Theorem 1 The polynomials M) *4(z), KEA(x) and C*4(x) satisfy a second order linear
difference equation

[+ C(CAp + A — 7(2)](z — 1) A TPA(z) + (z — 1)r(z) A PA(x)+
FO[(r(2) = CA)(An — 1= (2 = 1)) + An(An + O) + (2 + CAy) A 7(2)] A PAGZ)  (33)
(= DAPA) + Cdn[hn — 1 = 7(2 — 1) + C(AT(2) + M) PA@) = 0,
where
x=0,1,2 ., Vi) = f(z) = f(x - 1), Af(x) = flz +1) = f(e),

and by P2 we denote the generalized Meizner, Kravchuk or Charlier polynomials and C is
the constant By, Ap or Dy, respectively, which is a function of n (see Section 3 ).

The proof of this Theorem for the Meixner case was given in [2]. Here we provide the
proof for both three cases.



Proof: We will start from the representations (27), (28) and (29) for the generalized polyno-
mials P2(z) = P,(z) + C 7 Pa(x). Multiplying this expression by z, using the second order
difference equation that these classical polynomials satisfy

e AJPo(x) 4+ m(x) A Po(x) + Ap Po(z) =0, (34)
and using the identity 7 Py (2) = AP, (2) — A 57 Py() we obtain
J:P;:‘(x) =(x+CAp)Py(2)+ C(x + 1(x)) A Py(z). (35)
Now if we apply the operator A to (35), from (34) the equation

AN P;:‘(x) =[x —Cr(x)] A Py(x) — CAy Pa(®) (36)
follows. In the same way if we apply in (36) the operator 7 and using (34) we find

z(z — 1) AyPA(z) =
=—[(e=Dr(@x)+Cr(z)(X, —7(x = 1) = 1) + Cax(A, + &1(2))] A Po(z)— (37)
=14+ Cp —71(x—1)= )], Po(2).

Now from (35),(36) and (37) the following determinant vanishes

z PN x) a(x) b(x)
z A PA(x) e(z) d(x) | =0, (38)
z(z — 1) AyPA(z) e(x) f(x)
where
a(z) = (x + CAy), b(z) = C(x + 7(2)), c(z) = —CAp,
d(z) =z — Cr(z), e(x) =[xt —14+CA, —1—=1(x = 1))\,

fle) = —[(x = Dr(2) + Clr(2)( Ay, = 1 —7(2 = 1)) + 2(An + A1(2))].

Expanding the determinant in (38) by the first column and dividing by «?, the Theorem
follows.m

The difference equation of the previous theorem (33) takes the form:

Meixner case M) "4 (z)

{4 Bal(1 = p)(& +n+nBn) = yul}(x — 1) & 7 MIH4 () +
(= Dlyp — a(1 = )] & M4 () +
+Bu {1 = wlyu(n+ 0By + 20— 1) + (1= p)(x +n* = (z + nBu)(w+n)+  (39)
+20Bn] = yu(L +yp)} & MY () + (2 = Dn(l — p) M4 () +

nBn(1 = w[(1 = p)(x +n+nBy — By — 1) = 1 — ypu] M #4(x) = 0



Kravchuk case K24 (x)

xr+n+nA, Np
L—p L—p

{r+ Al e —1) ATEE (2)+

(o - DS

] A KPA(2)+
-p

Np
1_

z+n?— (z+nd,)(z+n)

+An {—[ —,

(n+nd, +2r—- 1)+

+2nA,] — 1N—p(1+ —)}AKPA( )+

— KP4

nA, [x—i—n—i—nAn—An—l—Np
l—p l—p

Charlier case C*4(x)

— K24 (2) =0

[#+ Dy(z +n+nDy — p)l(x = 1) A 7CORA(2)+
(6 = 1) — ) & ClA )+
+Dp[n?+ 2 —2u+2nD, — (n— 2 — p)(z — p+ nDy)] A CHPA(z)+

+Hz — D)nCrA2)+nDp(z+n—p—2+nD, — D,)CFAz) =0

§5 Three Term Recurrence Relations.

The generalized polynomials satisfy a three term recurrence relation (TTRR) of the form

rPl(x) = Pl (w) + B Pit(2) + 72 Pila(z) om0
(42)
P4(z)=0 and Pi(z) = 1.

This is a simple consequence of their orthogonality with respect to a positive functional
(see [6] or [11]). To obtain the explicit formula for the recurrence coefficients we can com-
pare the coefficients of " in the two sides of (42). Let b2 be the coefficient of #”~! in the
expansion P2(z) = 2™ + b 2”71 4 .. then : g4 = b2 — bﬁ_l_l To calculate 44 is sufficient
to evaluate (42) in # = 0 and remark that P2(0) # 0.

In order to obtain a general expression for the coefficient 32 we can use the formulas (27),
(28) and (29) for the generalized polynomials P2 (z) = P,(z)+C<7 Py(z), where C = B, A,
or D, respectively. Doing some algebraic calculations we find that b2 = b, +nC, where b,, de-
notes the coefficient of the n—1 power in the classical polynomials P, (z) = 2™ +b,z" "1 +. . ..

Using these formulas and the main data [11] for classical polynomials we obtain for gen-
eralized Meixner, Kravchuk and Charlier polynomials the following TTRR. coefficients :

I Meixner polynomials:

n n—1lp+1 n+p(n+7y)
ﬂ_lw TR ) B T
—1lpu+1 (L= 1) (V)
- I (n— D1+ AKerM (0,0))’



and then

gao ntpnty) =) T () p(y +n) n
n 11—~ n! (1+ AKerM(0,0) 1+ AKerM (0,0)
WA = _Mr?ffA(O) _pA MY A(0)
M) T M)
IT Kravchuk polynomials
1
bn:—n[Np+(n—1)(§—p)], Bn =n+p(N —2n),
1 N P (1 — p)i-n
bA = —n[N —1)(=— A
n = TN+ (0= DG =PI AT T T AR ek (0,00)

and then

"A-p)" n(l—p) p(N —n)

Nlp
A N -2 A
B, n =+ p( n)+ nl(N — n)! 1—|—A[xer 1(0,0) 1—|—A[(67°{f(0,0) ’

a 1{5;“1(0) _ KPA(0)

Yo = -p,A -p,A
K32(0) Kp2i(0)
ITII Charlier polynomials
-1
bn:_n( 9 )a Bn=n+p,
1 u"
A = — L S}
=t ) A T AT AR L (0,0))
and then
A I n H
= A— _
o = A T AR er? (0,0) 1+ AKerE(0,0)
A
PR TURE Sl )
toaro) Ao

§6 Relation between tridiagonal matrices J,;; and JZ. .

In this section we are interested to find the relation between the tridiagonal matrices
corresponding to the CMOP P, (z) and generalized polynomials P/A(z), which we denote by
Jn+1 and J;;‘_I_l, respectively. It is well-known the crucial role that the tridiagonal matrices
play in the numerical study of zeros of orthogonal polynomials defined on the real line,
because they are its eigenvalues.

If we rewrite the TTRR (42) for PMOP in the matrix form we obtain

_JA

n+1
ALPA L PA (0)e @D (43)

where the corresponding tridiagonal matrix and the perturbed polynomial vector are denoted
by JA a1 and Pn, respectively (n > 0) :

gt 1 0 0 ... 0 O Pi(r)
wopt 1 0 ... 0 0 Pi(z)

JA, =] 0 vwopd 1 ... 00 0 and PA=| Pi'(x) |
0 0 0 0 vA A PA(z)



and for a given integer n > 1 by e §n+1) (0<j <n+1), we denote :

e .=(00 ...010 ..0) eRr*.

A similar notation will be used for the tridiagonal matrix .J,, 1, with the 8;’s and 7;’s replaced
by the corresponding coefficients of the three term recurrence relation for P,(#) and for the
polynomial vector By:

B 1 0 0 0 0 Py()
Y1 61 1 0 0 0 Pl(l‘)
Japr=| 0 2 B ] 0 0 and By = | P2(%)

From the relation (21) and using (23), we deduce

PR () = Papa(2) + Y a1 jPi(2), (44)
j=0
or in the matrix form :
PY =R, 1B, (45)

where R, 1 denotes the lower triangular matrix with 1 entries in the main diagonal :

1 0 0 0 0 0
a1 1 0 0o ... 0 0
Rpy1 = | @20 @21 1 0o ... 0 0 ’
ano dpni1 Gp2 dp3 ... Opp-1 1
and a, ; are:
P, P; .
am,j = —A ©) ]d(ZO)’ 0<j<m-1.

m—1
(Pe(0))? %

1ay BOF

k=0 k

Now putting (45) in (43) and using (44) we find
PR g1 B = T B 1 B+ (Pagi (2) + Y angr ; Pi(2))e Gy
j=0

from where, using the TTRR in the matrix form for the classical polynomials P, (), we find

Jn1Ba = Ropy I RugiBat Y ang jPi(a)e o
j=0

Finally from this equation we obtain the following relation between tridiagonal matrices
Jn_|_1 and J;?_l_l

J;LL‘+1 = Rn+1 (Jn+1 + An+1) R;ql_l ) (46)

11



where A, 41 1s a rank-one matrix

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
Ap41,0 An41,1 An41,2 Gpng13 ... Gpiin—1 Aniln

We conclude that J;:‘_l_l is a rank-one perturbation of J,4;. Finally, we obtain the cor-
responding elements of the matrices Rp41 and A,y1 in the three studied cases, i.e., the
Meixner, Kravchuk and Charlier perturbed orthogonal polynomials.

Melxner case : -~
(=D (1)m

M
= A ’
am,k k!(l_ﬂ)m—k—’}/(l—k[((ﬁr%_l(oao))

Kravchuk case :

(_1)m+k+1pmN!

kN1 —p)*(N —m)!(1+ KerE_,(0,0)) (48)

Charlier case : (—1ymHe+l
—_1ym ﬂm
c
“mk = SR T KerC_(0,0)) ()

§7 Associated Polynomials.

In this section we study the monic associated polynomials corresponding to PMOPS
{PA(x)}°2,. They are defined as follows [6]

PA _ PA
Pr(ll),A(l,) — LAH{ n+1(x) n+1(y) } ’ (50)
¢ x—y

where it is understood U operates on y and cf is the first moment of the functional, i.e.,
¢t = U(1). Taking into account that U{PA(x)} = L{PA(z)}+APA(0) and using the relation
(44) for the generalized polynomials, as well as the linearity of the classical functional £, we
obtain the following relation:

" Py(0)PY
POAG) = D | ) - apa, 0 3 PO )

C
0 k=0

Lemma 1 For all integer n > 1

" p (o p) 2P () — P ()P
) taluls SUNE B ATUREAUL U

k=0
Proof: We will use the recurrence relation (5) for the classical polynomials P, ()
e Pp(2) = Pag1(2) + Bu Pa(2) + 1 Poca(2), n > 1

P_1(x)=0 and Py(z) =1

12



and the corresponding for the associated ( see [6] page 85, Eq.(4.3) )

yP () = PO) + B P (9) + 710 P (), > 1

P(ll)(x) =0 and Po(l)(x) =1.

If we multiply the first equation by Prgl_)l(y) and the second one by P,(z), subtract both and
divide the resulting expression by d2, then

Po(@)Pi(y)  Pepa(e) PV (w) — Pele)PV(y) Pe(e)PL,(y) — Poca(e)PLY (y)
g T 7 - T '

Summing from & = 2 to n we find:

o=y 3 POANE) _ Pon@ P0G = PP Pale) = Pé%(mpf”(y).

2 2
k=2 dk dn

But

", Py(e)PtV  (z) P "< Pz ;51_)1
(x—y)ZP( )C];zf—l(y):(x_y)P( )Cgo (y)-I-(l‘—y)ZP( )ch (3/)

k=0 k=2

Using the previous expression for the last sum, the identities #Py(z) = Pa(x) + f1Pi(x) +
~1 and Pl(l)(y) = y — 1 and doing some straightforward computations, the lemma follows.m

Lemma 2 If for the generalized polynomuals the following relation holds
Pp(2)Pr41(0) = Poy1(2)Pr(0) = 2D 7 Po(z), n>1
where D is some constant independent of x (but in general it could be a function of n ), then

P (2)Poga(0) — P (2)Po(0) = 2D 7 PLY, ().

n—1
Proof: From the hypothesis of the lemma, we have for Vn > 1
Pa(@)Pasi(0) = Papa(2)Pa(0) = aD(Pa(x) — Palz — 1)),

Bo(9)Pag1(0) = Prga (9) Pa(0) = yD(Pa(y) — Paly — 1))

Substracting them, dividing by & — y, applying the functional £ and taking into account the
identities (n > 1)

{2t haty
r—y

ePy(x —1)—yPy(y—1)
r—=Yy

} = J:P,(ll_)l(x) and L { } = l‘PT(Ll_)l(l‘ -1

the lemma follows. ]

Now we can consider the former expression for the monic associated polynomials corre-
sponding to PMOPS {PA(z)}2,. From (51) and using the previous lemmas we find

: c Py (0P (2) = Pa(0) P (0) 1
ey = S i - ant o o Sk
0 n
(52)
£Pﬁ4+1(l’) - Pﬁ4+1(0)
664 L ’
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or

¢ A PA ()= PA (0
PAE) = 4 [P(w) = AP OO 3 P ()] + 5 D= Ben®) gy
0 0

where C' = By, A, and D, (27)-(29) for the Meixner, Kravchuk and Charlier orthogonal
polynomials respectively. These two equations are valid when = # 0 and n > 1. In the case
x = 0 we must make use of the definitions :

POAW©) = U { Pity) - Pf+l<o>}
n CA y ,
0

or, alternatively, the formula (52) and the limit when # — 0.
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