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Abstract

The dual g-Hahn polynomials in the non uniform lattice xz(s) = [s]4[s + 1], are
obtained. The main data for these polynomials are calculated ( the square of the norm
the coefficients of the three term recurrence relation, etc), as well as its representation
as a q-hypergeometric series. The connection with the Clebsch-Gordan Coefficients of

the Quantum Algebras SU,(2) and SU,(1,1) is also given.

§1 Introduction

It is well known that the Lie Groups Representation Theory plays a very important role
in the Quantum Theory and in the Special Function Theory. The group theory is an ef-
fective tool for the investigation of the properties of different special functions, moreover,
it gives the possibility to unify various special functions systematically. In a very simple
and clear way, on the basis of group representation theory concepts, the Special Function
Theory was developed in the classical book of N.Ya.Vilenkin [1] and in the monography of
N.Ya.Vilenkin and A.U.Klimyk [2], which have an encyclopedic character.

In recent years, the development of the quantum inverse problem method [3] and the study
of solutions of the Yang-Baxter equations [4] gave rise to the notion of quantum groups and
algebras, which are, from the mathematical point of view, Hopf algebras [5]. They are of
great importance for applications in quantum integrable systems, in quantum field theory,
and statistical physics (see [6] and references contained therein). They are attracting much
attention in quantum physics, especially after the introduction of the g-deformed oscilla-
tor [7]-[8]. Also they have been used for the description of the rotational and vibrational
spectra of deformed nuclei [9]-[11] and diatomic molecules [12]-[14], etc. However to apply
them it is necessary to have a well developed theory of their representations. In quan-
tum physics, for instance, the knowledge of the Clebsch-Gordan coefficients (3j symbols ),
Racah coefficients ( 6j symbols ) and 9j symbols [15] is crucial for applications because all
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the matrix elements of the physical quantities are proportional to them.

The present work represents the definite part of the investigations about the connection be-
tween different constructions of the Wigner-Racah algebras for the q-groups and q-algebras
SU,(2) and SU,(1,1) and the orthogonal polynomials of discrete variables (see also [16],
Vol. III 2], [17], as well as [18]-[21], [22] and [23], [24]-[26]). For a review of q-polynomials
see [24] and [26]. In [19] the properties of the Clebsch-Gordan coefficients (CGC’s) of these
two quantum algebras SU,(2) and SU,(1,1) and the g-analog of the Hahn polynomials on
the exponential lattice z(s) = ¢?° were considered in detail. In a similar way the Racah
coefficients (65 symbols) for such g-algebras have been connected with the Racah polyno-
mials in the lattice z(s) = [s],[s+1], [20]-[21]. Recently the g-analogs of the Kravchuk and
Meixner polynomials on the non-uniform lattice z(s) = ¢** were investigated (see [23] and
reference contained therein)) in order to find the connection of them with the Wigner D-
functions and Bargmann D-functions for the q-algebras SU,(2) and SU,(1, 1) respectively.

To continue this line it seems reasonable to investigate the interrelation between the CGC’s
for the quantum algebras SU,(2) and SU,(1, 1) with g-analogs of the dual Hahn polynomi-
als on the non-uniform lattice z(s) = [s],[s+ 1], . In order to solve this problem in sections
2 and 3 we discuss the properties of these g-polynomials, their explicit formula and the
representation in terms of the generalized g-hypergeometric functions 3F; [24] is obtained.
In section 4, from the detailed analysis of the finite difference equations (2) for these g-
polynomials, we deduce the relation between them and the CGC’s for SU,(2), which help
us to draw an analogy between the basic properties of the Clebsch-Gordan coeflicients and
these orthogonal ¢- polynomials. Since these coefficients are studied from view point of
the theory of orthogonal polynomials, a group-theoretical interpretation arises for the basic
properties of dual Hahn g-polynomials. In section 5 we find the relation between Clebsch-
Gordan coefficients for the quantum algebra SU,(1,1) and the dual Hahn q-polynomials by
two different ways, the first one - as in the previous case, i.e., comparing the finite difference
equation for the dual Hahn g-polynomials and the corresponding recurrence relation for
the CGC’s, and the second one; using the well-known relation between the CGC’s for the
g-algebra SU,(1,1) and the CGC’s for SU,(2).

Using the connection between the CGC’s and these ¢-polynomials (see below the formulas
(19) and (24) ) we find explicit formulas for the CGC’s, as well as their representation in
terms of the generalized q-hypergeometric functions 3F5 or the basis hypergeometric series

32 [27].

In the conclusion of this Section it should be noted that some new approach to the in-
vestigation of the connection between the representation theory of algebras and the theory
of orthogonal polynomials was suggested recently [28]-[32]. It allows to solve also a new
class of problems (so called quasi-ezactly solvable problems). This approach was extended
on the q-difference equation in [33]. In [34] it was shown that the similar approach can
be formulated also to study the classical orthogonal polynomials in the exponential lattice
z(s) = ¢*° [24]. As for the quadratic lattice #(s) = s(s + 1) and the q-quadratic lattice
x(s) = [s]y[s + 1];, the extension of this approach on such type of problems is not found
yet. Therefore we apply here the standard method of [24] to the analysis of the dual Hahn
g-polynomials in the q-quadratic lattice.



§2 The dual Hahn g-polynomials in the non-uniform lattice
x(s) = [s]y[s + 1],

Let us to start with the study of some general properties of orthogonal polynomials of a
discrete variable in non-uniform lattices. Let be

A TY(s) | Ta(s) [AY(s)

&(w(s))Ax(s —3) Va(s) T Ax(s) o +AY(s) =0,

va(s) (1)
VI(s)=f(s) = fls=1),Af(s)= f(s+1) = f(s),

the finite difference equation of hypergeometric type for some lattice function z(s), where

Vf(s) = f(s)— f(s—=1)and Af(s) = f(s+ 1) — f(s) denote the backward and forward

finite difference quotients, respectively. Here &(z) and 7(z) are polynomials in z(s) of
degree at most 2 and 1, respectively, and A is a constant. It is convenient (see [24] and

_I_

[25]) to rewrite (1) in the equivalent form

A VY (s)
U(S)Ax(s — 1) wva(s) +7(s) Ax(s)

a(s) = a(z(s)) - 37(z(s)) Doa(s = 3), 7(s) = T(x(s)).

It is known ([24] and [25]) that for some special kind of lattices, solutions of (2) are or-
thogonal polynomials of a discrete variable, in other words, they satisfy the orthogonality
relation

+ AY(s) =0,
(2)

b—1
S Pula(si)Pala(sipls) B alsi = ) = bund’e  sp=sit1,  (3)

si=a

where p(s) is some non-negative function (weight function), i.e.,
pls)) Aa(s;—3)>0 (a <5, <b—-1),
supported in a countable set of the real line (a,b) and such that

A
Aa(s — @@l = 7(0)p().

a(s)p(s)2"(s — L)|s=ap = 0, Vk € IN (N ={0,1,2,...}).
Here d? denotes the square of the norm of the corresponding orthogonal polynomials.

They satisfy a three term recurrence relation (TTRR) of the form
2(8)Pp(s) = 0 Pog1(s) 4 BnPo(s) + v Przi(s), P_1(s)=0, Po(s)=1. (4)

The polynomial solutions of equation (2), denoted by Y,(2(s)) = P,(s), are uniquely
determined, up to a normalizing factor B,, by the difference analog of the Rodrigues
formula (see [24] page 66 Eq. (3.2.19) )



5) = n s () = _V v __ Y 5
R = T ) = s Tl )

where
tnl$)=a(s+2),  pals) = plnt ) [[ ols+ k).
k=1

These solutions correspond to some values of A, - the eigenvalues of equation (2).

Let us to start with the study of the dual Hahn g-polynomials in the particular non-uniform
lattice z(s) = [s],[s + 1], where [n], denotes the so called g-numbers

¢ —q"
[n]y = ﬁv

and ¢ is, in general, a complex number |¢| # 1.

We will use a result by Nikiforov, Suslov, Uvarov [24] (Theorem 1 page 59) who established
that for the lattice functions z(s) = c1¢%° + c2q7 %% + c3, where ¢1, ¢o and c3 are some
constants, equation (2) has a polynomial solution uniquely determined, up to a constant
factor B, by (5). A simple calculation shows that our lattice z(s) = [s],[s + 1], belongs
to this class. In fact we have

-1 -1
$(8): q 25_|_ q —25 q—l_q (6)

- 2? T g=g 2’ (¢—q 1)’

so for the lattice z(s) = [s]y[s + 1], it is possible to obtain polynomial solutions of the
equation (2) (see Appendix), and these solutions are uniquely determined by the Rodrigues
formula (5).

We are interested to construct the polynomials in such a way that, in the limit ¢ — 1, they
and all their principal attributes ( a(s), 7(s), A, , p(s), d%, TTRR coeflicients a,, 3., ¥n,
etc. transform into the classical ones. These polynomials we will call the g-analog of the
classical dual Hahn polynomials in the non-uniform lattice x(s) = [s],[s + 1], and they

will be denoted by Wéc)(s, a,b), (see also [25]). In order to obtain these g-polynomials let
us define the o(2(s)) function such that in the limit ¢ — 1 it coincides with the o(s) for
the classical polynomials, i.e.,

lim o(z(s)) = (s —a)(s+b)(s —c).

qg—1

Therefore we will choose the function o(s) as follows

o(s) = qs+c+a_b+2[5 — aly[s + bly[s — cly- (7)

Following Chapter III in [24] we can find the main data for the polynomials Wéc)(s, a,b)g.
The results of these calculations are provided in Table 2.1 (see also the Appendix). Every-
where, V2 € IN, by [z],! we denote the g-factorial which satisfies the relation [z + 1],! =
[ + 1],[],!, and coincides with the T'y(z) function introduced by Nikiforov et al. ([24]



page 67 Eq.(3.2.23)-(3.2.25)). In general V2 € IR the g-factorial is defined in terms of the
standard I'y(z) (see [24] or [26]) by formula

T, (x+1) =[], = ¢~V (2 4 1).

It is clear that all characteristics of these g-polynomials coincide with the corresponding
atributtes for the classical dual Hahn polynomials (see [24] page 109 table 3.7.) in the limit
qg— 1.

Table 2.1. Main Data for the q-analog of the Hahn polynomials W<(s,a,b),

Yon(s) Wila(s), a,b)q, z(s) = [slg[s + 1]q
(a,b) (a,b)
(5) gD [s + alg!ls + ]!
s
P [s — alg'ls — clg'[s + blg'b — s — 1]4!
—%§a§<b—1, le] <a+1
a(s) qs+c+a_b+2[5 — a]g[s + blq[s — clq
7(s) —a(s) + q* T T a4 1]g[b — e = 1]g + 07O gl
A g
. 1)
[n]q!
n2
(s) g o= b D 4 o g alytfs + o4 ny!
n(s
P [s — alg's — clg'[s + blg!b — 5 — n — 1]4!
42 q—ab—bc+ac+a+c—b+1+2n(a+c—b)—n2+5n [a +c+ n]q'
" [nlgllb—c—n—1]glb —a —n—1]4!
q—%n(n—l)
an
[n]q!
an " n + 1]
q2n_b+c+1[b —a—n+1lgla +c+n+ 1+
Bn
g H2et e n] [b — ¢ — n]q + [a]gla + 1]g
Vn q"+3+2(c+a_b)[n—|—a—|—c]q[b— a—nlg[b — c—nlq




§3 The explicit formula for the dual Hahn g-polynomials in
the lattice x(s) = [s],[s + 1],- The finite difference derivative
formulas.

The explicit formula for the dual Hahn g-polynomials. In order to obtain the
explicit formula for the g-polynomials Wéc)(s, a,b), we will use the Rodrigues Formula (5).
Firstly, notice that for the lattice z(s) = [s],[s 4 1], verifies the relation

o(s) —a(s =) =[]y vals — 5) = [dy[2s — i+ 1]

holds. Then, by induction we can find the following expression for the operator V%n) [f(s)]

v@U@ﬂzﬁé PU““MM%&#Hﬁm+qu@_n+my
=0 [mlyln — m]! [][2s +m+1— k],
k=0

Thus, the Rodrigues Formula for the lattice z(s) = [s],[s + 1], takes the form (see also
[24] page 69, Eq. (3.2.30) )

Py = B, 35 U2~k 2m 1 ol ;(Z)+ m) (8)
"0 [t = gt [T 25+ m 41— B,
k=0

Now using the main data for the Wéc)(s,a,b)q polynomials (Table 2.1), the equation (8)
can be rewritten in the form

Wéc)(s, a,b), =

_ [s —al![s+ 0]\ [s—cll[b—s—1],! <& (=1)"[2s—n+2m+1], y
qg—sn—n(a—l—c—b—l—z—)[s +al,[s + ¢],! m=o [m]y!n — m],'[2s + m + 1],! (9)

g~ sk g L — ) s 4 a + m],![s + ¢ + m],!

X[s—a—n—l—m]q![s—l—b—n—l—m]q![s—c—n—l—m]q![b—s—m—1]q!'

As a consequence of this representation we obtain the values of Wéc)(s = a,a,b), and
Wéc)(s =b—1,a,b), at the ends of the interval of orthogonality (a,b)
n2 3
(_1)nq_7+n(0_b+5)[b —a—1],![a+ ¢+ nl,!
[n]y'la + ¢! —a—n—1],!

W?SC)(S =a,a, b)q = , (10)
¢ 5D g~ 1) — e — 1],!

(s =b— =
Wi7(s=b-1,a,0), (nlgllb—c—n—1]!b—a—-n—1]!

(11)

In order to find the representation of these polynomials in terms of q-Hypergeometric
Functions we can follow [24] (Chapter 3, section 3.11.2, page 135). Using the corresponding



constants ¢q, ¢; and ¢3 (6) for the non-uniform lattice z(s) = [s],[s + 1], we obtain (see
[24] Eq. 3.11.36 page 146) the following

(a—b+1lglatct g
qn(s—l—;—(n—l))—(c—l—a—b—l—l)[n]q!

Wéc)(x(s), a, b)q =
(12)
34,4
a—b+1l,a+c+1

where by definition

1 ( ay,dy, as ;(],Z) . Z (a1|Q)k(a2|Q)k(a3|q)ka

b1, by = (blg)w(b2la)k(ala)r
and B
nt Iy(a+n)
alg), = a+kly=lalat+l]y...la+tn-1, = ———=.
(@l = [Tl Hy = oo+ 1ot = 1) = T2

The finite difference derivative formulas for the dual Hahn g-polynomials. To
obtain the finite difference derivative formulas for these g-polynomials we will follow [24]
(page 24, Eq.(2.2.9)). Firstly, notice the relation:

APH(‘S_ %) _ Bn1 (n—1) o) = \V4 \V4 \V4 ~ = B s
Be(s—1)  p(s) Pr-a(s)] Ja1(s) Vaals) ---wn_l(s)[pn_l( )] = Pui(s),

where B, 1 = =\ B, p(5) = p1(s — 1), pn_1(8) = pa(s — ). In general, the polynomials

P,_1(s) in the right hand side of this equation, are not the same that P,(s) (because they
can have a different weight function). Since for the g-analog of dual Hahn polynomials in
the lattice z(s) = [s],[s + 1], the following connection between weight functions holds

ﬁn—l(svalvblv Cl) = pn(s - %7a7b70) = pn—l(sva ‘|’ %71) - %70 ‘I’ %)7 (13)

we conclude that Pn_l(s) coincides with the dual Hahn g-polynomial characterized by new

1

parameters @’ = a+ 1,0 =b— 1 and ¢ = ¢+ }. Then, we obtain the following formula for

the finite difference derivative:

1
Lab), = ¢ s+ W (a1 o 1), (14)

n—1

Wéc)(s + %7 a, b)q - Wéc)(s -

N[

The formula (14) will be called the first differentiation formula for the polynomials Wéc)(s, a,b)g.
Now, if we change the parameters a,b and ¢ and the variable sin p(s) by ¢/ = a — 1,0 =
b+l d=c-1¢=s-1 wefind

fusr(s — 1,d' V) = g2 (s 0,b, ). (15)

Then, from the Rodrigues Formula (5)

Bn—l—l (n+1)

- Y R N
Pn_H(s—%,a,b,C)— ,5(5_%70/719/70/) Vi1

[ﬁn—l—l(s - %7 alv blv Cl)]'

7



and using Eq. (15) we obtain

> —2n+tate—bti
Popi(s—1d0,¢) = Bnth : 1+ T (s a,b, ) Pals)
Bup(s—5,a,0,c) va(s)

29
As in the previous case, we notice that in the left hand side of this equation the dual Hahn

g-polynomials with @', o', ¢’ parameters appear which are different from the corresponding

parameters in the right hand side. Namely, ¢’ = a— 31,0/ =b+ L and ¢ =c—1%. Asa

result the following formula for the finite difference derivative holds

L

2o 1]y (28], W, (s - da -

n+1 vb‘|‘%)q:

N[

(16)
¢*[s = lyfs = ells + 0, (s = 1,0,0), — ¢=°[s + aly[s + clglb — 5], WV (s, 0, b),.

The formula (16) will be called the second differentiation formula for the polynomials
Wéc)(s,a,b)q.

64 Clebsch-Gordan coefficients for the g-algebra SU,(2) and
the dual Hahn g-polynomials.

The quantum algebra SU,(2) is defined by three generators Jy, J1 and J_ with the following
properties (see [35]-[36] and references therein)

[Jo, J+] = £J4, [V, -] = [2Jo]q,

I =, Jl=Jz.

Here we use the standard notation [A, B] = AB — BA for the commutators, [n], for g-
numbers and [2Jp], means the corresponding infinite formal series. Let D”t and D”2 be
two irreducible representations (IR) of the algebra SU,(2). The tensor product of two
irreducible representations D/t @ D72 can be decomposed into the direct sum of IR D’
components

Ji+J2
D"oD"2= > aD’
J=|Jy—J|
For the basis vectors of the IR D we have
|J1J2,JM >q= Z < J1M1J2M2|JM >q |J1M1 >q |J2M2 >q (17)

My, M>

where a symbol < J; My JoMs|JM >, denotes the Clebsch-Gordan coefficients (CGC) for
the quantum algebra SU,(2). In [35]-[38] have been proved that these CGC’s satisfy the
following recurrence relation



X

[J=M]q[J+M]g[i+ o +I+1]¢[J2—S1+T]q[J =S+ 1]q[S1 +J2 =T +1]g
2J+1]g[20-1]4[2]]2

X < J1M1J2M2|J — 1M >q +

_ (@ I+ MA1]g =g~ [T =M41]q) ([2T]g[2T2+ 2y =[2)g[Jo 41 = J+1]g[T+T1 = Jo]g)
(2J+2]q[27]4[2]4

X < J1M1J2M2|JM >q + (18)

_I_¢[J—M-|—1]q[J+M+1]q[J1-|—J2-|—J-|—2]q[J2—J1+J+1]q[J—J2-|—J1-|—1]q[J1-|—J2—J]qX

[2J+3]q[2J]q[2T+2]2

X < J1M1J2M2|J + 1M >q +

J2+ My Jo 4 Moy 4-1]g—gM1 =72 ]y — M +1
_I_(q [Jo+Ma+ ]T2]Z [Ja—Mat1]q) < JiMyJoMa|JM >,=0.

Comparing the difference equation (2) for the g-analog of the dual Hahn polynomials

Wéc)(s,a,b) in the non-uniform lattice z(s) = [s]y[s + 1], with the recurrence relation
for CGC’s, we conclude that CGC’s < Jy MyJoMs|JM >, can be expressed in terms of the
dual Hahn g-polynomials by the formula

(=17 HR=T < ML Ty Mo TM >, = Wi (2(s),a,b),1 -

(19)
|J1—J2| <M,n:JQ—MQ,SIJ,QIM,CIJ1—J27b2J1—|-J2—|-1.

Here p(2) and d,, denote the weight function and the normalization factor for the poly-
nomials I/Véc)(av(s),a,b)q_17 respectively. It should be noted that in (19) the parameter
q is prescribed to the CGC < Jy My JyM>|JM >,, meanwhile the inverse parameter ¢!

corresponds to the dual Hahn g-polynomial.

From the last expression and the orthogonality (3) of the Wéc)(s,a,b) polynomials the
orthogonality of the CGC’s follows, i.e.,

Z < J1M1J2M2|JM >4< JlM{J2M£|JM >g= 6M1M1'6M2M2' . (20)
JM
In the same way, we can show using (19) that the recursive relation (4) for the dual Hahn
g-polynomials Wéc)(s, a,b) is equivalent to the the recursive relation in My and M, for the

CGC’s [35]-[38]
g2/ [J2 — Mo + 1], [Jo + Mo] [J1 + My + 1],[J1 — Mi], < Ji My + Lo My — 1|JM >, +

\/[Jz + M- + 1]q[J2 — Mz]q[Jl —|—M1]q[J1 - M+ 1]q < 1My —1J5My + 1|JM >4+

(21)
( q My + My + 1]4[J2 — Ma]g + ¢*M2[J1 + My + 1],[J1 — Mi], + [M + 52—

—J+ 1 )q_M2+M1_1 < JAMyJs M| M >,= 0.



The phase factor (—1)71772=/ in (19) was obtained by the comparison of the values of the

Wéc)(s,a,b) polynomials at the ends of the interval of orthogonality (see (10) and (11))
with the corresponding values of the CGC’s at J = M and J = J; + J; + 1. Using the
relation (19) and the finite difference derivative formulas (14) and (16) we find the two
recurrence relations for the CGC’s:

q—J—l¢[J—M+1]q[J1+J2+J+2]q[J2—J1+J+1]q[2j+2]q < JiMyJo M| J + 1M >, +

(2J+3]q[J2 —M2]q

TEM AT+ To—T)g[J—To T J 22
-|-¢[ B 1Eﬁ+1]if32—ﬂf1:iql+l]q[2 2 < JiMyJoMa|JM >= &)

= IR MAM 207 L 9] < S My — IMy 4 LT+ 1M L >,

and

g’ ¢ oMl b llalle St Bl < MU M) T - 1M > +

T+ Mo [Jy+Js —J+1]o[J—To+J1]o[27 23
-|-¢[ i [1234?1]q[2}1]\[42+12]:— Uallle o 1y My Ty M| TM >q= 2

= q(_J_J2_M2+M_1)/2[2J]q < J1M1J2 + %MQ — %|J — %M — % >q
The formula (22)-(23) can be obtained independently using the g-analog of the Quantum
1
Theory of Angular Momentum ([35] - [38]). Let T7(2) be a tensor operator of rank L acting

1
on the variables Jy, M3 . If we calculate the matrix element < Jy My Jo My T2 (2)|J1J5; J'M' >,
on the one hand, using the Wigner-Eckart theorem for SU,(2) [35] we find that

1
< J1M1J2M2|Ti (2)|J{J§, J/M/ >q:

JIME Ll T, M
:_6J17J{ Z <J{M{J£M£|J/M/ >, < J2 22:u| 2 Mo >4

< B||T3|| T, >, .
MM} [2J2 + 1],

On the other hand, the application of the algebra of tensor operators [38] gives

1
< J1M1J2M2|Ti (2)|J{J§, J/M/ >q:
1
= Z < J1M1J2M2|J”MH >4< J1J2;J”M”|Ti (2)|J{J§,J’M’ >g=
J//M//

! ! " "
<JM%,M|J M >q 1 J1+J2+J//+;_X

= Z < J1M1J2M2|J”M” >q
JU M [QJ” + 1]!]

Jo J" T 1
xwzmuq[zwﬂh{ L j,} < L|[TF||T5 >, .
2
q

Putting in both of these equations J' = J+ L, M' = M+ L. J, = J, - L. J = J1, M| =

2

My, M} = My + ,p = —% and taking into account that at such a choice of the angular

2

10



momenta and their projections we obtain that only the values M"” = M,J" = J,J + 1 are
possible. From this fact the relation (22) follows.

To obtain the equation (23) weput J' =J - L M =M -1, J) =J,+31,J] = J1,M{ =
"

My, M) = My—1L, = 1. All necessary quantities { Jll i;, :;3 and < Jy Myip|JM >,
2 2

g
are tabulated in [35] and [36], respectively.

From relation (19) we also see that the dual Hahn g-polynomial with n = 0 corresponds
to the CGC with the maximal value of the projection of the angular momentum Js, i.e.,
My = J. Yor this reason it will be called the backward (we start from n = 0 and obtain
CGC at My = Jy, for n = 1 CGC at My = J; — 1, and so on ). There exists another
possibility corresponding to the inverse case, i.e., when the polynomial with n = 0 is pro-
portional to the CGC with the minimal value of My = —.J5, this relation will be called the
forward way (we start from n = 0 and obtain CGC at My = —J3, when n = 1 we find CGC
at My = —Jy + 1, and so on ). In fact, comparing the difference equation for the g-analog
of the dual Hahn polynomials Wéc)(s, a,b) (2) with the recurrence relation for CGC’s, we
conclude that CGC’s < Jy MyJoMy|JM >, can be also expressed in terms of the g-dual
Hahn polynomials as follows

(=) 2=l < Ty My Ty M| TM >, = Wi (x(s),a,b),,

d " (24)

|J1—J2| <-Mn=Jy+My,s=J,a=-M,c=J,—Jo,b=J1+Jo+ 1.

Here, as earlier, p(z) and d,, denote the weight function and the normalization factor for

the polynomials Wéc)(x(s), a,b),, respectively.

Notice that if in the previous relation we provide the change of parameters My = — My,
My = —My, M = —M and ¢ = ¢~! then, the right hand side of (24) coincides with the
right hand side of (19). Then, we can conclude that for the CGC’s the following symmetry
property holds

(=)= gy — MyJy = My|J — M > =< Jy My Jy My JM >, (25)

To conclude this Section we provide a table in which the corresponding properties of

the Hahn g-polynomials h%a’ﬁ)(s,N)q defined on the exponential lattice ¢** [19] (see also

[24] and [26]) and the dual Hahn g-polynomials Wéc)(x(s),a,b)q defined on the lattice
x(s) = [s]y[s + 1], are compared with the corresponding properties for the CGC’s of the
g-algebra SU,(2). The last, help us to establish the interrelation between these two types
of orthogonal g-polynomials.

11



Table 4.1 CGC’s and the g-analog of Hahn polynomials.

Pn(s)q < J1M1J2M2|JM >4

Finite difference equation (2) for the WT(LC)(l‘(S), a,b), | Recurrence relation (18) for the CGC’s
and TTRR (4) for h{7%) (s, N),

Finite difference equation (2) for the h2?(s, N), Recurrence relation (21) for the CGC’s
and TTRR (4) for WT(LC)(l‘(S), a,b),

pc(z;f) in (19) < TAMyJada|lI M >2
%in (24) < JiMyJy — Jo|JM >
Differentiation formulas (14) and (16) Recurrence relation (22) and (23)
for WT(LC)(l‘(S), a,b), for the CGC’s
Equivalence of relation (19) and (24) Symmetry property (25) for the CGC’s
Orthogonality Relation (3) Orthogonality Relations (20)

Comparing the finite difference equation and the TTRR which the polynomials hg’ﬁ(s, N),
and Wéc)(ac(s), a,b), satisfy we conclude

The finite difference equation Recurrence relation (4)
(2) for the dual Hahn for the q-Hahn
g-polynomials WT(LC)(l‘(S), a,b), polynomials hﬁﬁ’m(s, N),
Recurrence relation (4) The finite difference equation
for the dual Hahn (2) for the g-Hahn
g-polynomials WT(LC)(l‘(S), a,b), polynomials hﬁﬁ’m(s, N),

Moreover, since for the Hahn g-polynomials hgf’ﬁ)(s, N), in the exponential lattice z(s) =
q** [19] the following relation holds (for the classical case see [24] and for q-case see [19])

p(s)Ax(s— 1)
d2

n

(Jimagama|jm)— = (=1)° heP (s, N),

12



where s = jo —mg, N = j1+j2—m+1,a =m—j1+j2,0 = m+ji1—j2,n = j—m, where
p(z) and d,, denote the weight function and the normalization factor for the polynomials
h%a’ﬁ)(s, N), given by formulas
plz) = q%a(a—I—ZN—I—Zs—S)-I—%ﬁ(ﬁ-I—Zs—l) [a+ N —2—1]![5 + 5!

[N —s— 1]1s]!

[n)'le + Y[ + nllla + 5+ N + n]!
[N —n—1{a+ g+ n]l[a+ 5+ 2n+ 1]!
2a—l—2N—|—N(N—1)—I—(N—l)(2a—l—ﬁ—|—N)—|—55(ﬁ—|—1)—I—n(oz—l—ﬁ—l—?)
1

[n]'g**(q —¢~1)"
polynomials h( ’ﬁ)(s, N), and the dual Hahn g-polynomials Wéc)(x(s), a,b),

dy = (q—q")""B;

xq

where B, = (-1)"

, we obtain the following relation between Hahn ¢-
(_1)5—|—nq—|—(5—3)(§+oz)+3a—2noz—%(n—l—s)-l—(n—s)(N—#)h%aﬁ)((gN)q —

0+ +a
2 7 2

s lIN — s — 1), + B!

gt (552
R T e UGS

+ N), (26)

(tn:sn(sn—l—l) 5= 4 s n=0,1,2,.. ,N—1).

Observe that in the limit ¢ — 1 this relation take the form of the classical relation between
the classical Hahn and dual Hahn polynomials [24] (page 76, Eq.(3.5.14)).

§5 The explicit formula for the CGC’s. Its representation in
terms of a basic hypergeometric function.

The explicit formula for the Clebsch-Gordan coeflicients of the SU,(2) quantum
algebra. In order to obtain the explicit formula for the CGC < JiMyJoMy|JM >,
we will use the explicit expression for the dual Hahn g-polynomials (9) and the Eq.(19),
connecting them with CGC’s. Providing some straightforward calculations we obtain the
following general analytical formula to calculate the CGC’s for the algebra SU,(2)

< J1M1J2M2|JM > q 2( (J-I—l) J1(J1-|—1)+J2(J2+1))+(M-|—1)J2-I—J(J2—Mg) —

- Jo — Mo\ [J1 — Ma]g\[J — M, T2 + Ma],!
s Jw EUESTVTES KUESIEN

« [J +Ji1+J3+ 1]q'[<]2 —Ji + J]q'[JQ +.Ji - J]q'[QJ + 1]q «
[J1+ My, — Jo + J],! (27)

y i 1)qu2+2jk (J2—M2—1)k[J_|_J1 —J2+k]q![J—|—M+k]q!
= JR2J+ 1+ kT — My — Jo+ k)T — J1 + My + K]

" (2] — Jo+ Mo+ E]N2J — Jy + My + 2k + 1],
[JQ—M—Q—k]q![J+J1-|—M2—|—k—|—1]q![<]1—|-<]2—<]—k]q!‘

13



Representation in terms of the basic hypergeometric function. In order to find
the representation of the CGC’s in terms of q-Hypergeometric Functions we can use the
representation of the dual Hahn g-polynomials (12). Then, from formula (19) we obtain

o5+ 1
(—1)J1+J2—J < J1M1J2M2|JM >-1= d—qx

(28)

(a—b+ 1|g)ula+c+ 1]q)n 7 —nmya—s,ats+1 o
S )~(eta bt [ 2 bt ater1

where |J; — Jhl < M,n=Jy— My, s=J,a=M,c=J; — J3,b=J1 4+ Jo+ 1 and p(z) and
d,, denote, as usually, the weight function and the normalization factor for the polynomials

Wi (x(s),a,b),.

66 Clebsch-Gordan coefficients for the g-algebra SU,(1,1) and
the dual Hahn g-polynomials.

In the previous sections we have studied the connection between dual Hahn g-polynomials
and the CGC’s of the SU,4(2) quantum algebra. Let us now to study the connection between
the dual Hahn polynomials and the Clebsch-Gordan coeflicients of the quantum algebra
SU,(1,1) (for a survey see [2] and [39]). The quantum algebra SU,(1,1) is defined by three
generators Ko, Ky and K_ with the following properties [35]

[Ko, K4] = £ K4, Ky, K_] = —[2Ky],,

K} = Ko, Kl = K-

Since this algebra is non-compact the Irreducible Representations (IR) can be classified
in two series, the continuous and the discrete series of IR. In this work we will study the
discrete case only, more concretely the positive discrete series D’*. The basis vectors |jm >y
of the IR D’* can be found from the lowest weight vector |jj+1 > ( K_|jj+1>=0 )
by the formula

. [2] + 1]q' m—i—1 . .
= K 1> .
i >= g g K 41>

Let D/t and D72% be two irreducible representations (IR) from the positive discrete se-
ries of the algebra SU,(1,1). The tensor product of this two IRs, D/*t @ D2t can be
decomposed into the direct sum of IRs D’T components

o0
Dj1+ ® Dj2+ — Z @D]‘F .
J=sn+52+1
For the basis vectors of the IR, D= we have
2. dm >q= Y < jimujama|jm >4 |jimy >4 [jama >, (29)

my,m2
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where the symbols < jymqjamsg|jm >, denote the Clebsch-Gordan coefficients (CGC) for
the quantum algebra SU,(1,1). In [19] it was proved that these CGC’s satisfy the following
recurrence relation

Vime — j2 — 1yl + molg[ma — jalg[in + m1 + 1]y < jima + Ljams — 1jm >, +

q*\/[ma — jalg[j2 + ma + 1y[j1 + malgmi — j1 — 1]y < jima — Ljams + 1jm >, +

(30)
( g~ G2 + ma + Ug[ma — jalg + ¢*72[j1 + ma + 1]y[m1 — jilg+

U 82— [mt 22 )t < rmajomajm =0
Comparing the recurrence relation for the g-analog of the dual Hahn polynomials Wéc) (s,a,b)

(4) with (30) for CGC’s, we conclude that CGC’s < jymyjomg|jm >, can be expressed in
terms of the dual Hahn g- polynomials by the formula

Jols) Bas 1)
T Wa(x(s),a,b),-1, (31)

(_1)m_j_1 < jimajamaljm >,=

n:ml_jl_178:j7a:j1+j2+1vc:j1_j27b:m‘

We obtain the phase factor (—1)"~7~! comparing the values of the Wéc)(s, a,b) polynomials
at the ends of the interval (10) with the corresponding values of the CGC’s. Now we can
observe that if we provide the following substitution:

_ mti—jp—1 _ my—ma+ji i+l _
Jl—% Ml_# J_]7

b b

2
. - _ . 11 ) ’
J2 _m ]1;’]2 , 7‘[2 _ m2 m1‘;J1+]2+ , 7‘1 =5 _I_]2 _I_ 17

the right hand sides of the equations (19) and (31) become to be identical (see also [19] ).
This imply that for the CGC’s for these two quantum algebras the following relation holds

< My oMol I M > g (2)=< jimajema|jm > 11) - (32)

Now we can obtain a general formula to calculate the CGC’s for the SU,(1,1) algebra.
Using the explicit expression for the g-analog of the dual Hahn polynomials (9) and the
Eq.(31) we obtain
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< j1m1j2m2|jm >, q—;—(](]-I-l)-l-]i(]1+1)—j2(]2+1))+(m—1)(]1+1)+j(m1—jl—l) —

_ o 1ym—ji—1 [7 + m]lm —j — 1], [m2 + j2],!
== ¢ L1+ malg! :

7 — 71— Jo — g2 — 71 + 7)o ma — j1 — 1] [ma — Jo — 115125 + 1],
X X
[+ i1+ Jo + Ugll1 — jz + 414 (33)

y i A 7 e o 1T o S P R e Pl el L
[Klgt[2J + L+ E]gllma — g1 = 1 = k]![j — my = ja + k]! [m — 7 — 1= k]!

k=0
[ + g1 = ja + KJgY[25 + jr — ma + 2k + 2],
[ = ma+Jo+ k! + g1+ me+ k41,0

Using the formula (31) we find the following representation for the CGC of the SU,(1,1)
quantum algebra in terms of the g-hypergeometric function:

X

; . . . p(s)[2s + 1],
(=)= < jimyjama|jm > 1= d—x
(34)

(a—b+ 1|g)ula+c+ 1]q)n 7 —nmya—s,ats+1 o
S )~(eta bt [ 2 bt ater1 ' ’

where n = my — 51 — 1,s = j,a = 1+ j2+ 1,0 = m,ec = j1 — jo. We remind that
p(z) and d,, denote the weight function and the normalization factor for the polynomials

Wéc)(x(s), a,b),, respectively.

To conclude this Section we want to remark that the same procedure can be applied to
the negative discrete series of IR. Moreover, from the finite difference equation and the
differentiation formulas (2), (14) and (16) we can obtain some new recurrence relations for

the CGC’s of the SU,(1,1) quantum algebra.

Appendix. Calculation of the main data of the dual Hahn
g-polynomials in the non-uniform lattice x(s) = [s],[s + 1],

The dual Hahn g-polynomials are the polynomial solution of the second order finite differ-
ence equation of the hypergeometric type on the non-uniform lattice (s) = [s],[s + 1],

q5+c-|—a—b-|—2 [8 _ a]q[s _I_ b]q[s — C]q A vWéc)(87 a, b)q _I_
s + 1], (25 =2l

AW%C)(S, a, b)q_I_ (35)

{=lslyls + 1y 4+ ¢ el Bl + ¢+~ + 1,15 - e = 1], ) [25],

+q7 0], Wi (s, a,0), = 0.
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Since z(—s—1) = z(s) and Az(s— 1) = — Ax(t — 3)[;=—s—1 the coeflicient 7(s) in (35) is
completely determined by the formula ([24], Equation (3.5.3), page 75))
_o(=s—1)—0(s)
(S  ~TeE

The k-order finite difference derivative of the polynomials Wéc)

_ A A A
C Azp_i(s) Axg_o(s) T Ax(s)

(s,a,b),is defined as follows

vkn(s) [Wéc)(svavb)q] = A(k)[Wéc)(s,a,b)q],

where z,,(s) = (s + 2), satisfies the following equation of the same type

‘]S+c+a_b+2[5 — a]y[s + bly[s — clq V0kn(8) Avgn(s)
25+ 1— 4], o [[zs—k—z]q] +T”(8)[25—k]q

—I':ukvkn(s) =0, (36)
where (see [24], page 62, Equation (3.1.19)). Furthermore, we have

o(s+k)—o(s)+1(s+k)DAx(s+m—1) iy = q_”+1[n]q n kz_:l At ()

() = Azp_1(5) ’ Awp(x)

m=0

Thus, as a result, we obtain

Tr(s) = _‘]%[5 + &lgs+ 5+ 1], + qc_b+k+1[c + 510 — &+

(37)
k
‘|‘qa+c_b+1_5[a + 5+ 1glb—c— k=1,
The solution of the Pearson-type finite difference equation
A
Sl = (o)
gives the weight function p(s)
(s) = q_5(5+1)[5 + a]q![s + C]q!
PR = s = al, s — g [s + bl b — s — 1],
Using the definition p,(s) = p(n + s) H o(s+ k) (see (5)) we obtain
k=1
(s 1)~ b(ato—bt- 3] 1 1!
q % )z rreTemoT s L g + nl, s + ¢+ nl,!
pnls) = : ! (38)

[s —alg![s — cl ! [s + bll[b—s —n —1],!

Let us to find the squared normalization factor for the dual Hahn g- polynomials. Firstly,we
use the formula ([24], section 3.2.2 page 64, Equation (3.7.15))

_3

2 = 73 ], B2S,, (39)
(-1"

[n],!

where B,, = and 5, is a sum

b—n—1
Y palsi) Daal(si— 1) (40)

si=a
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To calculate it we will use the identity (N =b—a —1 € IN)

Sn Sn—l—l SN—Z

S = ...
Sn—l—l Sn—l—? SN—l

SnN_1. (41)

From (38) and (40) we find

[a + [C + N] - U w2 aN— =12 L (N 1) (atebt 2)
a—C q-

SN-1 =

To obtain 9, we will follow [24] (page 105-106). Using the formulas, given at these pages,

we find that 5 = ) where 27 _; is the solution of the equation 7,_1(z}_4) = 0.
n+1 gl\r

n—1
Some straightforward but tedious algebra gives the following expression

o(ag_y) = q P22 2 0 4 e ]y [b— a — nly[b — ¢ — n],.

Now, collecting the expressions (39), (40) and (41), we obtain that the squared normaliza-
tion factor for the dual Hahn g-polynomials is equal to

d2 — q—ab—bc—l—ac—l—a—l—c—b—|—1—|—2n(a—|—c—b)—n2 +5n [a +c+ n]q'
" (n]!b—c—n—1]b—a—n—-1],!

To obtain the leading coefficient a,, of the polynomial and the coefficients a,,, 3, and =, of
the three term recurrence relation (4) we use [24] (Equation (3.7.2), page 100) and formulas

2
ay, 1 d

’ Yn = 2
n+1 n dn—l

oW (a,a.b)y + 1. WD, (a,a,0),
quc)(a, a,b),

Q, =

ﬁn:

— z(a).
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