Spectral properties of certain tridiagonal matrices

R. Álvarez-Nodarse ${ }^{1}$, J. Petronilho ${ }^{2}$, N.R. Quintero ${ }^{3}$
${ }^{1}$ IMUS \& Dpto Análisis Matemático, Universidad de Sevilla, Apdo. 1160, 41080, Sevilla, Spain. E-mail: ran@us.es
${ }^{2}$ CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal. E-mail: josep@mat.uc.pt
${ }^{3}$ IMUS \& Dpto. Física Aplicada I, EUP, Universidad de Sevilla, c/ Virgen de África 7, 41011, Sevilla, Spain. E-mail: niurka@us.es

July 21, 2011

Abstract

We study spectral properties of irreducible tridiagonal k-Toeplitz matrices and certain matrices which arise as perturbations of them.

Key words and phrases: Jacobi matrices, k-Toeplitz matrices, orthogonal polynomials.
2010 Mathematics Subject Classification: 15A18, 15A42, 33C45, 42C05.

1 Introduction

In this paper we focusing on the spectral properties of general irreducible tridiagonal k-Toeplitz matrices and certain perturbations of them. Recall that a tridiagonal k-Toeplitz matrix is an irreducible tridiagonal matrix such that the entries along the diagonals are sequences of period k (see M. J. C. Gover [15]). Apart its own theoretical interest, the study of this type of matrices appears to be useful, for instance, in the study of sound propagation problems [4, 16], as well as in the description of several models of coupled quantum oscillators which may be described by using appropriate perturbations of tridiagonal k-Toeplitz matrices (see [1, 2]). We will focus on the localization of the eigenvalues of such matrices, as well as on the distance between two consecutive eigenvalues. The matrix perturbations to be considered here have the form

$$
J_{n}^{\mu, \lambda}:=\left(\begin{array}{cccccc}
\beta_{0}+\mu & 1 & 0 & \ldots & 0 & 0 \tag{1.1}\\
\gamma_{1} & \beta_{1} & 1 & \ldots & 0 & 0 \\
0 & \gamma_{2} & \beta_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \beta_{n-2} & 1 \\
0 & 0 & 0 & \ldots & \gamma_{n-1} & \beta_{n-1}+\lambda
\end{array}\right)
$$

where, by varying n, the sets of entries $\left(\beta_{s}\right)_{s}$ and $\left(\gamma_{s}\right)_{s}$ are sequences of real numbers such that $\gamma_{s}>0$ for all s, and λ and μ are given real numbers (the perturbation parameters). When $\left(\beta_{s}\right)_{s}$ and $\left(\gamma_{s}\right)_{s}$ are k-periodic sequences, so that

$$
\begin{equation*}
\beta_{s}=a_{j+1} \text { if } s \equiv j(\bmod k), \quad \gamma_{s+1}=b_{j+1}^{2} \text { if } s \equiv j(\bmod k) \tag{1.2}
\end{equation*}
$$

for all $s=0,1,2, \ldots, n-1$, with $a_{j} \in \mathbb{R}$ and $b_{j}>0$ for all $j=1,2, \ldots, k$, one obtains the mentioned perturbed k-Toeplitz matrix. (The k-Toeplitz matrix corresponds to the choice $\lambda=\mu=0$, subject to the periodicity conditions (1.2)).

Recently, these perturbed matrices $J_{n}^{\mu, \lambda}$ subject to the periodicity conditions (1.2), i.e., the perturbed k-Toeplitz matrices, where investigated by several authors for some special choices of the period k, among which we distinguish S . Kouachi [20] for the case $k=2$, and A. R. Willms [27] for the case $k=1$ (notice that in this case the entries along each diagonal are constant, up to the entries in the left upper corn and in the lower right corn). These authors have studied the eigenvalues of these matrices by considering a trigonometric equation whose solution yields the eigenvalues, focusing their contributions in several special cases corresponding to situations when these trigonometric equations have explicit solutions, and exact expressions for the eigenvalues and eigenvectors were obtained. Regarding the case of a 2 -Toeplitz matrix (hence, in particular, of a 1-Toeplitz matrix) a trigonometric equation whose solution yields the eigenvalues was stated by F. Marcellán and J. Petronilho in [21]. This equation has been deduced on the basis of the fact that the characteristic polynomial of a 2-Toeplitz matrix may be expressed in terms of Chebyshev polynomials of the second kind (via a quadratic polynomial mapping) and, as it is well known, these polynomials admit trigonometric representations. Notice, however, that the explicit expressions for the eigenvalues of a tridiagonal 2 -Toeplitz matrix have been given previously by M. J. C. Gover [15], without using orthogonal polynomial theory. Therefore, since, by making some basic operations on determinants, the characteristic polynomial of the perturbed k-Toeplitz matrix can be expressed in terms of the characteristic polynomial of the non-perturbed k-Toeplitz matrix, it is clear that a trigonometric equation yielding the eigenvalues of the perturbed 2 -Toeplitz matrix can be established. In fact, more generally, by using similar arguments and the results in $[10,13,18]$, a trigonometric equation whose solution yields the eigenvalues of the general perturbed k-Toeplitz matrix defined by (1.1)-(1.2) can be easily established.

Concerning the mentioned works [20] and [27], Kouachi and Willms studied the spectral properties of the perturbed 1 -Toeplitz and 2 -Toeplitz matrices exhibiting explicit nice formulae for the eigenvalues and eigenvectors of such matrices for appropriately choices of the parameters λ and μ. By contrast, our study in the present paper will not be focused on the determination of explicit formulae. Instead, our aim will be the location of the eigenvalues for general perturbed and non-perturbed k-Toeplitz matrices of large order. Roughly speaking, we will state that, for large n, the eigenvalues of a perturbed k-Toeplitz matrix of order $n k+j-1(1 \leq j \leq k-1)$ may be approximated by the eigenvalues of the corresponding non-perturbed k-Toeplitz matrix of order $n k-1$, up to a finite number of them, and we remark that this number depends on k but it is independent of n.

The analytical study of infinite tridiagonal matrices (infinite Jacobi matrices, regarded as operators acting in ℓ^{2}, the space of the square summable sequences of complex numbers) was considered before by several authors. For instance, in [8, $9,11]$ in connection with the Theory of Toda Lattices, as well as in [14, 18, 19, 23, $25,26]$, where the spectrum of the corresponding Jacobi operators was studied. We also point out that a matrix theoretic approach to the problem concerning the study of the spectral properties of k-Toeplitz matrices has been presented in works by S. Serra Capizzano and D. Fasino [12, 24]. The computation of the orthogonal polynomials corresponding to the k-Toeplitz matrices (hence of the characteristic polynomials of such matrices) may be done by reducing the study to a problem involving an appropriate polynomial mapping. Concerning the spectral measure associated to such Jacobi matrices it is known [14] that it is
given by a polynomial transformation on the Chebyshev measure of the second kind, plus a finite number of mass points, and a connection with a polynomial mapping have been done in $[13,21,22]$ in order to describe the orthogonal polynomials. This mapping is essential to describe the results in the work we present here. Further, it allow us to give some interlacing properties from which we deduce some upper bounds for the distance between consecutive eigenvalues of the involved matrices.

The structure of the paper is as follows. In section 2 some mathematical results concerning the spectral properties of tridiagonal k-Toeplitz matrices are presented. In section 3 we apply the results in section 2 in order to obtain interlacing properties for certain perturbed tridiagonal k-Toeplitz matrices. Finally, in section 4 we include some numerical experiments.

2 Spectral properties of k-Toeplitz matrices

In this section we will present some properties of the eigenvalues of a tridiagonal k-Toeplitz matrix, i.e., a matrix of the form

$$
J_{m}:=\left(\begin{array}{cccccc}
\beta_{0} & 1 & 0 & \ldots & 0 & 0 \tag{2.1}\\
\gamma_{1} & \beta_{1} & 1 & \ldots & 0 & 0 \\
0 & \gamma_{2} & \beta_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \beta_{m-2} & 1 \\
0 & 0 & 0 & \ldots & \gamma_{m-1} & \beta_{m-1}
\end{array}\right)
$$

where the entries $\left(\beta_{s}\right)_{s}$ and $\left(\gamma_{s}\right)_{s}$ are k-periodic sequences, say

$$
\begin{equation*}
\beta_{s}=a_{j+1} \text { if } s \equiv j(\bmod k), \quad \gamma_{s+1}=b_{j+1}^{2} \text { if } s \equiv j(\bmod k) \tag{2.2}
\end{equation*}
$$

for all $s=0,1,2, \ldots, m-1$, with $a_{j} \in \mathbb{R}$ and $b_{j}>0$ for all $j=1,2, \ldots, k$.
Theorem 2.1 Fix $k \in \mathbb{N}$. Assume that J_{m} is a tridiagonal k-Toeplitz matrix such that (2.2) holds, with $a_{j} \in \mathbb{R}$ and $b_{j}>0$ for all $j=1,2, \ldots, k$. If $1 \leq i<$ $j \leq k$, define

$$
\Delta_{i, j}(x):=\left|\begin{array}{cccccc}
x-a_{i} & 1 & 0 & \cdots & 0 & 1 \\
b_{i}^{2} & x-a_{i+1} & 1 & \cdots & 0 & 0 \\
0 & b_{i+1}^{2} & x-a_{i+2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & x-a_{j-1} & 1 \\
0 & 0 & 0 & \cdots & b_{j-1}^{2} & x-a_{j}
\end{array}\right|
$$

so that $\Delta_{i, j}(x)$ is a polynomial of degree $j-i+1$ in x; and if $j \leq i \leq k$, define

$$
\Delta_{i, j}(x):=\left\{\begin{array}{cll}
0 & \text { if } \quad j<i-1 \\
1 & \text { if } & j=i-1 \\
x-a_{i} & \text { if } & j=i
\end{array}\right.
$$

Let π_{k} and Δ_{k-1} be the polynomials of degrees k and $k-1$ (resp.) defined by

$$
\pi_{k}(x):=\Delta_{1, k}(x)-b_{k}^{2} \Delta_{2, k-1}(x), \quad \Delta_{k-1}(x):=\Delta_{1, k-1}(x)
$$

Furthermore, set

$$
\Sigma_{k}:=\pi_{k}^{-1}([-\alpha, \alpha]), \quad \alpha:=2 b_{1} b_{2} \cdots b_{k}
$$

Then the following holds:
(i) The set Σ_{k} is an union of k intervals I_{1}, \cdots, I_{k}, such that any two of these intervals intersect at most at a single point (i.e., Σ_{k} is indeed an union of at most k disjoint intervals), so that

$$
\begin{equation*}
\Sigma_{k}=\pi_{k}^{-1}([-\alpha, \alpha])=I_{1} \cup \cdots \cup I_{k} \tag{2.3}
\end{equation*}
$$

(ii) Except for at most $k-1$ ones, all the eigenvalues of $J_{k n+k-1}$ are located in the set Σ_{k}, for all $n=1,2, \cdots$. More precisely, each interval I_{1}, \ldots, I_{k} contains exactly n eigenvalues of $J_{k n+k-1}$ in its interior, and the remaining $k-1$ eigenvalues are located between these k intervals, so that between I_{ℓ} and $I_{\ell+1}(\ell=1, \cdots, k-1)$ there exists exactly one eigenvalue of $J_{k n+k-1}$. These $k-1$ eigenvalues are the $k-1$ solutions of the algebraic equation $\Delta_{k-1}(x)=0$.
(iii) For each $j=0,1, \cdots, k$, all the eigenvalues of $J_{k n+j-1}(n=1,2, \cdots)$ are contained in the convex hull of the set Σ_{k}. Furthermore, between two consecutive intervals I_{ℓ} and $I_{\ell+1}(\ell=1, \cdots, k-1)$ the number of eigenvalues of $J_{k n+j-1}$ is at most N_{j}, where

$$
N_{j}:=\left\{\begin{array}{ccc}
j+1 & \text { if } \quad 0 \leq j \leq\lfloor k / 2\rfloor \tag{2.4}\\
k-j+1 & \text { if } \quad\lfloor k / 2\rfloor+1 \leq j \leq k
\end{array}\right.
$$

For each $\ell=1, \cdots, k$, let $n_{j, n}(\ell)$ denote the number of eigenvalues of $J_{n k+j-1}$ inside the interval I_{ℓ}. Then

$$
\begin{equation*}
n-L_{j} \leq n_{j, n}(\ell) \leq n+M_{j}-1, \quad j=0,1, \cdots, k \tag{2.5}
\end{equation*}
$$

where

$$
L_{j}:=\left\{\begin{array}{lll}
j+1 & \text { if } \quad 0 \leq j \leq\lfloor k / 2\rfloor-1 \\
k-j & \text { if } \quad\lfloor k / 2\rfloor \leq j \leq k
\end{array}\right.
$$

and

$$
M_{j}:=\left\{\begin{array}{ccl}
j & \text { if } & 0 \leq j \leq\lfloor k / 2\rfloor \\
k-j+1 & \text { if } & \lfloor k / 2\rfloor+1 \leq j \leq k
\end{array}\right.
$$

Proof. The sequences $\left\{\beta_{s}\right\}_{s \geq 0}$ and $\left\{\gamma_{s}\right\}_{s \geq 1}$ satisfying the periodicity conditions (2.2) generate a MOPS, $\left(P_{n}\right)_{n}$, defined by the three-term recurrence relation

$$
x P_{n}(x)=P_{n+1}(x)+\beta_{n} P_{n}(x)+\gamma_{n} P_{n-1}(x), \quad n=0,1,2, \cdots
$$

with initial conditions $P_{-1}=0$ and $P_{0}=1$. It follows from very well known facts in the Theory of Orthogonal Polynomials that the zeros of P_{n} are the eigenvalues of the matrix J_{n} [6, Ex. 5.7], which are all real and simple [6, Th. 5.2], and the zeros of P_{n} interlace with those of P_{n-1} [6, Th. 5.3]. Under the given hypothesis, it is known (see e.g. [14, 18]) that the support of the measure with respect to which the MOPS $\left(P_{n}\right)_{n}$ is orthogonal consists of an union of k intervals such that any two of these intervals may intersect at a single point, plus at most $k-1$ isolated points between them. Furthermore (see e.g. $[13,18])$ these k intervals are defined by the inverse polynomial mapping $[-\alpha, \alpha] \mapsto \pi_{k}^{-1}([-\alpha, \alpha])$ and they are separated by the points $\xi_{1}, \cdots, \xi_{k-1}$ which are the solutions of the algebraic equation $\Delta_{k-1}(x)=0$ (see Figure 1 for the case $k=3$, where the inverse polynomial mapping $[-\alpha, \alpha] \mapsto \pi_{3}^{-1}([-\alpha, \alpha])$ is illustrated). This justifies statement (i) in the Proposition. In order to prove (ii) notice first that (cf. e.g. [13])

$$
\begin{equation*}
P_{n k+k-1}(x)=\left(\frac{\alpha}{2}\right)^{n} \Delta_{k-1}(x) U_{n}\left(\frac{\pi_{k}(x)}{\alpha}\right), \quad n=0,1,2, \cdots \tag{2.6}
\end{equation*}
$$

Figure 1: Inverse polynomial mapping
where U_{n} is the Chebyshev polynomial of the second kind of degree n,

$$
\begin{equation*}
U_{n}(x):=\frac{\sin (n+1) \theta}{\sin \theta}, \quad x=\cos \theta \tag{2.7}
\end{equation*}
$$

Thus the zeros of $P_{n k+k-1}$ (hence the eigenvalues of $J_{n k+k-1}$) are the above $k-1$ real numbers $\xi_{1}, \cdots, \xi_{k-1}$, which are located between the k intervals I_{1}, \cdots, I_{k}, together with the $k n$ real numbers x such that $U_{n}\left(\frac{\pi_{k}(x)}{\alpha}\right)=0$, i.e.,

$$
\begin{equation*}
\pi_{k}(x)=\alpha \cos \frac{j \pi}{n+1}, \quad j=0,1, \cdots, k-1 \tag{2.8}
\end{equation*}
$$

Moreover, these $n k$ eigenvalues lie inside the k intervals I_{1}, \cdots, I_{k}, and each interval contains exactly n eigenvalues of $J_{k n+k-1}$ in its interior. This follows from the fact that π_{k} is monotone in each interval $I_{\ell}(\ell=1, \cdots, k)$, as follows from the proof of [18, Theorem 5.1]. This proves statement (ii).

To prove (iii), notice first that for $j=0$ or $j=k(2.4)$ gives $N_{0}=N_{k}=1$, which is true by (ii), so we may assume $1 \leq j \leq k-1$. For the sake of simplicity we assume that k is even (the case when k is odd can be treated in a similar way). Denote by Γ_{ℓ} the set between two consecutive intervals I_{ℓ} and $I_{\ell+1}(\ell=1, \cdots, k-1)$. Notice that Γ_{ℓ} may reduce to a single point in case that the intervals I_{ℓ} and $I_{\ell+1}$ toch each other. By (ii) we know that the polynomial $P_{n k-1}$ has exactly one zero in each Γ_{ℓ}. Then, by the interlacing property, $P_{n k}$ has at most two zeros in each Γ_{ℓ}. Then, again by the interlacing property, $P_{n k+1}$ has at most three zeros in each Γ_{ℓ}, and so one. Hence, at step $k / 2$, we see that in each Γ_{ℓ} the polynomial $P_{n k+k / 2-1}$ has at most $k / 2+1$ zeros. This proves that $P_{n k+j-1}$ has at most $j+1$ zeros in each Γ_{ℓ} if $1 \leq j \leq k / 2$. To prove that $P_{n k+j-1}$ has at most $k-j+1$ zeros in each Γ_{ℓ} if $k / 2<j \leq k-1$, we argue by contradiction. We know by (ii) that $P_{n k+k-1}$ has exactly one zero in each Γ_{ℓ}. Then, by the interlacing property, $P_{n k+k-2}$ should have no more than two zeros in each Γ_{ℓ}. Then, again by the interlacing property, $P_{n k+k-3}$ should have no more than three zeros in each Γ_{ℓ}, and so one. Continuing in this way, at step $k / 2$, we would conclude that $P_{n k+k / 2}$ should have no more than $k / 2$ zeros in each Γ_{ℓ}. We therefore proved that $J_{n k+j-1}$ has no more than N_{j} eigenvalues in any set Γ_{ℓ}, for every $j=0,1, \cdots, k$. To prove the first inequality in (2.5) notice that, by (ii), $J_{n k-1}$ has $n-1$ eigenvalues on each interval I_{ℓ}, and using again the interlacing property (arguing in a similar way as before, by counting successively the minimum possible number of eigenvalues of $J_{k n-1}, J_{k n}, J_{k n+1}$,
$\ldots, J_{k n+\lfloor k / 2\rfloor-2}$ in an interval I_{ℓ}, and then the minimum possible number of eigenvalues of $J_{k n+k-1}, J_{k n+k-2}, J_{k n+k-3}, \ldots, J_{k n+\lfloor k / 2\rfloor-1}$ in the same interval) we may conclude that in each interval I_{ℓ} the number of eigenvalues of $J_{k n+j-1}$ is at least $n-L_{j}$. The second inequality in (2.5) can be proved by a similar reasoning, by counting successively the maximum possible number of eigenvalues of $J_{k n-1}, J_{k n}, J_{k n+1}, \ldots, J_{k n+\lfloor k / 2\rfloor-2}$ in an interval I_{ℓ}, and then the maximum possible number of eigenvalues of $J_{k n+k-1}, J_{k n+k-2}, J_{k n+k-3}, \ldots, J_{k n+\lfloor k / 2\rfloor-1}$ in the same interval. This completes the proof.

Remark 2.2 Notice that when $\ell=1$ and $\ell=k$ (corresponding to the intervals I_{1} and I_{k}) the following more precise estimates hold

$$
\begin{gathered}
n_{0, n}(1)=n_{0, n}(k)=n-1, \quad n_{k, n}(1)=n_{k, n}(k)=n \\
n-1 \leq n_{j, n}(1), n_{j, n}(k) \leq n \quad \text { for } \quad 2 \leq j \leq k-1
\end{gathered}
$$

which are also a consequence of the interlacing properties.

3 Interlacing properties for certain perturbed tridiagonal k-Toeplitz matrices

In what follows, we consider a set of numbers $\left\{\beta_{s}, \gamma_{s+1}\right\}_{s \geq 0}$, with $\gamma_{s+1} \neq 0$ for all $s=0,1,2, \ldots$, and a pair of parameters μ and λ. For every integer number $n \geq 2$ we will denote by $J_{n}^{\mu, \lambda}$ the tridiagonal matrix of order n

$$
J_{n}^{\mu, \lambda}:=\left(\begin{array}{cccccc}
\beta_{0}+\mu & 1 & 0 & \ldots & 0 & 0 \\
\gamma_{1} & \beta_{1} & 1 & \ldots & 0 & 0 \\
0 & \gamma_{2} & \beta_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \beta_{n-2} & 1 \\
0 & 0 & 0 & \ldots & \gamma_{n-1} & \beta_{n-1}+\lambda
\end{array}\right)
$$

By varying n we can associate to the matrices $J_{n}^{\mu, \lambda}$ a monic orthogonal polynomial sequence (MOPS), which will be denoted by $\left(P_{n}^{\mu, \lambda}\right)_{n}$. In particular, when $\lambda=0$, to the family of tridiagonal matrices $J_{n}^{\mu, 0}$ (by varying n) it can be associated the MOPS $\left(P_{n}^{\mu}\right)_{n}$ which is generated by the three-term recurrence relation

$$
\begin{equation*}
x P_{n}^{\mu}(x)=P_{n+1}^{\mu}(x)+\beta_{n} P_{n}^{\mu}(x)+\gamma_{n} P_{n-1}^{\mu}(x), \quad n=1,2,3, \ldots \tag{3.1}
\end{equation*}
$$

with $P_{0}^{\mu}(x)=1$ and $P_{1}^{\mu}(x)=x-\beta_{0}-\mu$. Then [6, Ex. 4.12]

$$
P_{n}^{\mu}(x)=\left|\begin{array}{cccccc}
x-\beta_{0}-\mu & 1 & 0 & \ldots & 0 & 0 \\
\gamma_{1} & x-\beta_{1} & 1 & \ldots & 0 & 0 \\
0 & \gamma_{2} & x-\beta_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & x-\beta_{n-2} & 1 \\
0 & 0 & 0 & \ldots & \gamma_{n-1} & x-\beta_{n-1}
\end{array}\right|
$$

for all $n=2,3, \ldots$, and each zero of P_{n}^{μ} is an eigenvalue of the corresponding tridiagonal matrix $J_{n}^{\mu, 0}$. If $\lambda=\mu=0$ we write $J_{n} \equiv J_{n}^{0,0}$ and $P_{n} \equiv P_{n}^{0}$. The $\operatorname{MOPS}\left(P_{n}^{\mu}\right)_{n}$ is called the co-recursive sequence with parameter μ associated to the sequence $\left(P_{n}\right)_{n}$. The co-recursive polynomials were introduced and studied by T. S. Chihara [5].

Proposition 3.1 Assume that $\beta_{s} \in \mathbb{R}$ and $\gamma_{s+1}>0$ for all $s=0,1,2, \cdots$. Then, for all $\mu, \lambda \in \mathbb{R}$ and every integer number $n \geq 2$, the following holds:
(i) The eigenvalues of $J_{n}^{\mu, \lambda}$ are real and simple.
(ii) If $\mu \neq 0$, then the eigenvalues of the matrices $J_{n}^{\mu, 0}$ and J_{n} interlace.
(iii) If $\lambda \neq 0$, then the eigenvalues of the matrices $J_{n}^{\mu, \lambda}$ and $J_{n}^{\mu, 0}$ interlace. More precisely, the following holds:

$$
\begin{aligned}
\lambda<0 & \Rightarrow \quad x_{n, j}^{\mu, \lambda}<x_{n, j}^{\mu, 0}<x_{n, j+1}^{\mu, \lambda}<x_{n, n}^{\mu, 0} \quad(1 \leq j \leq n-1) \\
\lambda>0 \quad & \Rightarrow \quad x_{n, j}^{\mu, 0}<x_{n, j}^{\mu, \lambda}<x_{n, j+1}^{\mu, 0}<x_{n, n}^{\mu, \lambda} \quad(1 \leq j \leq n-1)
\end{aligned}
$$

where $x_{n, j}^{\mu, 0}$ and $x_{n, j}^{\mu, \lambda}$ denote the eigenvalues of the matrices $J_{n}^{\mu, 0}$ and $J_{n}^{\mu, \lambda}$ (resp.). As a consequence, there exists at most one eigenvalue of $J_{n}^{\mu, \lambda}$ out of the interval $\left[x_{n, 1}^{\mu, 0}, x_{n, n}^{\mu, 0}\right]$.
(iv) Between two consecutive eigenvalues of J_{n} there exists at most two eigenvalues of $J_{n}^{\mu, \lambda}$, and conversely. Furthermore, there exist at most two eigenvalues of $J_{n}^{\mu, \lambda}$ out of the interval $\left[x_{n, 1}, x_{n, n}\right]$, where $x_{n, 1}$ and $x_{n, n}$ denote the smallest and the greatest eigenvalues of J_{n} (resp.).

Proof. The statement in (i) is a well known fact, which follows at once from the fact that, under the conditions of the proposition, the matrix $J_{n}^{\mu, \lambda}$ is similar to a symmetric tridiagonal matrix with positive entries along the upper and sub diagonals. Further, since the zeros of the co-recursive polynomial P_{n}^{μ} interlace with those of P_{n} (see [5]) then we may conclude that the eigenvalues of $J_{n}^{\mu, 0}$ and J_{n} interlace, which proves (ii). In order to prove (iii), recall first that, since the zeros of the orthogonal polynomials are real and distinct, then for each m we may denote by $x_{m, 1}<x_{m, 2}<\cdots<x_{m, m}$ the eigenvalues of $J_{m} \equiv J_{m}^{0,0}$. Define a polynomial sequence $\left(Q_{m}\right)_{m} \equiv\left(Q_{m}(\cdot ; \lambda)\right)_{m}$ by

$$
Q_{m}(x):=P_{m}(x)-\lambda P_{m-1}(x)
$$

for all $m=0,1,2, \ldots$ Notice the relations

$$
\begin{gathered}
Q_{n}\left(x_{n, j}\right)=-\lambda P_{n-1}\left(x_{n, j}\right) \\
Q_{n}\left(x_{n, j+1}\right)=-\lambda P_{n-1}\left(x_{n, j+1}\right)
\end{gathered}
$$

for all $j=1, \ldots, n-1$. Then, since the zeros of P_{n} and P_{n-1} interlace [6, p. 28], it follows that the quantities $P_{n-1}\left(x_{n, j}\right)$ and $P_{n-1}\left(x_{n, j+1}\right)$ have opposite signs for all $j=1, \ldots, n-1$ (see Figure 2).

Thus the polynomial Q_{n} has n real zeros and between two consecutive zeros of P_{n} there is exactly one zero of Q_{n}. This gives the location of $n-1$ zeros of Q_{n}. The remainder zero is less than $x_{n, 1}$ if $\lambda<0$ and it is greater than $x_{n, n}$ if $\lambda>0$. To prove this let us assume $\lambda<0$. Then, $Q_{n}\left(x_{n, 1}\right)$ has the same sign as $P_{n-1}\left(x_{n, 1}\right)$, which is the opposite one of $\lim _{x \rightarrow-\infty} P_{n}(x)$, which in turn has the same sign as $\lim _{x \rightarrow-\infty} Q_{n}(x)$. In other

Figure 2: P_{n} and P_{n-1} words, denoting by $x_{n, 1}(\lambda)<x_{n, 2}(\lambda)<$ $\cdots<x_{n, n-1}(\lambda)<x_{n, n}(\lambda)$ the zeros of Q_{n}, the interlacing property

$$
x_{n, 1}(\lambda)<x_{n, 1}<x_{n, 2}(\lambda)<x_{n, 2}<\cdots<x_{n, n}(\lambda)<x_{n, n}
$$

holds. For the case when $\lambda>0$ we can use the same reasoning but with the greatest zero $x_{n, n}$ instead of $x_{n, 1}$ to obtain

$$
x_{n, 1}<x_{n, 1}(\lambda)<x_{n, 2}<x_{n, 2}(\lambda)<\cdots<x_{n, n}<x_{n, n}(\lambda) .
$$

Next, notice that the polynomial Q_{n} can be written as

$$
Q_{n}(x)=\left|\begin{array}{cccccc}
x-\beta_{0} & 1 & 0 & \ldots & 0 & 0 \\
\gamma_{1} & x-\beta_{1} & 1 & \ldots & 0 & 0 \\
0 & \gamma_{2} & x-\beta_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & x-\beta_{n-2} & 1 \\
0 & 0 & 0 & \ldots & \gamma_{n-1} & x-\beta_{n-1}-\lambda
\end{array}\right|
$$

This follows by expanding this determinant by its last row and taking into account (3.1) for $\mu=0$ as well as the definition of Q_{n}. Notice that Q_{n} is the (monic) characteristic polynomial of the matrix $J_{n}^{0, \lambda}$, hence $Q_{n}=P_{n}^{0, \lambda}$. Now, introduce a new sequence $\left(R_{m}\right)_{m} \equiv\left(R_{m}(\cdot, \mu, \lambda)\right)_{n}$ by

$$
R_{m}(x):=P_{m}^{\mu}(x)-\lambda P_{m-1}^{\mu}(x), \quad m=0,1,2, \cdots .
$$

Since R_{n} is defined from the sequence $\left(P_{m}^{\mu}\right)_{m}$ by the same way as Q_{n} was defined from $\left(P_{m}\right)_{m}$, we have that the zeros of R_{n} and P_{n}^{μ} must interlace and

$$
R_{n}(x)=\left|\begin{array}{cccccc}
x-\beta_{0}-\mu & 1 & 0 & \ldots & 0 & 0 \\
\gamma_{1} & x-\beta_{1} & 1 & \ldots & 0 & 0 \\
0 & \gamma_{2} & x-\beta_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & x-\beta_{n-2} & 1 \\
0 & 0 & 0 & \ldots & \gamma_{n-1} & x-\beta_{n-1}-\lambda
\end{array}\right|
$$

so that R_{n} is the (monic) characteristic polynomial of $J_{n}^{\mu, \lambda}$, i.e., $R_{n}=P_{n}^{\mu, \lambda}$. Hence the eigenvalues of $J_{n}^{\mu, \lambda}$ and $J_{n}^{\mu, 0}$ interlace, which proves (iii). Finally, (iv) is an immediate consequence of (ii) and (iii).

Theorem 3.2 Let J_{m} be the tridiagonal k-Toeplitz matrix (2.1) whose entries $\left(\beta_{s}\right)_{s}$ and $\left(\gamma_{s}\right)_{s}$ are k-periodic sequences fulfilling (2.2). Let Σ_{k} be the set defined in (2.3). Then, for every $n=1,2, \cdots$ and each $j=0,1, \cdots, k-1$, the following properties hold:
(i) There exists at most two eigenvalues of the perturbed matrix $J_{n k+j-1}^{\mu, \lambda}$ out of the convex hull of Σ_{k}.
(ii) There exists at most $N_{j}+2$ eigenvalues of $J_{n k+j-1}^{\mu, \lambda}$ in between two consecutive intervals I_{ℓ} and $I_{\ell+1}(\ell=1, \cdots, k-1)$, where N_{j} is given by (2.4).
(iii) There are at most $(k-1) N_{j}+2 k$ eigenvalues of the perturbed matrix $J_{n k+j-1}^{\mu, \lambda}$ out of the set Σ_{k}.

Proof. Statement (i) follows from Theorem 2.1-(iii) and Proposition 3.1-(iv). Statement (iii) is an immediate consequence of (i) and (ii). To prove (ii) we notice first that, by Proposition 3.1-(ii) and Theorem 2.1-(iii), in between two consecutive intervals I_{ℓ} and $I_{\ell+1}(\ell=1, \cdots, k-1)$ there exists at most $N_{j}+1$ eigenvalues of the perturbed matrix $J_{k n+j-1}^{\mu, 0}$. (In Figure 3 an illustrative situation is presented.) Thus using Proposition 3.1-(iii) it follows that in between I_{ℓ}

Figure 3: The typical distribution of the eigenvalues of the matrices $J_{k n-1}, J_{n k-1}^{\mu, 0}$, and $J_{n k-1}^{\mu, \lambda}$ (upper picture) and $J_{k n+j-1}, J_{n k+j-1}^{\mu, 0}$, and $J_{n k+j-1}^{\mu, \lambda}$ (lower picture).
and $I_{\ell+1}$ there are at most $N_{j}+2$ eigenvalues of the perturbed matrix $J_{k n+j-1}^{\mu, \lambda}$.
The next proposition gives a bound for the distance between two consecutive eigenvalues of $J_{k n+k-1}$ inside each interval $I_{\ell}(\ell=1, \ldots, k)$, assuming that all these intervals are disjoint.

Theorem 3.3 Assume the conditions of Theorem 2.1 as well as the conditions $\pi_{k}\left(\xi_{i}\right) \neq \pm \alpha$ for all $i=1, \cdots, k-1$. Let $z_{\ell, n, 1}<z_{\ell, n, 2}<\cdots<z_{\ell, n, n}$ be the n eigenvalues of $J_{k n+k-1}$ that lie in the interior of the interval $I_{\ell}(\ell=1,2, \cdots k)$. Then

$$
\begin{equation*}
\left|z_{\ell, n, \nu+1}-z_{\ell, n, \nu}\right| \leq \frac{\varrho_{\ell}}{n+1}, \quad \varrho_{\ell}:=\frac{\alpha \pi}{\min _{x \in I_{\ell}}\left|\pi_{k}^{\prime}(x)\right|} \tag{3.2}
\end{equation*}
$$

for all $\ell=1,2, \cdots, k$ and $\nu=1,2, \cdots, n-1$. Moreover, the interlacing property

$$
\begin{equation*}
z_{\ell, n, \nu}<z_{\ell, n-1, \nu}<z_{\ell, n, \nu+1}<z_{\ell, n-1, \nu+1}<z_{\ell, n, \nu+2} \tag{3.3}
\end{equation*}
$$

holds for all $\ell=1,2, \cdots, k, \nu=1,2, \cdots, n-2$, and $n \geq 3$.
Proof. According to (2.6) the eigenvalues of $J_{n k+k-1}$ inside the interior of Σ_{k} are the $k n$ roots of the equations

$$
\pi_{k}(x)=y_{n, \nu}:=\alpha \cos \frac{\nu \pi}{n+1} \quad(\nu=1,2, \cdots, n)
$$

Notice that for each fixed ν this equation has k roots which are distributed over the k intervals I_{ℓ} in such a way that there is exactly one root in each I_{ℓ}. By the mean value Theorem we know that for all real numbers a and b we may write $\pi_{k}(a)-\pi_{k}(b)=\pi_{k}^{\prime}(\xi)(a-b)$ for some ξ such that $a<\xi<b$. Hence taking $a=z_{\ell, n, \nu+1}$ and $b=z_{\ell, n, \nu}$ we deduce

$$
\left|z_{\ell, n, \nu+1}-z_{\ell, n, \nu}\right| \leq \frac{\left|y_{n, \nu+1}-y_{n, \nu}\right|}{\min _{x \in I_{\ell}}\left|\pi_{k}^{\prime}(x)\right|} \leq \frac{1}{\min _{x \in I_{\ell}}\left|\pi_{k}^{\prime}(x)\right|} \frac{\alpha \pi}{n+1}=\frac{\varrho_{\ell}}{n+1}
$$

Let us point out that π_{k} is monotone in each interval $I_{\ell}(\ell=1, \cdots, k)$. This fact together with the hypothesis $\pi_{k}\left(\xi_{i}\right) \neq \pm \alpha$ for every $i=1, \cdots, k-1$ implies $\pi_{k}\left(\xi_{i}\right) \notin[-\alpha, \alpha]$ for all $i=1, \cdots, k-1$, hence $\pi_{k}^{\prime}(x) \neq 0$ for all $x \in I_{\ell}$, $\ell=1, \cdots, k$.

Finally, (3.3) follows from (2.6), taking into account the interlacing property of the zeros of the Chebyshev polynomials $U_{n}(x)$, as well as the monotonicity of the function π_{k} in I_{ℓ}, for every $\ell=1, \cdots, k$.

Remark 3.4 It is clear that every ϱ_{ℓ} in (3.2) may be replaced by a uniform upper bound (independent of ℓ), say, ϱ. For instance,

$$
\begin{equation*}
\varrho_{\ell} \leq \varrho:=\alpha \pi / \min _{x \in \Sigma_{k}}\left|\pi_{k}^{\prime}(x)\right|, \quad \ell=1, \cdots, k . \tag{3.4}
\end{equation*}
$$

Remark 3.5 For the case $k=1$ and $k=2$ the above estimates can be easily sharpenned. In fact from (2.8) and after some straigthforward computations using the mean value Theorem, one can obtain the following results.

1. The (1-)Toeplitz matrix J_{n}. Let $\beta_{s}=a$ and $\gamma_{s}=b^{2}, a, b \in \mathbb{R}, b>0$ for all s. Then all the eigenvalues $z_{n, \nu}:=z_{1, n, \nu}$ of J_{n} lie inside the interval $I_{1}=[a-2 b, a+2 b]$, and

$$
\left|z_{n, \nu+1}-z_{n, \nu}\right| \leq \frac{2 b \pi}{n+1}, \quad \nu=1, \ldots, n-1
$$

2. The 2 -Toeplitz matrix $J_{2 n+1}$. Let

$$
\beta_{s}=\left\{\begin{array}{ll}
a & \text { if } s \text { is even } \\
b & \text { if } s \text { is odd }
\end{array} \quad \text { and } \quad \gamma_{s}= \begin{cases}c^{2} & \text { if } s \text { is even } \\
d^{2} & \text { if } s \text { is odd }\end{cases}\right.
$$

for all s, with $a, b \in \mathbb{R}, c, d>0$ and $|a-b|+|c-d| \neq 0$, and let $r=\sqrt{|c-d|^{2}+|(a-b) / 2|^{2}}$ and $s=\sqrt{|c+d|^{2}+|(a-b) / 2|^{2}}$. Then, there are n eigenvalues $z_{1, n, \nu}$ inside the interval $I_{1}=\left[\frac{a+b}{2}-s, \frac{a+b}{2}-r\right]$, n eigenvalues $z_{2, n, \nu}$ inside $I_{2}=\left[\frac{a+b}{2}+r, \frac{a+b}{2}+s\right]$, and the remaining eigenvalue, a, lies between these two intervals. Furthermore, the distance between two consecutive eigenvalues inside the intervals I_{1} or I_{2} satisfy the inequality

$$
\left|z_{\ell, n, \nu+1}-z_{\ell, n, \nu}\right| \leq \frac{c d}{\sqrt{\left(\frac{a-b}{2}\right)^{2}+(c-d)^{2}}} \frac{\pi}{n+1}
$$

for all $\ell=1,2$ and $\nu=1,2, \ldots, n-1$.
From Theorem 3.3 and Theorem 2.1-(iii) we can obtain a bound similar to (3.2) for the distance of the eigenvalues of the matrices $J_{n k+j-1}(j=1, \cdots, k-1)$ inside Σ_{k}. Denote by $z_{\ell, n, 1}^{(j)}<\cdots<z_{\ell, n, n_{j, n}(\ell)}^{(j)}$ the eigenvalues of $J_{k n+j-1}$ inside the interval $I_{\ell}(\ell=1,2, \cdots, k)$. Notice that, according to Theorem 2.1-(iii), the numbers N_{j}, L_{j} and M_{j} satisfy the uniform bounds

$$
1 \leq N_{j} \leq\lfloor k / 2\rfloor+1, \quad 0 \leq L_{j}, M_{j} \leq\lfloor(k+1) / 2\rfloor
$$

for all $j=0,1, \cdots, k$, hence from (2.5) one sees that the number $n_{j, n}(\ell)$ of eigenvalues of $J_{n k+j-1}$ inside I_{ℓ} satisfies

$$
n-\lfloor(k+1) / 2\rfloor \leq n-L_{j} \leq n_{j, n}(\ell) \leq n+M_{j}-1 \leq n+\lfloor(k-1) / 2\rfloor
$$

for all $j=0,1, \cdots, k$ and $\ell=1, \cdots, k$. This implies

$$
\left|n_{j, n}(\ell)-n\right| \leq \max \left\{L_{j}, M_{j}-1\right\} \leq\lfloor(k+1) / 2\rfloor
$$

for all $j=0,1, \cdots, k$ and $\ell=1, \cdots, k$.
Theorem 3.6 Under the conditions of Theorem 3.3,

$$
\begin{equation*}
\left|z_{\ell, n, \nu}^{(j)}-z_{\ell, n, \nu}\right| \leq \frac{j \varrho_{\ell}}{n+1}<\frac{k \varrho}{n+1} \tag{3.5}
\end{equation*}
$$

for all $j=0,1, \cdots, k-1, \ell=1, \cdots, k$, and $\nu=j+1, \cdots, \min \left\{n_{j, n}(\ell), n-1\right\}$, where ϱ is given by (3.4).

Proof. It follows from Theorem 3.3 and taking into account the interlacing properties fulfilled by the eigenvalues of the matrices $J_{n k-1}, J_{n k}, \cdots, J_{n k+j-1}$. In fact, assume first $j=1$. By the interlacing property between the eigenvalues of $J_{n k-1}$ and $J_{n k}$, it follows that

$$
\left|z_{\ell, n, \nu}^{(1)}-z_{\ell, n, \nu}\right| \leq\left|z_{\ell, n, \nu}-z_{\ell, n, \nu+1}\right| \leq \frac{\rho_{\ell}}{n+1}
$$

for all $\nu=2,3, \cdots, n-1$, the last inequality being justified by (3.2), and so the desired result follows for $j=1$. In a similar way, for $j=2$, by the interlacing properties between the eigenvalues of $J_{n k-1}, J_{n k}$ and $J_{n k+1}$, we get

$$
\begin{aligned}
& \left|z_{\ell, n, \nu}^{(2)}-z_{\ell, n, \nu}\right| \\
& \quad \leq\left|z_{\ell, n, \nu}^{(1)}-z_{\ell, n, \nu}\right|+\left|z_{\ell, n, \nu+1}^{(1)}-z_{\ell, n, \nu}^{(1)}\right|+\left|z_{\ell, n, \nu+1}^{(1)}-z_{\ell, n, \nu+2}\right| \\
& \quad=\left|z_{\ell, n, \nu}-z_{\ell, n, \nu+2}\right|=\left|z_{\ell, n, \nu}-z_{\ell, n, \nu+1}\right|+\left|z_{\ell, n, \nu+1}-z_{\ell, n, \nu+2}\right| \leq \frac{2 \rho_{\ell}}{n+1}
\end{aligned}
$$

for all $\nu=3,4, \cdots, \min \left\{n_{2, n}(\ell), n-1\right\}$. In a similar way, we get the desired result for any j.

Theorem 3.7 Under the conditions of Theorem 3.3, let

$$
z_{\ell, n, 1}^{(j, \mu, \lambda)}<\cdots<z_{\ell, n, n_{j, n}^{\prime}}^{(j, \mu, \lambda)}, \quad j=0,1, \cdots, k-1
$$

be the eigenvalues of $J_{k n+j-1}^{\mu, \lambda}$ inside the interior of the interval $I_{\ell}(\ell=1, \cdots, k)$. Then the following bounds

$$
\left|z_{\ell, n, \nu}^{(j, \mu, \lambda)}-z_{\ell, n, \nu}\right| \leq \frac{(5 j+2) \varrho_{\ell}}{n+1} \leq \frac{(5 k-3) \varrho}{n+1}
$$

hold for all $\nu=j+2, \cdots, \min \left\{n_{j, n}(\ell), n_{j, n}^{\prime}(\ell), n-1\right\}-1$.
Proof. From (3.2) and (3.5) and using the triangle inequality we see that the eigenvalues $z_{\ell, \nu}^{(j)}$ of the matrices $J_{n k+j-1}$ that lies inside the interval I_{ℓ} satisfy

$$
\begin{aligned}
\left|z_{\ell, n, \nu}^{(j)}-z_{\ell, n, \nu+1}^{(j)}\right| & \leq\left|z_{\ell, n, \nu}^{(j)}-z_{\ell, n, \nu}\right|+\left|z_{\ell, n, \nu+1}^{(j)}-z_{\ell, n, \nu+1}\right|+\left|z_{\ell, n, \nu+1}-z_{\ell, n, \nu}\right| \\
& \leq \frac{(2 j+1) \varrho_{\ell}}{n+1}
\end{aligned}
$$

for all $\nu=j+1, \cdots, \min \left\{n_{j, n}(\ell), n-1\right\}$ and $\ell=1, \cdots, k$. On the other hand, by (ii) and (iii) in Proposition 3.1, for all the eigenvalues $z_{\ell, n, \nu}^{(j, \mu, \lambda)}$ and $z_{\ell, n, \nu}^{(j)}$ of the matrices $J_{n k+j-1}^{(j, \mu, \lambda)}$ and $J_{n k+j-1}$ that are inside the interior of I_{ℓ} we can write

$$
\left|z_{\ell, n, \nu}^{(j, \mu, \lambda)}-z_{\ell, n, \nu}^{(j)}\right| \leq 2 \max _{\nu}\left|z_{\ell, n, \nu}^{(j)}-z_{\ell, n, \nu+1}^{(j)}\right| \leq \frac{2(2 j+1) \varrho_{\ell}}{n+1}
$$

for all $\nu=j+2, \cdots, \min \left\{n_{j, n}(\ell), n_{j, n}^{\prime}(\ell), n-1\right\}-1$ and $\ell=1, \cdots, k$. As a consequence, for all the eigenvalues $z_{\ell, n, \nu}^{(j, \mu, \lambda)}$ and $z_{\ell, n, \nu}$ of the matrices $J_{n k+j-1}^{(j, \mu, \lambda)}$ and $J_{n k-1}$ that are inside I_{ℓ} one finds

$$
\left|z_{\ell, n, \nu}^{(j, \mu, \lambda)}-z_{\ell, n, \nu}\right| \leq\left|z_{\ell, n, \nu}^{(j, \mu, \lambda)}-z_{\ell, n, \nu}^{(j)}\right|+\left|z_{\ell, n, \nu}^{(j)}-z_{\ell, n, \nu}\right| \leq \frac{(5 j+2) \varrho_{\ell}}{n+1}
$$

for all $\nu=j+1, \ldots, \min \left\{n_{j, n}(\ell), n_{j, n}^{\prime}(\ell), n-1\right\}-1$ and $\ell=1, \cdots, k$.
Remark 3.8 From Theorem 3.7 we see that for large n, up to a number independent of n, the eigenvalues of the matrix $J_{n k+j-1}^{\mu, \lambda}$ may be approximated by the eigenvalues of $J_{n k-1}$ Henceforth, for large n most of the eigenvalues of $J_{n k+j-1}^{\mu, \lambda}$ are close enough to the solutions of the equation (2.8).

4 Examples and numerical experiments

4.1 Perturbation of a tridiagonal 3-Toeplitz matrix

Let us consider matrices with the following structure

$$
H=\left(\begin{array}{cc}
a_{1} & 0 \tag{4.1}\\
0 & A_{N}
\end{array}\right),
$$

where A_{N} is a tridiagonal matrix. The eigenproblem

$$
\left(\begin{array}{cc}
a_{1} & 0 \\
0 & A_{N}
\end{array}\right)\binom{x_{1}}{X}=\lambda\binom{x_{1}}{X},
$$

always has the eigenvalue $\lambda=a_{1}$ and the eigenvector $(1,0, \ldots, 0)^{T}$. To compute the remaining eigenvectors, $(0, X)^{T}$, and the corresponding eigenvalues, λ, we need to solve the eigenproblem

$$
\begin{equation*}
X \neq 0, \quad A_{N} X=\lambda X \tag{4.2}
\end{equation*}
$$

Here we will concentrate our attention in the case when A_{N} is a perturbed tridiagonal k-Toeplitz matrix. This structure is motivated by certain physical models (cf. e.g. [2]). An example of such a matrix is

$$
H_{N}^{(3)}=\left(\begin{array}{cc}
a_{1} & 0 \tag{4.3}\\
0 & A_{N}
\end{array}\right),
$$

where $N=3 n+2$ and A_{N} is

$$
A_{3 n+2}=\left(\begin{array}{ccccccccccccc}
a_{2} & b_{2} & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \tag{4.4}\\
b_{2} & a_{3} & b_{3} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & b_{3} & a_{4} & b_{4} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & b_{4} & a_{5} & b_{2} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & b_{2} & a_{3} & b_{3} & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & b_{3} & a_{4} & b_{4} & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & b_{4} & a_{5} & b_{2} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{2} & a_{3} & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & b_{2} & a_{3} & b_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & b_{3} & a_{4} & b_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & b_{4} & a_{5} & b_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & b_{2} & a_{2}
\end{array}\right),
$$

so that A_{N} is a perturbed tridiagonal 3-Toeplitz matrix. As pointed out before, $H_{N}^{(3)}$ has the eigenvalue $\lambda_{0}=a_{1}$ corresponding to the eigenvector $(1,0, \ldots, 0)^{T}$. To obtain the other eigenvalues we will suppose that n is large enough and we change the first entry of the diagonal of A_{N} by a_{5} and the last entry by a_{3}, hence we obtain a (non-perturbed) tridiagonal 3-Toeplitz matrix, say, \widetilde{A}_{N}. According to the results in [22], or from (3.10)-(3.12) in [1], the eigenvalues λ_{ℓ} $(\ell=1,2, \ldots, 3 n+2)$ of $\widetilde{A}_{N} \equiv \widetilde{A}_{3 n+2}$ are

$$
\lambda_{1}=\frac{a_{3}+a_{5}-\sqrt{\left(a_{3}-a_{5}\right)^{2}+4 b_{2}^{2}}}{2}, \lambda_{2}=\frac{a_{3}+a_{5}+\sqrt{\left(a_{3}-a_{5}\right)^{2}+4 b_{2}^{2}}}{2}
$$

and the $3 n$ solutions of the cubic equations

$$
\begin{aligned}
x^{3}-\left(a_{3}+\right. & \left.a_{4}+a_{5}\right) x^{2}+\left(a_{3} a_{5}+a_{4} a_{5}+a_{3} a_{4}-b_{2}^{2}-b_{3}^{2}-b_{4}^{2}\right) x \\
& +a_{4} b_{2}^{2}+a_{5} b_{3}^{2}+a_{3} b_{4}^{2}-a_{3} a_{4} a_{5}+2 b_{2} b_{3} b_{4} \cos \frac{k \pi}{n+1}=0
\end{aligned}
$$

for $k=1,2, \ldots, n$. The corresponding eigenvectors are

$$
\mathbf{v}_{\ell}=\left(0, S_{0}\left(\lambda_{\ell}\right), S_{1}\left(\lambda_{\ell}\right), \ldots, S_{3 n+1}\left(\lambda_{\ell}\right)\right)^{T}, \quad \ell=1,2, \ldots, 3 n+2
$$

where $\left(S_{\nu}\right)_{\nu}$ is a sequence of orthonormal polynomials, defined explicitly by

$$
\begin{gathered}
S_{3 k}(\lambda)=U_{k}\left(\varphi_{3}(\lambda)\right)+\frac{b_{4}}{b_{2} b_{3}}\left(\lambda-a_{3}\right) U_{k-1}\left(\varphi_{3}(\lambda)\right) \\
S_{3 k+1}(\lambda)=\frac{\left(\lambda-a_{5}\right)}{b_{2}} U_{k}\left(\varphi_{3}(\lambda)\right)+\frac{b_{4}}{b_{3}} U_{k-1}\left(\varphi_{3}(\lambda)\right) \\
S_{3 k+2}(\lambda)=\frac{\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)}{b_{2} b_{3}} U_{k}\left(\varphi_{3}(\lambda)\right)
\end{gathered}
$$

for all $k=0,1,2, \ldots$, being

$$
\begin{aligned}
\varphi_{3}(x):= & \frac{1}{2 b_{2} b_{3} b_{4}}\left\{\left(x-a_{3}\right)\left(x-a_{4}\right)\left(x-a_{5}\right)-\left(b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)\left(x-a_{4}\right)\right. \\
& \left.+\left(a_{5}-a_{4}\right) b_{3}^{2}+\left(a_{3}-a_{4}\right) b_{4}^{2}\right\}
\end{aligned}
$$

and U_{k} is the Chebyshev polynomial of the second kind of degree k, defined in (2.7). Notice that, according to Theorem 3.7, the eigenvalues of A_{N} and \widetilde{A}_{N} are close enough for N large.

4.2 Some numerical experiments

To conclude this section let us briefly discuss some numerical results. We have computed the eigenvalues corresponding to the matrices A_{N} and \tilde{A}_{N} by finding an accurate agreement between the numerical and the analytical results. As expected, the numerical results confirm that the interlacing property (iv) in Proposition 3.1 holds. As an example, consider the perturbed tridiagonal 1-Toeplitz matrix

$$
A_{N}=\left(\begin{array}{cccccc}
a_{2} & b_{2} & 0 & \cdots & 0 & 0 \tag{4.5}\\
b_{2} & a_{3} & b_{2} & \cdots & 0 & 0 \\
0 & b_{2} & a_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{3} & b_{2} \\
0 & 0 & 0 & \cdots & b_{2} & a_{4}
\end{array}\right)
$$

In Figure 4 we show the interlacing property between the $12-$ th and $15-$ th eigenvalues $\lambda_{A_{N}}$ (with stars) and $\lambda_{\tilde{A}_{N}}$ (open circles) of the matrices A_{N} and \tilde{A}_{N} (resp.) where we have choosing $b_{2}=1 / 2, a_{1}=9 / 2, a_{2}=5 / 2, a_{3}=4$, and $N=21$. Notice that between the $13-$ th and $14-$ th eigenvalues of the perturbed matrix A_{N} there exist two eigenvalues of the matrix \tilde{A}_{N} as it is stated in in Proposition 3.1(iv).

Figure 4: The interlacing property of the eigenvalues of A_{N} and \tilde{A}_{N}.
Next, we will include some numerical simulations for perturbed tridiagonal k-Toeplitz matrices, for several choices of k. We start with two examples with $k=3$. In this case there are three disjoint intervals where almost all the eigenvalues lie, and only few of them are out of these intervals (see Fig. 5). The
left panel is an example for the case of a matrix A_{N} of the form (4.4) where $a_{2}=4, a_{3}=2, a_{4}=6, a_{5}=1, b_{2}=2, b_{3}=3$, and $b_{4}=4$, and in the right panel we may see the eigenvalues distribution of the same matrix but now when the last diagonal element is $a_{4}=9.75$ (the first element remains the same, $a_{2}=2$). Many other examples we have simulated are in accordance with Theorem 3.7.

Figure 5: The eigenvalues λ_{A} (with stars) and $\lambda_{\tilde{A}}$ (using open circles) for tridiagonal 3 -Toeplitz matrices when $n=50, N=3 n+2$. The values of the remaining parameters are described in the text.

Finally, in Fig. 6 a plot of a typical example of 5 and 7 -Toeplitz matrices is considered. In the first case the diagonal is a repetition of the elements $[1,5,3,3,2]$ and the supper and subdiagonal are [1, 5, 4, 4, 5], respectively. As before, using stars we plot the eigenvalues of the perturbed matrix and by circles the eigenvalues of the unperturbed ones. As we can see in Fig. 6 (left panel) there are 5 disjoint intervals. In the second case we have a 7 -Toeplitz matrix obtained by repeating the elements $[1,5,3,3,3,2,1]$ and $[1,5,4,4,5,2,1]$ in the diagonal and in the supper and subdiagonal, respectively, and the perturbation parameters are $\mu=2$ and $\lambda=1.5$.

Figure 6: The eigenvalues λ_{A} (with stars) and $\lambda_{\tilde{A}}$ (using open circles). Parameters of the numerical simulations are: in left panel, $k=5, n=30, N=5 n+3$; in right panel, $k=7, n=20, N=7 n+3$. The parameters a_{i} and b_{i} are defined in the text.

Programs: The numerical simulations presented here have been obtained by using the commercial program Matlab. The source code can be obtained by request via e-mail to niurka@euler.us.es or ran@us.es.

Acknowledgements: We thanks Professors F. Marcellán and A. Sánchez for stimulating discussions, as well as to M. N. de Jesus, for a careful reading of the manuscript. The authors were partially supported by DGES grants MTM2009-12740-C03 (RAN, JP), and FIS2008-02380 (NRQ); PAI grant FQM-0262 (RAN)
and FQM-0207 (NRQ); Junta de Andalucía grants P09-FQM-4643 (RAN,NRQ); and CMUC/FCT and PTDC/MAT/098060/2008 (FCT) research project (JP).

References

[1] R. Álvarez-Nodarse, J. Petronilho, and N.R. Quintero, On some tridiagonal k-Toeplitz matrices: algebraic and analytical aspects. Applications, J. Comput. Appl. Math. 184 (2005) 518-537.
[2] R. Álvarez-Nodarse, N.R. Quintero, and E. Zamora Sillero, On a chain of quantum oscillators. (In preparation.)
[3] H. Bavinck, On the zeros of certain linear combinations of Chebyshev polynomials, J. Comput. Appl. Math. 65 (1995) 19-26.
[4] S.N. Chandler-Wilde, M.J.C. Gover, On the application of a generalization of Toeplitz matrices to the numerical solution of integral equations with weakly singular convolution kernels, IMA J. Numer. Anal. 9 (1989) 525-544.
[5] T. S. Chihara, On co-recursive orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957) 899-905.
[6] T. S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
[7] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics Vol. 2. Wiley-Interscience, Canada, 1977.
[8] P. Deift, Orthogonal Polynomials and Random Matrices: A RiemannHilbert Approach, Courant Lecture Notes in Mathematics, 3. New York University, Courant Institute of Mathematical Sciences, N.Y., AMS, Providence, RI, 1999.
[9] P. Deift, T. Nanda, and C. Tomei, Ordinary differential equations and the symmetric eigenvalue problem, SIAM J. Numer. Anal. 20 (1983) 1-22.
[10] L. Elsner, R.M. Redheffer, Remarks on band matrices, Numer. Math. 10 (1967) 153-161.
[11] P. Deift, L.C. Li, C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal. 64 (1985) 358-402.
[12] D. Fasino, S. Serra Capizzano, From Toeplitz matrix sequence to zero distribution of orthogonal polynomials, Contemp. Math. 323 (2003) 329-339.
[13] C. M. da Fonseca and J. Petronilho, Explicit inverse of a tridiagonal k-Toeplitz matrix, Numer. Math. 100(3) (2005) 457-482.
[14] Ya.L. Geronimus, Sur quelques équations aux différences finies et les systèmes correspondants des polynômes orthogonaux, Comptes Rendus (Doklady) de l'Academ. Sci. l'URSS 29 (1940) 536-538.
[15] M. J. C. Gover, The Eigenproblem of a Tridiagonal 2-Toeplitz Matrix. Linear Algebra Appl., 197-198 (1994) 63-78.
[16] M.J.C. Gover, S. Barnett, D.C. Hothersall, Sound propagation over inhomogeneous boundaries. In: Internoise 86, Cambridge, MA (1986) 377-382.
[17] R. Haydock, Recursive Solution of Schrödinger's Equation, Solid State Physics 35 (1980) 215-294.
[18] M. N. de Jesus and J. Petronilho, On orthogonal polynomials obtained via polynomial mappings, J. Approx. Theory 162 (2010) 2243-2277.
[19] Y. Kato, Mixed Periodic Jacobi continued fractions, Nagoya Math. J. 104 (1986) 129148.
[20] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matrices, Electron. J. Linear Algebra 15 (2006) 115133.
[21] F. Marcellán and J. Petronilho, Eigenproblems for tridiagonal 2-Toeplitz matrices and quadratic polynomial mappings, Linear Algebra Appl. 260 (1997) 169-208.
[22] F. Marcellán and J. Petronilho, Orthogonal polynomials and cubic polynomial mappings I, Comm. Anal. Theory Contin. Fractions, Vol. VIII (2000) 88-116.
[23] A. Máté, P. Nevai, and W. Van Assche, The supports of measures associated with orthogonal polynomials and the spectra of the related self-adjoint operators, Rocky Mountain J. Math. 21 (1991) 501-527.
[24] S. Serra Capizzano, Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations, Linear Algebra Appl. 366 (2003) 371-402.
[25] P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math. 37 (1976) 4581.
[26] P. van Moerbeke and D. Mumford, The spectrum of difference operators and algebraic curves, Acta Math. 143 (1979) 93154.
[27] A. R. Willms, Analytic results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. Appl. 30 (2008) 639-656.

Appendix A

Here we will deduce the solution of the eigenproblem for the matrix

$$
H_{N}^{(1)}=\left(\begin{array}{cc}
a_{1} & 0 \\
0 & A_{N}
\end{array}\right)
$$

where A_{N} is the perturbed 1 -Toeplitz matrix (4.5). Using (4.2) we have that one eigenvalue of $H_{N}^{(1)}$ is $\lambda_{0}=a_{1}$ and an associated eigenvector is $(1,0, \ldots, 0)^{T}$. In order to obtain the other eigenvalues, put $a_{2}=a_{3}+\lambda$ and $a_{4}=a_{3}+\mu$, and consider the tridiagonal 1 -Toeplitz matrix

$$
\widetilde{A}_{N}=\left(\begin{array}{cccccc}
a_{3} & b_{2} & 0 & \cdots & 0 & 0 \\
b_{2} & a_{3} & b_{2} & \cdots & 0 & 0 \\
0 & b_{2} & a_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{3} & b_{2} \\
0 & 0 & 0 & \cdots & b_{2} & a_{3}
\end{array}\right)
$$

It is well known (see e.g. [17]) that the eigenvalues of this matrix are

$$
\lambda_{k}=a_{3}+2 b_{2} \cos \left(\frac{k \pi}{N+1}\right), \quad k=1,2, \ldots, N
$$

and the corresponding eigenvectors are

$$
\mathbf{v}_{\ell}=\left(0, S_{0}\left(\lambda_{\ell}\right), S_{1}\left(\lambda_{\ell}\right), \ldots, S_{N-1}\left(\lambda_{\ell}\right)\right)^{T}, \quad \ell=1,2, \ldots, N
$$

where

$$
S_{k}(\lambda)=U_{k}\left(\frac{\lambda-a_{3}}{2 b_{2}}\right), \quad k=0,1,2, \ldots
$$

being U_{k} the Chebyshev polynomial of the second kind of degree k defined in (2.7). Hence, one sees that

$$
S_{k}\left(\lambda_{\ell}\right)=\frac{\sin \frac{(k+1) \ell \pi}{N+1}}{\sin \frac{\ell \pi}{N+1}}, \quad \ell=1,2, \ldots, N ; \quad k=0,1,2, \ldots,
$$

and so

$$
\mathbf{v}_{\ell}=\frac{1}{\sin \frac{\ell \pi}{N+1}}\left(0, \sin \frac{\ell \pi}{N+1}, \sin \frac{2 \ell \pi}{N+1}, \ldots, \sin \frac{N \ell \pi}{N+1}\right)^{T}, \quad \ell=1,2, \ldots, N
$$

Notice that, according to Theorem 3.7, for N large enough the eigenvalues of A_{N} are close enough to the eigenvalues of \widetilde{A}_{N}.

