ON THE PROPERTIES OF SPECIAL FUNCTIONS ON THE LINEAR-TYPE LATTICES

R. ÁLVAREZ-NODARSE AND J. L. CARDOSO

Abstract

We present a general theory for studying the difference analogues of special functions of hypergeometric type on the linear-type lattices, i.e., the solutions of the second order linear difference equation of hypergeometric type on a special kind of lattices: the linear type lattices. In particular, using the integral representation of the solutions we obtain several difference-recurrence relations for such functions. Finally, applications to q-classical polynomials are given.

2000 Mathematics Subject Classification 33D15, 33D45

1. Introduction

The study of the so-called q-special functions has known an increasing interest in the last years due its connection with several problems in mathematics and mathematicalphysics (see e.g. [3, 6, 8, 13, 17]). A systematic study starting from the second order linear difference equation that such functions satisfy was started by Nikiforov and Uvarov in 1983 and further developed by Atakishiyev and Suslov (for a very nice reviews see e.g. [7, 13, [16]). Of particular interest is the so-called q-classical polynomials (see e.g. [5]) introduced by Hahn in 1949 which are polynomials on the lattice q^{s}.

Our main aim in this paper is to present a constructive approach for generating recurrence relations and ladder-type operators for the difference analogues of special functions of hypergeometric type on the linear-type lattices. Here we will focus our attention on functions defined on the q-linear lattice (for the linear lattice $x(s)=s$ see [4] and references therein, and for the continuous case see e.g. [18]). Therefore we will complete the work started in [16] where few recurrence relations where obtained. In fact we will prove, by using the q-analoge of the technique introduced in [4] for the discrete case (uniform lattice), that the solutions (not only the polynomial ones) of the difference equation on the q-linear lattice $x(s)=c_{1} q^{s}+c_{2}$ satisfy a very general recurrent-difference relation from where several well known relations (such as the three-term recurrence relation and the ladder-type relations) follow.

The structure of the paper is as follows: In section 2 the needed results and notations from the q-special function theory are introduced. In sections 3 and 4 the general theorems for obtaining recurrences relations are presented. In section 5 the special case of classical q-polynomials are considered in details and some examples are worked out in details.

2. Some preliminar results

Here we collect the basic background [1, 13, 16] on q-hypergeometric functions needed in the rest of the work.

The hypergeometric functions on the non-uniform lattice $x(s)$ are the solutions of the second order linear difference equation of hypergeometric type on non-uniform lattices

$$
\begin{gather*}
\sigma(s) \frac{\Delta}{\Delta x\left(s-\frac{1}{2}\right)}\left[\frac{\nabla y(s)}{\nabla x(s)}\right]+\tau(s) \frac{\Delta y(s)}{\Delta x(s)}+\lambda y(s)=0, \tag{1}\\
\sigma(s)=\widetilde{\sigma}(x(s))-\frac{1}{2} \widetilde{\tau}(x(s)) \Delta x\left(s-\frac{1}{2}\right), \quad \tau(s)=\widetilde{\tau}(x(s)),
\end{gather*}
$$

[^0]where $\Delta y(s):=y(s+1)-y(s), \nabla y(s):=y(s)-y(s-1)$, are the forward and backward difference operators, respectively; $\widetilde{\sigma}(x(s))$ and $\widetilde{\tau}(x(s))$ are polynomials in $x(s)$ of degree at most 2 and 1 , respectively, and λ is a constant. Here we will deal with the linear and q-linear lattices, i.e., lattices of the form
\[

$$
\begin{equation*}
x(s)=c_{1} s+c_{2} \quad \text { or } \quad x(s)=c_{1}(q) q^{s}+c_{2}(q) \tag{2}
\end{equation*}
$$

\]

respectively, with $c_{1} \neq 0$ and $c_{1}(q) \neq 0$.
We will define the k-order difference derivative of a solution $y(s)$ of (11) by

$$
y^{(k)}(s):=\Delta^{(k)}[y(s)]=\frac{\Delta}{\Delta x_{k-1}(s)} \frac{\Delta}{\Delta x_{k-2}(s)} \ldots \frac{\Delta}{\Delta x(s)}[y(s)]
$$

where $x_{\nu}(s)=x\left(s+\frac{\nu}{2}\right)$. It is known 13 that $y^{(k)}(s)$ also satisfy a difference equation of the same type. Moreover, for the solutions of the difference equation (1) the following theorem holds

Theorem 2.1. [12, 16] The difference equation (1) has a particular solution of the form

$$
\begin{equation*}
y_{\nu}(z)=\frac{C_{\nu}}{\rho(z)} \sum_{s=a}^{b-1} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\nu+1)}} \tag{3}
\end{equation*}
$$

if the condition

$$
\left.\frac{\sigma(s) \rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu-1}(s)-x_{\nu-1}(z+1)\right]^{(\nu+1)}}\right|_{a} ^{b}=0
$$

is satisfied, and of the form

$$
\begin{equation*}
y_{\nu}(z)=\frac{C_{\nu}}{\rho(z)} \int_{C} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\nu+1)}} d s \tag{4}
\end{equation*}
$$

if the condition

$$
\begin{equation*}
\int_{C} \Delta_{s} \frac{\sigma(s) \rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu-1}(s)-x_{\nu-1}(z+1)\right]^{(\nu+1)}}=0 \tag{5}
\end{equation*}
$$

is satisfied. Here C is a contour in the complex plane, C_{ν} is a constant, $\rho(s)$ and $\rho_{\nu}(s)$ are the solution of the Pearson-type equations

$$
\begin{align*}
\frac{\rho(s+1)}{\rho(s)} & =\frac{\sigma(s)+\tau(s) \Delta x\left(s-\frac{1}{2}\right)}{\sigma(s+1)}=\frac{\phi(s)}{\sigma(s+1)} \tag{6}\\
\frac{\rho_{\nu}(s+1)}{\rho_{\nu}(s)} & =\frac{\sigma(s)+\tau_{\nu}(s) \Delta x_{\nu}\left(s-\frac{1}{2}\right)}{\sigma(s+1)}=\frac{\phi_{\nu}(s)}{\sigma(s+1)}
\end{align*}
$$

where

$$
\begin{equation*}
\tau_{\nu}(s)=\frac{\sigma(s+\nu)-\sigma(s)+\tau(s+\nu) \Delta x\left(s+\nu-\frac{1}{2}\right)}{\Delta x_{\nu-1}(s)} \tag{7}
\end{equation*}
$$

ν is the root of the equation

$$
\begin{equation*}
\lambda_{\nu}+[\nu]_{q}\left\{\alpha_{q}(\nu-1) \widetilde{\tau}^{\prime}+[\nu-1]_{q} \frac{\widetilde{\sigma}^{\prime \prime}}{2}\right\}=0 \tag{8}
\end{equation*}
$$

and $[\nu]_{q}$ and $\alpha_{q}(\nu)$ are the q-numbers

$$
\begin{equation*}
[\nu]_{q}=\frac{q^{\nu / 2}-q^{-\nu / 2}}{q^{1 / 2}-q^{-1 / 2}}, \quad \alpha_{q}(\nu)=\frac{q^{\nu / 2}+q^{-\nu / 2}}{2}, \quad \forall \nu \in \mathbb{C} \tag{9}
\end{equation*}
$$

respectively. The generalized powers $\left[x_{k}(s)-x_{k}(z)\right]^{(\nu)}$ are defined by

$$
\begin{equation*}
\left[x_{k}(s)-x_{k}(z)\right]^{(\nu)}=(q-1)^{\nu} c_{1}^{\nu} q^{\nu(k-\nu+1) / 2} q^{\nu z} \frac{\Gamma_{q}(s-z+\nu)}{\Gamma_{q}(s-z)}, \quad \nu \in \mathbb{R} \tag{10}
\end{equation*}
$$

for the q-linear (exponential) lattice $x(s)=c_{1} q^{s}+c_{2}$ and

$$
\left[x_{k}(s)-x_{k}(z)\right]^{(\nu)}=c_{1}^{\nu} \frac{\Gamma(s-z+\mu)}{\Gamma(s-z)}, \quad \nu \in \mathbb{R}
$$

for the linear lattice $x(s)=c_{1} s+c_{2}$, respectively. For the definitions of the Gamma and the q-Gamma functions see, for instance, 6].

Remark 2.2. For the special case when $\nu \in \mathbb{N}$, the generalized powers become

$$
\begin{aligned}
& {\left[x_{k}(s)-x_{k}(z)\right]^{(n)}=(-1)^{n} c_{1}^{n} q^{-n(n-1) / 2} q^{n(z+k / 2)}\left(q^{s-z} ; q\right)_{n},} \\
& {\left[x_{k}(s)-x_{k}(z)\right]^{(n)}=c_{1}^{n}(s-z)_{n},}
\end{aligned}
$$

for q-linear and linear lattices, respectively.
We will need the following straightforward proposition which proof we omit here (see e.g. [1, 16])

Proposition 2.3. Let μ and ν be complex numbers and m and k be positive integers with $m \geq k$. For the q-linear lattice $x(s)=c_{1} q^{s}+c_{2}$ we have
(1) $\frac{\left[x_{\mu}(s)-x_{\mu}(z)\right]^{(m)}}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(m)}}=q^{\frac{m(\mu-\nu)}{2}}$,
(2) $\frac{\left[x_{\mu}(s)-x_{\mu}(z)\right]^{(m)}}{\left[x_{\mu}(s)-x_{\mu}(z)\right]^{(k)}}=\left[x_{\mu}(s)-x_{\mu}(z-k)\right]^{(m-k)}$,
(3) $\frac{\left[x_{\mu}(s)-x_{\mu}(z)\right]^{(m)}}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(k)}}=q^{\frac{k(\mu-\nu)}{2}}\left[x_{\mu}(s)-x_{\mu}(z-k)\right]^{(m-k)}$,
(4) $\frac{\left[x_{\mu}(s)-x_{\mu}(z)\right]^{(m+1)}}{\left[x_{\mu-1}(s+1)-x_{\mu-1}(z)\right]^{(m)}}=x_{\mu-m}(s)-x_{\mu-m}(z)$,
(5) $\frac{\left[x_{\mu}(s)-x_{\mu}(z)\right]^{(m+1)}}{\left[x_{\mu-1}(s)-x_{\mu-1}(z)\right]^{(m)}}=x_{\mu-m}(s+m)-x_{\mu-m}(z)$.

To obtain the result for the linear lattice one only has to put in the above formulas $q=1$.

3. The general Recurrence relation in the linear-type lattices

In this section we will obtain several recurrence relations for the solutions (3) and (4) of the difference equation (11) in the linear-type lattices (21). Since the equation (11) is linear we can restrict ourselves to the canonical cases $x(s)=q^{s}$ and $x(s)=s$.

Let us define the functions ${ }^{11}$

$$
\begin{equation*}
\Phi_{\nu, \mu}(z)=\sum_{s=a}^{b-1} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\mu+1)}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{\nu, \mu}(z)=\int_{C} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\nu+1)}} d s \tag{12}
\end{equation*}
$$

Notice that the functions y_{ν} and the functions $\Phi_{\nu, \mu}$ are related by the formula

$$
\begin{equation*}
y_{\nu}(z)=\frac{C_{\nu}}{\rho(z)} \Phi_{\nu, \nu}(z) \tag{13}
\end{equation*}
$$

Lemma 3.1. For the functions $\Phi_{\nu, \mu}(z)$ the following relation holds

$$
\begin{equation*}
\nabla_{z} \Phi_{\nu, \mu}(z)=[\mu+1]_{q} \nabla x_{\nu-\mu}(z) \Phi_{\nu, \mu+1}(z) \tag{14}
\end{equation*}
$$

where $[t]_{q}$ denotes the symmetric q-numbers (9).

[^1]Proof. We will prove it for the functions (11). The other case is analogous. Using (10), one gets

$$
\begin{aligned}
& \nabla_{z} \Phi_{\nu, \mu}(z)=\sum_{s=a}^{b-1} \nabla_{z}\left(\frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\mu+1)}}\right) \\
& \quad=\sum_{s=a}^{b-1}\left(\frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\mu+1)}}-\frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z-1)\right]^{(\mu+1)}}\right) \\
& \quad=\sum_{s=a}^{b-1} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z-1)\right]^{(\mu)}}\left(\frac{1}{x_{\nu}(s)-x_{\nu}(z)}-\frac{x_{\nu}(s)-x_{\nu}(z-1-\mu)}{x_{\nu}(z)-x_{\nu}(z-1-\mu)}\right. \\
& \quad=\sum_{s=a}^{b-1} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z-1)\right]^{(\mu)}} \frac{x^{(z)}}{\left(x_{\nu}(s)-x_{\nu}(z)\right)\left(x_{\nu}(s)-x_{\nu}(z-1-\mu)\right)} \\
& \quad=\sum_{s=a}^{b-1} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]^{(\mu+2)}}\left(x_{\nu}(z)-x_{\nu}(z-1-\mu)\right)
\end{aligned}
$$

Since $x(s)-x(s-t)=[t]_{q} \nabla x\left(s-\frac{t-1}{2}\right)$ we then have

$$
\begin{aligned}
\nabla_{z} \Phi_{\nu, \mu}(z) & =\sum_{s=a}^{b-1} \frac{\rho_{\nu}(s) \nabla x_{\nu+1}(s)}{\left[x_{\nu}(s)-x_{\nu}(z)\right]}[\mu+1]_{q} \nabla x_{\nu}\left(z-\frac{\mu}{2}\right) \\
& =[\mu+1]_{q} \nabla x_{\nu-\mu}(z) \Phi_{\nu, \mu+1}(z)
\end{aligned}
$$

which is (14).
From (14) follows that

$$
\Delta_{z} \Phi_{\nu, \mu}(z)=[\mu+1]_{q} \Delta x_{\nu-\mu}(z) \Phi_{\nu, \mu+1}(z+1)
$$

Next we prove the following lemma that is the discrete analog of the Lemma in 14, page 14].
Lemma 3.2. . Let $x(z)$ be $x(z)=q^{z}$ or $x(z)=z$. Then, any three functions $\Phi_{\nu_{i}, \mu_{i}}(z)$, $i=1,2,3$, are connected by a linear relation

$$
\begin{equation*}
\sum_{i=1}^{3} A_{i}(z) \Phi_{\nu_{i}, \mu_{i}}(z)=0 \tag{15}
\end{equation*}
$$

with non-zero at the same time polynomial coefficients on $x(z), A_{i}(z)$, provided that the differences $\nu_{i}-\nu_{j}$ and $\mu_{i}-\mu_{j}, i, j=1,2,3$, are integers and that the following condition hold $\2

$$
\begin{equation*}
\left.\frac{x^{k}(s) \sigma(s) \rho_{\nu_{0}}(s)}{\left[x_{\nu_{0}-1}(s)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}}\right|_{s=a} ^{s=b}=0, \quad k=0,1,2, \ldots \tag{16}
\end{equation*}
$$

when the functions $\Phi_{\nu_{i}, \mu_{i}}$ are given by (11) and

$$
\begin{equation*}
\int_{C} \Delta_{s} \frac{x^{k}(s) \sigma(s) \rho_{\nu_{0}}(s) d s}{\left[x_{\nu_{0}-1}(s)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}}=0, \quad k=0,1,2, \ldots \tag{17}
\end{equation*}
$$

when $\Phi_{\nu_{i}, \mu_{i}}$ are given by (12). Here ν_{0} is the $\nu_{i}, i=1,2,3$, with the smallest real part and μ_{0} is the $\mu_{i}, i=1,2,3$, with the largest real part.
Proof. Since in [4] we have proved the case when $x(s)=s$ (the uniform lattice) we will restrict here to the case of the q-linear lattice $x(s)=c_{1} q^{s}+c_{2}$). Moreover, we will give the proof for the case of functions of the form (11), the other case is completely equivalent. Using the identity

$$
\nabla x_{\nu_{i}+1}(s)=q^{\frac{\nu_{i}-\nu_{0}}{2}} \nabla x_{\nu_{0}+1}(s)
$$

[^2]as well as (3) of Proposition [2.3, we have
\[

$$
\begin{aligned}
& \sum_{i=1}^{3} A_{i}(z) \Phi_{\nu_{i}, \mu_{i}}(z)=\sum_{i=1}^{3} A_{i}(z) \sum_{s=a}^{b-1} \frac{\rho_{\nu_{i}}(s) \nabla x_{\nu_{i}+1}(s)}{\left[x_{\nu_{i}}(s)-x_{\nu_{i}}(z)\right]^{\left(\mu_{i}+1\right)}} \\
& \quad=\sum_{s=a}^{b-1} \sum_{i=1}^{3} A_{i}(z) \frac{\rho_{\nu_{i}}(s) \nabla x_{\nu_{i}+1}(s)}{\left[x_{\nu_{i}}(s)-x_{\nu_{i}}(z)\right]^{\left(\mu_{i}+1\right)}}=\sum_{s=a}^{b-1} \frac{1}{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]^{\left(\mu_{0}+1\right)}} \times \\
&\left(\sum_{i=1}^{3} A_{i}(z) q^{\frac{\left(\mu_{i}+1\right)\left(\nu_{0}-\nu_{i}\right)}{2}}\left[x_{\nu_{0}}(s)-x_{\nu_{0}}\left(z-\mu_{i}-1\right)\right]^{\left(\mu_{0}-\mu_{i}\right)} \rho_{\nu_{i}}(s) \nabla{x_{\nu_{i}+1}}(s)\right) \\
& \quad=\sum_{s=a}^{b-1} \frac{\rho_{\nu_{0}}(s) \nabla x_{\nu_{0}+1}(s)}{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]^{\left(\mu_{0}+1\right)}} \times \\
&\left(\sum_{i=1}^{3} A_{i}(z) q^{\frac{\mu_{i}\left(\nu_{0}-\nu_{i}\right)}{2}}\left[x_{\nu_{0}}(s)-x_{\nu_{0}}\left(z-\mu_{i}-1\right)\right]^{\left(\mu_{0}-\mu_{i}\right)} \frac{\rho_{\nu_{i}}(s)}{\rho_{\nu_{0}}(s)}\right) .
\end{aligned}
$$
\]

Using the Pearson-type equation (6) we obtain

$$
\begin{equation*}
\rho_{\nu_{i}}(s)=\phi\left(s+\nu_{0}\right) \phi\left(s+\nu_{0}+1\right) \ldots \phi\left(s+\nu_{i}-1\right) \rho_{\nu_{0}}(s), \tag{18}
\end{equation*}
$$

so

$$
\sum_{i=1}^{3} A_{i}(z) \Phi_{\nu_{i}, \mu_{i}}(z)=\sum_{s=a}^{b-1} \frac{\rho_{\nu_{0}}(s) \nabla x_{\nu_{0}+1}(s)}{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]^{\left(\mu_{0}+1\right)}} \Pi(s)
$$

where

$$
\begin{gather*}
\Pi(s)=\sum_{i=1}^{3} A_{i}(z) q^{\frac{\mu_{i}\left(\nu_{0}-\nu_{i}\right)}{2}}\left[x_{\nu_{0}}(s)-x_{\nu_{0}}\left(z-\mu_{i}-1\right)\right]^{\left(\mu_{0}-\mu_{i}\right)} \times \tag{19}\\
\phi\left(s+\nu_{0}\right) \phi\left(s+\nu_{0}+1\right) \cdots \phi\left(s+\nu_{i}-1\right) .
\end{gather*}
$$

Let us show that there exists a polynomial $Q(s)$ in $x(s)$ (in general, $Q \equiv Q(z, s)$ is a function of z and s) such that

$$
\begin{align*}
\frac{\rho_{\nu_{0}}(s) \nabla x_{\nu_{0}+1}(s)}{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]^{\left(\mu_{0}+1\right)}} \Pi(s) & =\Delta\left[\frac{\rho_{\nu_{0}}(s-1)}{\left[x_{\nu_{0}-1}(s)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}} Q(s)\right] \\
& =\Delta\left[\frac{\sigma(s) \rho_{\nu_{0}}(s)}{\left.{\left[x_{\nu_{0}-1}(s)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}} Q(s)\right] .} . .\right. \tag{20}
\end{align*}
$$

If such polynomial exists, then, taking the sum in s from $s=a$ to $b-1$ and using the boundary conditions (16) we obtain (15).

To prove the existence of the polynomial $Q(s)$ in the variable $x(s)$ in (20) we write

$$
\begin{gathered}
\frac{\sigma(s+1) \rho_{\nu_{0}}(s+1)}{\left[x_{\nu_{0}-1}(s+1)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}} Q(s+1)-\frac{\sigma(s) \rho_{\nu_{0}}(s)}{\left[x_{\nu_{0}-1}(s)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}} Q(s)= \\
\frac{\rho_{\nu_{0}}(s)}{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]^{\left(\mu_{0}+1\right)}}\left[\sigma(s+1) \frac{\rho_{\nu_{0}}(s+1)}{\rho_{\nu_{0}}(s)} \frac{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]{ }^{\left(\mu_{0}+1\right)}}{\left[x_{\nu_{0}-1}(s+1)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}} Q(s+1)-\right. \\
\left.\sigma(s) \frac{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]}{\left.\left[x_{\nu_{0}-1}(1)-1\right)-x_{\nu_{0}-1}(z)\right]^{\left(\mu_{0}\right)}} Q(s)\right] .
\end{gathered}
$$

From (4) and (5) of Proposition (2.3, and using (6), the above expression becomes

$$
\begin{array}{r}
\frac{\rho_{\nu_{0}}(s)}{\left[x_{\nu_{0}}(s)-x_{\nu_{0}}(z)\right]^{\left(\mu_{0}+1\right)}}\left\{\phi_{\nu_{0}}(s)\left[x_{\nu_{0}-\mu_{0}}(s)-x_{\nu_{0}-\mu_{0}}(z)\right] Q(s+1)-\right. \\
\left.\sigma(s)\left[x_{\nu_{0}-\mu_{0}}\left(s+\mu_{0}\right)-x_{\nu_{0}-\mu_{0}}(z)\right] Q(s)\right\} .
\end{array}
$$

Thus

$$
\begin{align*}
& \left(\sigma(s)+\tau_{\nu_{0}}(s) \nabla x_{\nu_{0}+1}(s)\right)\left[x_{\nu_{0}-\mu_{0}}(s)-x_{\nu_{0}-\mu_{0}}(z)\right] Q(s+1)- \\
& \quad \sigma(s)\left[x_{\nu_{0}-\mu_{0}}\left(s+\mu_{0}\right)-x_{\nu_{0}-\mu_{0}}(z)\right] Q(s)=\nabla x_{\nu_{0}+1}(s) \Pi(s) \tag{21}
\end{align*}
$$

Since $\nabla x_{\nu_{0}+1}(s)$ is a polynomial of degree one in $x(s), x_{k}(s)$ and $\tau_{\nu_{0}}(s)$ are polynomials of degree at most one in $x(s)$, and $\sigma(s)$ is a polynomial of degree at most two in $x(s)$, we conclude that the degree of $Q(s)$ is, at least, two less than the degree of $\Pi(s)$, i.e., $\operatorname{deg} Q \geq \operatorname{deg} \Pi-2$. Moreover, equating the coefficients of the powers of $x(s)=q^{s}$ on the two sides of the above equation (21), we find a system of linear equations in the coefficients of $Q(s)$ and the coefficients $A_{i}(z)$ which have at least one unknown more then the number of equations. Notice that the coefficients of the unknowns are polynomials in q^{z}, so that after one coefficient is selected the remaining coefficients are rational functions of q^{z}, therefore after multiplying by the common denominator of the $A_{i}(z)$ we obtain the linear relation with polynomial coefficients on $x \equiv x(z)=q^{z}$. This completes the proof.

The above Lemma when $q \rightarrow 1$ and $x(s)=s$ leads to the corresponding result on the uniform lattice $x(s)$ 4].
3.1. Some representative examples. In the following examples, and for the sake of simplicity, we will use the notation

$$
\begin{equation*}
\sigma(s)=a q^{2 s}+b q^{s}+c, \tau(s)=d q^{s}+e, \phi_{\nu}(s)=\sigma(s)+\tau_{\nu-1}(s) \nabla x_{\nu}(s)=f q^{2 s}+g q^{s}+h \tag{22}
\end{equation*}
$$

Example 3.3. The following relation holds

$$
A_{1}(z) \Phi_{\nu, \nu-1}(z)+A_{2}(z) \Phi_{\nu, \nu}+A_{3}(z) \Phi_{\nu+1, \nu}(z)=0
$$

where the coefficients A_{1}, A_{2} and A_{3}, are polynomials in $x \equiv x(z)=q^{z}$, given by
$A_{1}(z)=-e q^{\frac{\nu}{2}}+\frac{b+e\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)}{a+d\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)}\left(d q^{\frac{\nu}{2}}+a[\nu]_{q}\right)+\left(d q^{\nu}+a[2 \nu]_{q}\right) q^{\frac{\nu}{2}+z}$,
$A_{2}(z)=\frac{c\left(d q^{\nu}+a[2 \nu]_{q}\right)}{a+d\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)}+\frac{b+e\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)}{q^{\frac{1}{2}}-q^{-\frac{1}{2}}}\left(q^{\nu}+\frac{a}{q^{\nu}\left(a+d\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right)}\right) q^{z}+\left(d q^{\nu}+a[2 \nu]_{q}\right) q^{2 z}$,
$A_{3}(z)=-\frac{d q^{\frac{\nu}{2}}+a[\nu]_{q}}{a+d\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)}$,
where a, b, c, d, and e, are the coefficients of σ and τ (22).

Proof. Using the notations of Lemma 3.2 we have $\nu_{1}=\nu, \nu_{2}=\nu, \nu_{3}=\nu+1, \mu_{1}=\nu-1$, $\mu_{2}=\nu$ and $\mu_{3}=\nu$, thus $\nu_{0}=\nu$ and $\mu_{0}=\nu$. By (19)
$\Pi(s)=A_{1}\left(q^{s+\frac{\nu}{2}}-q^{z-\frac{\nu}{2}}\right)+A_{2}+A_{3} q^{-\frac{\nu}{2}}\left[\left(a+d\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right) q^{2 \nu+2 s}+\left(b+e\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right) q^{\nu+s}+c\right]$.
On the other hand, from (21) and because $Q(s)=k$ is a constant -notice that $\operatorname{deg}(\Pi)=$ 2 - we have

$$
\begin{align*}
& \nabla x_{\nu_{0}+1}(s) \Pi(s)=k\left\{\left[\left(a+d\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right) q^{2 \nu+2 s}+\left(b+e\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)\right) q^{\nu+s}+c\right]\left(q^{s}-q^{z}\right)-\right. \\
&\left.\left(a q^{2 s}+b q^{s}+c\right)\left(q^{\nu+s}-q^{z}\right)\right\} \tag{24}
\end{align*}
$$

where k is an arbitrary constant. Introducing (23) in (24), using the identity

$$
\nabla x_{\nu_{0}+1}(s)=q^{\frac{\nu}{2}}\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) q^{s}
$$

and comparing the coefficients of the powers of $x(s)=q^{s}$ we get a linear system of three equations with four variables A_{1}, A_{2}, A_{3} and k. Choosing $k=1$ and solving the corresponding system we get, after some simplifications, the coefficients A_{1}, A_{2} and A_{3}.

In the next examples, since the technique is similar to the previous one we will omit the details.

Example 3.4. The following relation holds

$$
A_{1}(z) \Phi_{\nu, \nu}(z)+A_{2}(z) \Phi_{\nu, \nu+1}(z)+A_{3}(z) \Phi_{\nu+1, \nu+1}(z)=0
$$

where the coefficients A_{1}, A_{2} and A_{3}, are polynomials in $x \equiv x(z)=q^{z}$, given by

$$
\begin{aligned}
& A_{1}(z)=f\left(a-f q^{2 \nu}\right) q^{z}+a g q-f b q^{\nu+1} \\
& A_{2}(z)=q^{-\frac{\nu}{2}-1}\left(a-f q^{2 \nu}\right)\left(f q^{2 z}+g q^{z+1}+h q^{2}\right) \\
& A_{3}(z)=\sqrt{q}\left(a q-f q^{\nu}\right)
\end{aligned}
$$

where a, b, c, f, g and h, are the coefficients of σ and ϕ_{ν} (22).
Example 3.5. The following relation holds

$$
A_{1}(z) \Phi_{\nu-1, \nu-1}(z)+A_{2}(z) \Phi_{\nu, \nu-1}(z)+A_{3}(z) \Phi_{\nu, \nu}(z)=0
$$

where the coefficients A_{1}, A_{2} and A_{3}, are polynomials in $x \equiv x(z)=q^{z}$, given by

$$
\begin{aligned}
A_{1}(z)= & q^{-\frac{1}{2}-\nu}\left\{f q ^ { 2 z } \left[-a^{2} h q^{4}+a g b q^{\nu+4}-q^{2 \nu+2}\left(a g^{2} q-2 f a h+f b^{2}\right)\right.\right. \\
& \left.-f g b q^{3 \nu+1}\left(q^{2}-q-1\right)+f q^{4 \nu}\left(g^{2}(q-1) q-f h\right)\right]+ \\
& g q^{z+1}\left[-a^{2} h q^{5}+a q^{\nu+2}\left(g b q^{3}+f h q^{2}-f h\right)-q^{2 \nu+2}\left(\left(f a h+f g b+a g^{2}\right) q^{2}-\right.\right. \\
& \left.\left.f\left(2 a h-b^{2}+g b\right) q-f a h\right)+f q^{3 \nu}\left(q^{2}\left(g^{2} q-f h+g b-g^{2}\right)+f h\right)+f^{2} h q^{4 \nu}\left(q^{2}-q-1\right)\right] \\
& -a^{2} h^{2} q^{6}+a g h q^{\nu+5}(b q+g q-g)+f g h q^{3 \nu+4}(g q+b-g)-f^{2} h^{2} q^{4 \nu+2} \\
& \left.-h q^{2 \nu+3}\left(a g^{2} q^{3}+f g b q^{2}+f g^{2} q^{2}-2 f a h q+f b^{2} q-2 f g^{2} q-f g b+f g^{2}\right)\right\}, \\
A_{2}(z)= & \left(q^{-\frac{\nu}{2}}-q^{\frac{\nu}{2}}\right)\left(f q^{2 z}+g q^{z+1}+h q^{2}\right)\left(f q^{z}\left(f q^{2 \nu}-a q^{2}\right)+f q^{\nu+1}(g q+b-g)-a g q^{3}\right), \\
A_{3}(z)= & f\left(f q^{\nu}-a q\right)\left[\left(f q^{2 z}+h q^{2}\right)\left(f q^{2 \nu}-a q^{2}\right)+g q^{z+1}\left(f q^{\nu}\left(q^{\nu}+q-1\right)-a q^{3}\right)\right],
\end{aligned}
$$

where a, b, c, f, g and h, are the coefficients of σ and ϕ_{ν} (22).
Example 3.6. The following relation holds

$$
A_{1}(z) \Phi_{\nu-1, \nu-1}(z)+A_{2}(z) \Phi_{\nu, \nu}(z)+A_{3}(z) \Phi_{\nu, \nu+1}(z)=0
$$

where the coefficients A_{1}, A_{2} and A_{3}, are polynomials in $x \equiv x(z)=q^{z}$, given by

$$
\begin{aligned}
& A_{1}(z)=a^{2} h q^{4}-a g b q^{\nu+3}+q^{2 \nu+2}\left(f b^{2}-2 f a h+a g^{2}\right)-f g b q^{3 \nu+1}+f^{2} h q^{4 \nu} \\
& A_{2}(z)=q^{-\frac{1}{2}}\left(f q^{\nu}-a q^{2}\right)\left(f q^{z+2 \nu}-a q^{z+2}+g q^{2 \nu+1}-b q^{\nu+2}\right) \\
& A_{3}(z)=-q^{\frac{v-3}{2}}\left(f q^{2 v}-a q^{2}\right)\left(q^{v+1}-1\right)\left(g q^{z+1}+f q^{2 z}+h q^{2}\right)
\end{aligned}
$$

where a, b, c, f, g and h, are the coefficients of σ and ϕ_{ν} (22).
Example 3.7. The relation

$$
A_{1}(z) \Phi_{\nu, \nu-1}(z)+A_{2}(z) \Phi_{\nu, \nu}(z)+A_{3}(z) \Phi_{\nu+1, \nu+1}(z)=0
$$

is verified when the polynomial coefficients A_{1}, A_{2} and A_{3}, in the variable $x \equiv x(z)=q^{z}$, are given by

$$
\begin{aligned}
A_{1}(z) & =q^{\frac{\nu+1}{2}}\left(f q^{z+\nu}\left(f q^{2 \nu}-g q^{\nu}+b-a\right)-f(h-b) q^{2 \nu+1}-a q\left(g q^{\nu}-h\right)\right), \\
A_{2}(z) & =q^{-z+\nu+\frac{1}{2}}\left(q^{z}\left(f q^{2 \nu}-a\right)+q^{\nu}\left(g q^{\nu}-b\right)\right)\left(f q^{2 z}+g q^{z+1}+h q^{2}\right), \\
A_{3}(z) & =q^{2 z}\left(f q^{\nu}-a q\right)+q^{z+\nu}\left(q\left(g q^{\nu}-a q-b\right)-f q^{\nu}\left(q^{\nu+1}-q-1\right)\right)+ \\
\quad & q^{\nu+1}\left((h-b) q^{\nu+1}+g q^{\nu}-h\right),
\end{aligned}
$$

where a, b, c, f, g and h, are the coefficients of σ and ϕ_{ν} (22).

4. Recurrences involving the solutions y_{ν}

In [16] the following relevant relation was established

$$
\begin{equation*}
\Delta^{(k)} y_{\nu}(s)=\frac{C_{\nu}^{(k)}}{\rho_{k}(s)} \Phi_{\nu, \nu-k}(s), \tag{25}
\end{equation*}
$$

where

$$
C_{\nu}^{(k)}=C_{\nu} \prod_{m=0}^{k-1}\left[\alpha_{q}(\nu+m-1) \widetilde{\tau}^{\prime}+[\nu+m-1]_{q} \frac{\widetilde{\sigma}^{\prime \prime}}{2}\right]
$$

This relation is valid for solutions of the form (3) and (4) of the difference equation (11). In the following, $y_{n}^{(k)}(s)$ denotes the k-th differences $\Delta^{(k)} y_{n}(s)$.
Theorem 4.1. In the same conditions as in Lemma [3.2, any three functions $y_{\nu_{i}}^{\left(k_{i}\right)}(s)$, $i=1,2,3$, are connected by a linear relation

$$
\begin{equation*}
\sum_{i=1}^{3} B_{i}(s) y_{\nu_{i}}^{\left(k_{i}\right)}(s)=0 \tag{26}
\end{equation*}
$$

where the $B_{i}(s), i=1,2,3$, are polynomials.
Proof. From Lemma 3.2 we know that there exists three polynomials $A_{i}(s), i=1,2,3$ such that

$$
\sum_{i=1}^{3} A_{i}(s) \Phi_{\nu_{i}, \nu_{i}-k_{i}}(s)=0
$$

then, using the relation (25), we find

$$
\sum_{i=1}^{3} A_{i}(s)\left(C_{\nu}^{(k)}\right)^{-1} \rho_{k_{i}}(s) y_{\nu_{i}}^{\left(k_{i}\right)}(s)=0
$$

Now, dividing the last expression by $\rho_{k_{0}}(s)$, where $k_{0}=\min \left\{k_{1}, k_{2}, k_{3}\right\}$, and using (18) we obtain

$$
\sum_{i=1}^{3} B_{i}(s) y_{\nu_{i}}^{\left(k_{i}\right)}(s)=0, \quad B_{i}(s)=A_{i}(s)\left(C_{\nu}^{(k)}\right)^{-1} \phi\left(s+k_{0}\right) \cdots \phi\left(s+k_{i}-1\right)
$$

which completes the proof.
Corollary 4.2. In the same conditions as in Lemma 3.2, the following three-term recurrence relation holds

$$
A_{1}(s) y_{\nu}(s)+A_{2}(s) y_{\nu+1}(s)+A_{3}(s) y_{\nu-1}(s)=0,
$$

with polynomial coefficients $A_{i}(s), i=1,2,3$.
Proof. It is sufficient to put $k_{1}=k_{2}=k_{3}=0, \nu_{1}=\nu, \nu_{2}=\nu+1$ and $\nu_{3}=\nu-1$ in (26).

Corollary 4.3. In the same conditions as in Lemma [3.2, the following Δ-ladder-type relation holds

$$
\begin{equation*}
B_{1}(s) y_{\nu}(s)+B_{2}(s) \frac{\Delta y_{\nu}(s)}{\Delta x(s)}+B_{3}(s) y_{\nu+m}(s)=0, \quad m \in \mathbb{Z} \tag{27}
\end{equation*}
$$

with polynomial coefficients $B_{i}(s), i=1,2,3$.
Proof. It is sufficient to put $k_{1}=k_{3}=0, k_{2}=1, \nu_{1}=\nu_{2}=\nu$ and $\nu_{3}=\nu+m$ in (26).

Notice that for the case $m= \pm 1$ (27) becomes

$$
\begin{align*}
& B_{1}(s) y_{\nu}(s)+B_{2}(s) \frac{\Delta y_{\nu}(s)}{\Delta x(s)}+B_{3}(s) y_{\nu+1}(s)=0, \tag{28}\\
& \widetilde{B}_{1}(s) y_{\nu}(s)+\widetilde{B}_{2}(s) \frac{\Delta y_{\nu}(s)}{\Delta x(s)}+\widetilde{B}_{3}(s) y_{\nu-1}(s)=0, \tag{29}
\end{align*}
$$

with polynomial coefficients $B_{i}(s)$ and $\widetilde{B}_{i}(s), i=1,2,3$. The above relations are usually called raising and lowering operators, respectively, for the functions y_{ν}.

Let us now obtain a raising and lowering operators for the functions y_{ν} but associated to the $\nabla / \nabla x(s)$ operators.

We start applying the operator $\nabla / \nabla x(s)$ to (13)

$$
\begin{aligned}
\frac{\nabla}{\nabla x(s)} y_{\nu}(s) & =\frac{\nabla}{\nabla x(s)}\left[\frac{C_{\nu}}{\rho(s)} \Phi_{\nu, \nu}(s)\right] \\
& =\frac{1}{\nabla x(s)}\left[C_{\nu} \Phi_{\nu \nu}(s)\left(\frac{1}{\rho(s)}-\frac{1}{\rho(s-1)}\right)+\frac{C_{\nu}}{\rho(s-1)} \nabla \Phi_{\nu \nu}(s)\right],
\end{aligned}
$$

or, equivalently,

$$
\frac{\nabla \Phi_{\nu \nu}}{\nabla x(s)}=\frac{\rho(s-1)}{C_{\nu}} \frac{\nabla y_{\nu}(s)}{\nabla x(s)}-\frac{\Phi_{\nu \nu}(s)}{\nabla x(s)}\left[\frac{\rho(s-1)}{\rho(s)}-1\right] .
$$

By Lemma (3.2) with $\nu_{1}=\mu_{1}=\nu_{2}=\nu, \mu_{2}=\nu+1$ and $\nu_{3}=\mu_{3}=\nu+m$, there exist polynomial coefficients on $x(s), A_{i}(s), i=1,2,3$, such that

$$
A_{1}(s) \Phi_{\nu, \nu}(s)+A_{2}(s) \Phi_{\nu, \nu+1}(s)+A_{3}(s) \Phi_{\nu+m, \nu+m}(s)=0
$$

From (14)

$$
\Phi_{\nu, \nu+1}(s)=\frac{1}{[\nu+1]_{q}} \frac{\nabla \Phi_{\nu, \nu}}{\nabla x(z)}=\frac{1}{[\nu+1]_{q}} \frac{\nabla \Phi_{\nu, \nu}}{\nabla x(z)} .
$$

Therefore

$$
\begin{gathered}
A_{1}(s) \Phi_{\nu, \nu}+\frac{A_{2}(s)}{[\nu+1]_{q}}\left[\frac{\rho(s-1)}{C_{\nu}} \frac{\nabla y_{\nu}}{\nabla x(s)}-\frac{\Phi_{\nu \nu}(s)}{\nabla x(s)}\left(\frac{\rho(s-1)}{\rho(s)}-1\right)\right] \\
+A_{3} \Phi_{\nu+m, \nu+m}=0 .
\end{gathered}
$$

Using now the Pearson equation (6) and dividing by $\rho(s)$ we get

$$
\begin{gathered}
A_{1}(s) y_{\nu}(s)+\frac{A_{2}(q)}{[\nu+1]_{q}}\left[\frac{\sigma(s)}{\phi(s-1)} \frac{\nabla y_{\nu}}{\nabla x(s)}-\frac{y_{\nu}(s)}{\nabla x(s)}\left(\frac{\sigma(s)}{\phi(s-1)}-1\right)\right] \\
+A_{3} \frac{C_{\nu}}{C_{\nu+m}} y_{\nu+m}(s)=0 .
\end{gathered}
$$

Multiplying both sides by $[\nu+1]_{q} \phi(s-1)$,

$$
\begin{aligned}
& A_{1}(s)[\nu+1]_{q} \phi(s-1) y_{\nu}(s)+A_{2}(s) \sigma(s) \frac{\nabla y_{\nu}}{\nabla x(s)}- \\
& A_{2}(s) \frac{\sigma(s)-\phi(s-1)}{\nabla x(s)} y_{\nu}(s)+[\mu+1]_{q} C_{\nu} C_{\nu+m}^{-1} A_{3} \phi(s-1) y_{\nu+m}(s)=0 .
\end{aligned}
$$

Thus we have proven the following
Theorem 4.4. In the same conditions as in Lemma 3.2, the following ∇-ladder-type relation holds

$$
\begin{equation*}
C_{1}(s) y_{\nu}(s)+C_{2}(s) \frac{\nabla y_{\nu}(s)}{\nabla x(s)}+C_{3}(s) y_{\nu+m}(s)=0, \quad m \in \mathbb{Z}, \tag{30}
\end{equation*}
$$

with polynomial coefficients $C_{i}(s), i=1,2,3$.

Notice that for the case $m= \pm 1$ (30) becomes

$$
\begin{gather*}
C_{1}(s) y_{\nu}(s)+C_{2}(s) \frac{\nabla y_{\nu}(s)}{\nabla x(s)}+C_{3}(s) y_{\nu+1}(s)=0, \tag{31}\\
\widetilde{C}_{1}(s) y_{\nu}(s)+\widetilde{C}_{2}(s) \frac{\nabla y_{\nu}(s)}{\nabla x(s)} y_{\nu}(s)+\widetilde{C}_{3}(s) y_{\nu-1}(s)=0, \tag{32}
\end{gather*}
$$

with polynomial coefficients $C_{i}(s)$ and $\widetilde{C}_{i}(s), i=1,2,3$. The above relation are usually called raising and lowering operators, respectively, for the functions y_{n}. Eq. (31) was firstly obtained in [16, Eq. (3.4)].

To conclude this section let us point that from formula (25) and the examples 3.3, 3.5, and 3.7 follow the relations

$$
\begin{align*}
& B_{1}(s) y_{\nu}^{(1)}(s)+B_{2}(s) y_{\nu}(s)+B_{3}(s) y_{\nu+1}^{(1)}(s)=0, \\
& B_{1}(s) y_{\nu}^{(1)}(s)+B_{2}(s) y_{\nu-1}(s)+B_{3}(s) y_{\nu}(s)=0, \tag{33}\\
& B_{1}(s) y_{\nu}^{(1)}(s)+B_{2}(s) y_{\nu}(s)+B_{3}(s) y_{\nu+1}(s)=0,
\end{align*}
$$

respectively, being the last two expressions the lowering and raising operators for the functions y_{ν}. Moreover, combining the explicit values of A_{1}, A_{2} and A_{3} with formula (25), one can obtain the explicit expressions for the coefficients B_{1}, B_{2} and B_{3} in (33).

5. Applications to q-classical polynomials

In this section we will apply the previous results to the q-classical orthogonal polynomials [2, 10, 11] in order to show how the method works. We first notice that these polynomials are instances of the functions y_{ν} on the lattice $x(s)=q^{s}$ defined in (4). In fact we have [13, 16]

$$
\begin{equation*}
P_{n}(x(s))=\frac{[n]_{q}!B_{n}}{\rho(s) 2 \pi i} \int_{C} \frac{\rho_{n}(z) \nabla x_{n+1}(z)}{\left[x_{n}(z)-x_{n}(s)\right]^{(n+1)}} d z, \tag{34}
\end{equation*}
$$

where B_{n} is a normalizing constant, C is a closed contour surrounding the points $x=$ $s, s-1, \ldots, s-n$ and it is assumed that $\rho_{n}(s)=\rho(s+n) \prod_{m=1}^{n} \sigma(s+m)$ and $\rho_{n}(s+1)$ are analytic inside C (ρ is the solution of the Pearson equation (6)), i.e., the condition (50) holds.

A detailed study of the q-classical polynomials, including several characterization theorems, was done in [2, 9, 11]. In particular, a comparative analysis of the q-Hahn tableau with the q-Askey tableau $[9$ and Nikiforov-Uvarov tableau [15] was done in [5]. In the following we use the standard notation for the q-calculus [8]. In particular by $(a ; q)_{k}=$ $\prod_{m=0}^{k-1}\left(1-a q^{m}\right)$, we denote the q-analogue of the Pochhammer symbol.

Since the q-classical polynomials are defined by (34) where the contour C is closed and ν is a non-negative integer, then the condition (17) is automatically fulfilled, so Lemma 3.2 holds for all of them. Moreover, the Theorem 4.1 holds and there exist the non vanishing polynomials B_{1}, B_{2} and B_{3} of (26).

In the following we will assume that the three term recurrence relation is known, i.e.,

$$
\begin{align*}
& x(s) P_{n}(x(s))=\alpha_{n} P_{n+1}(x(s))+\beta_{n} P_{n}(x(s))+\gamma_{n} P_{n-1}(x(s))=0, \quad n \geq 0 \\
& P_{-1}(x(s))=0, \quad P_{0}(x(s))=1, \quad x(s)=q^{s} . \tag{35}
\end{align*}
$$

where the coefficients α_{n}, β_{n} and γ_{n} can be computed using the coefficients σ, τ and $\lambda \equiv \lambda_{n}$ of (11), being λ_{n} given by (8) and (9) with $\nu=n$. For more details see, e.g., [1, 11.

Since the TTRR and the differentiation formulas for the q-polynomials are very well known (see e.g. [9, 11, 16]) we will obtain here two recurrent-difference relations involving the q-differences of the polynomials and the polynomials themselves.
5.1. The first difference-recurrece relation. If we choose $\nu_{1}=n-1, \nu_{2}=n, \nu_{3}=$ $n+1, k_{1}=1, k_{2}=1$ and $k_{3}=0$, in Theorem4.1 one gets

$$
A_{1}(s) \Delta^{(1)} P_{n-1}(x(s))+A_{2}(s) \Delta^{(1)} P_{n}(x(s))+A_{3}(s) P_{n+1}(x(s))=0
$$

Using [1, Eq. (6.14), page 193]

$$
[\sigma(s)+\tau(s) \Delta x(s-1 / 2)] \Delta^{(1)} P_{n}(x(s))=\widehat{\alpha}_{n} P_{n+1}(x(s))+\widehat{\beta}_{n} P_{n}(x(s))+\widehat{\gamma}_{n} P_{n-1}(x(s))
$$

where

$$
\begin{aligned}
\widehat{\alpha}_{n}=\frac{\lambda_{n}}{[n]_{q}}\left[q^{-\frac{n}{2}} \alpha_{n}-\frac{B_{n}}{\tau_{n}^{\prime} B_{n+1}}\right], & \widehat{\beta}_{n}=\frac{\lambda_{n}}{[n]_{q}}\left[q^{-\frac{n}{2}} \beta_{n}+\frac{\tau_{n}(0)}{\tau_{n}^{\prime}}-c_{3}\left(q^{-\frac{n}{2}}-1\right)\right], \\
& \widehat{\gamma}_{n}=\frac{\lambda_{n} q^{-\frac{n}{2}} \gamma_{n}}{[n]_{q}},
\end{aligned}
$$

to compute $\Delta^{(1)} P_{n}(x(s))=\frac{\Delta P_{n}(x(s))}{\Delta x(s)}$ we get

$$
\begin{aligned}
& {\left[A_{2}(s) \frac{\lambda_{n}}{[n]_{q}}\left(q^{-\frac{n}{2}} \alpha_{n}-\frac{B_{n}}{\tau_{n}^{\prime} B_{n+1}}\right)+\left(\sigma(s)+\tau(s) \Delta x\left(s-\frac{1}{2}\right)\right) A_{3}(s)\right] P_{n+1}+} \\
& {\left[A_{1}(s) \frac{\lambda_{n-1}}{[n-1]_{q}}\left(q^{-\frac{n-1}{2}} \alpha_{n-1}-\frac{B_{n-1}}{\tau_{n-1}^{\prime} B_{n}}\right)+A_{2}(s) \frac{\lambda_{n}}{[n]_{q}}\left(q^{-\frac{n}{2}} \beta_{n}+\frac{\tau_{n}(0)}{\tau_{n}^{\prime}}\right)\right] P_{n}+} \\
& {\left[A_{1}(s) \frac{\lambda_{n-1}}{[n-1]_{q}}\left(q^{-\frac{n-1}{2}} \beta_{n-1}+\frac{\tau_{n-1}(0)}{\tau_{n-1}^{\prime}}\right)+A_{2}(s) \frac{\lambda_{n} q^{-\frac{n}{2}} \gamma_{n}}{[n]_{q}}\right] P_{n-1}+} \\
& A_{1}(s) \frac{\lambda_{n-1} q^{-\frac{n-1}{2}} \gamma_{n-1}}{[n-1]_{q}} P_{n-2}=0,
\end{aligned}
$$

By (35) we may write

$$
P_{n-2}(x(s))=\frac{x(s)-\beta_{n-1}}{\gamma_{n-1}} P_{n-1}(x(s))-\frac{\alpha_{n-1}}{\gamma_{n-1}} P_{n}(x(s))
$$

so the above equality becomes

$$
\begin{gather*}
{\left[\frac{\lambda_{n}}{[n]_{q}}\left(q^{-\frac{n}{2}} \alpha_{n}-\frac{B_{n}}{\tau_{n}^{\prime} B_{n+1}}\right) A_{2}(s)+\left(\sigma(s)+\tau(s) \Delta x\left(s-\frac{1}{2}\right)\right) A_{3}(s)\right] P_{n+1}(x(s))+} \\
{\left[-\frac{\lambda_{n-1}}{[n-1]_{q}} \frac{B_{n-1}}{\tau_{n-1}^{\prime} B_{n}} A_{1}(s)+\frac{\lambda_{n}}{[n]_{q}}\left(q^{-\frac{n}{2}} \beta_{n}+\frac{\tau_{n}(0)}{\tau_{n}^{\prime}}\right) A_{2}(s)\right] P_{n}(x(s))+} \tag{36}\\
{\left[\frac{\lambda_{n-1}}{[n-1]_{q}}\left(\frac{\tau_{n-1}(0)}{\tau_{n-1}^{\prime}}+q^{-\frac{n-1}{2}} x\right) A_{1}(s)+\frac{\lambda_{n}}{[n]_{q}} q^{-\frac{n}{2}} \gamma_{n} A_{2}(s)\right] P_{n-1}(x(s))=0 .}
\end{gather*}
$$

Comparing the above equation with the TTRR (35) one can obtain the explicit values of A_{1}, A_{2}, and A_{3}.
5.1.1. Some examples. Since we are working in the q-linear lattice $x(s)=q^{s}$, for the sake of simplicity, we will use the letter x to denote the variable of the polynomials [9, 11]. We will consider monic polynomials, i.e., those with the leading coefficient equal to 1 . In the following we need the value of $\tau_{n}(x)$ for each family, which can be computed using (7).

Al-Salam-Carlitz I q-polynomials. For the Al-Salam-Carlitz I monic polynomials $U_{n}^{(a)}(x ; q)$ we have (see [1, see table 6.5, p.208] or [11])

$$
\begin{aligned}
& \sigma(x)=(1-x)(a-x), \quad \tau_{n}(x)=\frac{q^{\frac{1-n}{2}}}{1-q}(x-(1+a)) \\
& \tau(x)=\tau_{0}(x), \quad \lambda_{n}=-\frac{q^{\frac{3}{2}-n}\left(1-q^{n}\right)}{(1-q)^{2}}
\end{aligned}
$$

and

$$
\alpha_{n}=1, \quad \beta_{n}=(1+a) q^{n}, \quad \gamma_{n}=-a q^{n-1}\left(1-q^{n}\right)
$$

The constant B_{n} is given by [1, Eq. (5.57), p. 147], $B_{n}=q^{\frac{1}{4} n(3 n-5)}(1-q)^{n}$. Introducing these values into the equation (36) it becomes

$$
\begin{array}{r}
{\left[q\left(q^{-\frac{n}{2}}-1\right) A_{2}(x)+a(1-q) q^{n} A_{3}(x)\right] U_{n+1}^{(a)}(x ; q)+} \\
{\left[q^{-\frac{n}{2}-\frac{5}{2}} A_{1}(x)+q^{1+\frac{n}{2}}(1+a)\left(1-q^{\frac{n}{2}}\right) A_{2}(x)\right] U_{n}^{(a)}(x ; q)+} \\
{\left[\left(q^{\frac{n+3}{2}}(1+a)-q^{2-n} x\right) A_{1}(x)+a q^{n}\left(1-q^{n}\right) A_{2}(x)\right] U_{n-1}^{(a)}(x ; q)=0 .}
\end{array}
$$

Comparing with the TTRR (35) for the Al-Salam I polynomials we obtain a linear system for getting the unknown coefficients A_{1}, A_{2} and A_{3}

$$
\begin{aligned}
& q\left(q^{-\frac{n}{2}}-1\right) A_{2}(x)+a(1-q) q^{n} A_{3}(x)=1 \\
& q^{-\frac{n}{2}-\frac{5}{2}} A_{1}(x)+q^{1+\frac{n}{2}}(1+a)\left(1-q^{\frac{n}{2}}\right) A_{2}(x)=(1+a) q^{n}-x \\
& \left(q^{\frac{n+3}{2}}(1+a)-q^{2-n} x\right) A_{1}(x)+a q^{n}\left(1-q^{n}\right) A_{2}(x)=a q^{n-1}\left(q^{n}-1\right)
\end{aligned}
$$

The solution of the above system is

$$
\begin{align*}
& A_{1}(x)=\frac{a q^{n}\left(1+q^{\frac{n}{2}}\right)\left((1+a)-q^{-\frac{n}{2}} x\right)}{a q^{-\frac{5}{2}}\left(1+q^{\frac{n}{2}}\right)-q(1+a)\left(q^{\frac{n+3}{2}}(1+a)-q^{2-n} x\right)} \\
& A_{2}(x)=\frac{-a q^{-\frac{7}{2}}\left(1-q^{n}\right)-\left((1+a) q^{n}-x\right)\left(q^{\frac{3}{2}}(1+a)-q^{2-\frac{3 n}{2}} x\right)}{\left(1-q^{\frac{n}{2}}\right)\left[a q^{-\frac{5}{2}}\left(1+q^{\frac{n}{2}}\right)-q(1+a)\left(q^{\frac{n+3}{2}}(1+a)-q^{2-n} x\right)\right]} \tag{37}\\
& A_{3}(x)=\frac{a+q^{\frac{11}{2}-2 n} x^{2}+q^{-\frac{n}{2}}\left(a-(1+a) q^{5} x\right)}{a(1-q)\left[a q^{n}+q^{\frac{3 n}{2}}\left(a-(1+a)^{2} q^{5}\right)+(1+a) q^{\frac{11}{2}} x\right]}
\end{align*}
$$

Then, the Al-Salam I q-polynomials satisfy the the following relation

$$
\begin{equation*}
A_{1}(x) \Delta^{(1)} U_{n-1}^{(a)}(x ; q)+A_{2}(x) \Delta^{(1)} U_{n}^{(a)}(x ; q)+A_{3}(x) U_{n+1}^{(a)}(x ; q)=0 \tag{38}
\end{equation*}
$$

where the coefficients A_{1}, A_{2} and A_{3} are given by (37).
Notice that the coefficients A_{1}, A_{2} and A_{3} are rational functions on x. Therefore, multiplying (38) by and appropriate factor it becomes a linear relation with polynomials coefficients.

Alternative q-Charlier polynomials. In this case (see [1, table 6.6, p.209])

$$
\begin{aligned}
& \sigma(x)=q^{-1} x(1-x), \quad \tau_{n}(x)=-\frac{q^{-\frac{n+1}{2}}}{1-q}\left(\left(1+a q^{1+2 n}\right) x-1\right) \\
& \tau(x)=\tau_{0}(x), \quad \lambda_{n}=\frac{q^{\frac{1}{2}-n}\left(1-q^{n}\right)\left(1+a q^{n}\right)}{(1-q)^{2}}
\end{aligned}
$$

and, for the monic case, $\alpha_{n}=1$

$$
\beta_{n}=\frac{q^{n}\left(1+a q^{n-1}+a q^{n}-a q^{2 n}\right)}{\left(1+a q^{2 n-1}\right)\left(1+a q^{2 n+1}\right)}, \quad \gamma_{n}=\frac{a q^{3 n-2}\left(1-q^{n}\right)\left(1+a q^{n-1}\right)}{\left(1+a q^{2 n-2}\right)\left(1+a q^{2 n-1}\right)^{2}\left(1+a q^{2 n}\right)}
$$

The corresponding normalizing constant B_{n} is given by

$$
B_{n}=\frac{(-1)^{n} q^{\frac{1}{4} n(3 n-1)}(1-q)^{n}}{\left(-a q^{n} ; q\right)_{n}}
$$

Following the same procedure as before we obtain the following relation for the alternative Charlier q-polynomials:

$$
A_{1}(x) \Delta^{(1)} K_{n-1}(x ; a ; q)+A_{2}(x) \Delta^{(1)} K_{n}(x ; a ; q)+A_{3}(x) K_{n+1}(x ; a ; q)=0
$$

with the coefficients

$$
\begin{aligned}
A_{1}(x)= & \frac{a\left(1+a q^{\frac{n}{2}}\right)\left(\left(1+a q^{2 n+1}\right) x-q^{-\frac{n}{2}}\right) x}{q^{2}\left(1+a q^{2 n-2}\right)\left(1+a q^{2 n-1}\right)\left(1+a q^{2 n}\right)\left(1+a q^{2 n+1}\right)}, \\
A_{2}(x)= & \frac{-q^{\frac{3 n+1}{2}}\left(1+a q^{n}\right) x+\left(1+a q^{2 n}\right)\left(q^{1+\frac{n}{2}}\left(1+a q^{2 n+1}\right)+a q^{2 n+\frac{1}{2}}(1+q)+q^{\frac{3 n}{2}}\left(1-a q^{2 n}\right)\right) x^{2}}{q^{3 n}\left(1+a q^{n}\right)\left(1+a q^{2 n}\right)\left(1+a q^{2 n+1}\right)}- \\
& \frac{q^{\frac{3}{2}}\left(1+a q^{2 n-1}\right)\left(1+a q^{2 n+1}\right) x^{3}}{q^{3 n}\left(1+a q^{n}\right)\left(1+a q^{2 n}\right)\left(1+a q^{2 n+1}\right)}, \\
A_{3}(x)= & \frac{q^{\frac{n+1}{2}}+a q^{2 n}\left(q^{\frac{n}{2}}+1+q^{\frac{1}{2}}\right)-q^{\frac{3}{2}}\left(1-a q^{\frac{3 n}{2}}\right)\left(1+a q^{2 n-1}\right) x}{q^{\frac{9 n}{2}}\left(1+a q^{n}\right)} .
\end{aligned}
$$

Big q-Jacobi polynomials. In this case (see [1, see table 6.2, p.204] or [11])

$$
\begin{aligned}
& \sigma(x)=q^{-1}(x-a q)(x-c q), \lambda_{n}=-q^{\frac{1}{2}-n} \frac{\left(1-a b q^{1+n}\right)\left(1-q^{n}\right)}{(1-q)^{2}} \\
& \tau_{n}(x)=\frac{q^{\frac{1-n}{2}}}{1-q}\left(\frac{1-a b q^{2+2 n}}{q} x+a(b+c) q^{1+n}-(a+c)\right), \tau(x)=\tau_{0}(x)
\end{aligned}
$$

and, for the monic case $\alpha_{n}=1$,

$$
\begin{aligned}
& \beta_{n}=\frac{c+a^{2} b q^{n}\left((1+b+c) q^{1+n}-q-1\right)+a\left(1+b+c-q^{n}\left(b(1+q)+c\left(1+q+b+b q-b q^{1+n}\right)\right)\right)}{q^{-1-n}\left(1-a b q^{2 n}\right)\left(1-a b q^{2 n+2}\right)}, \\
& \gamma_{n}=-\frac{a\left(1-q^{n}\right)\left(1-a q^{n}\right)\left(1-b q^{n}\right)\left(1-c q^{n}\right)\left(c-a b q^{n}\right)}{q^{-1-n}\left(1-a b q^{2 n-1}\right)\left(1-a b q^{2 n}\right)^{2}\left(1-a b q^{2 n+1}\right)}
\end{aligned}
$$

The corresponding normalizing constant is

$$
B_{n}=\frac{(1-q)^{n} q^{\frac{1}{4} n(3 n-1)}}{\left(a b q^{1+n} ; q\right)_{n}}
$$

The big q-Jacobi polynomials satisfy the following relation

$$
\begin{aligned}
A_{1}(x) \Delta^{(1)} p_{n-1}(x ; a, b, c ; q)+A_{2}(x) \Delta^{(1)} p_{n}(x ; a, b, c ; q)+ \\
A_{3}(x) p_{n+1}(x ; a, b, c ; q)=0
\end{aligned}
$$

with the coefficients A_{1}, A_{2} and A_{3} given by

$$
\begin{aligned}
& A_{1}(x)=\frac{a q^{-\frac{1}{2}+n}\left(1-a b q^{n+1}\right)(1-x)(c-b x)\left(c-(b+c) x+b x^{2}\right)}{1-a b q^{2 n-1}} \times \\
& \left\{(1-q) q^{\frac{n}{2}}\left(1-a b q^{2 n+2}\right)\left[\frac{c+a\left(1+b+c+b(c+a(1+b+c)) q^{2 n+1}-(c+b(1+a+c)) q^{n}(1+q)\right.}{q^{-(n+1)}\left(1-a b q^{2 n}\right)\left(1-a b q^{2 n+2}\right)}-x\right] D(x)-\right. \\
& (1-q) q^{n}\left(1-a b q^{2 n}\right)\left[\left(1-a b q^{2 n}\right)\left(-c+a\left(-1+(b+c) q^{n+1}\right)\right)+\right. \\
& \left.\left.q^{\frac{n}{2}}\left(c+a\left(1+b+c+b(c+a(1+b+c)) q^{2 n+1}-(c+b(1+a+c)) q^{n}(1+q)\right)\right) N(x)\right]\right\} \\
& A_{2}(x)=a(1-q) q^{n}\left(1-a b q^{2 n}\right)^{2}\left(1-a b q^{2 n+2}\right)(1-x)(c-b x)\left(c-(b+c) x+b x^{2}\right) N(x), \\
& A_{3}(x)=\left(1-a b q^{n+1}\right)\left(1-a b q^{2 n+2}\right)(1-x)(c-b x) D(x)+ \\
& \quad q^{-1-\frac{n}{2}}\left(1-q^{\frac{n}{2}}\right)\left(1+a b q^{1+\frac{3 n}{2}}\right)\left(1-a b q^{2 n}\right)^{2}\left(1-a b q^{2 n+2}\right)\left(c-(b+c) x+b x^{2}\right) N(x),
\end{aligned}
$$

where the polynomials $N(x)$ and $D(x)$ are given by

$$
\begin{aligned}
N(x) & =\frac{a q^{2}\left(1-q^{n}\right)\left(1-a q^{n}\right)\left(1-b q^{n}\right)\left(1-c q^{n}\right)\left(c-a b q^{n}\right)}{\left(1-a b q^{2 n}\right)^{2}\left(1-a q^{2 n+1}\right)}-\left[\frac{q\left(-c+a\left(-1+(b+c) q^{n}\right)\right)}{1-a b q^{2 n}}+q^{\frac{1-n}{2}} x\right] \times \\
& {\left[\frac{c+a^{2} b q^{n}\left(-1-q+(1+b+c) q^{n+1}\right)+a\left(1-(b+c)\left(-1+q^{n}+q^{n+1}\right)-b c q^{n}\left(1+q-q^{n+1}\right)\right)}{q^{-n-1}\left(1-a b q^{2 n}\right)\left(1-a b q^{2 n+2}\right)}-x\right] }
\end{aligned}
$$

and

$$
\begin{aligned}
& D(x)=\frac{a q\left(1-q^{n}\right)\left(1-a q^{n}\right)\left(1-b q^{n}\right)\left(1-c q^{n}\right)\left(c-a b q^{n}\right)}{1-a b q^{2 n+1}}+\frac{1-q^{\frac{n}{2}}}{1-a b q^{2 n+2}} \times \\
& \left\{-c+a^{2} b q^{\frac{3 n}{2}}\left(-1-q+(b+c) q^{n+1}-q^{1+\frac{n}{2}}\right)+a\left[-1+(b+c)\left(q^{\frac{n}{2}}+q^{n}+q^{n+1}\right)-\right.\right. \\
& \left.\left.b c\left(q^{\frac{3 n}{2}}+q^{1+\frac{3 n}{2}}+q^{2 n+1}\right)\right]\left[(c+a) q^{1+\frac{n}{2}}-a(b+c) q^{1+\frac{3 n}{2}}-q^{\frac{1}{2}}\left(1-a b q^{2 n}\right) x\right]\right\},
\end{aligned}
$$

respectively.
5.2. The second difference-recurrece relation. If we choose $\nu_{1}=n-1, \nu_{2}=n$, $\nu_{3}=n+1, k_{1}=0, k_{2}=0$ and $k_{3}=1$ in Theorem4.1, and proceeding as in the previous case one gets

$$
\begin{equation*}
A_{1}(x) P_{n-1}(x ; q)+A_{2}(x) P_{n}(x ; q)+A_{3}(x) \Delta^{(1)} P_{n+1}(x ; q)=0 \tag{39}
\end{equation*}
$$

where the coefficients A_{1}, A_{2} and A_{3}, satisfy the linear relation

$$
\begin{aligned}
& A_{3}(x)\left[\left(q^{-\frac{n+1}{2}}-\frac{B_{n+1}}{\alpha_{n+1} \tau_{n+1}^{\prime} B_{n+2}}\right)\left(x-\beta_{n+1}\right)+\left(q^{-\frac{n+1}{2}} \beta_{n+1}+\frac{\tau_{n+1}(0)}{\tau_{n+1}^{\prime}}\right)\right] P_{n+1}+ \\
& {\left[A_{3}(x) \frac{B_{n+1}}{\alpha_{n+1} \tau_{n+1}^{\prime} B_{n+2}} \gamma_{n+1}+\left(\sigma(x)+\tau(x) \Delta x\left(s-\frac{1}{2}\right)\right) \frac{[n+1]_{q}}{\lambda_{n+1}} A_{2}(x)\right] P_{n}+} \\
& \left(\sigma(x)+\tau(x) \Delta x\left(s-\frac{1}{2}\right)\right) \frac{[n+1]_{q}}{\lambda_{n+1}} A_{1}(x) P_{n-1}=0
\end{aligned}
$$

Comparing the above relation with the three-term recurrence relation (35) one can obtain the explicit expressions for the coefficients A_{1}, A_{2} and A_{3} in (39).

5.2.1. Some examples.

Al-Salam and Carlitz I polynomials. Using the main data for the Al-Salam and Carlitz I polynomials we obtain the relation

$$
A_{1}(x) U_{n-1}^{(a)}(x ; q)+A_{2}(x) U_{n}^{(a)}(x ; q)+A_{3}(x) \Delta^{(1)} U_{n+1}^{(a)}(x ; q)=0
$$

where

$$
\begin{aligned}
& A_{1}(x)=a q^{n-1}\left(1-q^{n}\right) x, \quad A_{2}(x)=\left[a\left(1+q^{\frac{n+1}{2}}\right) q^{n}-\left((1+a) q^{n}-x\right) x\right] \\
& A_{3}(x)=-a \frac{1-q}{1-q^{\frac{n+1}{2}}} q^{\frac{3 n+1}{2}}
\end{aligned}
$$

Alternative q-Charlier polynomials. In this case, one gets

$$
\begin{aligned}
& A_{1}(x) K_{n-1}(x ; a ; q)+A_{2}(x) K_{n}(x ; a ; q)+A_{3}(x) \Delta^{(1)} K_{n+1}(x ; a ; q)=0, \\
A_{1}(x)= & \frac{a\left(1-q^{n}\right)\left(1+a q^{n-1}\right)\left\{a q^{n}\left(1-q^{n+1}\right)+q^{-\frac{n+1}{2}}\left(1+a q^{2 n+1}\right)\left[\left(1+a q^{n+1}\right)-q^{-\frac{n+1}{2}}\left(1+a q^{2 n+2}\right)\right] x\right\}}{q^{2-3 n}\left(1+a q^{2 n-2}\right)\left(1+a q^{2 n-1}\right)\left(1+a q^{2 n}\right)}, \\
A_{2}(x)= & -x\left\{a q^{n}\left(1-q^{n+1}\right)+q^{-\frac{n+1}{2}}\left(1+a q^{2 n+1}\right)\left[\left(1+a q^{n+1}\right)-q^{-\frac{n+1}{2}}\left(1+a q^{2 n+2}\right)\right] x\right\}+ \\
& \frac{a^{2} q^{3 n-1}\left(1-q^{n}\right)\left(1-q^{n+1}\right)+q^{\frac{n-1}{2}}\left(1+a q^{n-1}+a q^{n}-a q^{2 n}\right)\left(1+a q^{2 n+1}\right)\left[\left(1+a q^{n+1}\right)-q^{-\frac{n+1}{2}}\left(1+a q^{2 n+2}\right)\right] x}{\left(1+a q^{2 n-1}\right)\left(1+a q^{2 n+1}\right)}, \\
A_{3}(x)= & a(1-q) q^{\frac{n+1}{2}}\left(1+a q^{2 n+1}\right) x^{2}
\end{aligned}
$$

Concluding remarks. In this paper we present a constructive approach for finding recurrence relations for the hypergeometric-type functions on the linear-type lattices, i.e., the solutions of the hypergeometric difference equation (1) on the linear-type lattices. Important instances of "discret" functions are the celebrated Askey-Wilson polynomials and q-Racah polynomials. Such functions are defined on the non-uniform lattice of the form $x(s)=c_{1}(q) q^{s}+c_{2}(q) q^{-s}+c_{2}(q)$ with $c_{1} c_{2} \neq 0$, i.e., a non linear-type lattice and therefore they require a more detailed study (some preliminar general results can be found in [16]).

Acknowledgements. The authors thank J. S. Dehesa and J.C. Petronilho for interesting discussions. The authors were partially supported by DGES grants MTM2009-12740-C03; PAI grant FQM-0262 (RAN) and Junta de Andalucía grants P09-FQM-4643, Spain; and CM-UTAD from UTAD (JLC).

References

[1] R. Álvarez-Nodarse, Polinomios hipergemétricos y q-polinomios. Monografías del Seminario Matemático "García de Galdeano" Vol. 26. Prensas Universitarias de Zaragoza, Zaragoza, Spain, 2003.
[2] R. Álvarez-Nodarse, On characterizations of classical polynomials, J. Comput. Appl. Math. 196 (2006), 320-337.
[3] R. Álvarez-Nodarse, N. M. Atakishiyev, and R. S. Costas-Santos, Factorization of hypergeometic-type difference equations on nonuniform lattices: dynamical algebra. J. Phys. A: Math. Gen. 38 (2005) 153-174.
[4] R. Álvarez-Nodarse and J. L. Cardoso, Recurrence relations for discrete hypergeometric functions. J. Difference Eq. Appl. 11 (2005), 829-850.
[5] R. Álvarez-Nodarse y J. C. Medem, q-Classical polynomials and the q-Askey and Nikiforov-Uvarov Tableaus. J. Comput. Appl. Math. 135 (2001), 157-196.
[6] G. E. Andrews, R. Askey, and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
[7] N. M. Atakishiyev, M. Rahman, and S. K. Suslov, Classical Orthogonal Polynomials, Constr. Approx. 11 (1995) 181-226.
[8] G. Gasper and M. Rahman, Basic Hypergeometric Series. (2nd Ed.) Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, Cambridge, 2004.
[9] R. Koekoek, Peter A. Lesky, and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin-Heidelberg, 2010.
[10] T. H. Koornwinder, Compact quantum groups and q-special functions. En: Representations of Lie groups and quantum groups. V. Baldoni y M.A. Picardello (Eds.) Pitman Research Notes in Mathematics, Series 311, Longman Scientific \& Technical (1994), 46-128.
[11] J. C. Medem, R. Álvarez-Nodarse, and F. Marcellán, On the q-polynomials: A distributional study. J. Comput. Appl. Math. 135 (2001), 197-223.
[12] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable on nonuniform grids. Soviet Math. Dokl. 34 (1987), no. 3, 576âj 80 ¡¡ $93 ; 579$.
[13] A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics. Springer-Verlag, Berlin, 1991.
[14] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics. Birkhäuser, Basel, 1988.
[15] A. F. Nikiforov and V. B. Uvarov, Polynomial Solutions of hypergeometric type difference Equations and their classification. Integral Transform. Spec. Funct. 1 (1993), 223-249.
[16] S. K. Suslov, The theory of difference analogues of special functions of hypergeometric type. Uspekhi Mat. Nauk. 44:2 (1989), 185-226). (Russian Math. Survey 44:2 (1989), 227-278.)
[17] N. Ja. Vilenkin y A.U. Klimyk, Representations of Lie Groups and Special Functions. Vol. I, II, III. Kluwer Academic Publishers. Dordrecht, 1992.
[18] R.J. Yañez, J.S. Dehesa, and A.F. Nikiforov, The three-term recurrence relations and the differentiation formulas for functions of hypergeometric type. J. Math. Anal. Appl. 185 1994, 855-866.

IMUS \& Departamento de Análisis Matemático, Facultad de Matemática, Universidad de Sevilla. Apdo. Postal 1160, Sevilla, E-41080, Sevilla, Spain

E-mail address: address ran@us.es
CM-Utad \& Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro. Apartado 202, 5001-911 Vila Real, Portugal

E-mail address: jluis@utad.pt

[^0]: Key words and phrases. q-hypergeometric functions, difference equations, recurrence relations, q polynomials.

 MAY 15, 2011

[^1]: ${ }^{1}$ Obviously the functions (3) correspond to the functions (11), whereas the functions y_{ν} given by (4) correspond to those of (12).

[^2]: ${ }^{2}$ In some cases this condition is equivalent to the condition $\left.x(s)^{k} \sigma(s) \rho_{\nu_{0}}(s)\right|_{s=a} ^{s=b}=0, k=0,1,2, \ldots$.

