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ON THE GENERALIZED ASKEY-WILSON POLYNOMIALS

R. ÁLVAREZ-NODARSE AND R. SEVINIK ADIGÜZEL

Abstract. In this paper a generalization of Askey-Wilson polynomials is intro-
duced. These polynomials are obtained from the Askey-Wilson polynomials via
the addition of two mass points to the weight function of them at the points ±1.
Several properties of such new family are considered, in particular the three-term
recurrence relation and the representation as basic hypergeometric series.

Dedicated to Paco Marcellán on the occasion of his 60th birthday

1. Introduction

The Krall-type polynomials are orthogonal with respect to a linear functional ũ
obtained from a quasi-definite functional u : P 7→ C (P, denotes the space of com-
plex polynomials with complex coefficients) via the addition of delta Dirac measures.
These polynomials appear as eigenfunctions of a fourth order linear differential op-
erator with polynomial coefficients that do not depend on the degree of the polyno-
mials. They were firstly considered by Krall in [23] (for a more recent reviews see [4]
and [22, chapter XV]). In fact, H. L. Krall discovered that there are only three extra
families of orthogonal polynomials apart from the classical polynomials of Hermite,
Laguerre and Jacobi that satisfy such a fourth order differential equation which are
orthogonal with respect to measures that are not absolutely continuous with re-
spect to the Lebesgue measure. This result motivated the study of the polynomials
orthogonal with respect to the more general weight functions [18, 20] that could con-
tain more instances of orthogonal polynomials being eigenfunctions of higher-order
differential equations [22, chapters XVI, XVII].
In the last years the study of such polynomials have been considered by many

authors (see e.g. [2, 5, 15, 16, 24, 26] and the references therein) with a special
emphasis on the case when the starting functional u is a classical continuous, discrete
or q-linear functional with the linear type lattices (for more details see [3, 5] and
references therein). In fact, for the q-case some examples related with the q-Laguerre
and the little q-Jacobi polynomials were constructed by Haine and Grünbaum in [15]
using the Darboux transformation. Later on, in [26], Vinet and Zhedanov presented
a more complete study for the little q-Jacobi polynomials. In these both cases, the
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q-Krall polynomials satisfy a higher order q-difference equations with polynomial
coefficients independent of n. For the discrete case the problem was solved very
recently by A. Durán using a new method (see [12, 13], for details).
For the general q-quadratic lattice only few results were known. An important

contribution to this case was done in [17] where the authors considered a generalized
Askey-Wilson polynomials by adding mass points. They showed that the resulting
orthogonal polynomials satisfy a higher order q-difference equation with polynomial
coefficients independent of n, only if the masses are added at very specific points out
of the interval of orthogonality [−1, 1]. Another contribution to this problem was
done in [6], where a general theory of the the Krall-type polynomials on non-uniform

lattices was developed. In fact, in [6] the authors studied the polynomials P̃n(s)q
which are orthogonal with respect to the linear functionals ũ = u +

∑N
k=1Akδxk

defined on the q-quadratic lattice x(s) = c1q
s + c2q

−s + c3 and considered, as a
representative example, the Krall-type Racah polynomials (see also [7]). In fact,
in [6, §5], we posed the problem of obtaining a generalization of the Askey-Wilson
polynomials by adding two mass points at the end of the interval of orthogonality,
motivated by the results in [17].
Thus our main aim here is to study the orthogonal polynomials obtained via

the addition of two mass points at the end of the interval of orthogonality of the
Askey-Wilson polynomials. The structure of the paper is as follows. In Section 2,
some preliminary results on the Askey-Wilson polynomials are presented as well as
the most general expression for the kernels on the q-quadratic lattice x(s) = c1q

s +
c2q

−s+ c3. Our main results are in section 3, where we introduce a detailed study of
the generalized Askey-Wilson polynomials obtained from the classical Askey-Wilson
polynomials by adding two mass points at ∓1.

2. Preliminary results

Here we include some results of the theory of orthogonal polynomials on the non-
uniform lattice (for more details see e.g., [1, 25])

(1) x(s) = c1q
s + c2q

−s + c3.

The polynomials on non-uniform lattices Pn(s)q := Pn(x(s)) are the polynomial
solutions of the second order linear difference equation (SODE) of hypergeometric
type

Asy(s+ 1) +Bsy(s) + Csy(s− 1) + λny(s) = 0,

As =
σ(s) + τ(s)∆x(s− 1

2
)

∆x(s)∆x(s− 1
2
)

, Cs =
σ(s)

∇x(s)∆x(s− 1
2
)
, Bs = −As − Cs,

(2)
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where σ(s) and τ(s) are polynomials of degree at most 2 and exactly 1, respectively,
and λn is a constant. They are orthogonal with respect to the linear functional
u : Pq 7→ C, where Pq denotes the space of polynomials on the lattice (1),

(3) 〈u, PnPm〉 = δmnd
2
n, 〈u, P 〉 =

∫ x1

x0

P (x)qρ(x)dx

where ρ is the weight function and d2n := 〈u, P 2
n〉.

Since the polynomials Pn(s)q are orthogonal with respect to a linear functional,
they satisfy a three-term recurrence relation (TTRR) [1, 11]

(4) x(s)Pn(s)q = αnPn+1(s)q + βnPn(s)q + γnPn−1(s)q, n = 0, 1, 2, ...,

with the initial conditions P0(s)q = 1, P−1(s)q = 0, and also the differentiation
formulas [1, Eqs. (5.65) and (5.67)] (or [8, Eqs. (24) and (25)]

(5) σ(s)
∇Pn(s)q
∇x(s)

= αnPn+1(s)q + βn(s)Pn(s)q,

(6) Φ(s)
∆Pn(s)q
∆x(s)

= α̂nPn+1(s)q + β̂n(s)Pn(s)q,

where Φ(s) = σ(s) + τ(s)∆x(s− 1
2
), and

αn = α̂n = −
αnλ2n

[2n]q
, βn(s) =

λn

[n]q

τn(s)

τ ′n
, β̂n(s) = βn(s)− λn∆x(s− 1

2
).

Notice that from (6) and the TTRR (4) the following useful relation follows

(7) Pn−1(s)q = Θ(s, n)Pn(s)q + Ξ(s, n)Pn(s+ 1)q,

where

Θ(s, n) =
αn

α̂nγn

[
Φ(s)

∆x(s)
−

λ2n

[2n]q
(x(s)−βn) + β̂n(s)

]
, Ξ(s, n) = −

αn

α̂nγn

Φ(s)

∆x(s)
.

Using the Christoffel-Darboux formula for the n-th reproducing kernels

Kn(x(s1), x(s2)) :=

n∑

k=0

Pk(s1)qPk(s2)q
d2k

=
αn

d2n

Pn+1(s1)qPn(s2)q − Pn+1(s2)qPn(s1)q
x(s1)− x(s2)

,

and the relations (5) and (6), respectively, to eliminate Pn+1, we obtain the following
two expressions

Kn(x(s), x(s0)) =
αnPn(s0)q

αnd2n

{
βn(s0)− βn(s)

x(s)− x(s0)
Pn(s)q +

σ(s)

x(s)− x(s0)

∇Pn(s)q
∇x(s)

}

−
αn

αnd2n

σ(s0)

x(s)− x(s0)

∇Pn(s0)q
∇x(s0)

Pn(s)q,

(8)
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Kn(x(s), x(s0)) =
αnPn(s0)q

α̂nd2n

{
β̂n(s0)− β̂n(s)

x(s)− x(s0)
Pn(s)q +

Φ(s)

x(s)− x(s0)

∆Pn(s)q
∆x(s)

}

−
αn

α̂nd2n

Φ(s0)

x(s)− x(s0)

∆Pn(s0)q
∆x(s0)

Pn(s)q.

(9)

Let us mention here that the above two formulas generalize to an arbitrary value s0
the Eqs. (9) and (10) obtained in [6, page 184].
Next, we introduce the Askey-Wilson polynomials defined by the following basic

series [9] (for the definition and properties of basic series see e.g. [14])

Pn(x(s))q := Pn(x(s), a, b, c, d|q) =
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n

× 4ϕ3

(
q−n, abcdqn−1, aqs, aq−s

ab, ac, ad

∣∣∣∣ q , q
)
.

(10)

Notice that the Askey-Wilson polynomials are defined on the lattice x(s) = qs+q−s

2
,

qs = eiθ [10], which is a particular case of (1) when c1 = c2 = 1/2 and c3 = 0. Their
main characteristics (see Eqs. (3), (4), (5), (6)) are given in Table 1.
Using the identity [1, page 156] (see also [6, page 201])

(aqs; q)k(aq
−s; q)k=(−1)kakqk(

k−1
2

)
k−1∏

i=0

[
2x(s)− (aqi + a−1q−i)

]
,

we can rewrite (10) as

Pn(x(s))q =
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n

n∑

k=0

(q−n, abcdqn−1; q)k
(ab, ac, ad, q; q)k

qk

× (−1)kakqk(
k−1
2

)
k−1∏

i=0

[
2x(s)− (aqi + a−1q−i)

]
.

Notice that for x(s0) = −1 and x(s1) = 1, we obtain, respectively,

Pn(−1)q =
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n
4ϕ3

(
q−n, abcdqn−1,−a,−a

ab, ac, ad

∣∣∣∣ q , q
)
,

Pn(1)q =
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n
4ϕ3

(
q−n, abcdqn−1, a, a

ab, ac, ad

∣∣∣∣ q , q
)
.
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Table 1. Main data of the monic Askey-Wilson polynomials [19]

Pn(s) Pn(x(s), a, b, c, d|q) , x(s) = qs+q−s

2
, qs = eiθ , ∆x(s) = q−1

2
[qs − q−s−1]

ρ(s)
(q, ab, ac, ad, bc, bd, cd; q)∞h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)

2π
√
1− x2(abcd; q)∞h(x, a)h(x, b)h(x, c)h(x, d)

, h(x, α)=
∞∏

k=0

(
1− 2αxqk + α

2
q
2k
)

x0=−1, x1=1, a, b, c, d ∈ R or complex conjugate pairs if a, b, c, d ∈ C and max(|a|, |b|, |c|, |d|) < 1

σ(s) q−4s(qs − a)(qs − b)(qs − c)(qs − d)

Φ(s) q4s(q−s − a)(q−s − b)(q−s − c)(q−s − d)

τ (s)
4

q1/2−q−1/2 (ab+ ac+ ad+ bc+ bd+ cd)x(s)− 2

(q1/2−q−1/2)
(a+ b+ c+ d)

τn(s)
4qn

q1/2−q−1/2 (ab+ac+ad+bc+bd+cd)x(s+ n
2
)− 2qn/2

(q1/2−q−1/2)
(a+ b+ c+ d)

λn 4q−n+1(1− qn)(1− abcdqn−1)

d2n
2−2n(q, ab, ac, ad, bc, bd, cd, abcdq2n; q)∞

(abcdqn−1; q)n(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn, abcd; q)∞

βn

1

2

[
− (1−abqn)(1−acqn)(1−adqn)(1−abcdqn−1)

a(1− abcdq2n−1)(1− abcdq2n)
− a(1−qn)(1−bcqn−1)(1−bdqn−1)(1−cdqn−1)

(1− abcdq2n−2)(1− abcdq2n−1)

+a+a−1
]

γn
1

4

(1−qn)(1−abqn−1)(1−acqn−1)(1−adqn−1)(1−bcqn−1)(1−bdqn−1)(1−cdqn−1)(1−abcdqn−2)

(1− abcdq2n−3)(1− abcdq2n−2)2(1− abcdq2n−1)

αn= α̂n 4q−n+1(q1/2 − q−1/2)(1− abcdq2n−1)

βn(s) − 2q
−

3n
2

+1
(q1/2−q−1/2)(1−abcdqn−1)

ab+ac+ad+bc+bd+cd

[
2qn(ab+ac+ad+bc+bd+cd)x(s+ n

2
)−qn/2(a+b+c+d)

]

β̂n(s) βn(s)− 4q−n+1(1− qn)(1− abcdqn−1)∆x(s− 1
2
)

In a similar fashion we get

∆Pn(−1)q = Pn(x(s0 + 1))− Pn(x(s0)) = a(1− q−1)(1− a)
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n

× 4ϕ3

(
q−n, abcdqn−1, aq, aq

ab, ac, ad

∣∣∣∣ q , q
)
,

∆Pn(1)q = Pn(x(s1 + 1))− Pn(x(s1)) = −a(1 − q−1)(1 + a)
(ab, ac, ad; q)n

(2a)n(abcdqn−1; q)n

× 4ϕ3

(
q−n, abcdqn−1,−aq,−aq

ab, ac, ad

∣∣∣∣ q , q
)
.

By inserting the values of Askey-Wilson polynomials given in Table 1 into (7) we
arrive at the following identity

(11) Pn−1(x(s))q = Θ(s, n)Pn(x(s))q + Ξ(s, n)Pn(x(s+ 1))q,
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where

Ξ(s, n) = −
qn−1(1− abcdq2n−3)(1− abcdq2n−2)2

(1 − abqn−1)(1 − acqn−1)(1 − adqn−1)(1− bcqn−1)(1 − bdqn−1)(1− cdqn−1)

×
Φ(s)

(1− abcdqn−2)(q1/2 − q−1/2)(1− qn)∆x(s)
,

Θ(s, n) =
qn−1(1 − abcdq2n−3)(1− abcdq2n−2)2

(1− abqn−1)(1 − acqn−1)(1− adqn−1)(1 − bcqn−1)(1− bdqn−1)(1 − cdqn−1)

×
1

(1− abcdqn−2)(q1/2 − q−1/2)(1− qn)

{
Φ(s)

∆x(s)
+ 2q−n+1(q1/2 − q−1/2)(1 − abcdq2n−1)

×
[
2x(s)− a− a−1 + (1− abcdqn−1)

(1− abqn)(1 − acqn)(1− adqn)

a(1 − abcdq2n−1)(1− abcdq2n)
+ a(1 − qn)

×
(1− bcqn−1)(1− bdqn−1)(1 − cdqn−1)

(1− abcdq2n−2)(1− abcdq2n−1)

]
−

2q−
3n
2
+1(q1/2 − q−1/2)(1 − abcdqn−1)

ab+ ac+ ad+ bc+ bd+ cd

×
{
2qn(ab+ac+ad+bc+bd+cd)x(s+ n

2
)− qn/2(a+b+c+d)

}

− 4q−n+1(1− qn)(1 − abcdqn−1)∆x(s − 1

2
)

}
.

3. The generalized Askey-Wilson polynomials

In this section we consider the modification of the Askey-Wilson polynomials (10)
by adding two mass points, i.e., the polynomials orthogonal with respect to the
functional ũ = u + Aδ(x(s) − x(s0)) + Bδ(x(s) − x(s1)), where u is defined in (3),
x0 := x(s0) = −1 and x1 := x(s1) = 1.
By using [6, §3] the representation of the modified Askey-Wilson polynomials can

be constructed
(12)

P̃A,B
n (x(s))q = Pn(x(s))q − AP̃A,B

n (−1)qKn−1(x(s),−1)−BP̃A,B
n (1)qKn−1(x(s), 1),

then the system of two equations in the two unknowns P̃A,B
n (−1)q and P̃A,B

n (1)q
becomes

P̃A,B
n (−1)q = Pn(−1)q − AP̃A,B

n (−1)qKn−1(−1,−1))−BP̃A,B
n (1)qKn−1(−1, 1),

P̃A,B
n (1)q = Pn(1)q −AP̃A,B

n (−1)qKn−1(1,−1)− BP̃A,B
n (1)qKn−1(1, 1),

whose solution is
(
P̃A,B
n (−1)q
P̃A,B
n (1)q

)
=

(
1 + AKn−1(−1,−1) BKn−1(−1, 1)

AKn−1(1,−1) 1 +BKn−1(1, 1)

)
−1(

Pn(−1)q
Pn(1)q

)
.
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Notice that ∀A,B > 0,

κn−1(−1, 1) := det

∣∣∣∣
1 + AKn−1(−1,−1) BKn−1(−1, 1)

AKn−1(1,−1) 1 +BKn−1(1, 1)

∣∣∣∣ > 0.(13)

Thus, by [6, Proposition 1] the polynomials P̃A,B
n (s)q are well defined for all values

A,B > 0. Furthermore,

P̃A,B
n (−1)q =

(1 +BKn−1(1, 1))Pn(−1)q − BKn−1(−1, 1)Pn(1)q
κn−1(−1, 1)

,

P̃A,B
n (1)q =

(1 + AKn−1(−1,−1))Pn(1)q −AKn−1(1,−1)Pn(−1)q
κn−1(−1, 1)

,

(14)

where κn−1(−1, 1) is given in (13).
The modified Askey-Wilson polynomials satisfy the following orthogonality rela-

tion

∫ 1

−1

P̃A,B
n (x)qP̃

A,B
m (x)qρ(x)dx+ AP̃A,B

n (−1)qP̃
A,B
m (−1)q

+BP̃A,B
n (1)qP̃

A,B
m (1)q = δn,md̃

2
n,

where ρ and dn denote the weight function and the norm of the Askey-Wilson
polynomials (see Table 11) and

d̃2n = 〈ũ, P̃ 2
n(x)〉 = d2n + AP̃A,B

n (−1)qPn(−1)q +BP̃A,B
n (1)qPn(1)q.

Representation formulas for the generalized Askey-Wilson polynomials.

Consider the representation formula (12) where the n-th kernel can be computed
by the formulas (8) and (9). In fact, by using the main datas of Askey-Wilson
polynomials (see Table 1) in (9), we obtain

(15) Kn−1(x(s),−1) = κ−1(s, n)Pn−1(x(s))q + κ−1(s, n)
∆Pn−1(x(s))q

∆x(s)
,

1We have chosen ρ(s) in such a way that
∫ 1

x=−1
ρ(x)dx = 1, i.e., to be a probability measure.
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where

κ−1(s, n)=
(abcdqn−2; q)n−1(abcd, q

n,abqn−1,acqn−1,adqn−1,bcqn−1,bdqn−1,cdqn−1; q)∞
2−2n+2q(q1/2 − q−1/2)(abcdq2n−3; q)∞(q, ab, ac, ad, bc, bd, cd; q)∞

×

{[q n+1
2 (q1/2 − q−1/2)(1− abcdqn−2)[ q

n−1
2 +q−

n−1
2

2
+ x(s+ n−1

2
)]

x(s) + 1

+
(1− qn)(1− abcdqn−1)∆x(s− 1

2
)

x(s) + 1

]
Pn−1(−1)

+
2(1 + a)(1 + b)(1 + c)(1 + d)

(q + q−1 − 2)[x(s) + 1]
∆Pn−1(−1)

}
,

κ−1(s, n)=
(abcdqn−2; q)n−1(abcd, q

n,abqn−1,acqn−1,adqn−1,bcqn−1,bdqn−1,cdqn−1; q)∞
2−2n+4q−n+2(q1/2 − q−1/2)(abcdq2n−3; q)∞(q, ab, ac, ad, bc, bd, cd; q)∞

×
Φ(s)

x(s) + 1
Pn−1(−1),

(16) Kn−1(x(s), 1) = κ1(s, n)Pn−1(x(s))q + κ1(s, n)
∆Pn−1(x(s))q

∆x(s)
,

where

κ1(s, n)=
(abcdqn−2; q)n−1(abcd, q

n,abqn−1,acqn−1,adqn−1,bcqn−1,bdqn−1,cdqn−1; q)∞
2−2n+2q(q1/2 − q−1/2)(abcdq2n−3; q)∞(q, ab, ac, ad, bc, bd, cd; q)∞

×

{[
−

q
n+1
2 (q1/2 − q−1/2)(1− abcdqn−2)[ q

n−1
2 +q−

n−1
2

2
− x(s+ n−1

2
)]

x(s)− 1

+
(1− qn)(1− abcdqn−1)∆x(s− 1

2
)

x(s)− 1

]
Pn−1(1)

−
2(1− a)(1− b)(1− c)(1− d)

(q + q−1 − 2)[x(s)− 1]
∆Pn−1(1)

}
,

κ1(s, n)=
(abcdqn−2; q)n−1(abcd, q

n,abqn−1,acqn−1,adqn−1,bcqn−1,bdqn−1,cdqn−1; q)∞
2−2n+4q−n+2(q1/2 − q−1/2)(abcdq2n−3; q)∞(q, ab, ac, ad, bc, bd, cd; q)∞

×
Φ(s)

x(s)− 1
Pn−1(1).

By substituting (15) and (16) into (12), one finds

P̃A,B
n (x(s))q = Pn(x(s))q + A(s, n)Pn−1(x(s))q +B(s, n)

∆Pn−1(x(s))q
∆x(s)

,(17)
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A(s, n) =− AP̃A,B
n (−1)qκ−1(s, n)− BP̃A,B

n (1)qκ1(s, n),

B(s, n) =− AP̃A,B
n (−1)qκ−1(s, n)− BP̃A,B

n (1)qκ1(s, n),

where P̃A,B
n (−1)q and P̃A,B

n (1)q are given in (14). Notice that the involved functions
A and B as well as ∆Pn−1(s)q/∆x(s) in (17) are not, in general, polynomials in

x(s). Thus, it is not easy to see that P̃A,B
n (s)q in (17) is a polynomial of degree n in

x(s) which is even a simple consequence of (12). Notice that if we use (8) instead of
(9) we can obtain a formula similar to (17) but in terms of the backward difference
operator.
From the Christoffel Darboux formula and the TTRR for the Askey-Wilson poly-

nomials another representation formula for the modified Askey-Wilson polynomials
follows (see e.g. §3 in [6])

(18) φ(s)P̃A,B
n (x(s))q = A(s;n)Pn(x(s))q +B(s;n)Pn−1(x(s))q,

with the coefficients

φ(s) = [x(s)2 − 1],

A(s, n) = φ(s)−
1

d2n−1

{
AP̃A,B

n (−1)qPn−1(−1)q[x(s)− 1]

+BP̃A,B
n (1)qPn−1(1)q[x(s) + 1]

}
,

B(s, n) =
1

d2n−1

{
AP̃A,B

n (−1)qPn(−1)q[x(s)−1] +BP̃A,B
n (1)qPn(1)q[x(s)+1]

}
,

(19)

where P̃A,B
n (−1)q and P̃A,B

n (1)q are defined in (14).
Furthermore, there is one more representation formula for the modified Askey-

Wilson families which can be obtained by substituting the relation (11) in (18)

(20) φ(s)P̃A,B
n (x(s))q = a(s;n)Pn(x(s))q + b(s;n)Pn(x(s+ 1))q,

where a(s;n) = A(s;n) +B(s;n)Θ(s;n), b(s;n) = B(s;n)Ξ(s;n), and A, B and Θ,
Ξ are given by (19) and (11), respectively.
If we change in (20) s by s + 1 and s by s − 1 and then use (2) to eliminate

Pn(x(s+ 2))q and Pn(x(s− 2))q, respectively, we obtain

(21) u(s)P̃n(x(s+ 1))q = c(s, n)Pn(x(s))q + d(s, n)Pn(x(s+ 1))q,

and

(22) v(s)P̃n(x(s− 1))q = e(s, n)Pn(x(s))q + f(s, n)Pn(x(s+ 1))q,

respectively, where u(s) = As+1φ(s + 1), c(s, n) = −Cs+1b(s + 1, n), and d(s, n) =
As+1a(s+1, n)− b(s+1, n)(λn +Bs+1), v(s) = Csφ(s− 1), e(s, n) = Csb(s− 1, n)−
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a(s− 1, n)(λn+Bs), and f(s, n) = −Asa(s− 1, n). Then (20), (21) and (22) lead to

(23)

∣∣∣∣∣∣

φ(s)P̃n(x(s))q a(s, n) b(s, n)

u(s)P̃n(x(s+ 1))q c(s, n) d(s, n)

v(s)P̃n(x(s− 1))q e(s, n) f(s, n)

∣∣∣∣∣∣
= 0.

Expanding the determinant (23) by the first column, we get the following second

order linear difference equation for P̃A,B
n (x(s))q

(24) φ̃(s, n)P̃n(x(s− 1))q + ϕ̃(s, n)P̃n(x(s))q + ξ̃(s, n)P̃n(x(s+ 1))q = 0,

φ̃(s, n) = v(s)
[
a(s, n)d(s, n)− b(s, n)c(s, n)

]
,

ϕ̃(s, n) = φ(s)
[
c(s, n)f(s, n)− d(s, n)e(s, n)

]
,

ξ̃(s, n) = u(s)
[
b(s, n)e(s, n)− a(s, n)f(s, n)

]
.

Thus, the generalized Askey-Wilson polynomials satisfy a second order linear differ-
ence equation (24) with polynomial coefficients which explicitly depend on n.
Moreover one can obtain the TTRR of the monic generalized Askey-Wilson poly-

nomials with two mass points (for details see Eqs. (20), (21) in [6])

x(s)P̃A,B
n (x(s))q = P̃A,B

n+1 (x(s))q + β̃nP̃
A,B
n (x(s))q + γ̃nP̃

A,B
n−1 (x(s))q, n ∈ N,

where

β̃n = βn −A

(
P̃

A,B
n (−1)qPn−1(−1)q

d2n−1

−
P̃

A,B
n+1 (−1)qPn(−1)q

d2n

)

−B

(
P̃

A,B
n (1)qPn−1(1)q

d2n−1

−
P̃

A,B
n+1 (1)qPn(1)q

d2n

)
,

γ̃n = γn
1+∆A,B

n

1+∆A,B
n−1

, ∆A,B
n =

AP̃
A,B
n (−1)qPn(−1)q

d2n
+
BP̃

A,B
n (1)qPn(1)q

d2n
.

Representation of P̃A,B
n (x(s))q in terms of basic series. In this section, we obtain an

explicit formula for P̃A,B
n (x(s), a, b, c, d|q) in terms of basic hypergeometric series. In

fact, substituting (10) into (18) we obtain

φ(s)P̃A,B
n (x(s))q=

(ab, ac, ad; q)n−1

(2a)n−1(abcdqn−2; q)n−1

∞∑

k=0

(q−n, abcdqn−2, aqs, aq−s; q)k
(ab, ac, ad, q; q)k

qkΠ1(q
k),
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where φ(s), A(s, n) and B(s, n) are given in (19) and

Π1(q
k) = A(s, n)

(1− abqn−1)(1− acqn−1)(1− adqn−1)(1− abcdqn+k−2)

2a(1− abcdq2n−3)(1− abcdq2n−2)

+B(s, n)
(1− q−n+k)

(1− q−n)

= −
{
A(s, n)abcdqn−2ϑa,b,c,d

n +B(s, n)q−n
}(qk − qκ(s))

1− q−n
,

(25)

where

qκ(s) =
A(s, n)ϑa,b,c,d

n +B(s, n)

A(s, n)abcdqn−2ϑa,b,c,d
n +B(s, n)q−n

,

ϑa,b,c,d
n =

(1− abqn−1)(1− acqn−1)(1− adqn−1)(1− q−n)

2a(1− abcdq2n−3)(1− abcdq2n−4)
.

By taking into account the identity (qk − qz)(q−z; q)k = (1− qz)(q1−z; q)k we obtain

φ(s)P̃A,B
n (x(s))q =Da,b,c,d

n (s)5ϕ4

(
q−n, abcdqn−2, aqs, aq−s, q1−κ(s)

ab, ac, ad, q−κ(s)

∣∣∣∣q, q
)
,(26)

where

Da,b,c,d
n (s) =

−(ab, ac, ad; q)n−1

(2a)n−1(abcdqn−2; q)n−1

1−qκ(s)

1−q−n

{
A(s, n)abcdqn−2ϑa,b,c,d

n +B(s, n)q−n
}
.

Remark 1. Notice that φ(s)P̃A,B
n (x(s))q, in the left hand side of (26), is a poly-

nomial of degree n + 2 in x(s) which follows from (18) and (19). In order to see
that formula (26) gives a polynomial of degree n + 2 it is sufficient to notice that
the function Π1 defined in (25) is a polynomial in x(s), which follows from that fact
that A(s, n) and B(s, n) are polynomial of degree 2 and 1 in x(s), respectively, (19).

Remark 2. We note that the properties of the modified Askey-Wilson polynomials
with one mass point at x = ±1 can be obtained from the ones with two mass points
by putting A = 0 or B = 0, respectively.

Remark 3. We remark that the relation between Askey-Wilson Pn(x; a, b, c, d; q)

polynomials defined in (10) and q-Racah polynomials uα,β
n (µ(t), ã, b̃) defined on the

lattice µ(t) = [t]q[t + 1]q = c1(q
t + q−t−1) + c3, c1 = q1/2(q1/2 − q−1/2)−2 and c3 =

−q−1/2(1 + q)(q1/2 − q−1/2)−2 follows

2n

(q1/2 − q−1/2)2n
Pn(2c1q

−1/2x+ c3, q
ã+ 1

2 , qβ−ã+ 1
2 , qα+b̃+ 1

2 , q−b̃+ 1
2 ; q) = uα,β

n (µ(t), ã, b̃)
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by setting e2iθ = q2s = q2t+1, where

uα,β
n (µ(t), ã, b̃) = q−

n
2
(2ã+1) (qã−b̃+1, qβ+1, qã+b̃+α+1; q)n

(q1/2 − q−1/2)2n(qα+β+n+1; q)n

× 4ϕ3

(
q−n, qα+β+n+1, qã−t, qt+ã+1

qã−b̃+1, qβ+1, qã+b̃+α+1

∣∣∣∣ q , q
)
.

Combining the above limit, with the ones considered in [6, §4.2] we can construct
the analog of q-Askey Tableau for the Krall-type polynomials. For more details on
how one should take the limits we refer to the paper [21].

Concluding remarks

In this paper we have constructed a generalized Askey-Wilson polynomials by
adding two mass points at the end of the interval of orthogonality and obtained some
of their properties, as the TTRR and the representation as basic hypergeometric
series. In particular, we have showed that they satisfy a second order linear q-
difference equation on the lattice x(s) = (qs + q−s)/2 (see (24)). This equation has
the form (2) but with coefficients that explicitely depend on n, the degree of the
polynomials. In general, they will not satisfy a higher order difference equation with
coefficients independent of n. An example of such polynomials satisfying a higher
order difference equation with coefficients independent of n was constructed in [26].

Acknowledgements:

We want to thank the unknown referees for their suggestions that helped us to
improve the paper and for pointing out the paper [26]. This work was partially
supported by MTM2009-12740-C03-02 (Ministerio de Economı́a y Competitividad),
FQM-262, FQM-4643, FQM-7276 (Junta de Andalućıa), Feder Funds (European
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