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Abstract

We consider the general theory of the modifications of quasi-definite linear functionals

by adding discrete measures. We analyze the existence of the corresponding orthogonal

polynomial sequences with respect to such linear functionals. The three-term recurrence

relation, lowering and raising operators as well as the second order linear differential

equation that the sequences of monic orthogonal polynomials satisfy when the linear

functional is semiclassical are also established. A relevant example is considered in details.

1 Introduction.

Let
�

be a linear functional in the vector space P of polynomials with complex coefficients.

This functional is said to be quasi-definite [8] if the principal submatrices of the infinite Hankel

matrix associated with the sequence of the moments (un)n of the linear functional
�

are non-

singular. Notice that un = 〈 �
, xn〉 where 〈·, ·〉 denotes the duality bracket.

∗E-mail: ran@us.es
†E-mail: jarvesu@math.uc3m.es
‡E-mail: pacomarc@ing.uc3m.es

1



Assuming
�

is a quasi-definite linear functional, there exists a sequence of monic polynomials

(Pn)n with degPn = n, such that

〈 �
, Pn Pm〉 = knδn,m, kn 6= 0.

We introduce a new linear functional

˜� =
�

+
M∑

i=1

Aiδ(x− ai) −
N∑

j=1

Bjδ
′(x− bj), (1.1)

where (Ai)
M
i=1 and (Bj)

N
j=1 are real numbers, δ(x − y) and δ ′(x − y) mean the Dirac linear

functional and its derivative, respectively, defined by

〈δ(x− y), p(x)〉 = p(y), 〈δ′(x− y), p(x)〉 = −p′(y), ∀p ∈ P.

Such a kind of linear functionals have been studied intensively in the last ten years. For

instance, if Bi = 0, i = 1, 2, . . . , N and
�

is a classical linear functional (Hermite, Laguerre,

Jacobi, and Bessel) necessary and sufficient conditions in order to˜� be quasi-definite are given in

[3]. Notice that in the Laguerre case (with M = 1 and a1 = 0), Jacobi (with M = 2 and a1 = 1,

a2 = −1), Bessel case (with M = 1 and a1 = 0) we get the so-called Krall-type orthogonal

polynomials which are related to the spectral analysis of linear differential operators (see e.g.

[10, 15]) and also appear in the Darboux transformation on the Jacobi matrix associated with

the three-term recurrence relation which such polynomials satisfy (see [12, 13], as well as [14]

for some iteration of the Darboux transformation).

If some Bi is nonzero, then a general approach to the quasi-definiteness of the linear func-

tional ˜� is presented in [6]. For the case of classical functionals we have studied the corre-

sponding sequences of orthogonal polynomials in several papers: For the Laguerre functional

see [1, 2], for the Bessel linear functional see [4] and, finally, for the Jacobi linear functional see

[5]. Notice that in these cases the points where the Dirac linear functionals are supported are

intimately related to the end points of the support of
�
.

Very recently and following a multiple integral representation of Heine for Hankel matrices

as well as the corresponding sequences of orthogonal polynomials, in [9] a similar study has

been done. Surprisingly, the authors do not refer the above contributions and even, they do

not discuss the quasi-definite character of the linear functional ˜� . Basically they obtain our

original results using a different approach.

The aim of this contribution is to analyze the linear functional ˜� introduced in (1.1) and to

find necessary and sufficient conditions for its quasi-definiteness. Next, we deduce an explicit

representation of the corresponding sequence of monic orthogonal polynomials (P̃n)n. This

constitutes the contents of the section 2. In section 3 we obtain the coefficients of the three-

term recurrence relation. In section 4 we assume
�

is a semiclassical linear functional and then

we deduce a raising as well as a lowering operator associated with ˜� . In section 5 we deduce a

second order linear differential equation from the above results. Finally, in section 6 an example

related to the Hermite polynomials is worked out.
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2 Definition of the functional ˜� .

Consider the linear functional ˜� given in (1.1), i.e.,

˜� =
�

+
M∑

i=1

Aiδ(x− ai) −
N∑

j=1

Bjδ
′(x− bj).

If ˜� is quasi-definite then there exists a sequence of monic polynomials (P̃ n)n orthogonal with

respect to ˜� and therefore we can consider the Fourier expansion

P̃n(x) = Pn(x) +

n−1∑

k=0

λn,kPk(x). (2.1)

Then, for 0 ≤ k ≤ n− 1,

λn,k =
〈 �
, P̃ n(x)Pk(x)〉
〈 �
, P 2

k (x)〉 = −

M∑

i=1

AiP̃n(ai)Pk(ai) +
N∑

j=1

BjP̃ n(bj)P
′
k(bj) +

N∑

j=1

BjP̃
′

n(bj)Pk(bj)

〈 �
, P 2

k (x)〉

= −
M∑

i=1

AiP̃ n(ai)
Pk(ai)

〈 �
, P 2

k (x)〉 −
N∑

j=1

BjP̃n(bj)
P ′

k(bj)

〈 �
, P 2

k (x)〉 −
N∑

j=1

BjP̃
′

n(bj)
Pk(bj)

〈 �
, P 2

k (x)〉 .

Thus, (2.1) becomes

P̃ n(x) = Pn(x)−
M∑

i=1

AiP̃ n(ai)Kn−1(x, ai)−
N∑

j=1

BjP̃ n(bj)K
(0,1)
n−1 (x, bj)−

N∑

j=1

BjP̃
′

n(bj)Kn−1(x, bj),

(2.2)

where, as usual, we denote

K(i,j)
n (x, y) =

n∑

l=0

P
(i)
l (x)P

(j)
l (y)

〈 �
, P 2

l (x)〉 , P
(i)
l (x) :=

di

dxi
Pl(x), i, j ∈ N.

For a sake of simplicity K(0,0)
n (x, y) := Kn(x, y) denotes the reproducing kernel associated with

the linear functional
�
. It is very well known that 〈 �

,Kn(x, y)p(x)〉 = p(y) for every polynomial

p(x) of degree less than or equal to n.

If we evaluate (2.2) for x = ak, k = 1, 2, . . . ,M we get

P̃ n(ak) = Pn(ak) −
M∑

i=1

AiP̃n(ai)Kn−1(ak, ai) −
N∑

j=1

BjP̃ n(bj)K
(0,1)
n−1 (ak, bj)

−
N∑

j=1

BjP̃
′

n(bj)Kn−1(ak, bj).

(2.3)
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A similar evaluation in (2.2) for x = bk, k = 1, 2, . . . , N , yields

P̃ n(bk) = Pn(bk) −
M∑

i=1

AiP̃n(ai)Kn−1(bk, ai) −
N∑

j=1

BjP̃n(bj)K
(0,1)
n−1 (bk, bj)

−
N∑

j=1

BjP̃
′

n(bj)Kn−1(bk, bj).

(2.4)

Finally, taking derivatives in (2.2) and evaluating the resulting expression for x = bk, k =

1, 2, . . . , N , we obtain

P̃
′

n(bk) = P ′
n(bk) −

M∑

i=1

AiP̃ n(ai)K
(1,0)
n−1 (bk, ai) −

N∑

j=1

BjP̃n(bj)K
(1,1)
n−1 (bk, bj)

−
N∑

j=1

BjP̃
′

n(bj)K
(1,0)
n−1 (bk, bj).

(2.5)

Thus we get a system of M +2N linear equations in the variables (P̃n(ak))
M
k=1, (P̃ n(bk))

N
k=1 and

(P̃
′

n(bk))
N
k=1.

In order to simplify the above expressions we introduce the following notations (AT is the

transpose of A):

Pn(~z) = (Pn(z1), Pn(z2), . . . , Pn(zk))
T , P

′
n(~z) = (P ′

n(z1), P
′
n(z2), . . . , P

′
n(zk))

T
,

where ~z = (z1, z2, · · · , zk)
T . Also we introduce the matrices K

(i,j)
n−1(~z, ~y) ∈ C

p×q whose (m,n)

entry is K
(i,j)
n−1(zm, yn). Here ~z = (z1, z2, . . . , zp) and ~y = (y1, y2, . . . , yq). Finally, we in-

troduce the matrices associated with the mass points A = diag (A1, A2, . . . , AM ) and B =

diag (B1, B2, . . . , BN ).

With these notations the linear system of equations (2.3), (2.4) and (2.5) becomes




P̃n(~a)

P̃n(~b)

P̃
′
n(~b)


 =




Pn(~a)

Pn(~b)

P
′
n(
~b)


− Kn−1D




P̃n(~a)

P̃n(~b)

P̃
′
n(
~b)


 , (2.6)

where ~a = (a1, a2, . . . , aM )T , ~b = (b1, b2, . . . , bN )T , and

D =



A 0 0

0 0 B

0 B 0


 , Kn−1 =




Kn−1(~a,~a) Kn−1(~a,~b) K
(0,1)
n−1 (~a,~b)

Kn−1(~b,~a) Kn−1(~b,~b) K
(0,1)
n−1 (~b,~b)

K
(1,0)
n−1 (~b,~a) K

(0,1)
n−1 (~b,~b) K

(1,1)
n−1 (~b,~b)


 ,

or, equivalently,




P̃n(~a)

P̃n(~b)

P̃′
n(~b)


 =




Pn(~a)

Pn(~b)

P′
n(
~b)


−




Kn−1(~a,~a)AP̃n(~a) + K
(0,1)
n−1 (~a,~b)BP̃n(~b) + Kn−1(~a,~b)BP̃

′
n(~b)

Kn−1(~b,~a)AP̃n(~a) + K
(0,1)
n−1 (~b,~b)BP̃n(~b) + Kn−1(~b,~b)BP̃′

n(~b)

K
(1,0)
n−1 (~b,~a)AP̃n(~a) + K

(1,1)
n−1 (~b,~b)BP̃n(~b) + K

(0,1)
n−1 (~b,~b)BP̃′

n(~b)


 .

4



Notice that all the involved block matrices have the appropriate dimensions. Thus, if the

matrix I+Kn−1D, where I is the identity matrix, is non singular, then we get the existence and

uniqueness for the solution of (2.6).

In such a case (2.2) becomes

P̃ n(x) = Pn(x) − ( K
T
n−1(x,~a),K

T
n−1(x,

~b),K
(0,1)
n−1

T
(x,~a) ) D(I + Kn−1D)−1




Pn(~a)

Pn(~b)

P
′
n(
~b)


 . (2.7)

On the other hand, taking into account the quasi-definite character of ˜� , we get

0 6= 〈˜� , P̃ 2

n(x)〉 = 〈˜� , P̃ n(x)Pn(x)〉 = 〈 �
, P̃ n(x)Pn(x)〉 +

M∑

i=1

AiP̃n(ai)Pn(ai)

+
N∑

j=1

Bj

(
P̃

′

n(bj)Pn(bj) + P̃ n(bj)P
′
n(bj)

)
.

Using the previous notations, as well as 〈 �
, P̃ n(x)Pn(x)〉 = 〈 �

, P 2
n(x)〉, the above expression

becomes

〈̃ �
, P̃

2

n(x)〉 = 〈 �
, P 2

n(x)〉 + (P
T
n (~a),PT

n (~b),P′
n

T (~b) ) D




P̃n(~a)

P̃n(~b)

P̃
′
n(
~b)


 (2.8)

= 〈 �
, P 2

n(x)〉 + (P
T
n (~a),PT

n (~b),P′
n

T (~b) ) D (I + Kn−1D)−1




Pn(~a)

Pn(~b)

P
′
n(
~b)


 .

Thus, as a conclusion, we have proved that if ˜� is a quasi-definite linear functional then the

following conditions hold:

1. The matrix I + Kn−1D is nonsingular for every n ∈ N, i.e.

det(I + Kn−1D) 6= 0, ∀n ∈ N. (2.9)

2. For all n ∈ N

〈̃ �
, P̃

2

n(x)〉 = 〈 �
, P 2

n(x)〉+(PT
n (~a),PT

n (~b),P′
n

T (~b) )D (I+Kn−1D)−1




Pn(~a)

Pn(~b)

P
′
n(
~b)


 6= 0. (2.10)

Conversely, (2.9) and (2.10) are also sufficient conditions for the quasi-definite character of ˜� .

In order to prove it we proceed as follows. Let P̃n be the polynomial given by (2.7). Then, for

0 ≤ j ≤ n− 1

〈̃ �
, P̃ n(x)Pj(x)〉 = 〈 �

, P̃ n(x)Pj(x)〉 + (PT
j (~a),PT

j (~b),P′
j
T (~b) ) D (I + Kn−1D)−1




Pn(~a)

Pn(~b)

P′
n(
~b)


 .
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Now, taking into account the reproducing property of the kernel and 〈 �
, Pj(x)K

(0,1)
n−1 (x, b)〉 =

P ′
j(b), we get

〈 �
, P̃ n(x)Pj(x)〉 = 〈 �

, Pn(x)Pj(x)〉 − (P
T
j (~a),PT

j (~b),P′
j
T (~b) ) D (I + Kn−1D)−1




Pn(~a)

Pn(~b)

P′
n(
~b)


 .

From the above two formulas one has 〈˜� , P̃ n(x)Pj(x)〉 = 〈 �
, Pn(x)Pj(x)〉 = 0, for 0 ≤ j ≤ n−1.

On the other hand,

〈̃ �
, P̃ n(x)Pn(x)〉 = 〈 �

, P̃ n(x)Pn(x)〉 + (P
T
n (~a),PT

n (~b),P′
n

T (~b) ) D (I + Kn−1D)−1




Pn(~a)

Pn(~b)

P′
n(~b)




= 〈 �
, P 2

n(x)〉 + (PT
n (~a),PT

n (~b),P′
n

T (~b) ) D (I + Kn−1D)−1




Pn(~a)

Pn(~b)

P′
n(~b)


 6= 0,

from (2.10). Thus, P̃ n is the n-th monic polynomial orthogonal with respect to the linear

functional ˜� . Then we have proved

Theorem 1 The linear functional ˜� given by (1.1) is a quasi-definite linear functional if and

only if

(i) The matrix I + Kn−1D is nonsingular for every n ∈ N.

(ii) 〈 �
, P 2

n(x)〉 + (PT
n (~a),PT

n (~b),P′
n

T (~b) ) D (I + Kn−1D)−1




Pn(~a)

Pn(~b)

P′
n(
~b)


 6= 0, for every n ∈ N.

In such a case, the corresponding sequence (P̃n)n of monic orthogonal polynomials is given by

P̃ n(x) = Pn(x)− ( K
T
n−1(x,~a),K

T
n−1(x,

~b),K
(0,1)
n−1

T
(x,~a) )D(I + Kn−1D)−1




Pn(~a)

Pn(~b)

P′
n(
~b)


 .

Remarks:

1. If the entries of the matrix D are nonzero, then D is an hermitian matrix which is non-

singular. Then

D(I + Kn−1D)−1 = (D−1 + Kn−1)
−1 = Mn−1,

where D−1 + Kn−1 is an hermitian matrix. Thus (2.10) means that

1 + εn ( P̂T
n (~a), P̂T

n (~b), P̂′
n

T (~b) ) Mn−1




P̂n(~a)

P̂n(~b)

P̂′
n(~b)


 6= 0, P̂n(ai) =

Pn(ai)√
|〈 �
, P 2

n(x)〉|
,

and εn = sign (〈 �
, P 2

n(x)〉).
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2. If some entries of D are zero, then we can reduce the size of our system. The same

situation holds when (ai)
M
i=1

⋂
(bj)

N
j=1 6= ∅. In such a case, the corresponding equations in

(2.3) are reduced because of the repetition in (2.4).

3. Taking into account the Christoffel-Darboux formula we have

Kn−1(x, y) =
1

kn

[
Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

x− y

]
, kn = 〈 �

, P 2
n(x)〉,

as well as

K
(0,1)
n−1 (x, y) =

1

kn

[
Pn(x)P ′

n−1(y) − P ′
n(y)Pn−1(x)

x− y
+
Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

(x− y)2

]
.

Inserting this two expressions in (2.7) and denoting φ(x) =
∏M

i=1(x − ai)
∏N

j=1(x− bj)
2,

we deduce

φ(x)P̃n(x) = A(x;n)Pn(x) + B(x;n)Pn−1(x), (2.11)

where A(x;n) and B(x;n) are polynomials of degree independent of n and at most 2N+M

and 2N +M − 1, respectively.

On the other hand, from the three-term recurrence relation that the sequence (Pn)n

satisfies

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), (2.12)

and taking into account (2.11) we get, for n ≥ 1

φ(x)P̃n−1(x) = C(x;n)Pn(x) +D(x;n)Pn−1(x), (2.13)

where

C(x;n) = −B(x;n− 1)

γn−1

, D(x;n) = A(x;n − 1) +
x− βn−1

γn−1

B(x;n− 1).

4. An inverse process can be done in order to recover the linear functional
�

in terms of ˜�
(we need to add to ˜� the same masses but with opposite sign). In such a way we can

deduce the existence of polynomials A(x;n) and B(x;n) with degrees independent of n

such that

φ(x)Pn(x) = A(x;n)P̃n(x) + B(x;n)P̃n−1(x), (2.14)

as well as the counterpart

φ(x)Pn−1(x) = C(x;n)P̃n(x) +D(x;n)P̃ n−1(x). (2.15)
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3 A Three-Term Recurrence Relation for (P̃ n)n.

In the following we assume that ˜� is quasi-definite. Then, the sequence (P̃n)n of monic poly-

nomials orthogonal with respect to ˜� satisfies a three-term recurrence relation (TTRR)

xP̃n(x) = P̃ n+1(x) + β̃nP̃ n(x) + γ̃nP̃ n−1(x), n ∈ N, (3.1)

with the initial conditions P̃−1(x) = 0, P̃ 0(x) = 1.

Our aim is to obtain the coefficients β̃n and γ̃n of the TTRR (3.1) for the polynomials P̃ n

orthogonal with respect to ˜� , in terms of the coefficients βn and γn of the TTRR (2.12) of the

monic polynomials orthogonal with respect to
�
.

To do it we proceed as follows. By definition

γ̃n =
〈̃ �
, P̃

2

n(x)〉
〈̃ �
, P̃

2

n−1(x)〉
. (3.2)

Taking into account (2.10) as well as remark 1 of theorem 1, we get, for n > 1

γ̃n = γn
1 + εn ( P̂

T
n(~a), P̂T

n (~b), P̂′
n

T (~b) ) Mn−1 ( P̂n(~a), P̂n(~b), P̂′
n(~b) )T

1 + εn−1 ( P̂
T
n−1(~a), P̂

T
n−1(

~b), P̂′
n−1

T (~b) ) Mn−2 ( P̂n−1(~a), P̂n−1(~b), P̂
′
n−1(

~b) )T
,

as well as, for n = 1

γ̃1 =
〈̃ �
, P̃

2

1(x)〉
〈̃ �
, P̃

2

0(x)〉
=

〈̃ �
, P̃

2

1(x)〉
〈 �
, P̃

2

0(x)〉 +
∑M

i=1 Ai

= γ1
1 + ε1 ( P̂T

1 (~a), P̂T
1 (~b), P̂′

1
T (~b) ) M0 ( P̂1(~a), P̂1(~b), P̂

′
1(
~b) )T

1 +
∑M

i=1Ai/u0

,

where u0 = 〈 �
, 1〉 is the first moment of the functional

�
.

On the other hand, β̃n = 〈̃ �
, xP̃

2

n(x)〉/〈˜� , P̃ 2

n(x)〉. Nevertheless, it is better to compute β̃n in

a different way. If b̃n denote the coefficient of xn−1 for P̃n and bn the corresponding coefficient

of xn−1 for Pn we have, β̃n = b̃n − b̃n+1. To obtain b̃n we use the Eq. (2.7) which yields

b̃n = bn − εnεn−1|γn|1/2 ( P̂T
n−1(~a), P̂

T
n−1(

~b), P̂′
n−1

T (~b) ) Mn−1




P̂
T
n(~a)

P̂T
n (~b)

P̂′
n

T (~b)


 .

Thus, for n ≥ 1,

β̃n = βn+ εnεn+1|γn+1|1/2 ( P̂
T
n (~a), P̂T

n (~b), P̂′
n

T (~b) ) Mn




P̂T
n+1(~a)

P̂
T
n+1(

~b)

P̂
′
n+1

T (~b)




− εnεn−1|γn|1/2 ( P̂T
n−1(~a), P̂

T
n−1(

~b), P̂′
n−1

T (~b) ) Mn−1




P̂
T
n(~a)

P̂T
n (~b)

P̂′
n

T (~b)


 .
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Finally, for n = 0 we have

β̃0 =
〈̃ �
, x〉

〈̃ �
, 1〉

=
u1 +

∑M
i=1 aiAi +

∑N
j=1Bj

u0 +
∑M

i=1Ai

.

4 Raising and lowering operators for (P̃ n)n.

In the following we assume that the linear functional
�

is semiclassical, i.e., there exist polyno-

mials ψ and ν, with deg ν ≥ 1, such that

D(ψ
�
) = ν

�
, D =

d

dx
. (4.1)

Here we use the distributional notation in the sense that for a polynomial π we define the linear

functional π
�

in such a way that

〈π �
, p〉 := 〈 �

, πp〉, 〈D �
, p〉 := −〈 �

, p′〉, ∀p ∈ P.

Proposition 1 If
�

is a semiclassical linear functional, then the linear functional ˜� introduced

in (1.1) is also a semiclassical functional.

Proof: Taking into account the fact that for the polynomial φ(x) =
∏M

i=1(x−ai)
∏N

j=1(x− bj)2

we get φ
�

= φ˜� , we can consider

D(φ2ψ˜� ) = D(φ2ψ
�
) = φ2D(ψ

�
)+2φφ′ψ

�
= φ2ν

�
+2φ′ψφ

�
= (νφ+2φ′ψ)φ

�
= (νφ+2φ′ψ)φ˜� ,

i.e., there exist polynomials ψ̃ = φ2ψ and ν̃ = (νφ+ 2φ′ψ)φ such that D(ψ̃˜� ) = ν̃˜� .

Notice that the choice of ψ̃ and ν̃ is not, in general, optimal. For instance, if

D(φψ˜� ) = D(φψ
�
) = φD(ψ

�
) + φ′ψ

�
= (φν + φ′ψ)

�
,

and we assume φ′ψ is a multiple of φ, i.e., φ′ψ = ηφ, where η is a polynomial then the above

equation yields

D(φψ˜� ) = φ(ν + η)
�

= φ(ν + η)˜� ,
and thus ψ̃ = φψ and ν̃ = φ(ν + η). This is the reason why the study of the cases when

the set (ai)
M
i=1

⋃
(bj)

N
j=1 is reduced to the set of zeros of ψ allows to reduce substantially the

computation.

Proposition 2 (Maroni [16]) If
�

is a semiclassical linear functional, then there exist polyno-

mials M1(x;n), N1(x;n) with degree independent of n, such that

ψ(x)P ′
n(x) = M1(x;n)Pn(x) +N1(x;n)Pn−1(x). (4.2)
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In such a sense the operator Ln := ψD−M1(x;n)I reads as a lowering operator. On the other

hand, using the TTRR (2.12) we get

ψ(x)P ′
n(x) = M2(x;n)Pn(x) +N2(x;n)Pn+1(x). (4.3)

Thus the operator Rn := ψD −M2(x;n)I reads as a raising operator. As a consequence of

the existence of lowering and raising operators associated with a semiclassical linear functional,

there exist polynomials with degrees independent of n, R(x;n), S(x;n), and T (x;n) such that

(see [16, 17])

R(x;n)P ′′
n (x) + S(x;n)P ′

n(x) + T (x;n)Pn(x) = 0.

The interest of such a differential equation for the electrostatic interpretation of the location

of the zeros of Pn was increased in the last years. For more details in the case when the linear

functional
�

is associated with an external field with eventually mass points outside its support

see [18, 19] (see also [11] and references therein).

With the above notation we have

Proposition 3 The lowering operator L̃n associated with the semiclassical linear functional ˜�
is L̃n = ψ̃(x)D − M̃1(x;n)I, i.e.,

ψ̃(x)P̃
′

n(x) = M̃1(x;n)P̃ n(x) + Ñ1(x;n)P̃ n−1(x), (4.4)

where ψ̃(x) = φ2(x)ψ(x) and M̃1(x;n) and Ñ1(x;n) are given by formulas (4.5) and (4.6),

respectively.

Proof: Using (2.11) we have

ψ̃(x)P̃
′

n(x) = φ(x)ψ(x)[(φ(x)P̃n(x))
′ − φ′(x)P̃n(x)]

= ψ(x)[A′(x;n)φ(x)Pn(x) + B′(x;n)φ(x)Pn−1(x)]

+φ(x)[A(x;n)ψ(x)P ′
n(x) + B(x;n)ψ(x)P ′

n−1(x)] − ψ(x)φ′(x)φ(x)P̃n(x).

But from (4.2) and (4.3), the above expression becomes

ψ̃(x)P̃
′

n(x) = ψ(x)[A′(x;n)φ(x)Pn(x) + B′(x;n)φ(x)Pn−1(x)]

+φ(x){A(x;n)[M1(x;n)Pn(x) +N1(x;n)Pn−1(x)]

+B(x;n)[M2(x;n− 1)Pn−1(x) +N2(x;n − 1)Pn(x)]} − ψ(x)φ′(x)φ(x)P̃n(x),

i. e.,

ψ̃(x)P̃
′

n = φ(x)Pn(x)[ψ(x)A′(x;n) + A(x;n)M1(x;n) + B(x;n)N2(x;n− 1)]

+φ(x)Pn−1(x)[ψ(x)B′(x;n) + A(x;n)N1(x;n) + B(x;n)M2(x;n− 1)]

−ψ(x)φ′(x)φ(x)P̃n(x).
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Finally, from (2.14) and (2.15) we get

ψ̃(x)P̃
′

n(x) = M̃1(x;n)P̃ n(x) + Ñ1(x;n)P̃ n−1(x),

where
M̃1(x;n) = ψ(x)[A(x;n)A′(x;n) + C(x;n)B′(x;n) − φ(x)φ′(x)

+A(x;n)[A(x;n)M1(x;n) + C(x;n)N1(x;n)]

+B(x;n)[A(x;n)N2(x;n− 1) + C(x;n)M2(x;n− 1)],

(4.5)

as well as

Ñ1(x;n) = ψ(x)[B(x;n)A′(x;n) +D(x;n)B′(x;n)

+A(x;n)[B(x;n)M1(x;n) +D(x;n)N1(x;n)]

+B(x;n)[B(x;n)N2(x;n− 1) +D(x;n)M2(x;n− 1)].

(4.6)

In a similar way we can deduce the representation for the raising operator. Taking into

account (4.4) and the TTRR (3.1) we obtain

ψ̃(x)P̃
′

n(x) = M̃2(x;n)P̃ n(x) + Ñ2(x;n)P̃ n+1(x), (4.7)

where

M̃2(x;n) = M̃1(x;n) +
x− β̃n

γ̃n
Ñ1(x;n), Ñ2(x;n) = −Ñ1(x;n)

γ̃n
.

Remark: Notice that is the degree of ψ̃ and η̃ is not optimal then we can reduce the degrees

of the polynomials M̃1 and Ñ1 in (4.4).

5 The second order differential equation for (P̃ n)n.

From (4.4) and (4.7) a second order linear differential equation immediately follows. In fact,

from (4.4) we have, formally,

P̃ n−1(x) =
ψ̃(x)P̃

′

n(x)− M̃1(x;n)P̃ n(x)

Ñ1(x;n)
. (5.1)

But if we consider (4.7) for polynomials of degree n− 1 instead of n then

ψ̃(x)P̃
′

n−1(x) = M̃2(x;n− 1)P̃n−1(x) + Ñ2(x;n− 1)P̃ n(x). (5.2)

Thus the substitution of (5.1) in (5.2) yields

ψ̃(x)

{
1

Ñ1(x;n)
[ψ̃(x)P̃

′′

n(x) + ψ̃′(x)P̃
′

n(x) − M̃ ′
1(x;n)P̃n(x) − M̃1(x;n)P̃

′

n(x)]

−
(
Ñ ′

1(x;n)

Ñ2
1 (x;n)

+
M̃2(x;n− 1)

Ñ1(x;n)

)
[ψ̃(x)P̃

′

n(x) − M̃1(x;n)P̃n(x)]

}
= Ñ2(x;n− 1)P̃ n(x).
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If we now multiply the above equation by Ñ2
1 (x;n), then we deduce that there exist polynomials

R̃(x;n), S̃(x;n) and T̃ (x;n) of degree independent of n such that

R̃(x;n)P̃
′′

n(x) + S̃(x;n)P̃
′

n(x) + T̃ (x;n)P̃n(x) = 0, (5.3)

with

R̃(x;n) = ψ̃2(x)Ñ1(x;n),

S̃(x;n) = ψ̃(x)Ñ1(x;n)[ψ̃′(x) − M̃1(x;n) − ψ̃(x)M̃2(x;n− 1)] − Ñ ′
1(x;n)ψ̃2(x)−

T̃ (x;n) = [Ñ ′
1(x;n)M̃1(x;n) − Ñ1(x;n)M̃ ′

1(x;n)]ψ̃(x)− Ñ2(x;n− 1)Ñ2
1 (x;n).

6 Example: The modified Hermite polynomials

In this section we will consider an example related to Hermite polynomials. More precisely, we

will consider the polynomials H̃n(x) orthogonal with respect to the functional ˜� such that

〈̃ �
, p〉 = 〈 �

, p〉 + Ap(0) + Bp′(0) =

∫

R

p(x)e−x2

dx+ Ap(0) + Bp′(0). (6.1)

In this case we have

Kn−1 =




Kn−1(0, 0) Kn−1(0, 0) K
(0,1)
n−1 (0, 0)

Kn−1(0, 0) Kn−1(0, 0) K
(0,1)
n−1 (0, 0)

K
(1,0)
n−1 (0, 0) K

(0,1)
n−1 (0, 0) K

(1,1)
n−1 (0, 0)


 , D =



A 0 0

0 0 B

0 B 0


 ,

thus (2.7) yields

H̃n(x) = Hn(x) − ( Kn−1(x, 0),Kn−1(x, 0),K
(0,1)
n−1(x, 0) ) D(I + Kn−1D)−1



Hn(0)

Hn(0)

H ′
n(0)


 .

As we already pointed out in the case when some point masses coincide with some points for

the derivatives of the delta Dirac masses, as in this case, the formulas can be reduced. In fact

since in this case (2.3) and (2.4) are the same, we can reduce the dimensions of the matrices

Kn−1 and D

Kn−1 =

(
Kn−1(0, 0) K

(0,1)
n−1 (0, 0)

K
(1,0)
n−1 (0, 0) K

(1,1)
n−1 (0, 0)

)
, D =

(
A B

B 0

)
. (6.2)

Thus (2.7) yields

H̃n(x) = Hn(x) − ( Kn−1(x, 0),K
(0,1)
n−1(x, 0) ) D(I + Kn−1D)−1

(
Hn(0)

H ′
n(0)

)
,

or, equivalently,

H̃n(x) = Hn(x)− AH̃n(0)Kn−1(x, 0) − BH̃n(0)K
(0,1)
n−1(x, 0) − BH̃

′

n(0)Kn−1(x, 0), (6.3)

where, using the notation (6.2) we have
(
H̃n(0)

H̃
′

n(0)

)
= (I + Kn−1D)−1

(
Hn(0)

H ′
n(0)

)
.

Here (Hn) denotes the classical monic Hermite polynomials.
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6.1 An explicit representation formula

In order to give explicit formulas for these new polynomials H̃n we should compute the corre-

sponding kernels for the Hermite polynomials. We will distinguish the even and odd polyno-

mials. To compute the kernels Kn−1(x, 0) we use the Christoffel-Darboux formula

Kn−1(x, y) =
1

〈 �
, H2

n−1〉
Hn(x)Hn−1(y) −Hn(y)Hn−1(x)

x− y
, n ≥ 1 . (6.4)

For the Hermite polynomials Hn we have 〈 �
, H2

n〉 =
n!
√
π

2n
and

H2m(0) =
(−1)m(2m− 1)!

22m−1(m− 1)!
, H2m−1(0) = 0, m = 1, 2, 3, . . . .

Then, using (6.4) we obtain

K2m−1(x, 0) =
(−1)m−1

2
√
πm!

H ′
2m(x)

x
, K2m(x, 0) =

(−1)m

√
πm!

H2m+1(x)

x
, (6.5)

from where, taking the limit x→ 0 and using the property H ′
n(x) = nHn−1(x), we get

K2m−1(0, 0) =
(2m− 1)!

22m−2
√
π(m− 1)!2

, K2m(0, 0) =
(2m+ 1)!

22m
√
πm!2

. (6.6)

Next we compute the kernel K
(0,1)
n−1 (x, 0). For doing that we take the derivative of (6.4) in y

and put y = 0. With the help of the aforesaid properties of the Hermite polynomials this yields

K
(0,1)
2m−1(x, 0) =

(−1)m−1

2
√
πm!

4mxH2m(x) +H ′
2m(x)

x2
, K

(0,1)
2m (x, 0) =

(−1)m

√
πm!

H2m+1(x) − xH ′
2m+1(x)

x2
,

(6.7)

from where easily follows the values K
(0,1)
2m−1(0, 0) = K

(0,1)
2m (0, 0) = 0. Thus K

(0,1)
n−1 (0, 0) =

K
(1,0)
n−1 (0, 0). Finally, we need to compute the value K

(1,1)
n−1 (0, 0). For doing this we take derivatives

of (6.4) in x and y, respectively and put x = y = 0. This yields the values

K
(1,1)
2m (0, 0) = K

(1,1)
2m−1(0, 0) =

(2m+ 1)!

3 · 22m−2
√
π(m− 1)!m!

. (6.8)

Using all the above results we obtain

H̃2m(0) =
H2m(0)

1 + AK2m−1(0, 0) − B2K2m−1(0, 0)K
(1,1)
2m−1(0, 0)

,

H̃
′

2m(0) =
−BK

(1,1)
2m−1(0, 0)H2m(0)

1 + AK2m−1(0, 0) − B2K2m−1(0, 0)K
(1,1)
2m−1(0, 0)

,

H̃2m+1(0) =
B(2m+ 1)K2m(0, 0)H2m(0)

1 + AK2m(0, 0) − B2K2m(0, 0)K
(1,1)
2m (0, 0)

,

H̃
′

2m+1(0) =
(2m+ 1)(1 + AK2m(0, 0))H2m(0)

1 + AK2m(0, 0) − B2K2m(0, 0)K
(1,1)
2m (0, 0)

.

(6.9)

13



Then, (6.3) transforms into the following explicit representation formula in terms of the classical

monic Hermite polynomials

x2H̃2m(x) = [x2 + a(m)x]H2m(x) + [b(m)x+ c(m)]H ′
2m(x), m ≥ 1

x2H̃2m+1(x) = [x2 + d(m)x+ e(m)]H2m+1(x) + f(m)xH ′
2m+1(x), m ≥ 0,

(6.10)

where

a(m) =
2B(−1)mH̃2m(0)√

π(m− 1)!
, b(m) =

(−1)m

2
√
πm!

[AH̃2m(0) + BH̃
′

2m(0)],

c(m) =
B(−1)mH̃2m(0)

2
√
π m!

, d(m) =
(−1)m+1

√
πm!

[AH̃2m+1(0) + BH̃
′

2m+1(0)],

e(m) =
B(−1)m+1H̃2m+1(0)√

πm!
, f(m) =

B(−1)mH̃2m+1(0)√
πm!

.

6.2 The TTRR relation

To compute the coefficient γ̃n of the TTRR we use (3.2) γ̃n = 〈̃ �
, H̃

2

n(x)〉/〈˜� , H̃2

n−1(x)〉, where

〈̃ �
, H̃

2

n(x)〉 is given by (2.8), i.e.,

〈̃ �
, H̃

2

n(x)〉 = 〈 �
, H2

n(x)〉 + (Hn(0), H ′
n(0) )

(
A B

B 0

)(
H̃n(0)

H̃
′

n(0)

)

= 〈 �
, H2

n(x)〉 + AHn(0)H̃n(0) + BHn(0)H̃
′

n(0) + BH ′
n(0)H̃n(0).

Thus

γ̃2m = m
1 + (−1)m

√
πm!

[AH̃2m(0) + BH̃
′

2m(0)]

1 + 2(−1)m+1

√
π(m−1)!

BH̃2m−1(0)
, γ̃2m+1 =

2m+ 1

2

1 + 2(−1)m

√
πm!

BH̃2m+1(0)

1 + (−1)m

√
πm!

[AH̃2m(0) + BH̃
′

2m(0)]
.

To compute β̃n we use the formula β̃n = b̃n − b̃n−1 where b̃n denotes the coefficient of xn−1 of

H̃n. Then using (6.10) we find b̃2m = a(m), b̃2m+1 = d(m), thus

β̃2m =
(−1)m

√
π(m− 1)!

[2BH̃2m(0) − AH̃2m−1(0) − BH̃
′

2m−1(0)],

β̃2m+1 =
(−1)m+1

√
πm!

[2BH̃2m(0) + AH̃2m+1(0) + BH̃
′

2m+1(0)].

6.3 The second order differential equation

Let now obtain the SODE. We will follow the same algorithm as in [3]. First of all, notice that

(6.10) can be written in the unified form

x2H̃n(x) = α(x, n)Hn(x) + β(x, n)H ′
n(x). (6.11)
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Taking the derivatives of the above expression we have

x2H̃
′

n(x) + 2xH̃n(x) = α′(x, n)Hn(x) + β ′(x, n)H ′
n(x) + α(x, n)H ′

n(x) + β(x, n)H ′′
n(x).

Now we multiply by x and use (6.11) to eliminate the function H̃n(x) as well as the SODE for

the classical Hermite polynomials H ′′
n(x) − 2xH ′

n(x) + λnHn(x) = 0 (λn = n/2) to obtain

x3H̃
′

n(x) = γ(x, n)Hn(x) + δ(x, n)H ′
n(x), (6.12)

where

γ(x, n) = xα′(x, n)− xλnβ(x, n)− 2α(x, n), δ(x, n) = xα(x, n) + xβ ′(x, n) + 2(x2 − 1)β(x, n).

Applying the same procedure but starting with (6.12) we obtain

x4H̃
′′

n(x) = ε(x, n)Hn(x) + ξ(x, n)H ′
n(x), (6.13)

where

ε(x, n) = xγ ′(x, n) − xλnδ(x, n) − 3γ(x, n), ξ(x, n) = xγ(x, n) + xδ ′(x, n) + (2x2 − 3)δ(x, n).

From (6.11), (6.12) and (6.13) it follows that

∣∣∣∣∣∣∣

x2H̃n(x) α(x, n) β(x, n)

x3H̃
′

n(x) γ(x, n) δ(x, n)

x4H̃
′′

n(x) ε(x, n) ξ(x, n)

∣∣∣∣∣∣∣
= 0,

or, equivalently,

x2[α(x, n)δ(x, n) − γ(x, n)β(x, n)]H̃
′′

n(x) + x[ε(x, n)β(x, n) − α(x, n)ξ(x, n)]H̃
′

n(x)

+[γ(x, n)ξ(x, n) − ε(x, n)δ(x, n)]H̃n(x) = 0.

For the even case, we have α(x, 2m) = x2+a(m)x, β(x, 2m) = b(m)x+c(m) and λ2m = 4m,

then, after some straightforward but cumbersome calculations (we use Mathematica in order

to simplify the expressions) we find

σ̃(x, 2m)H̃
′′

2m(x) + τ̃(x, 2m)H̃
′

2m(x) + λ̃(x, 2m)H̃2m(x) = 0,

where

σ̃(x, 2m) = x2
[
x4 + x2a2(m) + 4mx2b2(m) − 2xc(m) + 2x3c(m) + 4mc2(m)

+xb(m) (−x+ 2x3 + 8mc(m)) + a(m) (2x3 + 2x3b(m) − c(m) + 2x2c(m))
]
,

τ̃(x, 2m) = −x
[
2x6 + 2x2 (x2 − 1) a2(m) + 4mx2 (1 + 2x2) b2(m) + 9xc(m)

−6x3c(m) + 4x5c(m) − 4mc2(m) + 8mx2c2(m) + x2b(m) (5 − 2x2 + 4x4 + 16mxc(m))

+2a(m) (2x5 − x3 + x (3 − x2 + 2x4) b(m) + 5c(m) − 3x2c(m) + 2x4c(m))
]
,
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and

λ̃(x, 2m) = 3x4 + 4mx6 + (6x2 + (−2 + 4m)x4) a2(m) + 4mx2 (−3 + 2x2 + 4mx2) b2(m)

−6xc(m) + 6x3c(m) − 12mx3c(m) + 8mx5c(m) − 16mc2(m) + 16m2x2c2(m)

+xb(m) (−3x+ 6x3 + 8mx5 − 36mc(m) + 8mx2c(m) + 32m2x2c(m))

+a(m)[7x3 − 2x5 + 8mx5 + 2x (5x2 + 6mx2 − 2x4 + 4mx4 − 3) b(m) − 14c(m)

+14x2c(m) − 4x4c(m) + 8mx4c(m)].

For the odd case, α(x, 2m+1) = x2+d(m)x+e(m), β(x, 2m+1) = f(m)x, and λ2m+1 = 4m+2,

then

σ̃(x, 2m+ 1)H̃
′′

2m+1(x) + τ̃(x, 2m+ 1)H̃
′

2m+1(x) + λ̃(x, 2m+ 1)H̃2m+1(x) = 0,

where

σ̃(x, 2m+ 1) = x2
[
x2d2(m) + e2(m) + e(m) (2x2 + f(m) + 2x2f(m)) + x2 (x2 − f(m))

+x2 (2x2f(m) + 2f 2(m) + 4mf 2(m)) + 2xd(m) (e(m) + x2 (1 + f(m)))
]
,

τ̃(x, 2m+ 1) = −x
[
2x2 (x2−1) d2(m)+2 (x2−2) e2(m) + e(m) (4x4−4x2 + 5f(m)−2x2f(m)

+4x4f(m)) + d(m) (4x5−2x3 + (4x3−6x) e(m) + 6xf(m)−2x3f(m) + 4x5f(m))

+x2 (2x4+5f(m)−2x2f(m)+4x4f(m)+2f 2(m)+4mf 2(m)+4x2f2(m)+8mx2f2(m))
]
,

and

λ̃(x, 2m+ 1) = (6x2 + 4mx4) d2(m) + (11 − 2x2 + 4mx2) e2(m) + xd(m) (7x2 + 2x4 + 8mx4

+ (15 − 2x2 + 8mx2) e(m) − 6f(m) + 16x2f(m) + 12mx2f(m) + 8mx4f(m))

+e(m) (6x2 + 8mx4 − 7f(m) + 22x2f(m) + 24mx2f(m)− 4x4f(m) + 8mx4f(m))

+x2 (3x2 + 2x4 + 4mx4 − 3f(m) + 6x2f(m) + 4x4f(m) + 8mx4f(m) − 6f 2(m)

−12mf2(m) + 8x2f2(m) + 24mx2f2(m) + 16m2x2f2(m))

Using the above SODE we can study the distribution of zeros of the H̃n polynomials by means

of the central moments [7] and the WKB algorithm [20] in a similar way as it was done in [3].

6.4 The raising and lowering operators

For the raising and lowering operators we follow the algorithm described in section 4. We need

to obtain the relations (2.14) and (2.15). Since (6.1) we have 〈 �
, p〉 = 〈˜� , p〉 − Ap(0) − Bp′(0),

i.e., the classic Hermite functional can be obtained from the functional ˜� via the addition of

the same masses A and B but with a different sign. Then we have the following representation

(compare with (6.3))

Hn(x) = H̃n(x) + AHn(0)K̃n−1(x, 0) + BHn(0)K̃
(0,1)

n−1(x, 0) + BH ′
n(0)K̃n−1(x, 0), (6.14)
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where K̃n and K̃
(0,1)

n are the kernel polynomials corresponding to the family H̃n. Then using

the Christoffel-Darboux formula for the H̃n polynomials we obtain

x2H2m(x) = [x2 + ã(m)x+ b̃(m)]H̃2m(x) + [c̃(m)x+ d̃(m)]H̃2m−1(x), m ≥ 1

x2H2m+1(x) = [x2 + ẽ(m)x]H̃2m+1(x) + f̃(m)xH̃2m(x), m ≥ 0,

(6.15)

where

ã(m) =
H2m(0)

〈̃ �
, H̃2m−1〉

[AH̃2m−1(0) + BH̃
′

2m−1(0)], b̃(m) =
BH2m(0)H̃2m−1(0)

〈̃ �
, H̃2m−1〉

,

c̃(m) = − H2m(0)

〈̃ �
, H̃2m−1〉

[AH̃2m(0) + BH̃
′

2m(0)], d̃(m) = −BH2m(0)H̃2m(0)

〈̃ �
, H̃2m−1〉

,

ẽ(m) =
B(2m+ 1)H2m(0)H̃2m(0)

〈̃ �
, H̃2m〉

, f̃(m) = −B(2m+ 1)H2m(0)H̃2m+1(0)

〈̃ �
, H̃2m〉

.

From the last equation in (6.15) if we change m by m−1 and use the TTRR for the polynomials

H̃n we obtain the following expression for the polynomials H2m−1(x)

x2H2m−1(x) =

[
x2 + ẽ(m− 1)x+

x− β̃2m−1

γ̃2m−1

xf̃(m− 1)

]
H̃2m−1(x) −

xf̃(m)

γ̃2m−1

H̃2m(x). (6.16)

Next, we rewrite the first equation in (6.10)

x2H̃2m(x) = α(x, 2m)H2m(x) + 2mβ(x, 2m)H2m−1(x). (6.17)

Thus A(x, 2m) = α(x, 2m) and B(x, 2m) = 2mβ(x, 2m). Using the TTRR for the Hermite

polynomials the second equation can be easily transformed as follows

x2H̃2m−1(x) = −2β(x, 2m− 1)H2m(x) + [α(x, 2m− 1) + 2xβ(x, 2m− 1)]H2m−1(x). (6.18)

Thus C(x, 2m) = −2β(x, 2m− 1) and D(x, 2m) = α(x, 2m− 1) + 2xβ(x, 2m− 1).

From (6.15) and (6.16) we have

A(x, 2m) = x2 + ã(m)x+ b̃(m), B(x, 2m) = c̃(m)x+ d̃(m),

C(x, 2m) = −xf̃(m)

γ̃2m−1

, D(x, 2m) = x2 + ẽ(m− 1)x+
x− β̃2m−1

γ̃2m−1

xf̃(m− 1).

Finally, from the properties of the Hermite polynomials in formulas (2.11) and (2.13) we get

M1(x, 2m) = 0, N1(x, 2m) = 2m, M2(x, 2m− 1) = 2x, N2(x, 2m− 1) = −2.

Substituting all the above formulas in (4.5) and (4.6) we obtain the lowering operator, and in

(4.7) the raising operator. The same can be performed for the odd case.
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Before concluding this section let us point out that there exist the lowering-like and raising-

like operators. For the sake of completeness we will show how they can be obtained for the

even case. The odd case in completely similar. If we rewrite (6.12) in the form

x3H̃
′

2m(x) = γ(x, 2m)H2m(x) + 2mδ(x, 2m)H2m−1(x),

and use the equations (6.17) and (6.18) we get the lowering-like operator

ψ̃(x; 2m)H̃
′

2m(x) = M1(x; 2m)H̃2m(x) + N1(x; 2m)H̃2m−1(x), (6.19)

where

ψ̃(x, 2m) = x[α(x, 2m)(α(x, 2m− 1) + 2xβ(x, 2m− 1)) + 4mβ(x, 2m− 1)β(x, 2m)],

M1(x; 2m) = γ(x, 2m)[α(x, 2m− 1) + 2xβ(x, 2m− 1)] + 4mβ(x, 2m− 1)δ(x, 2m),

N1(x; 2m) = 2m[α(x, 2m)δ(x, 2m) − β(x, 2m)γ(x, 2m)].

To obtain the raising-like operator we can use the TTRR for the polynomials H̃n to substi-

tute H̃2m−1(x) in (6.19) that leads to

ψ̃(x; 2m)H̃
′

2m(x) = M2(x; 2m)H̃2m(x) + N2(x; 2m)H̃2m+1(x), (6.20)

M2(x;n) = M 1(x;n) +
x− β̃n

γ̃n

N1(x;n), N2(x;n) = −N1(x;n)

γ̃n

.

The odd case can be obtained in a similar way.
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