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The analysis of properties of polynomials orthogonal with respect to a perturbationof a measure via the addition of mass points was introduced by P.Nevai [23]. There theasymptotic properties of the new polynomials have been considered. In particular, heproved the dependence of such properties in terms of the location of the mass points withrespect to the support of the measure. Particular emphasis was given to measures sup-ported in [�1; 1] and satisfying some extra conditions in terms of the parameters of thethree-term recurrence relation that the corresponding sequence of orthogonal polynomialssatisfy.The analysis of algebraic properties for such polynomials attracted the interest of sev-eral researchers (see [7] for positive Borel measures and [21] for a more general situation).From the point of view of di�erential equations see [22].When two mass points are considered, the di�culties increase as shows [10]. An inter-esting application for the addition of two mass points at �1 to the Jacobi weight functionwas analyzed in [17].In this work we will study a generalization of the Hermite and Gegenbauer polynomi-als. In fact, we will study the polynomials orthogonal with respect to a modi�cation of asymmetric weight function via the addition of one Delta measure at x = 0. It is easy tosee that the resulting linear functional is symmetric.In Section 2 we include all the properties of the Hermite and Gegenbauer polynomialswhich will need. In Section 3 we study the generalized Hermite polynomials and Section4 is devoted to the Gegenbauer case. In particular, we obtain their expression in termsof the classical polynomials, the hypergeometric representations, the ratio asymptotics,the second order di�erential equation and the three-term recurrerence relation that suchgeneralized polynomials satisfy.Finally, using the techniques developed in [6] and [5],[31], we deduce in Section 5 somemoments of the distribution of zeros, as well as his semiclassical or WKB density.2 Some Preliminary Results.In this section we will enclose the basic characteristics of the Hermite and Gegenbauermonic orthogonal polynomials. For more details see, for instance, [8], [11], [24], [28].2.1 Classical Hermite Polynomials.The Hermite polynomials Hn(x) are the polynomial solutions of the second order dif-ferential equation y00(x)� 2xy0(x) + 2ny(x) = 0: (1)They satisfy an orthogonal relation of the formZ 1�1Hn(x)Hk(x)e�x2dx = �nk 2�nn!p� ;as well as a three-term recurrence relation (TTRR)xHn(x) = Hn+1(x) + n2Hn�1(x); (2)2



and the di�erentiation formula(Hn(x))(�) = n!(n� �)!Hn��(x); � = 1; 2; 3; ::: : (3)Since they are orthogonal with respect to a symmetric weight function, thenHn(�x) = (�1)nHn(x):They are connected with the classical Laguerre polynomials by relations (see [24] and [28])H2m(x) = L� 12m (x2); H2m+1(x) = xL 12m(x2) ;and H2m(0) = L� 12m (0) = (�1)m(2m)!22mm! ; H2m+1(0) = 0; m = 0; 1; 2; ::: : (4)2.2 Classical Gegenbauer Polynomials.The Gegenbauer polynomials G�n(x) are de�nedG�n(x) � P �� 12 ;�� 12n (x); (5)where P�;�n (x) denotes the classical Jacobi polynomials [24], [28].They satisfy the second order di�erential equation(1� x2)y00(x)� (2� + 1)xy0(x) + n(2�+ n)y(x) = 0; (6)as well as an orthogonal relation of the form (� > � 12)Z 1�1G�n(x)G�k(x)(1 � x2)�� 12dx = �nk p�n!�(n+ �+ 12 )�(n+ 2�)�(n+ �+ 1)�(2n+ 2�) :They satisfy a three-term recurrence relation (TTRR)xG�n(x) = G�n+1(x) + n(2�+ n� 1)4(�+ n)(�+ n� 1)G�n�1(x); (7)and the di�erentiation formula(G�n(x))(�) = n!(n� �)!G�+�n��(x); � = 1; 2; 3; :::; (8)which is a consequence of the di�erentiation formula for the Jacobi polynomials [24], [28](P�;�n (x))(�) = n!(n� �)!P�+�;�+�n�� (x); � = 1; 2; 3; ::: : (9)Since they are orthogonal with respect to a symmetric weight function, thenG�n(�x) = (�1)nG�n(x):They are connected with the classical Jacobi polynomials by (see [28])G�2m(x) = 12mP (�� 12 ;� 12 )m (2x2 � 1); G�2m+1(x) = 12mxP (�� 12 ; 12 )m (2x2 � 1); (10)andG�2m(0) = 2�mP (�� 12 ;� 12 )m (�1) = (�1)m( 12)m(m+ �)m ; G�2m+1(0) = 0; m = 0; 1; 2; ::: : (11)3



3 Generalized Hermite Polynomials.De�nition 3.1 The generalized monic Hermite polynomials HAn (x) are the polynomialsorthogonal with respect to the linear functional U< U ; P > =< H; P > +AP (0); A � 0; (12)de�ned on the set of polynomials IP with real coe�cients supported on the real line, whereH denotes the Hermite functional< H; P > = Z 1�1 e�x2P (x)dx : (13)In order to obtain the polynomialsHAn (x) we consider their Fourier expansion in termsof the classical ones, i.e., HAn (x) = nXk=0 an;kHk(x);and use the orthogonality property in the same sense that in [2]-[4], [21]. Nevertheless,we will obtain them by another way.Let us write the symmetric functional U in the form< U ; P > = Z 1�1 e�x2P (x) dx+AP (0); A � 0: (14)We will decompose the polynomial HAk (x) in two polynomialsHAk (x) = pAn (x2) + xqAm(x2); k = maxf2n; 2m+ 1g; (15)and substitute it in (14). Some straightforward computation gives us2 Z 10 pAn (x2)pAk (x2)e�x2dx+ApAn (0)pAk (0) + 2 Z 10 qAm(x2)qAl (x2)x2e�x2dx:If we introduce in the last expression the change of variables � = x2 we obtainZ 10 pAn (�)pAk (�)�� 12 e��d� +ApAn (0)pAk (0)| {z }pm(�) = CmL� 12 ;Am (x2). + Z 10 qAm(�)qAl (�)� 12 e��d�| {z }qAm = cmL 12m(x) :Then, HA2m(x) = L� 12 ;Am (x2); HA2m+1(x) = xL 12m(x2); m = 0; 1; 2; ::: ; (16)where L�;Am (x) denotes the generalized Laguerre-Koornwinder polynomials [4], [12]-[15],i.e., the polynomials orthogonal with respect to the modi�cation of the weight function�(x) = x�e�x via the addition of one delta Dirac measure at x = 0. By using therepresentation formulas for the monic polynomials L�;Am (x) (see [4])L�;An (x) = L�n(x) + �n ddxL�n(x) = (I + �n ddx)L�n(x); (17)�n = A(�+ 1)nn!�(�+ 1)�1 +A (�+1)n(n�1)!�(�+2)� ;we obtain the following representation formula for these generalized Hermite polynomials4



Proposition 3.1 The generalized Hermite polynomials HAn (x) admit the following repre-sentations in terms of the classical polynomials1. If n = 2m, m = 0; 1; 2; :::, thenHA2m(x) = L� 12m (x2) +Bm ddx2L� 12m (x2);2xHA2m(x) = 2xH2m(x) +Bm ddxH2m(x);Bm = A�1 +A2�(m+ 12 )��(m) � �(m+ 12 )�m! : (18)
2. If n = 2m� 1, m = 1; 2; :::, thenHA2m�1(x) = xL 12m�1(x2) = H2m�1(x): (19)As we can see from the above proposition, the polynomials of odd degree coincide withthe classical ones; then we will only study the polynomials of even degree.3.1 The hypergeometric representation.Proposition 3.2 The generalized Hermite polynomials HA2m(x) are, up to a multiplicativefactor, an hypergeometric function 2F2. More precisely,H2m(x) = (�1)m(1� 2mBm)( 12 )m 2F2  �m; 
0 + 132 ; 
0 ;x2! ; (20)where 
0 = 1�2mBm2(1+Bm) is, in general, a real number. In the case when 
0 is a nonpositiveinteger we will take the analytic continuation of the hypergeometric series.Proof: From the hypergeometric representation of Laguerre polynomials [24], [28]L�n(x) = (�1)n(�+ 1)n 1F1 �n�+ 1 ;x! ; (21)where the hypergeometric function pFq is de�ned bypFq  a1; a2; :::; apb1; b2; :::; bq ;x! = 1Xk=0 (a1)k(a2)k � � � (ap)k(b1)k(b2)k � � � (bq)k xkk! ;and (a)k denotes the Pochammer symbol(a)0 := 1; (a)k := a(a+ 1)(a + 2) � � � (a+ k � 1); k = 1; 2; 3; ::: :From formula (18) we deduceHA2m(x) = (�1)m( 12)m " 1Xk=0 (�m)k( 12)k �kk! +Bm (�m)k+1( 12)k+1 �kk! # ; � = x2:5



Using (a)k+1 = (a+ k + 1)(a)k we �ndHA2m(x) = (�1)m( 12)m(1 +Bm) 1Xk=0 (�m)k( 32 )k �kk! �k + 1� 2mBm1 +Bm � ; � = x2:Notice that the expression inside the quadratic brackets is a polynomial in m of degree 1of the form [k + 
0], where 
0 = 1�2mBm2(1+Bm) . Then, from the identities(a+ 1)k = a+ ka (a)k or (k + a) = a(a+ 1)k(a)k ; (22)the last expression yields (20).3.2 Asymptotic of the polynomials HA2m(x).In order to obtain the asymptotic properties of the polynomialsHA2m(x) for large enoughm, we rewrite (18) in the formHA2m(x)H2m(x) = 1 +Bm (L� 12m (x2))0L� 12m (x2) ; (23)where (L� 12n (x2))0 denotes the derivative with respect to x2. If we use the asymptoticformula for the gamma function [1]�(ax+ b) � p2�e�ax(ax)ax+b� 12 ; x >> 1;the following asymptotic expression for the constant Bm holdsBm � 12m:To obtain the asymptotic formula for the ratio HA2m(z)H2m(z) we can use the Perron formula(see [29], Eq. (4.2.6) page 133 and [28], Theorem 8.22.3) for the ratio 1pn (L�n)0(z)L�n(z) of theLaguerre polynomials (z 2 ICnf[0;1)g)1pn (L�n)0(z)L�n(z) = �1pz �1 + 1pn [C1(�+ 1; z) �C1(�; z) �p�z]�+ o� 1pn� ;where C1(�; z) = 14p�z ��3z + 13z2 + 14 � �2�. Taking into account that in (23) wehave the ratio (L� 12n (x2))0L� 12n (x2) , we need to substitute in the previous expression z  ! z2.But C1( 12 ; z2) = C1(� 12 ; z2);and then, for m large enoughHA2m(z)H2m(z) = 1� 12pm iz �1� izpm�+ o� 1m� ; z 2 ICnIR : (24)6



3.3 Second order di�erential equation.Here we will obtain an algorithm that allows us to deduce the second order di�erentialequation (SODE) that the generalized polynomials satisfy. First of all, notice that bothclassical polynomials under consideration (Hermite and Gegenbauer) satisfy a SODE�(x)P 00n (x) + �(x)P 0n(x) + �nPn(x) = 0:In order to obtain the second order di�erential equation (SODE) that the generalizedHermite polynomials satisfy we will rewrite formula (18) in a more convenient form (noticethat for Hermite polynomials �(x) = 1)2x ~PA2m(x) = 2x ~CP2m(x) + �(x) ~BP 02m(x); (25)where ~PA2m(x) denotes the generalized polynomial and P2m(x) denotes the classical one.For the Hermite polynomials it is easy to check that ~C = 1 and ~B = Bm. We will showlater (see formula (43) from below), that there exists for the generalized Gegenbauer poly-nomials a similar representation (25), but with �(x) = 1�x2; ~C = 1+mWAm and ~B =WAm.Next, we will deduce the SODE for these generalized polynomials. First of all, noticethat the SODE which satisfy the classical polynomials can be rewritten in the form�(x)P 002m(x) = ��(x)P 02m(x)� �2mP2m(x):Taking derivatives in (25), multiplying by x and using the above SODE we obtain�(x) ddx ~PA2m(x) = c(x)P2m(x) + d(x) ddxP2m(x);c(x) = �x ~B�n; d(x) = x[2x ~C + �0(x) ~B]� [�(x) + x�(x)]: (26)Taking derivatives in (26), multiplying by x�(x) and using (26), as well as the SODE forthe P2m(x) we get �(x)2 d2dx2 ~PA2m(x) = e(x)P2m(x) + f(x) ddxP2m(x);e(x) = �(x)[xc0(x)� 2c(x)] � x�nd(x);f(x) = x�(x)[c(x) + d0(x)]� d(x)(2�(x) + x�(x)]: (27)The expressions (25),(26) and (27) lead to the condition������������� 2x ~PA2m(x) a(x) b(x)2x2�(x) ddx ~PA2m(x) c(x) d(x)2x3�(x) d2dx2 ~PA2m(x) e(x) f(x)
������������� = 0 ; (28)where a(x) = 2x ~C and b(x) = �(x) ~B. Expanding the determinant in (28) by the �rstcolumn ~�m(x) d2dx2 ~PA2m(x) + ~�m(x) ddx ~PA2m(x) + ~�m(x) ~PA2m(x) = 0; (29)7



where ~�m(x) = �(x)x2[a(x)d(x) � c(x)b(x)];~�m(x) = x[e(x)b(x) � a(x)f(x)];~�m(x) = c(x)f(x) � e(x)d(x): (30)If we apply this algorithm for the generalized Hermite polynomials, for which (see Eq.(18)) ~C = 1; ~B = Bm; �(x) = 1;we obtainProposition 3.3 The generalized Hermite polynomials of even degree satisfy a secondorder di�erential equation~�m(x) d2dx2HA2m(x) + ~�m(x) ddxHA2m(x) + ~�m(x)HA2m(x) = 0; (31)where ~�m(x) = x ��Bm + 2B2mm+ 2x2 + 2Bm x2� ;~�m(x) = 2 ��Bm + 2B2mm+Bm x2 � 2B2mmx2 � 2x4 � 2Bm x4� ;~�m(x) = 4mx ��3Bm � 2B2m + 2B2mm+ 2x2 + 2Bm x2� : (32)3.4 The three-term recurrence relation.Proposition 3.4 The generalized Hermite polynomials satisfy a three-term recurrencerelation (TTRR)xHAn (x) = HAn+1(x) + �AnHAn (x) + 
An PAn�1(x); n � 0HA�1(x) = 0 and HA0 (x) = 1: (33)This is a consequence of the orthogonality property with respect to a positive de�nitefunctional (see [8] or [24]). To obtain the TTRR's coe�cients notice that the functionalis symmetric and then < U ; xHAn (x)HAn (x) >= 0, i.e., �An = 0. To obtain the coe�cient
An we can analyze the two cases n = 2m and n = 2m� 1, separately. For the coe�cients
An , n = 2m� 1, if we evaluate (33) in x = 0 (HA2m�2(0) 6= 0) we obtain
A2m�1 = � HA2m(0)HA2m�2(0) = (2m� 1)2 1 + 2A� �(m� 12 )�(m�1)1 + 2A� �(m+ 12 )�(m) : (34)For the coe�cients 
An , n = 2m, this procedure in not valid because HA2m�1(0) = 0.For this reason we need to calculate it directly from the de�nition
A2m = < U ; xHA2m(x)HA2m�1(x) >< U ; [HA2m�1(x)]2 > :Since HA2m�1(x) = H2m�1(x), then the denominator is the square norm of the classicalHermite polynomials d22m�1. Let us to calculate the numerator in the above expression.8



In order to do this we will use the TTRR for the classical Hermite polynomials, thedi�erentiation formula (3) as well as formula (18). Then,< U ; xHA2m(x)HA2m�1(x) >= Z 1�1 e�x2H2m�1(x) �xH2m(x) + Bm2 H 02m(x)� dx == Z 1�1 e�x2xH2m�1(x)H2m(x)dx+mBmd22m�1;from which we obtain 
A2m = 
2m +mBm = m(1 +Bm): (35)Now, notice that
A2m+1 = �HA2m+2(0)HA2m(0) = < U ; xHA2m+1(x)HA2m(x) >(dA2m)2 :If we calculate the numerator of the above expression we �nd< U ; xHA2m+1(x)HA2m(x) >= Z 1�1 e�x2H2m+1(x) �xH2m(x) + Bm2 H 02m(x)� dx == Z 1�1 e�x2xH2m+1(x)H2m(x)dx = 12(2m+ 1)d22m = (dA2m)2
A2m+1:The above formula allows us to calculate the square norm of the generalized Hermitepolynomials. In fact, from the last expression and (34) we obtain1. If n = 2m, m = 0; 1; 2; :::, then(dA2m)2 = 1 + 2A� �(m+ 32 )�(m+1)1 + 2A� �(m+ 12 )�(m) (2m)!p�22m : (36)2. If n = 2m+ 1, m = 0; 1; 2; :::, then(dA2m+1)2 = d22m+1 = (2m+ 1)!p�22m+1 : (37)Notice that, when m = 0, [dA0 ]2 = p� + A. This follows from (36) considering the limitwhen m! 0 and using that limx!0�(x) =1.4 The generalized Gegenbauer polynomials.De�nition 4.1 The generalized monic Gegenbauer polynomials G�;An (x) are the polyno-mials orthogonal with respect to the linear functional U< U ; P > =< CG ; P > +AP (0); A � 0; (38)de�ned on the set of polynomials IP with real coe�cients, supported on [�1; 1], where CGdenotes the Gegenbauer functional< CG ; P > = Z 1�1(1� x2)�� 12P (x)dx; � > � 12 : (39)9



To obtain the polynomials G�;An (x) we will follow the same method as before. First ofall, we will rewrite the functional U in the form< U ; P > = Z 1�1(1� x2)�� 12P (x)dx+AP (0); A � 0: (40)We will decompose the polynomial G�;Ak (x) in two polynomials not necessarily monics(G�k(x) = P �� 12 ;�� 12k (x))G�;Ak (x) = pAn (2x2 � 1) + xqAm(2x2 � 1); k = maxf2n; 2m + 1g; (41)and substitute it in (40). Some straightforward calculation gives us2 Z 10 pAn (2x2 � 1)pAk (2x2 � 1)(1 � x2)�� 12dx+ApAn (0)pAk (0)++2 Z 10 qAm(2x2 � 1)qAl (2x2 � 1)x2(1� x2)�� 12 dx:If we consider in the last expression the change of variables � = 2x2 � 1, we �nd12� Z 1�1 pAn (�)pAk (�)(1 + �)� 12 (1� �)�� 12 d� +ApAn (�1)pAk (�1)| {z }pm(�) = CmP�� 12 ;� 12 ;2�A;0m (2x2 � 1). +
+ 12� Z 1�1 qAm(�)qAl (�)(1 + �) 12 (1� �)�� 12d�| {z }qAm = cmP�� 12 ; 12 ;m (2x2 � 1) :Then, G�;A2m (x) = 2�mP �� 12 ;� 12 ;2�A;0m (2x2 � 1);G�;A2m+1(x) = 2�mxP �� 12 ; 12 ;m (2x2 � 1); m = 0; 1; 2; ::: ; (42)where P�;�;A;0m (x) denotes the generalized Jacobi-Koorwinder polynomials [4], [17], i.e., thepolynomials orthogonal with respect to the modi�cation of the weight function �(x) =(1 � x)�(1 + x)� via the addition of one delta Dirac measure at x = �1. By using therepresentation formulas for these polynomials ([4], [17]) as well as (10), we obtainProposition 4.1 The generalized Gegenbauer polynomials G�;An (x) have the followingrepresentations in terms of the Jacobi or Gegenbauer polynomials1. If n = 2m, m = 0; 1; 2; :::, then2mG�;A2m (x) = (1 +WAm)P �� 12 ;� 12m (2x2 � 1)++2(1� x2)WAm dd�P �� 12 ;� 12m (�) ����=2x2�1 ;2xG�;A2m (x) = 2x(1 +mWAm)G�2m(x) +WAm(1� x2) ddxG�2m(x); (43)
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where WAm = Jm;�� 12 ;� 12A;0 = A�1 +A 2�(m+ 12 )�(m+�)� (m�1)!�(m+�� 12 )� �(m+ 12)�(m+ �)�m!�(m+ �+ 12) :2. If n = 2m� 1, m = 1; 2; :::, then2mG�;A2m+1(x) = xP �� 12 ;+ 12m (2x2 � 1) = 2mG�2m+1(x): (44)As we can see from the above proposition, the polynomials of odd degree coincide withthe classical ones; then we will only study the polynomials of even degree.Proposition 4.2 The generalized Gegenbauer polynomials G�;A2m (x) are, up to a multi-plicative factor, an hypergeometric function 4F3. More precisely,G�;A2m (x) = [(�+ 12 )(1�mWAm) +m(m+ �)WAm(1� x2)]�� 2m�(m+ �� 12 )�(�+ 32 )(m+ �)m 4F3 �m;m+ �; 
0 + 1; 
1 + 1�+ 32 ; 
0; 
1 ; 1� x2! ; (45)where 
0; 
1 are the roots of the quadratic equation in k[(2k + 2�+ 1)(1 �mWAm) + 2(m� k)(k +m+ �)WAm(1� x2)] = 0:They are, in general, complex numbers. In the case when 
0; 
1 are nonpositive integerswe need to take the analytic continuation of the hypergeometric series.The proof is quite similar to the previous one (Hermite case). If A = 0 some straightfor-ward calculations give WAm = 0, 
0 = � + 12 . Since 
0
1 = [2WAm(1 � x2)]�1 ! 1 whenA! 0, then 
1 !1 and therefore we recover the classical case, i.e.,G�;02m(x) = limA!0 h(�+ 12)(1 �mWAm) +m(m+ �)WAm(1� x2)i��2m�(m+ �� 12)�(m+ �)�(�+ 32)�(2m+ �) 4F3  �m;m+ �; 
0 + 1; 
1 + 1�+ 32 ; 
0; 
1 ; 1� x2! == 2m�(m+ �� 12 )�(m+ �)�(�+ 12)�(2m+ �) 2F1 �m;m+ ��+ 12 ; 1� x2! = G�2m(x):4.1 Asymptotic of the polynomials G�;A2m (x).In order to study the asymptotic properties of the polynomials G�;A2m (x) for m su�-ciently large, we will rewrite (43) in the form2x�G�;A2m (x)�G�2m(x)� = 2xmWAmP �� 12 ;�� 122m (x) + 2m(1� x2)WAmP �+ 12 ;�+ 122m�1 (x); (46)G�;A2m (x)G�2m(x) = (1 +mWAm) + 2mx (1� x2)WAm P �+ 12 ;�+ 122m�1 (x)P �� 12 ;�� 122m (x) : (47)11



Again, using the asymptotic formula for the gamma function we obtain the followingasymptotic expression for the constant WAmWAm � 12m2 :The asymptotic formula for the di�erence G�;A2m (cos �)�G�2m(cos �) follows from the Dar-boux formula in � 2 ["; � � "], 0 < " << 1 (see [28], Theorem 8.21.8, page 196). Takinginto account the last expression we obtain for the generalized Gegenbauer polynomialsthe following asymptotic formula valid for � 2 ["; �2 � "]S[�2 + "; � � "] ( 0 < " << 1 )2x�G�;A2m (cos �)�G�2m(cos �)� = 1p2�m3 � 2sin ����� [cos � cos(2m� + �� � 12��) + 2 sin � sin(2m� + �� � 12��)] +O� 1m 52 � : (48)When x = cos �2 = 0 we can use the expression [4]G�;A2m (0) = G�2m(0)1 +A 2m�1Xk=0 "G�k(0)dGk #2 ;where dGn is the norm of the Gegenbauer polynomials (see section 2.2), which yieldsG�;A2m (0)G�2m(0) = �2Am +O� 1m2� :Now we can deduce the asymptotic formula for such generalized polynomials o� theinterval of orthogonality. In this case, we will use1n P 0�;�n (z)P�;�n (z) = 2pz2 � 1 + o(1):which is a consequence of the Darboux formula in IRn[�1; 1] (see [28], Theorem 8.21.7, page196). The last formula holds uniformly in the exterior of an arbitrary closed curve whichenclosed the segment [�1; 1]. Notice that, if z 2 IR; z > 1, the right side expression of theabove formula is a real function of z. Then, for the generalized Gegenbauer polynomialswe obtain the following asymptotic formula in ICn[�1; 1]G�;A2m (z)G�2m(z) = 1 + 2m  14 �r1� 1z2!+ o� 1m� : (49)As before, this formula holds uniformly in the exterior of an arbitrary closed curve whichenclosed the segment [�1; 1].
12



4.2 Second order di�erential equation.In the previous section we developed an algorithm which allows us to obtain the SODEfor the Hermite and Gegenbauer polynomials. First of all, note that the generalizedGegenbauer polynomials can be represented by formula (25) (notice that for Gegenbauerpolynomials �(x) = 1� x2), but now~C = 1 +mWAm; ~B =WAm ; �(x) = 1� x2:Then, from (29) and (30)Proposition 4.3 The generalized Gegenbauer polynomials of even degree G�;A2m (x), satisfya second order di�erential equation~�m(x) d2dx2 ~G�;A2m (x) + ~�m(x) ddx ~G�;A2m (x) + ~�m(x) ~G�;A2m (x) = 0; (50)where ~�m(x) = x �1� x2� �WAm +mWAm2 � 2m2WAm2 � 2m�WAm2��2x2 � 4mWAm x2 � 2 � WAm x2� ;~�m(x) = �2WAm � 2mWAm2 + 4m2WAm2 + 4m�WAm2 + 3WAm x2++2 � WAm x2 + 3mWAm2 x2 � 6m2WAm2 x2 � 4m�WAm2 x2��4m2 � WAm2 x2 � 4m�2WAm2 x2 � 2x4 � 4 � x4��4mWAm x4 � 2 � WAm x4 � 8m�WAm x4 � 4 �2WAm x4 ;~�m(x) = 4m (m+ �) x ��3WAm +WAm2 � 3mWAm2 + 2m2WAm2�� 2 � WAm2 + 2m�WAm2 + 2x2 + 4mWAm x2 + 2 � WAm x2� :
(51)

4.3 The three-term recurrence relation.Proposition 4.4 The generalized Gegenbauer polynomials satisfy a three-term recurrencerelation (TTRR) (n � 0)xG�;An (x) = G�;An+1(x) + �AnG�;An (x) + 
AnG�;An�1(x);G�;A�1 (x) = 0 and G�;A0 (x) = 1: (52)This is a consequence of the orthogonality property with respect to a positive de�nitefunctional (see [8] or [24]). To obtain the TTRR's coe�cients we can do the same as inthe previous case. For this reason we only will provide here the results of the calculations.� Since G�;An (x) are orthogonal with respect to a symmetric functional �An = 0.� Coe�cients 
A2m�1, m = 1; 2; 3; :::,
A2m�1 = (2m� 1)(m+ �� 1)2(2m+ �� 1) 1 +A 2�(m� 12 )�(m+��1)� (m�2)!�(m+�� 32 )1 +A 2�(m+ 12 )�(m+�)� (m�1)!�(m+��12 ) : (53)� Coe�cients 
A2m, m = 0; 1; 2; :::,
A2m = m(2m+ 2�� 1)2(2m+ �)(2m+ �� 1) �1 +WAm(m+ �)� : (54)13



Finally, for the square norms we have the expressions� If n = 2m, m = 0; 1; 2; :::,(dA2m)2 = 1+A 2�(m+32 )�(m+�+1)�m!�(m+�+12 )1+A 2�(m+12 )�(m+�)� (m�1)!�(m+�� 12 ) p�(2m)!�(2m + �+ 12)�(2m+ 2�)�(2m+ �+ 1)�(4m + 2�) : (55)� If n = 2m+ 1, m = 0; 1; 2; :::(dA2m+1)2 = d22m+1 = p�(2m+ 1)!�(2m + �+ 32)�(2m+ 2�+ 1)�(2m+ �+ 2)�(4m+ 2�+ 2) :Notice that when m = 0, [dA0 ]2 = p��(�+ 12 )�(�+1) + A, which follows from (55) when we takethe limit m! 0 and use that limx!0�(x) =1.5 The Distribution of zeros: the moments �r and the WKBdensity.In this section we will study the distribution of zeros of the generalized Hermite andGegenbauer polynomials. We will use a general method presented in [6] for the momentsof low order and the WKB approximation in order to obtain the density of the distributionof zeros. First of all we point out that, since our polynomials are orthogonal with respectto a positive de�nite functional all its zeros are real, simple and located in the interiorof the interval of orthogonality. This a necessary condition in order to apply the nextalgorithms.5.1 The moments of the distribution of zeros.The method presented in [6] allows us to compute the moments �r of the distributionof zeros �n(x) around the origin, i.e.,�r = 1nyr = 1n nXi=1 xrn;i; �n = 1n nXi=1 �(x� xn;i):Buend��a, Dehesa and G�alvez [6] have obtained a general formula to �nd these quantities(see [6], Section II, Eq.(11) and (13), page 226). We will apply these two formulas toobtain the general expression for the moments �1 and �2, but �rstly, let us to introducesome notations.We will rewrite the SODE that such polynomials satisfy~�m(x) d2dx2 ~PA2m(x) + ~�m(x) ddx ~PA2m(x) + ~�m(x) ~PA2m(x) = 0where now ~�(x) = c2Xk=0a(2)k xk; ~�(x) = c1Xk=0 a(1)k xk; ~�n(x) = c0Xk=0 a(0)k xk; (56)14



and c2; c1; c0 are the degrees of the polynomials ~�(x), ~�(x) and ~�n(x), respectively. Herethe values a(i)j can be found from (30) in a straightforward way. Let �0 = 1 and q =maxfc2 � 2; c1 � 1; c0g. Then from [6], (Section II, Eq.(11) and (13), page 226)�1 = y1; �2 = y21 � y22 ; (57)and �s = � sXm=1(�1)m�s�m 2Xi=0 (n� s+m)!(n� s+m� i)!a(i)i+q�m2Xi=0 (n� s)!(n� s� i)!a(i)i+q : (58)In general �k = (�1)kk! Yk(�y1;�y2;�2y3; :::;�(k � 1)!kn) where Yk-symbols denote thewell known Bell polynomials in the number theory [26].Let us now to apply these general formulas to obtain the �rst two central moments �1and �2 of our polynomials. Equation (58) give the following values.5.1.1 Hermite polynomials HAn (x).� If n = 2m, m = 0; 1; 2; :::, then�1 = 0; �2 = (1 + 2Bn � 2m) m2 ;and the moments are �1 = 0; �2 = (2m� 1� 2Bm)2 :� If n = 2m� 1, m = 1; 2; :::, then, HA2m�1(x) � H2m�1(x)�1 = 0; �2 = (1�m) m;and the moments are �1 = 0; �2 = (m� 1):The asymptotic behavior of these two moments in both cases is�1 = 0 y �2 � n2 +O(n):5.1.2 Gegenbauer polynomials G�;An (x).� If n = 2m, m = 0; 1; 2; :::, then�1 = 0; �2 = m ��1 + 2m+Wm � n2Wm � 2�Wm�2 (�1 + 2m+ �) (�1 + 2mWm) ;and the moments are�1 = 0; �2 = 1� 2m�Wm + 4m2Wm + 2�Wm2 (�1 + 2m+ �) (�1 + 2mWm) :15



� If n = 2m� 1, m = 1; 2; :::, then, G�;A2m�1(x) � G2m�1�(x)�1 = 0; �2 = 2m (2� 2m)4 (�2 + 2m+ �) ;and the moments are �1 = 0; �2 = 2m� 12 (2m� 2 + �) :The asymptotic behavior of these two moments in both cases is�1 = 0 y �2 � 12 +O(n�1):All odd moments vanish because our functionals are symmetric. Notice that equation (58)and relation �k = (�1)kk! Yk(�y1;�y2;�2y3; :::;�(k � 1)!yk) provide us a general methodto obtain all the moments �r = 1nyr, but it is highly non-linear and cumbersome. Thisis a reason why we use it only for the computation of the moments of low order. Wewant to remark here that the method described above allows a recurrent computation ofthe moments of any desired order and it can be implemented in any computer algebrasystem. See, for instance, [27], [33] where the corresponding symbolic programs were usedto compute the moment of polynomial solutions of fourth-order di�erential equations.5.2 The semiclassical density distribution of of zeros.Next, we will analyze the so-called semiclassical or WKB approximation (see [5],[31] andreferences contained therein). Denoting the zeros of ~PAn (x) by fxn;kgnk=1 we can de�ne itsdistribution function as �n(x) = 1n nXk=1 �(x� xn;k): (59)We will follow the method presented in [31] in order to obtain the WKB density ofzeros, which is an approximate expression for the density of zeros of solutions of anysecond order linear di�erential equation with polynomial coe�cientsa2(x)y00 + a1(x)y0 + a0(x)y = 0 (60)The main result is established in the followingTheorem 5.1 Let S(x) and �(x) be the functionsS(x) = 14a22 f2a2(2a0 � a01) + a1(2a02 � a1)g; (61)�(x) = 14[S(x)]2 (5[S0(x)]24[S(x)] � S00(x)) = P (x; n)Q(x; n) ; (62)where P (x; n) and Q(x; n) are polynomials in x as well as in n. If the condition �(x) << 1holds, then, the semiclassical or WKB density of zeros of the solutions of (60) is given by�WKB(x) = 1�qS(x); x 2 I � IR; (63)in every interval I where the function S(x) is positive.16
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Figure 1: WKB density of zeros of the HAn (x).The proof of this Theorem can be found in [5], [31].Now we can apply this result to our di�erential equation. Using the coe�cients ofthe equation (56) we obtain that for su�ciently large n, �(x) � n�1. From the aboveTheorem the corresponding WKB density of zeros of the polynomials ~PAn (x) follows. Thecomputations are very long and cumbersome. For this reason we provide a little programusing Mathematica [30] and some graphics representation for the �WKB(x) function. Wewill analyze only the polynomials of even degree, i.e., ~PA2m(x).5.2.1 Hermite polynomials HA2m(x).In this case from (61) and (63)�wkbclas(x) = pR(x)(�Bm + 2B2mm+ 2x2 + 2Bm x2) ;R(x) = �6Bm � 3B2m + 24B2mm+ 8B3mm� 32B3mm2 � 4B4mm2 + 16B4mm3��8Bm x2 � 9B2m x2 � 32Bmmx2 ��32B2mmx2 + 4B3mmx2++32B2mm2 x2 + 32B3mm2 x2 � 4B4mm2 x2 + 4x4 + 12Bm x4 � 8B2m x4++16mx4 + 32Bmmx4 + 8B2mmx4 � 8B3mmx4 � 4x6 � 8Bm x6 � 4B2m x6:If we take the limit A! 0, we recover the classical expression [31], [32]��wkb(x) = p1 + 4m� x2� :Notice that, since Bm � 12m , �wkb(x) has the asymptotic form�asympwkb (x) = p�2 + x2 + 4mx2 � x4� x :In Figure 1 we represent the WKB density of zeros for our generalized Hermite polynomi-als. We have plotted the Density function for di�erent values of n (from top to bottom)n = 2 � 104; 1:5 � 104; 104; 103. Notice that the value of the mass doesn't play a crucialrole, since for n >> 1 Bm � 12m , independently of A. It is important to take into accountthat our generalized polynomials have a lot of zeros near the origin. This follows from thefact that �wkb(x) have, asymptotically, a singular point at x = 0.5.2.2 Gegenbauer polynomials G�;A2m (x).17
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Figure 2: WKB density of zeros of the G�;An (x).In this case the expression is very large and we will provide only the limit case whenA! 0. In this case we recover the classical expression [31], [32]��wkb(x) = p2 + 16m2 + 4�+ 16m�+ x2 � 16m2 x2 � 16m�x2 � 4�2 x22�(1� x2) :For Legendre generalized polynomials we have, asymptotically,�asympwkb (x) = pRasymp(x)� (1� x) (1 + x) (1� x2 +mx2 � 4m2 x2 + 4m3 x2) ;whereRasymp(x) = 7� 8m+ 4m2 � 12x2 + 2mx2 � 8m2 x2 � 16m3 x2 + 64m4 x2 � 32m5 x2++7x4 + 7mx4 + 6m2 x4 + 44m3 x4 � 112m4 x4 + 80m5 x4 � 96m6 x4 + 64m7 x4��2x6 � 10m2 x6 � 4m3 x6 + 16m4 x6 � 32m5 x6 + 96m6 x6 � 64m7 x6:In Figure 2 we represent the WKB density of zeros for our generalized Gegenbauerpolynomials. Notice that the value of the mass doesn't play a crucial role, since for n >> 1,Wm � 12m2 , independently of A. We have plotted the Density function for di�erent valuesof the degree of the polynomials (from top to bottom) n = 2� 104; 1:5 � 104; 104; 103 fortwo di�erent cases: the generalized Legendre polynomials (� = 12) and the generalizedGegenbauer with � = 5.5.2.3 Numerical Experiments.As we can see in Figures 1 and 2, the zeros of the classical and generalized polynomialshave the same behaviour. In order to convince ourself that really the in
uence of themasses is very small we compare the number N of zeros in a small interval, say [� 110 ; 110 ],18
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