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Abstract

We consider the modifications of the monic Hermite and Gegenbauer polynomials
via the addition of one point mass at the origin. Some properties of the resulting
polynomials are studied: three-term recurrence relation, differential equation, ratio
asymptotics, hypergeometric representation as well as, for large n, the behaviour of
their zeros.

1 Introduction.

In 1940, H. L. Krall [19] obtained three new classes of polynomials orthogonal with
respect to measures which are not absolutely continuous with respect to the Lebesgue
measure. In fact, his study is related to an extension of the very well known characteri-
zation of classical orthogonal polynomials by S. Bochner. This kind of measures was not
considered in [28]. Moreover, in his paper H. L. Krall obtain that these three new families
of orthogonal polynomials satisfy a fourth order differential equation. The corresponding
measures are given in the following table.

{P,(z)} weight function dp supp(p)
Laguerre-type e vdr+Mé(x), M>0 [0, 00)
fz—1) ¢ 1
Legendre-type Y dr + (z—-1) + (z + ), a>0 [—1,1]

2 2 2

Jacobi-type | (1 —z)*dz + Mé(z), M >0,a>—1 [0, 1]

A different approach to this subject was presented in [18].
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The analysis of properties of polynomials orthogonal with respect to a perturbation
of a measure via the addition of mass points was introduced by P.Nevai [23]. There the
asymptotic properties of the new polynomials have been considered. In particular, he
proved the dependence of such properties in terms of the location of the mass points with
respect to the support of the measure. Particular emphasis was given to measures sup-
ported in [—1, 1] and satisfying some extra conditions in terms of the parameters of the
three-term recurrence relation that the corresponding sequence of orthogonal polynomials
satisfy.

The analysis of algebraic properties for such polynomials attracted the interest of sev-
eral researchers (see [7] for positive Borel measures and [21] for a more general situation).
From the point of view of differential equations see [22].

When two mass points are considered, the difficulties increase as shows [10]. An inter-
esting application for the addition of two mass points at £1 to the Jacobi weight function
was analyzed in [17].

In this work we will study a generalization of the Hermite and Gegenbauer polynomi-
als. In fact, we will study the polynomials orthogonal with respect to a modification of a
symmetric weight function via the addition of one Delta measure at z = 0. It is easy to
see that the resulting linear functional is symmetric.

In Section 2 we include all the properties of the Hermite and Gegenbauer polynomials
which will need. In Section 3 we study the generalized Hermite polynomials and Section
4 is devoted to the Gegenbauer case. In particular, we obtain their expression in terms
of the classical polynomials, the hypergeometric representations, the ratio asymptotics,
the second order differential equation and the three-term recurrerence relation that such
generalized polynomials satisfy.

Finally, using the techniques developed in [6] and [5],[31], we deduce in Section 5 some
moments of the distribution of zeros, as well as his semiclassical or WKB density.

2 Some Preliminary Results.

In this section we will enclose the basic characteristics of the Hermite and Gegenbauer
monic orthogonal polynomials. For more details see, for instance, [8], [11], [24], [28].

2.1 Classical Hermite Polynomials.

The Hermite polynomials H,(z) are the polynomial solutions of the second order dif-
ferential equation

y"(z) — 2zy'(z) + 2ny(z) = 0. (1)

They satisfy an orthogonal relation of the form
o0 2
/ H,(z)Hy(z)e ™" dz = 6,1 27 "nl/7,
— 00
as well as a three-term recurrence relation (TTRR)

2H,(2) = Hys(2) + 5 Ho o1 (), 2)



and the differentiation formula

n!

(Hp(z))®) = H, ,(x), v=123,... (3)

(n—v)!
Since they are orthogonal with respect to a symmetric weight function, then
H,(—z) = (—1)"Hy(z).

They are connected with the classical Laguerre polynomials by relations (see [24] and [28])

Hom(#) = Li? (%), Hopmys (x) = 2LE(2%) |
and
(—1)™(2m)!

22mm!

_1
HQm(O) = Lm2 (0) = HQm—i—l(O) = 0, m = 0, 1, 2, e s (4)

2.2 Classical Gegenbauer Polynomials.
The Gegenbauer polynomials G (z) are defined

GA(z) = Po T 3 (w), (5)

where P2 (z) denotes the classical Jacobi polynomials [24], [28].
They satisfy the second order differential equation

(1 —22)y" (z) — (2X + D) zy/ (z) + n(2\ 4+ n)y(z) =0, (6)
as well as an orthogonal relation of the form (A > —1)

VanIl(n + A+ L)T(n + 2X)
T(n+ X+ 1)T'(2n + 2))

1
[ @ @G - 2P = b
—1

They satisfy a three-term recurrence relation (TTRR)

2 (z) = G n(2X +n —1)

and the differentiation formula

(G z))) = @ ﬁ!y)!thz(x), v=1,23,.., (8)

which is a consequence of the differentiation formula for the Jacobi polynomials [24], [28]

(6} v n' 14 14
(P ﬁ(x))( ) — e U)!pgju,ﬂJr (), v=1,2,3, ... (9)

Since they are orthogonal with respect to a symmetric weight function, then
Go(—x) = (=1)"G) ().

They are connected with the classical Jacobi polynomials by (see [28])

L1 _ 11
Ghnle) = 5P T P07 1), (o) = pe P TP -1, (0)
and
2 —m pA=3.3) (=)™ (5)m N
G5, (0) =27 Py, (1) = ——3—, G5,,1(0)=0, m=0,1,2,... (11)

(m~+ A)m

w



3 Generalized Hermite Polynomials.

Definition 3.1 The generalized monic Hermite polynomials H/(z) are the polynomials
orthogonal with respect to the linear functional U

<U,P> =<H,P>+AP(0), A >0, (12)

defined on the set of polynomials P with real coefficients supported on the real line, where
‘H denotes the Hermite functional

<H,P> = /OO e~ P(a)dz . (13)

—00

In order to obtain the polynomials H/(x) we consider their Fourier expansion in terms
of the classical ones, i.e.,

n
HMz) =Y an s Hi(2),
k=0

and use the orthogonality property in the same sense that in [2]-[4], [21]. Nevertheless,
we will obtain them by another way.

Let us write the symmetric functional ¢/ in the form
o 2
<UP> = / e P(z)dz + AP(0), A > 0. (14)

— 00

We will decompose the polynomial H ,’;‘(x) in two polynomials
HMz) = pa(z?) + zgA (), &k = maz{2n,2m + 1}, (15)
and substitute it in (14). Some straightforward computation gives us
Aoy Ago 2\ —a? Ay A X A2 A2y 2 —a
2 [ ptadpt e " de + At O 0) +2 [ T g (@)a @P)ae da.

2

If we introduce in the last expression the change of variables ¢ = z* we obtain

/ T M Opi ()¢ e Ede + Ap(0)pf (0) + / T O @)t tde

J

Then,
—-1a 1
Héélm(I) = Lm2 (IQ)a Héqm-l—l(I) = :BL,%@(IQ), m = 07 17 27 e (16)

where L%4(z) denotes the generalized Laguerre-Koornwinder polynomials [4], [12]-[15],
i.e., the polynomials orthogonal with respect to the modification of the weight function
p(z) = z% * via the addition of one delta Dirac measure at x = 0. By using the

representation formulas for the monic polynomials L% () (see [4])

a,A e d e d e
Lyz) = LY(z) + Ty —LY(z) = (I + Tyy—) LY (z), (17)

dz dz
. Ala+ 1),

n — 9
il (a+1) (1+ A=)

we obtain the following representation formula for these generalized Hermite polynomials



Proposition 3.1 The generalized Hermite polynomials H/ (x) admit the following repre-
sentations in terms of the classical polynomials

1. If n=2m, m=0,1,2,..., then

1 d _1
Hyy (¢) = Lm® (¢°) + B L’ (2),
22 Hs,, (x) = 20Hop(z) + B 4 g, (z)
2m " Ty D (18)
A I'(m+ 1)
Bm = 2I'(m+1) am!
<1 + ATM)
2. Ifn=2m—1, m=1,2,..., then
1
Hy, y(x) = oL2,_ (2%) = Hom1 (). (19)

As we can see from the above proposition, the polynomials of odd degree coincide with
the classical ones; then we will only study the polynomials of even degree.

3.1 The hypergeometric representation.

Proposition 3.2 The generalized Hermite polynomials H{‘m(x) are, up to a multiplicative
factor, an hypergeometric function oFo. More precisely,

Ho(z) = (=1)(1 = 2mB) () oF ( T ) , (20)

where vy = %_I%F"}BBm"S 18, in general, a real number. In the case when 7y is a nonpositive

integer we will take the analytic continuation of the hypergeometric series.

Proof: From the hypergeometric representation of Laguerre polynomials [24], [28]

—-n
L%z) = (-D)"(a+1), 1F4 < ot 1 ;x> , (21)
where the hypergeometric function ,F, is defined by

Q1,02, ..., Qp N — (al)k(a2)k"'(ap)kx_k
PFq( by, b, ..., by f”) =2 - (bo)k K

and (a); denotes the Pochammer symbol
(a)o:=1, (a)y:=ala+1)(a+2)---(a+k—-1), k=1,2,3,....

From formula (18) we deduce

A _(_1\ym(1 o (—m)kﬁ (—m)k+1§ — 2



Using (a)k+1 = (a + k + 1)(a); we find

Hip () = (=1)"™ (1)m(1 + Bm) 3

Notice that the expression inside the quadratic brackets is a polynomial in m of degree 1

of the form [k + 7], where vy = %. Then, from the identities
1

@+ Dr=""Eay o (kta)=al®tDr (22)
(@)

the last expression yields (20). [

3.2 Asymptotic of the polynomials Hj. (7).

In order to obtain the asymptotic properties of the polynomials H f‘m (z) for large enough
m, we rewrite (18) in the form

Hypy (v) (L’ (%))’
Rt = P ) *

_1
where (L, (2?))" denotes the derivative with respect to z2

formula for the gamma function [1]

. If we use the asymptotic

C(ax +b) ~ V 27re_ax(a:1:)a‘”+b_%, z >>1,
the following asymptotic expression for the constant B, holds
1
By~ —.
™ 2m

A
To obtain the asymptotic formula for the ratio gzzgz; we can use the Perron formula

1 La !/
(see [29], Eq. (4.2.6) page 133 and [28], Theorem 8.22.3) for the ratio L (L0)(=) of the

Laguerre polynomials (z € €\{[0,00)})

1 1 1
where C1(a,z) = W <—3z+ §z2 + 1 oz2>. Taking into account that in (23) we
_1
. Ln 2 (:L.Q ), . . . . 2
have the ratio , we need to substitute in the previous expression z +— z°.

But
Cl(%a Z2) = Cl(_%a Z2)7

and then, for m large enough

Zf:z; :1_2\/1%¢z{1_ 2 }—i—o(%) z € C\R. (24)




3.3 Second order differential equation.

Here we will obtain an algorithm that allows us to deduce the second order differential
equation (SODE) that the generalized polynomials satisfy. First of all, notice that both
classical polynomials under consideration (Hermite and Gegenbauer) satisfy a SODE

o(z)P)(x) + 7(x) P (x) + A\ Po(z) = 0.

In order to obtain the second order differential equation (SODE) that the generalized
Hermite polynomials satisfy we will rewrite formula (18) in a more convenient form (notice
that for Hermite polynomials o(z) = 1)

2¢ Py () = 20:C Py, () + o(2) BPy,,, (2), (25)

where P} (z) denotes the generalized polynomial and Py, (z) denotes the classical one.
For the Hermite polynomials it is easy to check that C' =1 and B = B,,. We will show
later (see formula (43) from below), that there exists for the generalized Gegenbauer poly-
nomials a similar representation (25), but with o(z) = 1—z2, C' = 1+mW,2 and B = W,2.

Next, we will deduce the SODE for these generalized polynomials. First of all, notice
that the SODE which satisfy the classical polynomials can be rewritten in the form

0 (%) Py (2) = =7 (2) Py, (%) — A2gn Pom (2).
Taking derivatives in (25), multiplying by z and using the above SODE we obtain

7 () 5P (2) = () P (&) + () 5 Py (),
(26)
c(z) = —xBX,, d(z)==z[2zC + o'(z)B] - [o(z) + z7(z)].

Taking derivatives in (26), multiplying by zo(x) and using (26), as well as the SODE for

the Py, (x) we get
2 ~
o ()25 Pi () = e(a) Po(2) + £ (2) 3 Pom ()
e(z) = o(z)[zc (z) — 2¢(x)] — TAnd(), (27)

f(z) = zo(z)[e(z) + d'(2)] — d(z)(20(z) + z7(z)].

The expressions (25),(26) and (27) lead to the condition

2:1:P2Am(:1:) a(z) b(x)
2x20(x)%1554m(x) o(z) d(z) | =0, (28)

where a(z) = 2¢C and b(z) = o(z)B. Expanding the determinant in (28) by the first
column

. d -, . d - . .
Um(I)@PQm(I) + Tm(I)%PQm(I) + Am (%) Py, () = 0, (29)

7



where

Tm(2) = zle(z)b(z) — a(z) f ()], (30)

A (@) = c(z) f (x) — e(w)d(x).
If we apply this algorithm for the generalized Hermite polynomials, for which (see Eq.

(18)) i i
C=1, B=DB,, odxz=1,

we obtain

Proposition 3.3 The generalized Hermite polynomials of even degree satisfy a second
order differential equation
d? d

5m($)@ff§4m($) + fm(x)@H{fm(x) + A (2) Hypy () = 0, (31)

where

om(z) =2 (=Bp +2B%m +22% + 2B, 7?)

Fm(r) =2 (=Bm +2 B2, m+ By z? —2B2, ma? —2z* — 2B, %), (32)

Mn(z) =4maz (=3 By, —2B2, +2B2 m+ 222 + 2B, 7?).
3.4 The three-term recurrence relation.

Proposition 3.4 The generalized Hermite polynomials satisfy a three-term recurrence
relation (TTRR)
wH () = Hyyy () + B Hy (2) + 9 Pl (2), n>0
(33)
HA () =0 and Hi'(z) = 1.

This is a consequence of the orthogonality property with respect to a positive definite
functional (see [8] or [24]). To obtain the TTRR’s coefficients notice that the functional
is symmetric and then < U, zH: (z)H;'(z) >= 0, i.e., 82 = 0. To obtain the coefficient
72 we can analyze the two cases n = 2m and n = 2m — 1, separately. For the coefficients
v, n = 2m — 1, if we evaluate (33) in z = 0 (H;!, ,(0) # 0) we obtain

754 L =— HQm(O) _ (27” B 1) m I(m—1) (34)
m—1 — HA 0 - 2 A F(m+l) .
2m—2( ) 1+ 27 F(m)2

For the coefficients 7;!, n = 2m, this procedure in not valid because Hj, ;(0) = 0.
For this reason we need to calculate it directly from the definition
,YA _ < uaxHéqm(I)Héqm—l(I) >
o =
" <U,[Hg, (o) >

Since Hj' |(¥) = Hop 1(z), then the denominator is the square norm of the classical
Hermite polynomials d3,, ;. Let us to calculate the numerator in the above expression.



In order to do this we will use the TTRR for the classical Hermite polynomials, the
differentiation formula (3) as well as formula (18). Then,

o B
<U,zH3 (x)Hs, | (z) >= / e_‘”zHgm_l(x) xHop, (x) + TmHém(x) dx =

— 00

o @]
= / eiIQngm,l(x)Hgm(x)dx +mByda, 1,
—00

from which we obtain

Vom = Yam + mBm =m(1+ By,). (35)
Now, notice that
,YA — _Héélm—i—Q(O) <U $H2m+1( )Héélm(x) >
T Hy,(0) (dg)?

If we calculate the numerator of the above expression we find

o B
U Hy (0 Hip () >= [ e o () |0 Hom (@) + = Hhy (o) d =

— 00

0
- / 6712$H2m+1 (I)HQm(I)d = %(2m + 1)d (d124m)27é4m+1'
—00

The above formula allows us to calculate the square norm of the generalized Hermite
polynomials. In fact, from the last expression and (34) we obtain

1. f n=2m, m=0,1,2,..., then

24 F(m 3)
me 1 2AF(m+1) 22m -
T
2. fn=2m+1, m=0,1,2,..., then
@2m+ /7
(d2m—|—1) d2m+1 22m+1 ' (37)

Notice that, when m = 0, [d{']?> = /7 + A. This follows from (36) considering the limit
when m — 0 and using that lin% ['(z) = oo.
T—

4 The generalized Gegenbauer polynomials.

Definition 4.1 The generalized monic Gegenbauer polynomials G (z) are the polyno-
mials orthogonal with respect to the linear functional U

<U,P> =<Cg,P>+AP(0), A >0, (38)
defined on the set of polynomials P with real coefficients, supported on [—1,1], where Cg
denotes the Gegenbauer functional

1

<Cg P> =/ (1 - 223 P(z)dz, A> —1. (39)
—1



To obtain the polynomials G} (z) we will follow the same method as before. First of
all, we will rewrite the functional ¢/ in the form

1

<UP> = /_1(1 — 2N 3P(a)de + AP(0), A >0. (40)

We will decompose the polynomial GQ’A(QU) in two polynomials not necessarily monics
A—1 A3

(Ghr(z) = Py *(z))
Gz’A(I) = pf(2x2 -1+ :Eq,‘f,‘l(2$2 —1), k=maz{2n,2m + 1}, (41)

and substitute it in (40). Some straightforward calculation gives us

1 1
> / P (20 — 1)pp (20 — 1)(1 — 22 Fdw + Ap (0)pi (0)+

1
v2 [ e - D2 — 1070 - P
0
If we consider in the last expression the change of variables ¢ = 252 — 1, we find

2%/11?2‘(5)1??(5)(1 FE)TE( — P EdE + ApA (—1)pi (1) +

J/

A—L _Loxy, .
A0 92 — 1.

qm = Cm Pm (2:1:2 —-1)
Then,
_1 19
Gy z) =27 mpn PP M0 92 1),
(42)
A-1.4

222 —-1), m=0,1,2,... ,

where P2%4:0 (1) denotes the generalized Jacobi-Koorwinder polynomials [4], [17], i.e., the
polynomials orthogonal with respect to the modification of the weight function p(z) =
(1 — 2)*(1 + z)? via the addition of one delta Dirac measure at z = —1. By using the
representation formulas for these polynomials ([4], [17]) as well as (10), we obtain

Proposition 4.1 The generalized Gegenbauer polynomials G4 (z) have the following
representations in terms of the Jacobi or Gegenbauer polynomials

1. If n=2m, m=0,1,2,..., then

_1_1
2" Gyl (x) = (L+ W) P #72(20% — 1)+
A 4 pA—3—3
+2(1 -z )VVhlEEI%n (f)‘g:QxZ—la (43)

10



where

A I'(m+ 3T (m + X)

2F(m+%)1"(m+/\) Wm!F(m + X+ %) ’
b (mfl)!l"(er/\f%)

(1+4

2. Ifn=2m—1, m=1,2,..., then

141
2mG§\;f+1(x) = $P31 S (22° —1) = 2mG%m+1(5‘7)- (44)

As we can see from the above proposition, the polynomials of odd degree coincide with
the classical ones; then we will only study the polynomials of even degree.

Proposition 4.2 The generalized Gegenbauer polynomials Gé\nf(x) are, up to a multi-
plicative factor, an hypergeometric function 4F'3. More precisely,

Go () = [(A + 1) (1 = mW2) +m(m + WAL - 2?)]x

45
y 2mF(m+>\—§) F -m,m+ Xy +1,7+1 -1 — g2 ( )
Tt ) (mt A, 2 A L7m ’ ’

where vg,y1 are the roots of the quadratic equation in k
[(2k +2) + 1)(1 — mW2A) + 2(m — k) (k +m + NWA1 — z2)] = 0.

They are, in general, complex numbers. In the case when vy, 1 are nonpositive integers
we need to take the analytic continuation of the hypergeometric series.

The proof is quite similar to the previous one (Hermite case). If A = 0 some straightfor-
ward calculations give W4 = 0, vo = A + 1. Since yoy1 = 2W/A(1 — 22)]7! — oo when
A = 0, then ; — oo and therefore we recover the classical case, i.e.,

GYa(r) = Tim [\ §)(1 = mW,2) 4 m(m + NWik(1 - 22)]

2"0(m + A —3)I(m + A) F —mem+ Ayt L+l i1 —a2?
PO+ TEn+) 07 A hm

o 2"T(m A+ A= 5 (m 4+ N) —m,m+ X 2\ _
- T+ O (2m + \) 2 Ay 1T ) = Gom(@):

4.1 Asymptotic of the polynomials G5 ().

In order to study the asymptotic properties of the polynomials G;‘;;? (z) for m suffi-
ciently large, we will rewrite (43) in the form

_Lly_1 1 1
2 (G (&) — G (2)) = 2emWi Py ® 7% (@) + 2m(1 — )W Py > 3 (), (46)

A A+3
G)‘,’;? T 2m P, 2 % (x)
G‘j (($)) = (1+mWz) + —q —xQ)W,ﬁﬁ. (47)
2m P2m2 2(*1:)

11



Again, using the asymptotic formula for the gamma function we obtain the following
asymptotic expression for the constant Wn‘;‘
1
A

The asymptotic formula for the difference G52 (cos ) — G2, (cos 0) follows from the Dar-
boux formula in 6 € [e,m —¢], 0 < e << 1 (see [28], Theorem 8.21.8, page 196). Taking
into account the last expression we obtain for the generalized Gegenbauer polynomials
the following asymptotic formula valid for § € [e, 5 —e]U[§ +e,m—¢] (0 <e << 1)

1 2 \*
2z (G;‘,’f(cos 0) — G2, (cos 6‘)) = N (m> X

(48)
X [cos 0 cos(2mB + A0 — A7) + 2sinfsin(2mb + A0 — IA7)] + O (%) .

m2

When z = cos § = 0 we can use the expression [4]

G2 (0)

2m—1 A 2
G(0)
1+A4 ) l ye ]
k=0 k

Gt (0) =

where d¥ is the norm of the Gegenbauer polynomials (see section 2.2), which yields

AA
Gyi(®) _ +0<1>.

m?2

Now we can deduce the asymptotic formula for such generalized polynomials off the
interval of orthogonality. In this case, we will use

1 P8 (2) 2

= + o(1).
n PP (z) g I

which is a consequence of the Darboux formula in IR\[—1, 1] (see [28], Theorem 8.21.7, page
196). The last formula holds uniformly in the exterior of an arbitrary closed curve which
enclosed the segment [—1,1]. Notice that, if z € R, z > 1, the right side expression of the
above formula is a real function of z. Then, for the generalized Gegenbauer polynomials
we obtain the following asymptotic formula in C\[—1, 1]

Gé;,’i‘(z):HE(l_ 1_Zi>+o<l>. (49)

G (2) m

As before, this formula holds uniformly in the exterior of an arbitrary closed curve which
enclosed the segment [—1,1].

12



4.2 Second order differential equation.

In the previous section we developed an algorithm which allows us to obtain the SODE
for the Hermite and Gegenbauer polynomials. First of all, note that the generalized
Gegenbauer polynomials can be represented by formula (25) (notice that for Gegenbauer
polynomials o(z) = 1 — 22), but now

C=14+mWa, B=w2 o) =1-2z%
Then, from (29) and (30)

Proposition 4.3 The generalized Gegenbauer polynomials of even degree Gg;f(x), satisfy
a second order differential equation

. dz - . d - < -
Fm () 5 G (#) + Fin () 2 G3 (2) + A (2) G () = O, (50)

where
m(z) =z (1-2?) (Wn"}b +mWA? —2m2WA? —2my WA
-2z —4AmWahz? - 20 Wi 2?),

Fo(@) = —2WA—2mWA + 4m2 WA + Amv WA 4 3WA 22+
+21/Wn‘}ba:2—|—3mW;32m2—6m2W£2w2—4van"}b2m2—
—Am2y WA 22 —dm 2 WA 22 — 224 — 4yt
—AmWAz* 20 WA —8muv WAzt —4 2 WA 2t |

Am(@) = 4m (m+v) « (—3W$+W£2—3mW$2+2m2W£2—
—21/Wn’22-|-2m1/W;22+2x2+4mWn’2x2-|-21/W;;‘ac2).

4.3 The three-term recurrence relation.

Proposition 4.4 The generalized Gegenbauer polynomials satisfy a three-term recurrence
relation (TTRR) (n >0)

xG{)’A(ZC) = Gz’ﬁ(l’) + ﬁ;?G;}A(x) + ’)’f?szll(x)’
(52)
aMz) =0 and Gy () = 1.

This is a consequence of the orthogonality property with respect to a positive definite
functional (see [8] or [24]). To obtain the TTRR’s coefficients we can do the same as in
the previous case. For this reason we only will provide here the results of the calculations.

e Since G4 (z) are orthogonal with respect to a symmetric functional 82 = 0.

e Coefficients fyf‘m_l, m=1,2,3,...,

2T (m— )P (m+A-1)

A _@Cm—-1)(m+Ar-1) 1+ A7r(m72)!F(m+)\fg) (53)
Tam-1 = 202m + X —1) 1+ A 2T (m+1)D(m+))
ﬂ'(mfl)!F(m+)\7%)
e Coefficients v\, m =0,1,2, ...,
m(2m + 2\ —1
L L[+ Wi+ N (54)

22m+A)(2m+ A —-1)
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Finally, for the square norms we have the expressions
elfn=2m,m=0,1,2,...,

20 (m+2)0 (m+A+1)

A D) VA(2m)IT(2m + A+ 1T (2m + 2))
LA 2D m ) T(2m + A+ 1)D(4m + 2))

= (m—1)I0(m+x—5)

(dA )2 —

2m

elfn=2m+1, m=0,1,2,...

VT(2m 4 1)ID2m + X + 2)T(2m 42X + 1)

(df 1)2 = d% 1=
me me L(2m + A+ 2)(4m + 2) + 2)

1
Notice that when m = 0, [d§']? = 7@1&152)

the limit m — 0 and use that liII(l) I'(z) = oc.
T—r

+ A, which follows from (55) when we take

5 The Distribution of zeros: the moments . and the WKB
density.

In this section we will study the distribution of zeros of the generalized Hermite and
Gegenbauer polynomials. We will use a general method presented in [6] for the moments
of low order and the WKB approximation in order to obtain the density of the distribution
of zeros. First of all we point out that, since our polynomials are orthogonal with respect
to a positive definite functional all its zeros are real, simple and located in the interior
of the interval of orthogonality. This a necessary condition in order to apply the next
algorithms.

5.1 The moments of the distribution of zeros.

The method presented in [6] allows us to compute the moments p, of the distribution
of zeros p,(z) around the origin, i.e.,
1 1 & 1 &
Pr =W = sz,iv Pn =" 25(9” — Tnji)-
i=1 i=1
Buendia, Dehesa and Gélvez [6] have obtained a general formula to find these quantities
(see [6], Section II, Eq.(11) and (13), page 226). We will apply these two formulas to
obtain the general expression for the moments pq and ps, but firstly, let us to introduce
some notations.

We will rewrite the SODE that such polynomials satisfy

& -4 d < s

() P (2) - () P ) + Ao () P () = 0
where now
co ) c1 ) N co 0
o(x) = Z agc )xk, 7(r) = Z agc )xk, An(z) = Z a/,(c )xk, (56)
k=0 k=0 k=0
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and cg, ¢1, ¢y are the degrees of the polynomials &(x), 7(x) and S\n(m), respectively. Here

(%)

the values a;” can be found from (30) in a straightforward way. Let & = 1 and ¢ =
maz{cy — 2,c1 — 1,¢p}. Then from [6], (Section II, Eq.(11) and (13), page 226)

2 _
b=y, &G=2 5 v (57)
and )
5 m (n—s4+m)! @
m;( 1™ mg(n_Hm 1% ba-m
£s = — T s (58)
; (n—s— z)'a”q

—1)k
( k') Vi(—=y1, —y2, —2y3, ..., —(k — 1)k, ) where Yi-symbols denote the

well known Bell polynomials in the number theory [26].

In general &, =

Let us now to apply these general formulas to obtain the first two central moments p
and py of our polynomials. Equation (58) give the following values.

5.1.1 Hermite polynomials H;'(z).
elfn=2m,m=0,1,2,..., then

(1+2B, —2m) m

61:07 52: 2 )

and the moments are

2m—-1-2B

eIfn=2m—1,m=1,2,.., then, H3 | (z) = Hop_1(2)
&1 =0, §o = (1—m) m,

and the moments are
pr=0,  pp=(m-—1).

The asymptotic behavior of these two moments in both cases is

n
,u1:0yu2~§-l-0(n).

5.1.2 Gegenbauer polynomials G\ (z).
elfn=2m,m=0,1,2,..., then

m (=1 +2m + W, —n®> W, —2AW,,)

:0 =
=0, & 2 (—1+2m+\) (-1 +2mW,,)

and the moments are

=0 y :1—2m—Wm+4m2Wm+2>\Wm
L= 2T 2 (14 2mF N (—L 4 2m W)
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elfn=2m—1,m=1,2,..., then, G§f71($) = Gom-1A(7)

2m (2 — 2m)
== 0 ==
51 ) 52 4 (_2+2m+>\)7
and the moments are
—0 _ 2m —1
=0 T em 2 )

The asymptotic behavior of these two moments in both cases is

1 _
u1=0yu2~§+0(n .

All odd moments vanish because our functionals are symmetric. Notice that equation (58)
(=1)*
k!
to obtain all the moments u, = %yr, but it is highly non-linear and cumbersome. This
is a reason why we use it only for the computation of the moments of low order. We
want to remark here that the method described above allows a recurrent computation of
the moments of any desired order and it can be implemented in any computer algebra
system. See, for instance, [27], [33] where the corresponding symbolic programs were used

to compute the moment of polynomial solutions of fourth-order differential equations.

and relation & = Vi(=y1, —y2, —2y3, ..., —(k — 1)ly;) provide us a general method

5.2 The semiclassical density distribution of of zeros.

Next, we will analyze the so-called semiclassical or WKB approximation (see [5],[31] and
references contained therein). Denoting the zeros of P.'(z) by {zn }}?_, We can define its
distribution function as

pule) = = 3" 8w — w0 ). (59)
k=1

We will follow the method presented in [31] in order to obtain the WKB density of
zeros, which is an approximate expression for the density of zeros of solutions of any
second order linear differential equation with polynomial coefficients

az(z)y" + a1(z)y’' + ag(z)y =0 (60)
The main result is established in the following

Theorem 5.1 Let S(x) and e(x) be the functions

S(z) = 471!%{2@2(2@0 —dl) +a1(2d) — an)}, (61)
1 [SS@R ) Pl
) = TSP { 5@ 0 )} = Qln)’ (62)

where P(xz,n) and Q(x,n) are polynomials in x as well as in n. If the condition e(z) << 1
holds, then, the semiclassical or WKB density of zeros of the solutions of (60) is given by
1
pwkp(z) = —4/S(z), =xze€lCIR, (63)
T

in every interval I where the function S(zx) is positive.
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40 40

-200-100 100 200 -200-100 100 200

Figure 1: WKB density of zeros of the H/(z).

The proof of this Theorem can be found in [5], [31].

Now we can apply this result to our differential equation. Using the coefficients of
the equation (56) we obtain that for sufficiently large n, e(z) ~ n~'. From the above
Theorem the corresponding WKB density of zeros of the polynomials ]5,;4(:1:) follows. The
computations are very long and cumbersome. For this reason we provide a little program
using Mathematica [30] and some graphics representation for the pwxp(z) function. We

will analyze only the polynomials of even degree, i.e., Ps: ().
5.2.1 Hermite polynomials H3 (z).
In this case from (61) and (63)

R(z)
(—=Bm +2B2,m+ 222+ 2B, 12)’

Pwkbclas (517) =

R(z) =-6B,, —3B% +24B2 m+8B3 m—32B3 m?—4B} m?+16 B} m3—
—8Bp 22 —9B2 22 —32B, ma? — —32B2, max? + 4 B3 mx?+
+32B2 m? 22 + 32 B3 m?>z® — 4B m?2? + 4z* + 12 B,, z* — 8 B2, z*+
+16maz* + 32 B, ma* +8 B2, ma* — 8B} ma* — 415 -8 B, 25 — 4 B2, 5.

If we take the limit A — 0, we recover the classical expression [31], [32]

V1+4m — x2

A
Pwkb (x) = .

Notice that, since B, ~ %, pwkb(z) has the asymptotic form

V2422 +4ma? — 2t
B T '

who  (2)

In Figure 1 we represent the WKB density of zeros for our generalized Hermite polynomi-
als. We have plotted the Density function for different values of n (from top to bottom)
n =2 x 10*,1.5 x 10*,10*,103. Notice that the value of the mass doesn’t play a crucial
role, since for n >> 1 B,,, ~ ﬁ, independently of A. Tt is important to take into account
that our generalized polynomials have a lot of zeros near the origin. This follows from the

fact that pykp(x) have, asymptotically, a singular point at 2 = 0.

5.2.2 Gegenbauer polynomials G;‘;’?(:zr)
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Figure 2: WKB density of zeros of the G4 ().

In this case the expression is very large and we will provide only the limit case when
A — 0. In this case we recover the classical expression [31], [32]

A (@) = V2+16m2 + 4\ + 16 mA + 22 — 16m2 22 — 16 mA 22 — 4 \2 22
Puokott) = 27 (1 — 2) :

For Legendre generalized polynomials we have, asymptotically,

pasymp(I) _ RasymP(I)
wkb m(l—z) (1+z) (1—22+ma?—4m?2?+4m32?)’
where
RosVP(p) = T—8m+4m?— 1222 +2ma? —8m? 22 — 16m3 2% + 64m* 22 — 32m® 22+

+7zr+Tmzt+6m2zt +44m3 2t —112mr 2t + 80m® z* — 96 mb 2% + 64 m” 2% —
—225 —10m? 28 —4m? 2% + 16 m* 2% — 32m5 2% + 96 mb 25 — 64 m " 28.

In Figure 2 we represent the WKB density of zeros for our generalized Gegenbauer
polynomials. Notice that the value of the mass doesn’t play a crucial role, since for n >> 1,
Wi ~ Qm%, independently of A. We have plotted the Density function for different values
of the degree of the polynomials (from top to bottom) n = 2 x 10*, 1.5 x 10%,10%, 10 for
two different cases: the generalized Legendre polynomials (A = 1) and the generalized
Gegenbauer with A = 5.

5.2.3 Numerical Experiments.

As we can see in Figures 1 and 2, the zeros of the classical and generalized polynomials
have the same behaviour. In order to convince ourself that really the influence of the
masses is very small we compare the number N of zeros in a small interval, say [—%0, 1—10],
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by computing the quantity

which gives us (approximately) the number of zeros on such an interval. The result of
such a calculation for the Legendre L4\ (z) and Hermite H3' (x) families is given in table
1.

Table 1. The number of zeros in [—1, 1] of the L4, (z) and Hj., () polynomials.

2m | Lom(z) | Lo (v) || Hom(w) | Hip ()

100000 | 12753.7 | 12753.8 || 40.2634 | 38.8898

200000 || 25507.5 | 25507.5 || 56.941 | 55.4299

300000 | 38261.2 | 38261.2 | 69.7382 | 68.047

400000 || 51014.9 | 51014.9 || 80.5268 | 78.6623

500000 | 63768.6 | 63768.7 | 90.0317 | 88.0054

600000 | 76522.3 | 76522.4 | 98.6247 | 96.4471

700000 89276. | 89276.1 || 106.527 | 104.207

800000 | 102030. | 102030. || 113.882 | 111.428

900000 | 114783. | 114784. | 120.79 | 118.208

1000000 || 127537. | 127537 | 127.324 | 124.62
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