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Abstract. We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to
ordered pairs of partitions, holds for many infinite families of such pairs. We also show
that the bounded height case can be reduced to checking that the conjecture holds for a
finite number of pairs, for any given height. Moreover, we propose a natural generalization
of the conjecture to the case of skew shapes.
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1. Introduction

In the course of their study of Horn type inequalities for eigenvalues and singular values
of complex matrices, Fomin, Fulton, Li, and Poon [2] come up with a very interesting con-
jecture concerning the Schur-positivity of special differences of products of Schur functions.
More precisely, they consider differences of the form

sµ∗sν∗ − sµsν,

where µ∗ and ν∗ are partitions constructed from an ordered pair of partitions µ and ν
through a seemingly strange procedure at first glance. In our presentation, their transfor-
mation (µ, ν) 7→ (µ∗, ν∗) on ordered pairs of partitions, will rather be denoted

(1.1) (µ, ν) 7−→ (µ, ν)∗ = (λ(µ, ν), ρ(µ, ν))
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and will be called the ∗-operation. As we shall see, this change of notation is essential
in order to simplify the presentation of the many nice combinatorial properties of this
operation. On the other hand, it underlines that both entries, λ and ρ of the image (µ, ν)∗

of (µ, ν), actually depend on both µ and ν.

With this slight change of notation, the original definition of the ∗-operation is as follows.
Let µ = (µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) two partitions with the same number of
parts, allowing zero parts. From these, two new partitions λ(µ, ν) = (λ1, λ2, . . . , λn) and
ρ(µ, ν) = (ρ1, ρ2, . . . , ρn) are constructed as follows

(1.2)
λk := µk − k + #{j | 1 ≤ j ≤ n, νj − j ≥ µk − k};
ρj := νj − j + 1 + #{k | 1 ≤ k ≤ n, µk − k > νj − j}.

Although this definition does not make it immediately clear, both λ(µ, ν) and ρ(µ, ν) are
truly partitions, and they are such that

|λ(µ, ν)| + |ρ(µ, ν)| = |µ| + |ν|,

where as usual |µ| denotes the sum of the parts of µ.

Recall that the product of two Schur functions can always be expanded as a linear com-
bination

sµsν =
∑

θ

cθ
µ νsθ,

of Schur functions indexed by partitions θ of the integer n = |µ| + |ν|, since these Schur
functions constitute a linear basis of the homogeneous symmetric functions of degree n.
It is a particularly nice feature of this expansion that the coefficients cθ

µ ν are always non-
negative integers. They are called the Littlewood-Richardson coefficients. More generally,
we say that a symmetric function is Schur positive whenever the coefficients in its expansion,
in the Schur function basis, are all non-negative integers. For more details on symmetric
function theory see Macdonald’s classical book [3], whose notations we will mostly follow.
We can then state the following:

Conjecture 1.1 (Fomin-Fulton-Li-Poon). For any pair of partitions (µ, ν), if

(µ, ν)∗ = (λ, ρ),

then the symmetric function

(1.3) sλsρ − sµsν

is Schur-positive.

In other words, this says that cθ
µ ν ≤ cθ

λ ρ, for all θ such that sθ appears in the expansion of
sµsν .

For an example of one of the simplest case of the ∗-operation, let µ = (a) and ν = (b),
with a > b, be two one-part partitions. In this case, we get

((a), (b))∗ = (a − 1, b + 1),
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so that Conjecture 1.1 corresponds exactly to an instance of the classical Jacobi-Trudi
identity:

sa−1sb+1 − sasb = det

(
sa−1 sa

sb sb+1

)

= sa−1,b+1.

In this paper we give a new recursive combinatorial description of the ∗-operation. This
recursive description allows us to prove many instances of Conjecture 1.1 and to show that
it reduces to checking a finite number of instances for any fixed ν, if we bound the number
of parts of µ. Moreover we show how to naturally generalize the conjecture to pairs of skew
partitions.

2. Combinatorial properties of the ∗-operation and implications

We first derive some nice combinatorial properties of the transformation ∗. To help in the
presentation of these properties, let us introduce some further notation. For any undefined
notation we refer to [3]. We often identify a partition with its (Ferrers) diagram. Diagrams
are drawn here using the “French” convention of ordering parts in decreasing order from
bottom to top.

We write µ = −→α
i
, if the partition µ is obtained from the partition α by adding one cell

in line i; and µ = α↑k, if µ is obtained from α by adding one cell in column k. In other

words, µ = −→α
i

means that µi = αi for all i 6= ℓ, and µℓ = αℓ + 1. This is illustrated in
Figure 1 in term of diagrams.

−→ 2

=
x



2
=

Figure 1

Observe that,

µ = −→α
i

iff µ′ =
−→
α′

µi

iff µ = α↑µi

iff µ′ = α′↑i

We can now state our recursive description of the ∗-operation.

Proposition 2.1 (Recursive formula). For any partitions α and ν, let µ = −→α
i
and (λ, ρ) =

(α, ν)∗, then we have

(2.1) (µ, ν)∗ =







(λ, ρ↑µi) if there exists j such that νj − j = αi − i,

(
−→
λ

i
, ρ) otherwise.
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Similarly, when ν =
−→
β

i
and (λ, ρ) = (µ, β)∗, we have

(2.2) (µ, ν)∗ =







(λ↑νi , ρ) if there exists j such that µj − j = νi − i,

(λ,−→ρ
i
) otherwise.

We can clearly use Proposition 2.1 to recursively compute λ(µ, ν) and ρ(µ, ν). This is
discussed more extensively in Section 5. The actual computation of the ∗-operation can
be simplified in view of the following property (see Lemma 4.1). For any pair of partitions
(µ, ν), we have

(µ, ν)∗ = (λ, ρ) iff (ν ′, µ′)
∗

= (λ′, ρ′),(2.3)

where, as usual, µ′ stands from the conjugate of µ. Using the fact that the involution ω
(which is the linear operator that maps sµ to sµ′) is multiplicative, it easily follows that

Proposition 2.2. Conjecture 1.1 holds for the pair (µ, ν) if and only if it holds for the pair
(ν ′, µ′).

In practice, there are many ways to describe the ∗-operation recursively, since we can
freely choose how to make partitions grow. It is sometimes convenient to start from the
pair (0, ν), with 0 standing for the empty partition, whose image under the ∗-operation has
a simple description.

Lemma 2.3. Let ν be any partition. Then

ρ(0, ν) = (ν1, ν2 − 1, . . . , νk − (k − 1))

λ′(0, ν) = (ν ′
1 − 1, ν ′

2 − 2, . . . , ν ′
k − k),

where k = max{i | νi ≥ i}.

We will sometimes use respectively ν and ν to denote the partitions λ(0, ν) and ρ(0, ν). For
example if ν = 866554421, then

ν = 44432211 and ν = 85421

as is illustrated in Figure 2.

ν ν ν

∗−→

Figure 2

In Section 5 we elaborate on the various ways that Proposition 2.1 can be used to compute
the ∗-operation. This gives rise to a ∗-operation on pairs of Young tableaux. In Figure 3
we illustrate the effect of the ∗-operation on pairs of the form ((n), ν).
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∗

∗

∗
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−→

−→

−→

Figure 3

Given partitions µ and ν, define the partition µ + ν by

(µ + ν)i := µi + νi.

and set
µ ∪ ν := (µ′ + ν ′)′.

For example, if µ = 33221 and ν = 531, then µ ∪ ν = 53332211 and µ + ν = 86321. For µ
and ν two partitions of n, µ is said to be dominated by ν, written µ � ν, if for all k ≥ 1:

µ1 + µ2 + · · · + µk ≤ ν1 + ν2 + · · · + νk.

Another remarkable property of the ∗-operation is that its image behaves nicely under the
dominance order. More precisely:

Lemma 2.4. For any pair of partitions (µ, ν), if (λ, ρ) = (µ, ν)∗, then we have

µ ∪ ν � λ ∪ ρ, and equivalently(2.4)
µ + ν � λ + ρ.(2.5)

Observe that when sθ appears in sµsν with a nonzero coefficient, then

µ ∪ ν � θ � µ + ν.

Thus (2.4) and (2.5) imply that

λ ∪ ρ � θ � λ + ρ,

which is compatible with Conjecture 1.1.
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Lemma 2.4 immediately implies a statement very similar to that of Conjecture 1.1. As is
usual (See [3]), hµ denotes the complete homogeneous symmetric function:

hµ := hµ1
hµ2

· · ·hµk
,

with ha := sa.

Proposition 2.5. For any pair of partitions (µ, ν), if (λ, ρ) = (µ, ν)∗, then

(2.6) hλhρ − hµhν

is Schur-positive.

Recalling that hµhν = hµ∪ν , this follows from the fact that a difference of two homogeneous
symmetric functions hα − hβ is Schur-positive, if and only if α � β (see [5, Chapter 2]). A
clear link between this proposition and Conjecture 1.1 is established through the classical
identity:

(2.7) hα = sα +
∑

β�α

Kβαsβ,

where as usual Kβα, the Kostka numbers, count the number of semistandard tableaux of
shape β and type α. In fact, (2.6) contains (1.3) as “top component” via (2.7).

It follows directly from Proposition 2.1 that the ∗-operation is compatible with “inclusion”
of partitions. Here, we say that α is included in µ, if the diagram of α is included in the
diagram of µ. We will simply write

(α, β) ⊆ (µ, ν), whenever α ⊆ µ and β ⊆ ν,

and we have:

Lemma 2.6. For α, β, µ and ν partitions such that (α, β) ⊆ (µ, ν), the following inclusions
hold

λ(α, β) ⊆ λ(µ, ν), and ρ(α, β) ⊆ ρ(µ, ν).

An immediate, but interesting, consequence of this lemma is the following observation.

Observation 2.7. Let (α, β) and (γ, δ) be two fixed points of the ∗-operation such that
(α, β) ⊆ (γ, δ). Writing simply λ for λ(µ, ν) and ρ for ρ(µ, ν), we see (using Lemma 2.6)
that

(α, β) ⊆ (µ, ν) ⊆ (γ, δ),

implies
(α, β) ⊆ (λ, ρ) ⊆ (γ, δ).

As is underlined in [2], a pair of partitions (α, β) is a fixed point of the ∗-operation if and
only if

(2.8) β1 ≥ α1 ≥ β2 ≥ α2 ≥ · · · ≥ βn ≥ αn.

Let us underline here that, for any (µ, ν), it is easy to characterize the “largest” (resp.
“smallest”) fixed point contained in (resp. containing) the pair (µ, ν). We will see below
how this observation can be used to link properties of λ and ρ to properties of µ and ν.
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Recall that a hook is a shape of the form (a, 1b) with a, b ≥ 0, a n-line partition is a shape
contained in a rectangle (an) with a, n ≥ 0, a horizontal strip is a skew shape µ/α with no
two squares in the same column, and that a ribbon is a connected skew shape with no 2× 2
squares (see [6, Chapter 7], for more details). If we drop the condition of being connected
in this last definition, we say that we have a weak ribbon.

Another striking consequence of Lemma 2.6 is that it allows a natural extension of the ∗-
operation to skew partitions. Denoting by (µ, ν)/(α, β) the pair of skew shapes (µ/α, ν/β),
we can simply define

(2.9) (µ/α, ν/β)∗ := (µ, ν)∗/(α, β)∗.

In other words, we have

(2.10) λ(µ/α, ν/β) := λ(µ, ν)/λ(α, β),

and

(2.11) ρ(µ/α, ν/β) := ρ(µ, ν)/ρ(α, β).

The ∗-operation, or its extension as above, preserves (among others) the following families
of pairs of (skew) shapes.

Proposition 2.8. The ∗-operation preserves the families of

(1) pairs of hooks;
(2) pairs of n-line partitions;
(3) pairs of horizontal strips;
(4) pairs of weak ribbons.

Note that (1) and (2) follow directly from Observation 2.7, and that the statements (3)
and (4) are made possible in view of our extension of the ∗-operation.

∗−→

Figure 4. The effect of the ∗-operation on hooks.

Results outlined what follows, and extensive computer experimentation suggests that we
have the following extension of Conjecture 1.1.

Conjecture 2.9. For any skew partitions µ/α and ν/β, if

(λ, ρ) = (µ/α, ν/β)∗,

then the symmetric function

(2.12) sλsρ − sµ/αsν/β

is Schur-positive.
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This has yet to be understood in geometrical terms. One should point out that there are
many skew shapes giving the same expression for the symmetric function sµ/αsν/β. The
result of the ∗-operation is dependent on the particular choice of the skew-shape, so that
there are many identities encoded in (2.12). On the other hand, it is clear that Proposition
2.2 extends to skew partitions.

Many others combinatorial properties of the ∗-operations can be obtained with ap-
proaches similar to those above. As an example, we state the following without proof.
Let τ and ν be two fixed partitions, and consider all possible µ’s such that ρ(µ, ν) = τ . We
claim that there is a minimal such µ, if any, and we denote it θ(τ, ν). More precisely, we
could easily show that

θ(τ, ν) ⊆ µ.

Furthermore, θ = θ(τ, ν) is exactly the partition

θ = τ b1
1 τ b2−b1

2 τ b3−b2
3 · · · ,

with bj = τj − νj + j − 1.

3. Main results

In this section we state our results concerning the validity of Conjecture 1.1 for certain
families of pairs, as well as its reduction to a finite number of tests for other families. We
will show (in Section 7) the following.

Theorem 3.1. Conjecture 1.1 (or 2.9) holds

(1) For any pair (µ, ν) of hook shapes.
(2) For skew pairs of the form (µ/α, ν/β), where µ, ν, α, β are hooks, with α = β.
(3) For skew pairs of the form (0, ν/β), with ν/β a weak ribbon.

On another note, a careful study of the recursive construction of λ(µ, ν) and ρ(µ, ν) shows
that, in a sense, Conjecture 1.1 follows, under some conditions, from a finite number of cases
when ν is fixed and µ becomes large.

More precisely, we obtain the result below. As usual, the number of nonzero parts of µ
is denoted by ℓ(µ) and called the height of µ.

Theorem 3.2. For any positive integer p, let ν be a fixed partition with at most p parts,
i.e. ℓ(ν) ≤ p. Then, the validity of Conjecture 1.1 for the infinite set of all pairs (µ, ν),
with ℓ(µ) ≤ p, reduces to checking the validity of the conjecture for the finite set of pairs
(α, ν), with α having at most p parts, and largest part bounded as follows

(3.1) α1 ≤ p (ν1 + p).

Theorem 3.2 can also be generalized in a straightforward manner to the set of skew shapes
pairs (µ/α, ν/β) of bounded height, with ν and α fixed.



SCHUR-POSITIVITY 9

4. Proofs of the combinatorial properties

In what follows, unless it is specifically mentioned, all partitions will be considered to
have n (possibly zero) parts. We first observe that the set Ak(µ, ν) := {j | νj − j ≥ µk −k},
appearing in (1.2), has to be of the form Ak(µ, ν) = {1, 2, . . . , ak} for some ak = ak(µ, ν),
since ν1 − 1 > ν2 − 2 > . . . > νak

− ak ≥ µk − k, and thus

(4.1) ak(µ, ν) := #Ak(µ, ν).

In other words,

(4.2) µk − k ≤ νm − m iff 1 ≤ m ≤ ak.

Thus definition (1.2) of λk(µ, ν) can be reformulated as

(4.3) λk := µk − k + ak(µ, ν).

In the same spirit, we consider the set Bj(µ, ν) := {k | µk − k > νj − j}, which also has to
be of the form {1, 2, . . . , bj}, with

(4.4) bj(µ, ν) = #Bj(µ, ν),

In other words,

(4.5) νj − j < µm − m iff 1 ≤ m ≤ bj

and

(4.6) ρj := νj − j + 1 + bj(µ, ν).

Proof of Proposition 2.1. To prove our recursive formula for the computation of the

∗-operation, we first analyze the case µ = −→α
i
. As we have already mentioned, this means

that µk = αk for all k 6= i, and µi = αi + 1. Let (λ, ρ) = (α, ν)∗. Now, suppose that there
exists a j ∈ {1, . . . , n} such that

νj − j = αi − i.

This implies that Ak(µ, ν) = Ak(α, ν) for all k 6= i and that

Ai(α, ν) = {1, 2, . . . , j}, and Ai(µ, ν) = {1, 2, . . . , j − 1}.

It follows that λk(µ, ν) = λk for all k 6= i, and that

λi(µ, ν) = µi − i + ai(µ, ν)
= αi + 1 − i + ai(α, ν) − 1 = λi

Hence λ(µ, ν) = λ.

On the other hand, we clearly have Bk(α, ν) = Bk(µ, ν) for all k 6= j, and

Bj(α, ν) = {1, 2, . . . , i − 1} and Bj(µ, ν) = {1, 2, . . . , i}.

Hence ρk(µ, ν) = ρk for all k 6= i and,

ρj(µ, ν) = νj − j + 1 + bj(µ, ν)
= αi − i + 1 + i = µi.

Since ρj = µi − 1 we conclude that ρ(µ, ν) = −→ρ
j
, and this settles the first case of (2.1).
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If no j ∈ {1, . . . , n} is such that νj − j = αi − i, we have the equalities

Ak(µ, ν) = Ak(α, ν) and Bk(µ, ν) = Bk(α, ν)

for all k ∈ {1, . . . , n}. It follows λk(µ, ν) = λk for all k 6= i and

λi(µ, ν) = αi + 1 − i + ai(α, ν) = λi + 1,

so λ(µ, ν) =
−→
λ

i
. It easily follows that in this case ρ(µ, ν) = ρ and this concludes the second

case. The part (2.2) of the proposition is shown in a similar manner. �

We use our recursive method to show the next Lemma 2.3.

Proof of Lemma 2.3. We proceed by induction on |ν|. If ν = 0 there is nothing to

prove. So let ν =
−→
β

i
be different from 0, and set (λ, ρ) = (0, β)∗, as is now usual. If i = 1

or νi = βi + 1 ≥ i, then we must have νi − i ≥ 0. This corresponds to the second case of
(2.2), since all of the values µj − j are negative. For a partition θ, set

k(θ) := max{i | θi ≥ i}

If k(ν) = k(β), then applying (2.2) and induction we get, λ′(0, ν) = λ′ = (ν ′
1−1, . . . , ν ′

k−k),

and ρ(0, ν) = −→ρ
i
= (ν1, ν2 − 1, . . . , βi + 1 − (i − 1), . . . , νk − (k − 1)). Otherwise, if k(ν) =

k(β) + 1, we must have i = k + 1 and νi = i = ν ′
i, and the result again follows by induction

and (2.2). On the other hand νi = βi + 1 < i, corresponds to the first case of (2.2) with
j = −(ν̄i − 1). In that case the result follows by an induction similar to that above. �

As announced in (2.3), we have the following lemma.

Lemma 4.1. For any pair of partitions (µ, ν), we have

(µ, ν)∗ = (λ, ρ) iff (ν ′, µ′)
∗

= (λ′, ρ′).

Proof. We proceed by induction on |µ|+|ν|. The lemma obviously holds when µ = ν = 0,
so suppose that (2.3) holds for all (α, ν) with α ⊆ µ. That is,

λ(α, ν) = λ′(ν ′, α′) and ρ(α, ν) = ρ′(ν ′, α′).

In view of the recursive description of the ∗-operation, it is easy to verify that we need only
show that the “if” part of (2.1) applies to the pair (µ, ν) if and only if the “otherwise” part
of (2.2) applies to the pair (ν ′, µ′). Let us suppose that µ = −→α i. We want to show that
there is a j such that

νj − j = αi − i

if and only if there is no k such that ν ′
k −k = α′

µi
−µi +1. (See Figure 5.) By (2.1) we have

λ(α, ν) = λ(µ, ν) = λ′(ν ′, α′) = λ′(ν ′, µ′),

and

ρ(µ, ν) =
−−−−→
ρ(α, ν)

j
.

We thus need to check that
ρ′(ν ′, µ′) = ρ′(ν ′, α′)↑j .
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µ = −→α
i

µ′ = α′↑i

i→

µi→

↑
µi

↑

i

ν ν ′

j→

νj→

↑
νj

↑

j

Figure 5

Considering the pair (ν ′, µ′), we have µ′ =
−→
α′

µi

. Thus, the new cell is added to α′ in row
µi, which is of length i− 1, i.e.: α′

µi
= i− 1. We claim that there does not exist a row k of

ν ′ such that

ν ′
k − k = (i − 1) − (αi + 1) + 1 = i − αi − 1.

In fact, if k = νj the difference ν ′
k − k is strictly bigger than i − αi − 1, since

ν ′
k − k ≥ j − νj = i − αi.

On the other hand, if k = νj + 1, the difference ν ′
k − k has to be strictly smaller than

i − αi − 1, since (νj+1, j) /∈ ν, and hence (j, νj+1) /∈ ν ′. Then,

ν ′
νj+1 − (νj + 1) < j − (νj + 1) = i − αi − 1.

�

In preparation for the proof of Lemma 2.4, let us prove the following.

Lemma 4.2. The following two statements are equivalent

(1) For all (µ, ν) pair of partitions µ ∪ ν � λ ∪ ρ.
(2) For all (µ, ν) pair of partitions µ + ν � λ + ρ.

Proof. Assuming (1), we have

µ + ν = (µ′ ∪ ν ′)′

� (λ(ν ′, µ′) ∪ ρ(ν ′, µ′))′

= λ′(ν ′, µ′) + ρ′(ν ′, µ′)
= λ(µ, ν) + ρ(µ, ν).

A similar computation shows the reverse statement, since conjugation is an anti-automorphism
of the dominance order. �
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Proof of Lemma 2.4. (P. McNamara) Let (λ, ρ) = (µ, ν)∗, for µ and ν partitions with
n (possibly zero) parts. From the above observation, it is sufficient to show that

λ + ρ � µ + ν,

and hence that, for all i,

(4.7)
i∑

j=1

(λj + ρj) ≥
i∑

j=1

(µj + νj).

Definitions (4.3) and (4.6) give λj = µj − j + aj and ρj = νj − j + 1 + bj , so that (4.7)
becomes

(4.8)

i∑

j=1

(µj + νj + aj + bj − (2 j − 1)) ≥

i∑

j=1

(µj + νj),

which is equivalent to

(4.9)
i∑

j=1

(aj + bj) ≥ i2.

But the definitions of aj and bj, can clearly be reformulated as

aj = #{(k, j) | νk − k ≥ µj − j } and bk = #{(k, j) | νk − k < µj − j },

hence the inequality. �

Proof of Proposition 2.8. Among the families of pairs stated to be preserved by the
∗-operation, we have already shown cases (1) and (2). The proofs of the other two claims
are as follows.

(3) Recall that µ/α and ν/β are horizontal strips if and only if, for all 1 ≤ k < n

µk+1 ≤ αk and νk+1 ≤ βk.

To show that (µ/α, ν/β)∗ is also an horizontal strip, we need to prove that λk+1(µ, ν) ≤
λk(α, β) and ρk+1(µ, ν) ≤ ρk(α, β). Once again, by definition, we have

ρk+1(µ, ν) = νk+1 − k + bk+1(µ, ν) and ρk(α, β) = βk − k + 1 + bk(α, β).

If bk(α, β) ≥ bk+1(µ, ν) there is nothing to prove. Otherwise, the inequality we want to
prove is clearly equivalent to

(4.10) bk+1(µ, ν) − bk(α, β) ≤ βk − νk+1 + 1.

Using (4.5), when bk(α, β) < m ≤ bk+1(µ, ν), we must have αm − m ≤ βk − k, and νk+1 −
(k + 1) < µm − m. Hence for all m 6= bk+1(µ, ν)

νk+1 − (k + 1) < µm+1 − (m + 1) < αm − m ≤ βk − k,

since by hypothesis µm+1 ≤ αm. This shows that there are at least bk+1(µ, ν)− bk(α, β)− 1
distinct integers separating νk+1 − (k +1) from βk − k, thus (4.10) follows. Similarly we get
the other inequality.
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(4) The statement that µ/α and ν/β are two weak ribbons is equivalent to saying that

(4.11) µk+1 ≤ αk + 1 and νk+1 ≤ βk + 1,

for all 1 ≤ k < n. We have to show that λk+1(µ, ν) ≤ λk(α, β) + 1. By definition, we have

λk+1(µ, ν) = µk+1 − (k + 1) + ak+1(µ, ν) and λk(α, β) = αk − k + ak(α, β).

If ak(α, β) ≥ ak+1(µ, ν) there is nothing to prove. Otherwise, the inequality we want to
prove is equivalent to

(4.12) ak+1(µ, ν) − ak(α, β) ≤ αk − µk+1 + 2.

Using (4.2), when ak(α, β) < m ≤ ak+1(µ, ν), we must have βm − m < αk − k, and
µk+1 − (k + 1) ≤ νm − m. Hence for all m 6= ak+1(µ, ν)

µk+1 − (k + 1) ≤ νm+1 − (m + 1) ≤ βm − m − 1 + 1 < βm − m + 1 < αk − k + 1,

since by hypothesis νm+1 ≤ βm+1. This shows that there are at least ak+1(µ, ν)−ak(α, β)−1
distinct integers separating µk+1 − (k + 1) from αk − k + 1, thus (4.12) follows. Similarly
we get the other inequality. This last case concludes the proof. �

5. Extension of the ∗-operation to tableaux

Since we are using the french notation for partitions, standard tableaux have increasing
entries along rows from left to right, and increasing entries along columns from bottom to
top. As usual, a semistandard tableau is one in which we relax the requirement along rows
to weakly increasing. The reading word of a tableau is obtained by reading the entries of
the tableau starting with the top row, from left to right, and going down the rows. For
instance, the reading word of

5 5

2 3 4

1 2 3 3

is 552341233. It is well known that a semistandard tableau corresponds to a chain in the
Young lattice, 0 ⊆ µ1 ⊆ µ2 ⊆ . . . ⊆ µk = µ, such that µi+1/µi is a horizontal strip. The
chain associated to the tableau above is

0 ⊆ 1 ⊆ 21 ⊆ 42 ⊆ 43 ⊆ 432.

Using this correspondence, standard tableaux correspond to maximal chains. The shape of
a tableau is the final partition in the corresponding chain. All of these notions extend to
skew shapes. In particular, a semistandard tableau of skew shape λ/µ is a chain starting
at shape µ and ending at shape λ. For this to be possible, we clearly need µ ⊆ λ. We
sometimes say that a semistandard tableau, of shape λ/µ, is a filling of λ/µ. The natural
filling of a partition µ = (µ1, µ2, . . . , µk), is the semistandard tableau corresponding to the
chain

0 ⊆ (µ1) ⊆ (µ1, µ2) ⊆ (µ1, µ2, µ3) ⊆ . . . ⊆ (µ1, µ2, . . . , µk)

Thus, each cell is filled by the number of the row in which it lies in. The type of a semistan-
dard (possibly skew shaped) tableau t is the sequence (m1,m2, . . .) of multiplicities of its
entries. This is to say that mi = mi(t) is the number of entries that are equal to i. When
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m1 ≥ m2 ≥ . . ., this type can be identified with a partition. The natural filling of µ is the
only semistandard tableau of shape µ that also has type µ.

1 32121 4321 5432 6543 76 8

Figure 6. ∆(µ): the antidiagonal reading of the natural filling of µ.

The antidiagonal reading, ∆(t), of a tableau t, of shape µ, is obtained by recording the
entries of t following the diagonals x+ y = k in the partition µ, from left to right, and from
top to bottom, for k = 1, 2, . . . , ℓ(µ). We simply denote ∆(µ) the antidiagonal reading of
the natural filling of µ. For µ = 44432211, we have

∆(µ) = 1 21 321 4321 5432 6543 76 8

as is illustrated in Figure 6.

To describe more consequences of the properties of ∗, we consider the double Young
lattice, D, which is just the direct product of two copies of the usual Young lattice. The
double Young lattice already plays an explicit role in [2], see also [1].

There is a natural grading for D given by (µ, ν) 7→ |µ|+ |ν|. A standard (tableau) pair of
shape (µ, ν) is a maximal chain in this graded poset that starts at (0, 0) and ends at (µ, ν).
For example, we have

(5.1) (0, 0) ⊆ (0, 1) ⊆ (0, 2) ⊆ (1, 2) ⊆ (1 1, 2) ⊆ (2 1, 2) ⊆ (2 1, 3).

As in the usual case, such a chain can be identified with a pair (t, r) of standard tableaux,
of respective shapes µ and ν, with non-repeated entries from the the set {1, 2, . . . , n},
n = |µ| + |ν|. The number f(µ,ν) of standard pairs of shape (µ, ν) is thus

(5.2) f(µ,ν) =

(
|µ| + |ν|

|µ|

)

fµ fν

where fµ and fν are both given by the usual hook formula. In terms of tableaux, the
standard pair (5.1) corresponds to:

(

4

3 5 , 1 2 6

)

.

The double Young lattice occurs naturally in the study of representations of the hyperocta-
hedral groups. This suggests that there might be a link between that subject and the study
of properties of the transformation ∗.

A semistandard pair is a chain

(0, 0) = π0 ⊆ π1 ⊆ · · · ⊆ πk = (µ, ν)
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in D, such that πj+1/πj is an horizontal strip pair for each 1 ≤ j ≤ k− 1. For example, the
pair of semistandard tableaux

(

3

2 3 3 ,
2 3

1 1 3

)

,

corresponds to the path
(0, 0) ⊆ (0, 2) ⊆ (1, 21) ⊆ (31, 32).

It follows from Proposition 2.8 that

Lemma 5.1. The function ∗ : D −→ D is an increasing transformation that preserves both
standard and semistandard pairs.

Thus the ∗-operation extends to semistandard (and standard) pairs. For example,






26

22 23 24

16 17 18 19 20

9 10 11 12 13 ,

25

21

14 15

1 2 3 4 5 6 7 8






*

=






26

22 24

16 17 19 20

9 10 11 12 13 ,

25

21 23

14 15 18

1 2 3 4 5 6 7 8






We emphasize that the resulting filling of (λ, ρ) heavily depends on the particular filling of
(µ, ν). Fixed points, for standard pairs, are easily characterized as follows.

Lemma 5.2. A standard pair (t, r), of shape (µ, ν), is fixed point of the ∗-operation, if and
only if (µ, ν) is fixed, and the tableau, obtained by alternating rows of r and rows of t, is
standard.

Recall that, if the pair (µ, ν) is a fixed point, then (2.8) implies that the alternating lengths
of the rows are in decreasing order.

6. Background on Littlewood-Richardson coefficients

In order to prove that Conjecture 1.1, or our extension of it, holds for some given pairs,
we clearly need one of the many classical descriptions of Littlewood-Richardson coefficients.
From a broader perspective, let us briefly recall some classical facts about these coefficients
(see [3] or [6] for more details). For µ and ν two partitions, and θ such that |θ| = |µ| + |ν|,
the coefficient cθ

µν of sθ in sµsν is given as

cθ
µν = 〈sµsν , sθ〉(6.1)

= 〈sθ/µ, sν〉,(6.2)

where 〈−,−〉 denotes the usual scalar product on symmetric function, for which Schur
functions are orthonormal.

The following is the explicit formulation of the Littlewood-Richardson rule that we are
going to use to compute the cθ

µ ν ’s. In order to state it, let us recall some terminology.
A lattice permutation is a sequence of positive integers a1a2 · · · an such that in any initial
factor a1a2 · · · aj the number of i’s is at least as great as the number of i + 1’s, for all i.
The type of a lattice permutation is (naturally) the sequence of multiplicities of the integers



16 FRANÇOIS BERGERON, RICCARDO BIAGIOLI, AND MERCEDES H. ROSAS

1, 2, . . . that appear in it. Note that ∆(µ) (the antidiagonal reading of the natural filling of
µ) is always a lattice permutation of type µ. The reverse reading word of a tableau, is the
reading word of a tableau, read backwards. For a proof of the following assertion see [6].

Littlewood-Richardson Rule. The Littlewood-Richardson coefficient cθ
µ ν is equal

to the number of semistandard tableaux of shape θ/ν and type µ whose reverse read-
ing word is a lattice permutation.

When a semistandard tableaux of shape θ/ν has a lattice permutation as its reverse reading
word, we say that it is a LR-filling of shape θ/ν.

For θ = 4421, ν = 21 and µ = 431, we have cθ
µ ν = 2 since there are exactly two LR-fillings

of θ/ν. These are described in Figure 7. The two corresponding reverse reading words
11221312 and 11221213. They are clearly lattice permutations of type µ.

2

1 3

1 2 2

1 1

3

1 2

1 2 2

1 1

Figure 7. The two LR-fillings of 4421/21 of type 431.

7. Proof of special instances

In this section we show that Conjecture 1.1 holds for pairs of hooks, pairs of two-row
(or two-columns) shapes, and in a special case corresponding to our generalization of the
conjecture to skew partitions. We first prove that Conjecture 1.1 holds when one of the
partitions is empty.

Lemma 7.1. For any partition ν, setting ν := λ(0, ν) and ν := ρ(0, ν), ∆(ν) is the reverse
reading word of a LR-filling of ν/ν of type ν.

Proof. We show that ∆(ν) encodes a LR-filling of ν/ν of type ν. To this end, we proceed
as follows. We “slide” the natural filling of ν up the columns of ν. This gives a partial filling
of ν with empty cells for the portion of ν that corresponds to ν. We will suppose that these
empty cells are filled with zeros. We then sort each row in increasing order to get a filling
of the skew shape ν/ν. By construction, we obtain a filling of ν/ν whose reverse reading
word is the lattice permutation ∆(ν). An example is given in Figure 8.

To show the lemma, we need only show that the resulting tableau is semistandard. We
already have strict increase along rows, so we need only check that this is also true along
columns. By construction, the right-most entry in the (k + 1)th-row of the final filling of
ν/ν is k. Since the integers in a row are consecutive by construction, the difference between
two entries in the same column of ν/ν, one in the ith row and the other in the (i+1)th row,
has to be equal to νi − νi+1 + 1, which is larger than zero. �



SCHUR-POSITIVITY 17

ν

ր

ν

	

→

ν/ν

8

6

3

2

7

4

3

1

5

4

2

1

6

5

3

2

4

3

1 2

1

8

7

6

5

6

5

4

4

4

3

3

3

3

2

2

2

1

1

2 1

1

3

2

1

4

3

2

1

6

5

4

3

2

1

8

7

6

5

4

3

2

1

Figure 8. The LR-filling of ν/ν with reverse reading word ∆(ν).

It immediately follows that

Corollary 7.2. For any partition ν the difference

sνsν − sν

is Schur positive. Thus, recalling that s0 = 1, Conjecture 1.1 holds for pairs of the form
(0, ν).

︸︷︷︸

a
︸︷︷︸

a

b

{

d−1







︸ ︷︷ ︸

c
︸ ︷︷ ︸

c

d







b+1






∗−→

(a) Case a ≤ c and b ≤ d

︸︷︷︸

a
︸︷︷︸

a

b





 d

{

︸ ︷︷ ︸

c
︸ ︷︷ ︸

c

d

{ b






∗−→

(b) Case a ≤ c and b > d.

︸ ︷︷ ︸

a
︸ ︷︷ ︸

a − 1

b

{

d−1







︸︷︷︸

c
︸ ︷︷ ︸

c + 1

d







b+1






∗−→

(c) Case a > c.

Figure 9. Three cases of ∗-operation on pairs of hooks.
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We are now ready to prove Theorem 3.1 about other special instances of Conjecture 1.1,
and of our extension Conjecture 2.9.

Proof of part (1) of Theorem 3.1. Let µ = (a, 1b) and ν = (c, 1d) be two hook
shapes, and (λ, ρ) be equal to (µ, ν)∗. There are essentially 3 different cases for the ef-
fect of the ∗-operation on such a pair of hooks, depending on the relative values of a, b,
c and d. These are illustrated in Figure 9. In each case, for sθ that appears both in the
expansion of sµsν and sλsρ, our objective is to construct an injection between LR-fillings
of θ/ν of type µ and LR-fillings of θ/ρ of type λ. Under the above hypothesis, it is easy
to check that sθ can appear in the product sµsν , with nonzero coefficient, only if θ has at
most two parts larger than 2. Thus, in general, θ has the form θ = (r, s, 2t, 1u). Moreover,
it is also clear that r ≥ max(a, c), and t+u+2 ≥ max(b+1, d+1), since otherwise it would
be impossible to get a nonzero result using the Littlewood-Richardson Rule.

d

b

cc
1111111111

1111111112

1111111111

1

 b+1

i+1
.
.
.

i

3
.
.
.

1111111112

b+2

 d  

.

.

.

1

 b+1

i+1
.
.
.

i

3
.
.
.

Figure 10. From a LR-filling of θ/ν to a LR-filling of θ/ρ. Case (a)

(a) (a ≤ c and b ≤ d.) If b = d or b + 1 = d, then (µ, ν) is a fixed point and the result is
obvious. We can thus suppose that d ≥ b + 2. This situation is illustrated in Figure 9 case
(a), and we have λ = (a, 1d−1) and ρ = (c, 1b+1). Thus, the skew shape θ/ρ only differs
from that of θ/ν in the first column. There are now d − (b + 1) new boxes to be filled,
which are all at the top end of the first column of θ. Moreover since d ≥ b + 2, the first
two columns of both θ/ρ and θ/ν are vertical strips. From a LR-filling of θ/ν, of type µ,
we construct a filling of θ/ρ as follows. We simply slide down by d − (b + 1) positions the
entries appearing in the first column, and then add new entries b+2, . . . , d in the d− (b+1)
cells at the top of this first column. All the other entries of the original filling are kept as
they were, and the results stays semistandard since there are no interaction between the
first and second columns. The resulting LR-filling is clearly of type ρ. An example of this
procedure is given in Figure 10.

(b) (a ≤ c and b > d.) In this case λ = (a, 1d) and ρ = (c, 1b). Hence, contrary to case
(a), the first column of θ/ρ now has less boxes to be filled than the first column of θ/ν. To
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obtain a LR-filling of θ/ρ starting from one for θ/ν, we rather proceed as follows. Push up
by b− d positions the d + 1 first entries of the first column up to those in the (d + 2)th row.
Then delete all the entries labeled from d + 2 to b + 1, while leaving unchanged the part
of the filling in the remaining columns. This clearly produces a LR-filling of θ/ρ. This is
illustrated in Figure 11.

d

c

b

c

.

1111111111

1111111112

1111111111

1

 d+1

i+1
.
.
.

i

3
.
.
.

1111111112

1

 d+1

i+1
.
.
.

i

3
.
.
.

 b+1

d+2

.

.

Figure 11. From a LR-filling of θ/ν to a LR-filling of θ/ρ. Case (b)

(c) (a ≤ c.) In this case λ = (a − 1, 1d−1) and ρ = (c + 1, 1b+1), so that the first row of
θ/ρ has one less box than that of θ/ν, so that λ1(µ, ν) = µ1(µ, ν) − 1. Note that in every
LR-filling involved, the entries in the first row can be only 1’s. We get a LR-filling of θ/ρ
from one of θ/ν by the same procedures used for cases (a) or (b), depending on the relative
values of b and d, after which we remove a copy of 1 from the first row. �

Proof of part (2) of Theorem 3.1. To show that Conjecture 2.9 holds for pairs of
skew shapes (µ/α, ν/β), where all partitions involved are hooks, with α = β, we proceed
as follows. If α = β = 0 then the result follows from part (1). So let α = β 6= 0. We first
recall (see Figure 9) that for a pair of hooks µ = (a, 1b) and ν = (c, 1d) the possible results
of the ∗-operation

(7.1) (µ, ν)∗ = ((a, 1b), (c, 1d))

are

(a)
a = a, b = d − 1
c = c, d = b + 1

(b)
a = a, b = d
c = c, d = b

(c)
a = a − 1, b = d − 1
c = c + 1, d = b + 1

We also recall that the pair (α, β) = ((k, 1m), (k, 1m)) is a fixed point for ∗-operation, and
that the skew Schur functions sµ/α and sν/β are simply

sµ/α = ha−k eb−m, and sν/β = hc−k ed−m.

It follows that the statement that we have to prove simply translates into

(7.2) (ha−k eb−m)
︸ ︷︷ ︸

sλ

(hc−k ed−m)
︸ ︷︷ ︸

sρ

− (ha−k eb−m)
︸ ︷︷ ︸

sµ/α

(hc−k ed−m)
︸ ︷︷ ︸

sν/β
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being Schur positive. In case (b), this is simply vacuously true. For case (a), (7.2) equals

(7.3) ha−khc−k(ed−m−1eb−m+1 − ed−meb−m).

But a special case of the (dual) Jacobi-Trudi formula states that

(7.4) s2k,1ℓ−k = det

(
eℓ eℓ+1

ek−1 ek

)

,

when ℓ ≥ k ≥ 1. Observe here that the determinant in (7.4) is equal to the determinant
obtained by exchanging k and ℓ. To get the positivity of (7.3), we use (7.4) with ℓ = d−m−1
and k = b −m + 1 when d > b + 1, and ℓ = b −m + 1 and k = d−m− 1 otherwise. Hence
(7.3) is simply equal to ha−khc−ks2k,1ℓ−k , which is Schur positive by Pieri’s formula (see [6,
Corollary 7.15.3]). Finally, for case (c), (7.2) equals

ha−k−1hc−k+1ed−m−1eb−m+1− ha−khc−ked−meb−m =
ha−k−1hc−k+1(ed−m−1eb−m+1 − ed−meb−m) +
ed−meb−m(ha−k−1hc−k+1 − ha−khc−k)

which is readily seen to be positive, by a similar argument. �

Proof of part (3) of Theorem 3.1. For ν/β a ribbon, set (λ, ρ) = (0, ν/β)∗. We will
show that sλsρ can be expanded as a (positive integer coefficient) sum of skew Schur func-
tions indexed by ribbons, with sν/β appearing with nonzero coefficient. The slightly more
general case of weak ribbons is entirely similar. We first need to recall that a N -cell ribbon
R = ν/β is entirely described by the sequence of row lengths of R, reding down from the
top. This results in a composition c(R) = (c1, . . . , cn) of N . In term of this composition
description, it is classical that the product of two ribbon Schur functions can be expressed
as a sum of two ribbon Schur functions:

(7.5) sc1,...,cnsd1,...,dk
= sc1,...,cn,d1,...,dk

+ sc1,...,cn+d1,...,dk

The two resulting ribbons are illustrated in Figure 12. Let us split the ribbon R = ν/β in

Figure 12. The two ribbons in the right hand side of (7.5).

two sub-ribbons R′ and R′′, according to the inequalities y > x and y ≤ x, respectively, for
cells (x, y) of R. This is illustrated in the left hand side of Figure 13. From Lemma 2.3 it

R′

R′′

∗
−→

λ

ρ

Figure 13. The ribbons R′ and R′′.

easily follows that λ = ν/β is a vertical strip and that ρ = ν/β is a horizontal strip. More
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specifically, the column lengths of λ are equal to the column lengths of R′. Whereas, the
row lengths of ρ are equal to the row lengths of R′′. This is illustrated in the right hand
side of Figure 13. It follows from the definition of skew Schur functions (see [3]) that sλ

is simply a product of elementary symmetric functions, one for each column length of R′.
Similarly, sρ is a product of complete homogeneous symmetric functions, one for each row
length of R′′. Repeated applications of the multiplication rule for ribbons (7.5) clearly give
non negative coefficient expansions

sλ = sR′ +
∑

c

acsc and sρ = sR′′ +
∑

c

bcsc,

which include respectively the terms sR′ and sR′′ , each with coefficient 1. Yet another appli-
cation of the multiplication rule makes it evident that sR appears in the ribbon expansion
of the product of sλ and sρ. Thus the theorem is proved. �

8. Reduction to a finite set of pairs in bounded height case

In this section we show that the bounded height case of Conjecture 1.1 can be reduced
to checking that it holds for a finite number of pairs, for any given height. In order to do
this, and to state our result, we need some definitions. Let µ and θ be two partitions such
that µ ⊆ θ and consider the skew partition θ/µ. Given a partition µ containing a column of
height k, we denote µ−1k the partition obtained by removing this column. In other words,

(µ − 1k)j :=

{
µj − 1, if j ≤ k,
µj, if j > k.

We say that µ has a k-full column in θ, if there is a j such that the jth column of µ and θ

Figure 14. A 6-full column.

are both of height k. When this is the case, setting β := θ− 1k and γ := µ− 1k, we observe
that

(8.1) 〈sθ, sµsν〉 = 〈sβ, sγsν〉,

since, using (6.1), this is clearly equivalent to sθ/µ = sβ/γ which holds trivially. When
µ ⊆ θ, the fact that µ has a k-full column in θ is equivalent to

(8.2) θk ≥ µk > θk+1,

assuming that θk+1 = 0 when k is the number of parts of θ.
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Proof of Theorem 3.2. We proceed by induction on the number of columns of µ, for
the set of partitions µ with height bounded by p, and such that

(8.3) µ1 > p (ν1 + p).

Once again, let (λ, ρ) := (µ, ν)∗. For any θ, such that sθ appears with nonzero coefficient in
sµsν , we will show (8.3) implies that there exists a k, such that both µ and λ have a k-full
column in θ, and such that

(8.4) λ(µ − 1k, ν) = λ − 1k and ρ(µ − 1k, ν) = ρ.

It will then follow that

〈sθ, sµsν〉 = 〈sθ−1k , sµ−1ksν〉 by (8.1)
≤ 〈sθ−1k , sλ(µ−1k ,ν)sρ(µ−1k ,ν)〉 by induction hypothesis

= 〈sθ−1k , sλ−1ksρ〉 by (8.4)
= 〈sθ, sλsρ〉 by (8.1)

which will prove the theorem.

To show that there is a k with the properties announced above, we proceed as follows.
Observe that at least one of the differences µj − µj+1, where 1 ≤ j ≤ p, is strictly larger
then ν1 + p, since otherwise

µ1 =

p
∑

j=1

µj − µj+1

≤ p (ν1 + p)

which would contradict (8.3). We can thus choose k to be the smallest integer, between 1
and p, such that

(8.5) µk > µk+1 + ν1 + p.

For θ as above, we must clearly have µi ≤ θi ≤ µi + ν1. Thus

θk ≥ µk

> µk+1 + ν1 + p
> θk+1,

so that µ has a k-full column in θ, by criteria (8.2). Moreover, for 1 ≤ i ≤ k, it is clear that
µi > ν1 + p, and thus (1.2) simplifies to

λi = µi − i, for 1 ≤ i ≤ k.

It follows that

λk = µk − k
> µk+1 + ν1 + (p − k)
≥ θk+1,

so that λ also has a k-full column in θ. The last verification that we need to do is that (8.4)
holds. Now, it is clear that the first k lines of γ := µ− 1k are all too large for the first part
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of (2.1) to apply. In fact, considering the way k has been chosen, we see that for 1 ≤ i ≤ k

γi − i = µi − (i + 1)
> µ1 − (i − 1) (ν1 + p) − (i + 1)
> (p − i + 1) (ν1 + p) − (i + 1)
≥ ν1 − 1.

This makes it obvious that (8.4) holds, thus finishing our proof. �

9. Final remarks

We believe that to get a better understanding of the ∗-operation, a refined study of its
effect on tableaux and semistandard tableaux will be crucial. For instance this should lead
to a proof of “monomial” versions of Conjectures 1.1 and 2.9. More precisely, recall that
the expansion of any Schur function in the basis of monomial symmetric functions involves
only positive integers. It would thus follow from the conjectures that the expansion of the
difference of products considered have positive integer coefficients when expanded in term
of monomial symmetric function. In particular, using definition (5.2), one should have

(9.1) f(λ,ρ) ≥ f(µ,ν).

whenever (λ, ρ) = (µ, ν)∗. An independent proof of these facts would clearly lend support
to the conjectures.
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