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ABSTRACT. A MacMahon symmetric function is a formal power series
in a finite number of alphabets that is invariant under the diagonal ac-
tion of the symmetric group. We use a combinatorial construction of
the different bases of the vector space of MacMahon symmetric func-
tions found by the author to obtain their image under the principal
specialization: the powers, risings and falling factorials. Then, we com-
pute the connection coefficients of the different polynomial bases in a

combinatorial way.

1. INTRODUCTION

The aim of this paper is to compute the connection coefficients between
the different polynomial bases by using specializations of MacMahon sym-
metric functions.

MacMahon symmetric functions were systematically studied by MacMa-
hon [7], Vol. II, section XI, p. 281-332, who applied them to the problem
of placing balls into boxes and to the theory of Latin squares. Later, they
have been used by Gessel [5] and Haiman [6] in connection with enumerative
combinatorics, by Gelfand and Dikii [4], and Olver and Shakiban [9] in con-
nection with the theory of partial differential equations, by Rota and Stein
[13] and Olver [8] in connection to classical invariant theory, and by Adem,
Maginnis and Milgram [1] in the study of the cohomology of the symmetric
group.

In this article we show how the combinatorial construction of the MacMa-
hon symmetric functions obtained in [10] allows us to obtain their image

under the principal specialization in a combinatorial way. Joni, Rota, and
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Sagan [3] studied the powers, rising, and falling factorial bases of the alge-
bra of polynomials. They defined three different posets and then used the
Mobius function to find the transition matrices between any two of them.
They claimed that the only step in their approach that was not clear was how
to find the right poset. We show that using specializations of MacMahon

symmetric functions their choice of posets becomes transparent.

2. COMBINATORIAL CONSTRUCTION.

Let u be a vector in N*, where N is the set of nonnegative integers. A
vector partition A of w is an unordered sequence of vectors summing to u.
The length of A, written [()), is the number of nonzero vectors (parts) of
A. We can write A using block notation: X\ = ---(a;, b;,...,¢;)™ -+, with
part (a;, b, -+ ,¢;) appearing m; times in A and with i is running over all
different parts of A. In this article A will always be a vector partition of
(a,b,--- ,c), wherea+b+---+c=n.

Let Sy = U;>15;, where the symmetric group S; acts on the first 7 letters.
The symmetric group S acts diagonally on f in Q[[X,Y, -+, Z]] sending
w(f) 0 f(Tw(1)s Yuw(1)s " > Zw(1)s Tw(2), Yuw(2)s "+ » Zw(2)," " )- A formal power
series f in Q[[X,Y,---, Z]] is called a MacMahon symmetric function in k
systems of indeterminates if the degree of f is bounded and if it is invariant
under the diagonal action of So.. We say that f has homogeneous multi-
degree u = (a,b,- - ,c) if in each monomial term of f there are a letters in
alphabet X, b letters in alphabet Y, and so on. We denote by 971, the vector
space of MacMahon symmetric functions of multihomogeneous degree w.

Let x* be a1 yb - 20 a52yb2 o 28 - gyl ... 2. Then, the monomial
MacMahon symmetric function m,) is the sum of all distinct monomials that
can be obtained from x* by a permutation w in S, acting diagonally.

The elementary MacMahon symmetric function indexed by vector parti-
tion A IS ex = €(qy by, 1) €(an,ba,rye2) * "> WhHeTE € .. oy 18 defined by the

generating function:

Z e(a,b,...,c)satb et = H (L+zis +yit + -+ + zju).
i>1
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The complete homogeneous MacMahon symmetric function indexed by

vector partition A is hy = h( -, where gy ... o) is de-

a1,b1,,c1)’(az,ba, e ,c2)

fined by the generating function:

1
h Satb e uc = .
Z (@b, c) Hl_xzs_ylt__zzu
a,b,,c>0 i>1

The power sum MacMahon symmetric function indexed by vector parti-

. . _ . b
tion A IS PX = Pay by, 1) Plaba,ca) * T » WHETe Pra . o) 18 D isq ThY7 -+ 2.

In the ring of MacMahon Symmetric Functions there is an involution
defined by w(ey) = hy. The forgotten MacMahon symmetric functions are
defined by w(m)) = (sign A) f). To A we associate the partition of the (num-
ber) weight of X defined by (a1 +--- +ci,a0 + -+ co,--+) = (1™M272 ... ).
Then, the sign of A is defined as (—1)"2+2ns+3nat-

MacMahon symmetric functions are the generating function for orbits
of sets of functions (indexed by partitions) under the action of a Young
subgroup of the symmetric group [10, 12]. This construction allows us to
describe the effect of the principal specialization in the different bases for
the ring of polynomials in a combinatorial way, very much in the spirit of
the work of Gian-Carlo Rota and his school.

A vector partition is unitary if it is a partition of (1) = (1,1,---,1).
Similarly, a monomial (elementary, etc.) MacMahon symmetric function
is unitary if it is indexed by a unitary vector partition. Unitary vector
partitions can be identified with set partitions: To 7 = {By, Be,--- , B;} we
associate the unitary vector partition A = A;Ag--- X\ where A; has its ith
coordinate 1 if ¢ is in B; and 0 otherwise.

The Young subgroup S, of S, is defined by

Su = S{l,2,~~~,a} X S{a+1,a+2,---,a+b} XX S{n—c—l—l,n—c-i—?,---,n}.

There is a canonical action of S, on [n]. It partitions [n] into equivalence
classes that we order using the smallest element in each of them.

The type of a set partition m = By|Bs|- - - |B; under the action of S, de-
noted type, (), is the vector partition A = A\j A - - - A;, where )y, is the vector
whose 7 coordinate is the number of elements of B in the ith equivalence
class. If u equals (n), we may omit the subindex (n).

Let F}, be the set of all functions from [n] to P, the set of positive integers..

Each f in F), defines a set partition ker f, where n; and ns are in the same
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block of ker f if and only if f(n1) equals f(ng). We read the expression
f(i) = j as saying that ball i has been placed on box j.

Let f be in F),. Suppose that the Young subgroup S, is acting on [n]. We
weight f by vu(f) = [1gejn) €(d) f(a) where c(d) denotes the equivalence class
of d and we use variables x,y,--- ,z to denote the equivalence classes. In
the particular case where u = (1)", we denote 7, by . To a set of functions
T we associate the generating function: v, (T") = ZfeT Yu(f)-

A disposition is an arrangement of the balls (that is, the elements of [n])
into the boxes (that is, the positive numbers, P), where we may impose
some condition on the way the balls are placed. In particular, a function is
a disposition where there is no condition on the way the balls are placed.
The underlying function of a disposition p is the function obtained from p
if we forget about the extra data condition on the balls. The weight of a
disposition is defined as the weight of its underlying function. The kernel of

a disposition p, written as ker p, is the kernel of its underlying function.

Definition 1 (The projection map). Let S, be a Young subgroup of Sy,
acting on [n]. Given any function f : [n] — P. Let v,(f) be defined as
Yu(fu (%, ¢(i))), where fy(i,¢(i)) = f(i), and c(i) is the equivalence class of i
under Sy. Given a set of functions T' going from [n] to P we define v,(T)
as ZfeT'Yu(f)-

The map sending v(T') to v, (T) is called the projection map and denoted
pu. Given any set of dispositions, the projection map is defined on their

underlying functions.
Definition 2 (Doubilet). Let 7 be a set partition of [n].

(1) My ={f:f€F,, kerf =}, and let my be y(My).

(2) Px=A{f:f € Fy,, ker f > 7}, and let pr be v(Py).

(3) Er={f: f €EFy,, ker f Aw =0}, and let e, be y(Er).

(4) Let H, be the set of dispositions such that within each box the balls
from the same block of m are linearly ordered, and let hy be y(Hy).

(5) Let Fy be the set of dispositions such that balls from the same block
of ® go into the same box, and within each box the blocks appearing

are linearly ordered, and let fr be v(Fr).
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For any vector partition A\ = (a1,b1,...,¢1) - (a;, b, ...,¢), (or X =
-+ (a, by, -+ ¢;)™ --- when written in block notation), define |\| = [, m!,
and A =alb!---cilag!l byl -l iyl gl
Theorem 3. Let S, be a Young subgroup of S,. Let w be a set partition of
[n] and let X be the type m under S,. Then, under the projection map py,

Mg — | Al My Dr = P er — Aley
hz — A hy fr = Al fa

In particular, py : Mgyn — My,.

Proof. As an illustration we show that m, — |A| my.

is i B Y TR T B
If fisin My, then, v, (f) = =7 y;! -+ 2 25 - 2, T

_ a1, b1 c1 as, bo c2 a; b o
pu(mz) = Z Tl - 2 T Yy e Ry T Y 2
ilai2a"'ai121
different
Any monomial appears mi!meo! ...my! times. Therefore, we have that
pu(mz) = |A\|mx. The full proof appears in [10]. O

3. THE PRINCIPAL SPECIALIZATION

We study the effect of the principal specialization ps}C on the different
bases of the algebra of symmetric functions.

Let f be a MacMahon symmetric function. We follow Stanley [14] and
define the principal specialization ps,lc by setting x; = y; = --- =2z = 1, if
1 <kand x; =y; =--- = z; = 0, otherwise. The principal specialization
defines an algebra morphism from the MacMahon symmetric functions to
the polynomials in the variable k.

Other generalizations of the principal specialization having several inde-
pendent parameters to distinguish between the different alphabets do not
seem to work as nicely.

Let X be a partition of n of length [. We use the following notation
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Theorem 4. Let w be in the partition lattice 11, let N\ be the partition
defined by the size of its blocks of w, and let () be the number of blocks of
w. Then

psllc(mﬁ) = (k)l(w) psk(hﬂ') = (k))\
psi(pr) = k') psi(ex) = (k)a
psi(fr) = (k)'™

Proof. Let T be any subset of Fj, and let ¢ be its generating function. Then
ps,lc(t) is equal to the number of functions in 7" such that their image is

contained in [k]. Then, from Definition 2 we obtain the following results.

There are (k);(r) functions from [n] to [k] with kernel 7.

There are (k)™ dispositions from [n] to [k].

There are k"™ functions from [n] to [k] that are constant on the
blocks of .

There are (k), functions from [n] to [k] that are injective on the
blocks of .

There are (k)* dispositions from the set of blocks of ker 7 to k.

To count the number of disposition from [n] to [k] we proceed as follows.
The image of 1 can be chosen in k different ways, the image of 2 can be chosen
in k + 1 ways. (There are k possible images for 2, but in the case where
f(1) = f(2) we must also choose the order of 1 and 2). Using induction, we
see that the number of dispositions is (k)" = k(k+1)---(k+n — 1).

|

Applying the projection map p(,) to the equations obtained in Theorem
4, we obtain the classical result for the effect of the principal specialization

on symmetric functions.

Corollary 5. Let )\ be a partition of number n. Then,

(k) o
pok(m) = <0 psk() = L0
k
psk(ps) = KO pshlen) =
e (B
pSk:( )\) - |>\|

Proof. 1t follows from Theorem 3 and Theorem 4. O
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We use the results that we have obtained so far to compute the transition
matrices between the different bases of the algebra of polynomials C[k], in

a combinatorial way.

Theorem 6. The connection constant formulae for the polynomial bases

{k"}, {(F)n}, and {(k)"} are
K" =" S(n,i)(k); (E)n =Y s(n, i)k’

1>0 i>0
(k)" = ; TZ—: (7;: 11> k)i (K)o = g(—l)"”;—!! (’Z:f) (k)

(k)" = ls(n, )|k’ K= (=) S (n, ) (k)

i>0 i>0

Proof. From the definitions, it is immediate that F;, is equal to UweHn M.
Apply the homomorphism ps}C to their generating functions to obtain that

(1) K=" (k)imy = Y _ S(n,i)(k)s,
T€lly >0
because S(n, i), the Stirling number of the second kind, counts the number
of partitions of an n—set into £ nonempty blocks.
It is well-known that S(n, k) are the Whitney numbers of the second kind
for the poset II,,. Moreover, the Stirling numbers of the first kind, s(n, k),
are the corresponding Whitney numbers of the first kind. Therefore, if we

apply Mobius inversion to (1) we obtain

(K= D p@k™ =3 kY plr) =) s(n,ik"

mell, 7 mell, >0
I(m)=1

Define a linear partition to be a partition of n, together with a total order
on each block. Let £, be the poset of linear partitions of [n].

To any disposition p : [n] — P we associate a linear partition defined by
ker p together with the ordering of the balls. Hence, we have the following

equation:

(2) h[n] = Z Mg,
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Apply homomorphism psj. to both sides of equation (2) to obtain
0 = 3 0 = X5 (2 ) 09
oELn i>0
because the number of linear partitions of [n] into ¢ blocks is 7;—,' (7:__11) These
numbers are known as the Lah numbers [3]. Apply Mo6bius inversion to
equation (2) to obtain (k), = > \cp. () (k).
For all X in £,, we have that p()\) = (—=1)"~*Y because [0, \] is a Boolean
lattice. Therefore,
nlfn—1 ,
(B = 3 OO = S (i1
To each partition ¢ = B1|Bs|- - |B;, we can associate in a canonical way
1(0,0) = (By — 1)!(By — 1)!--- (B; — 1)! sets of Lyndon words. Given one

of such sets of Lyndon words, for each ¢/ > o we obtain one different linear

h[n] = Z |P’(070)|ptf'

U'GHn

partition. Hence,

Apply the homomorphism ps,lc to both sides of the previous equation to
obtain that (k)" = . |14(0,0)|k?). Then, since |1(0, )| counts sets of
Lyndon words, we obtain
(3) (k)" = Z jicycles(o)

0ESR
where cycles(o) is the number of cycles of . Finally, we get
(4) (k)" = ls(n, )|,

i>0
because |s(n, )], the signless Stirling number of the second kind, counts the
number of permutations in .S, with 7 cycles.

We give S, a poset structure induced by the refinement order on par-
titions. We say that ¢ < 7 if each cycle of o, written with the smallest
element first, is composed of a string of consecutive integers from the cycles
of 7. For instance, (123)(4) is smaller that (1234), but (124)(3) is not.

If we apply Mobius inversion to the equation 3 we obtain that k" equals

S )RS = S 3 1= (1) S, i) (k)

oESy i o increasing >0
cycles(o)=t
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Because p(o) is zero unless each cycle of o increases from left to right, in
which case p(o) = (—1)"~¥(?) and the number of increasing permuta-
tions with 4 cycles is S(n,%), the number of partitions of [n] with ¢ blocks.

All three Mobius inversion arguments are fully explained in [3]. O

Finally, we use these results to describe the product of elements of the

different polynomial bases. First, we introduce some notation.

Definition 7. Let disj(w,i) be the number of partitions o of length i such
that o A = 0.

Corollary 8. Let A = (A1, A9, -+, A) be a partition of n.
Let m=12--- A\q|-+-|[n =X+ 1---n. Then

(k)x (k)xg - (k)a, = Y disj(m, 8) (k)i

i>0
()M (B2 - () =) (=1)" " disj(m, i) (k)"
i>0
Proof. e Apply the principal specialization ps}€ to both sides of equa-

tioner = .\ Mo
e Apply the principal specialization ps}C to both sides of equation h, =
Za:a/\?r:() Sign(o—)f{f'
0
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