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Abstract

This paper is concerned with the boundary controllability of non-scalar linear parabolic
systems. More precisely, two coupled one-dimensional parabolic equations are considered.
We show that, in this framework, boundary controllability is not equivalent and is more com-
plex than distributed controllability. In our main result, we provide necessary and sufficient
conditions for the null controllability.

1 Introduction

This paper deals with the controllability properties of some systems of two coupled one-dimensional
parabolic equations where the control is exerted at one boundary point for all times.

Thus, let us fix T > 0 and let us consider the linear system
yt − yxx = Ay in Q = (0, 1)× (0, T ),

y(0, ·) = Bv, y(1, ·) = 0 in (0, T ),

y(· , 0) = y0 in (0, 1),

(1)

where A ∈ L(R2) and B ∈ R2 are given and y0 ∈ H−1(0, 1)2. Here, v ∈ L2(0, T ) is a control
function (to be determined) and y = (y1, y2)∗ is the state variable. Observe that, for every
v ∈ L2(0, T ) and y0 ∈ H−1(0, 1)2, (1) admits a unique weak solution (defined by transposition)
that satisfies

y ∈ L2(Q)2 ∩ C0([0, T ];H−1(0, 1)2);

see Section 2.
It will be said that (1) is approximately controllable in H−1(0, 1)2 at time T if, for any y0, yd ∈

H−1(0, 1)2 and any ε > 0, there exists a control function v ∈ L2(0, T ) such that the associated
solution satisfies

‖y(· , T )− yd‖H−1(0,1) ≤ ε.

On the other hand, it will be said that (1) is null controllable at time T if, for each y0 ∈
H−1(0, 1)2, there exists a control v ∈ L2(0, T ) such that the associated solution satisfies

y(· , T ) = 0 in H−1(0, 1)2. (2)

Since (1) is linear, this second property is equivalent to the exact controllability to the trajec-
tories at time T , that is to say, to the following property: for any trajectory ŷ (i.e. any solution
to (1) corresponding to v ≡ 0 and ŷ0 ∈ H−1(0, 1)2) and any y0 ∈ H−1(0, 1)2, there exists a control
v ∈ L2(0, T ) such that the associated solution to (1) satisfies

y(· , T ) = ŷ(· , T ) in H−1(0, 1)2.
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The controllability properties of similar scalar problems are nowadays well known; see for
instance [8], [21], [7], [18], [12] and [11].

To be precise, let Ω ⊂ RN be a nonempty regular bounded open set with N ≥ 1, let ω ⊂ Ω
be a nonempty open subset, and let γ ⊂ ∂Ω be a nonempty relative open set. Let us consider the
following scalar problems: 

yt −∆y = v1ω in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(· , 0) = y0 in Ω

(3)

and 
yt −∆y = 0 in Ω× (0, T ),

y = v1γ on ∂Ω× (0, T ),

y(· , 0) = y0 in Ω.

(4)

Here, 1ω and 1γ are, respectively, the characteristic functions of ω and γ, y0 ∈ L2(Ω) is given and
v is the control.

Under the previous assumptions, for every Ω, ω, γ and T , both systems (3) and (4) are
approximately controllable in L2(Ω) and also null controllable at any time T (see for instance [18]
and [12]). In fact, the boundary controllability results for system (4) can be easily obtained from
the corresponding distributed controllability results for system (3) and viceversa. We will see that
the situation is quite different for similar non-scalar systems.

There are not many works devoted to the controllability of parabolic systems of PDEs. To
our knowledge, all them deal with distributed controls, exerted on a small open set ω; see for
instance [23], [6], [2], [5], [13], [14], [15], [3] and [4]. In these papers, almost all the results have
been established for 2 × 2 systems where the control is exerted on the first equation. The most
general results in this context seem to be those in [14], [3] and [4]. In [14], the authors study a
cascade parabolic system of n equations (n ≥ 2) controlled with one single distributed control.
In [3] and [4], the authors provide necessary and sufficient conditions for the controllability of n×n
parabolic linear systems with constant or time-dependent coefficients.

It is worth mentioning that, in [17], an approximate boundary controllability result is obtained
for a particular system of two parabolic coupled equations as a consequence of a unique contin-
uation principle. The result is valid in several dimensions but only for a very particular kind of
coupling. It is also interesting to recall the boundary controllability results for a system of two
wave equations obtained by Alabau-Boussouira in [1].

For completeness, let us recall the main result proved in [3] and [4] for the problem
yt −∆y = Ay +Bv1ω in Ω× (0, T ),

y = 0 on ∂Ω× (0, T ),

y(·, 0) = y0 in Ω,

(5)

where A ∈ L(Rn;Rn), B ∈ L(Rm,Rn) (with n,m ≥ 1) and y0 ∈ L2(Ω)n. It is the following:

Let [A |B] be the following matrix in L(Rn×m;Rn):

[A |B] = [B |AB |A2B | · · · |An−1B].

Then, (5) is null controllable if and only the so called Kalman’s rank condition

rank [A |B] = n

is satisfied. In that case, null controllability holds at any time T > 0.

In this paper, our main aim is to characterize the boundary controllability properties of (1)
(a system of 2 equations) when we apply just one control on a part of the boundary. Our main
result is the following:
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Theorem 1.1. Let A ∈ L(R2;R2) and B ∈ R2 be given and let us denote by µ1 and µ2 the
eigenvalues of A. Then (1) is exactly controllable to the trajectories at any time T > 0 if and only
if

rank [B |AB] = 2 (6)

and
π−2 (µ1 − µ2) 6= j2 − k2 ∀k, j ∈ N with k 6= j. (7)

In view of Theorem 1.1, we find two different situations: when the matrix A in (1) has one
double real eigenvalue or a couple of conjugate complex eigenvalues, (6) is a necessary and sufficient
condition for the null controllability at any time (as in the distributed case); otherwise, if A has two
different real eigenvalues, an additional condition is needed for null controllability, independently
of the vector B we are considering.

As a consequence of this result, we observe that the Kalman’s rank condition is necessary,
but not sufficient, for the boundary controllability of (1). This is a crucial discrepancy between
boundary and distributed controllability for coupled parabolic systems and shows that, for a given
system, these two properties can be independent.

The proof of Theorem 1.1 is based on the proof of Fattorini and Russell [8] of the boundary
controllability of the one-dimensional heat equation. They reduce the task to construct a biorthog-
onal family in L2(0,∞) to a given family of exponential functions and, then, to deduce appropriate
estimates of the corresponding norms. Recall that two families {pn : n ≥ 1} and {qn : n ≥ 1} in
L2(0,∞) are said to be biorthogonal in this space if

(pn, qk)L2(0,∞) = δnk ∀n, k ≥ 1.

In our case, we have to construct and estimate appropriately in L2(0,∞) a family that must
be biorthogonal to a larger set of functions. We use techniques similar to those in [8], but adapted
to this new situation. The constructed family is then used, together with (6) and (7), to prove an
observability inequality for the solutions to the adjoint system. As a consequence, we get the null
controllability of (1).

On the other hand, we prove that (6) and (7) are necessary by analyzing some particular
systems that serve as counter-examples to unique continuation.

The rest of the paper is organized as follows. In the next Section, we give some basic and
preliminary results concerning the existence of a solution and the controllability properties of (1);
the proofs of some of them are postponed to Appendix A and Appendix B. In Section 3, we
present some results related to the Fattorini-Russell method. In particular, we give details on the
construction and estimates of certain biorthogonal families and we show how they can be used to
prove some inequalities. In Section 4 we prove Theorem 1.1. Finally, Section 5 deals with some
further results and open problems.

The main results in this paper have been announced in [10].

2 Preliminary results

This Section is devoted to establish some results for (1) that will be needed in the proof of
Theorem 1.1. In the sequel, C denotes a generic positive constant; sometimes, we will make
emphasis on the dependence of C on T , by writing C(T ). We will also use the following notation:
‖ · ‖X stands for the norm of the normed space X or Xm, with m ≥ 2; also, ‖ · ‖Lp(X) stands for
the norm in Lp(0, T ;X) (p ≥ 1).

We begin by clarifying what is a solution by transposition to (1). To this end, let us consider
the linear backwards in time problem

−ϕt − ϕxx = A∗ϕ+ g in Q,

ϕ(0, ·) = 0, ϕ(1, ·) = 0 in (0, T ),

ϕ(· , T ) = 0 in (0, 1),

(8)
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where g ∈ L2(Q)2. It is well known that, for every g ∈ L2(Q)2, (8) possesses exactly one (strong)
solution

ϕ ∈ L2(0, T ;H2(0, 1)2) ∩ C0([0, T ];H1
0 (0, 1)2).

Hence, the following definition makes sense:

Definition 2.1. Let y0 ∈ H−1(0, 1)2 and v ∈ L2(0, T ) be given. It will be said that y ∈ L2(Q)2 is
a solution by transposition to (1) if, for each g ∈ L2(Q)2, one has∫∫

Q

y · g dx dt = 〈y0, ϕ(·, 0)〉+

∫ T

0

B · ϕx(0, t) v(t) dt, (9)

where ϕ is the solution to (8) associated to g and 〈· , ·〉 stands for the usual duality pairing between
H−1(0, 1)2 and H1

0 (0, 1)2.

Thus, one has:

Proposition 2.2. Assume that y0 ∈ H−1(0, 1)2 and v ∈ L2(0, T ) are given. Then (1) admits a
unique solution by transposition y that satisfies:

y ∈ L2(Q)2 ∩ C0([0, T ];H−1(0, 1)2), yt ∈ L2(0, T ; (D(−∆)′)2),

yt − yxx = Ay in L2(0, T ; (D(−∆)′)2),

y(· , 0) = y0 in H−1(0, 1)2 and

‖y‖L2(Q) + ‖yt‖L2(D(−∆)′) ≤ C
(
‖y0‖H−1(0,1) + ‖v‖L2(0,T )

)
.

In the sequel, it will be said that y is the state associated to y0 and v.

Results of this kind are well known. For completeness, we recall the proof of Proposition 2.2
in Appendix A.

Now, let us consider the adjoint of system (1):
−ϕt − ϕxx = A∗ϕ in Q,

ϕ(0, ·) = 0, ϕ(1, ·) = 0 in (0, T ),

ϕ(· , T ) = ϕ0 in (0, 1),

(10)

where ϕ0 ∈ H1
0 (0, 1)2. In the sequel, the solution to (10) will be called the adjoint state associated

to ϕ0. The controllability of (1) can be characterized in terms of appropriate properties of the
solutions to (10). More precisely, we have:

Proposition 2.3. The following properties are equivalent:

1. There exists a positive constant C such that, for any y0 ∈ H−1(0, 1)2, there exists a control
v ∈ L2(0, T ) such that

‖v‖2L2(0,T ) ≤ C‖y0‖2H−1(0,1) (11)

and the associated state satisfies (2).

2. There exists a positive constant C such that, for any trajectory ŷ ∈ C0([0, T ];H−1(0, 1)2)
of (1) and any y0 ∈ H−1(0, 1)2, there exists a control v ∈ L2(0, T ) such that

‖v‖2L2(0,T ) ≤ C‖y0 − ŷ(· , 0)‖2H−1(0,1) (12)

and the associated state satisfies

y(· , T ) = ŷ(· , T ) in H−1(0, 1)2.
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3. There exists a positive constant C such that the observability inequality

‖ϕ(·, 0)‖2H1
0 (0,1) ≤ C

∫ T

0

|B∗ϕx(0, t)|2 dt (13)

holds for every ϕ0 ∈ H1
0 (0, 1)2. In (13), ϕ is the adjoint state associated to ϕ0.

Again, this result is well known. For completeness, the proof is presented in Appendix B, at
the end of the paper.

Remark 2.1. It is also well known that the approximate controllability of (1) can be characterized
in terms of a property of the solutions to (10). More precisely, (1) is approximately controllable if
and only if the following unique continuation property holds:

“Let ϕ0 ∈ H1
0 (0, 1)2 be given and let ϕ be the associated adjoint state. Then, if

B∗ϕx(0, t) = 0 on (0, T ), one has ϕ ≡ 0 on Q.”

3 Biorthogonal families: construction, estimates and appli-
cations

In this Section, some technical results are given. They will be used below to prove Theorem 1.1.
Let us first present a fundamental lemma whose first part was essentially proved by Luxemburg

and Korevaar in [20]. For the sake of completeness, we have included the proof below. As far as
we know, the second part of this lemma is new.

Lemma 3.1. Suppose that {Λn}n≥1 is a sequence of complex numbers such that, for some δ, ρ > 0,
one has: 

<(Λn) ≥ δ|Λn|, |Λn − Λk| ≥ |n− k|ρ ∀n, k ≥ 1,
∞∑
n=1

1

|Λn|
<∞.

(14)

Then,

a) There exists a sequence {hn} biorthogonal to {e−Λnt} such that, for every ε > 0, one has

‖hn‖L2(0,∞) ≤ K(ε)eε<(Λn) ∀n ≥ 1. (15)

b) There exists a sequence {qn, q̃n} biorthogonal to {e−Λnt, te−Λnt} such that, for every ε > 0,
one has

‖(qn, q̃n)‖L2(0,∞) ≤ K(ε)eε<(Λn) ∀n ≥ 1. (16)

As a consequence, we also have:

Lemma 3.2. Let us assume that (14) holds. Then:

a) For every T > 0, there exists C(T ) > 0 such that, for all m ≥ 1 and Aj ∈ C, one has:∫ T

0

|
m∑
j=1

Aje
−Λjt|2 dt ≥ C(T )

∫ ∞
0

|
m∑
j=1

Aje
−Λjt|2 dt.

b) For every T > 0, there exists C(T ) > 0 such that, for all m ≥ 1 and Aj , Bj ∈ C, one has:∫ T

0

|
m∑
j=1

(Aj + tBj)e
−Λjt|2 dt ≥ C(T )

∫ ∞
0

|
m∑
j=1

(Aj + tBj)e
−Λjt|2 dt.
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Let us introduce the (closed) spaces

ET = [e−Λjt : j ≥ 1]L2(0,T ), E∞ = [e−Λjt : j ≥ 1]L2(0,∞),

FT = [e−Λjt, te−Λjt : j ≥ 1]L2(0,T ), F∞ = [e−Λjt, te−Λjt : j ≥ 1]L2(0,∞),

spanned by the functions e−Λjt (and te−Λjt) in L2(0, T ) and L2(0,∞), respectively.

Let us also introduce the canonical mappings Γ : E∞ 7→ ET and Γ̃ : F∞ 7→ FT , with

Γv = v|(0,T ) ∀v ∈ E∞ and Γ̃w = w|(0,T ) ∀w ∈ F∞.

A trivial consequence of Lemma 3.2 is the following:

Lemma 3.3. Let us assume that (14) holds. Then:

a) For every T > 0, Γ : E∞ 7→ ET is an isomorphism. In particular, there exists C(T ) > 0
such that

‖v‖L2(0,∞) ≤ C(T )‖Γv‖L2(0,T ) ∀v ∈ E∞.

b) For every T > 0, Γ̃ : F∞ 7→ FT is an isomorphism. In particular, there exists C(T ) > 0
such that

‖w‖L2(0,∞) ≤ C(T )‖Γ̃w‖L2(0,T ) ∀w ∈ F∞.

These lemmas are crucial for the proof of the main result in this Section, that is the following:

Proposition 3.4. Let us assume that (14) holds. Then:

a) For every T > 0, there exists C(T ) > 0 such that∫ T

0

|
∑
j≥1

Aje
−Λjt|2 dt ≥ C(T )

∑
j≥1

|Aj | 2

|Λj |
e−<(Λj)T , (17)

whenever the sum in the left hand side makes sense.

b) For every T > 0, there exists C(T ) > 0 such that∫ T

0

|
∑
j

(Aj + tBj)e
−Λjt|2dt ≥ C(T )

∑
j≥1

|Aj |2 + |Bj |2

|Λj |
e−<(Λj)T , (18)

whenever the sum in the left hand side makes sense.

We will first give the proof of Proposition 3.4 assuming that Lemmas 3.1, 3.2 and 3.3 hold
true. Then, we will present the proofs of these lemmas.

Proof of Proposition 3.4: Let us prove part b). Part a) is simpler and can be established in a
similar way.

Let us take qk and q̃k as in Lemma 3.1 b) and let us assume that the left hand side of (18) is
meaningful, i.e. ∑

j

(Aj + tBj) e
−Λjt ∈ L2(0, T ).

In view of Lemma 3.3 b), we also have
∑
j(Aj + tBj) e

−Λjt ∈ L2(0,∞) and∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2dt ≤ C(T )

∫ T

0

|
∑
j

(Aj + tBj)e
−Λjt|2dt. (19)
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For all k ≥ 1, we have

∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2 dt ≥ 1

‖qk‖2

∣∣∣∣∣∣
∫ ∞

0

∑
j

(Aj + tBj)e
−Λjtqk(t) dt

∣∣∣∣∣∣
2

=

∣∣(Ake−Λkt, qk)
∣∣2

‖qk‖2
=
|Ak|2

‖qk‖2
.

Consequently, ∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2 dt

(∑
k

1

|Λk|

)
≥
∑
k

1

|Λk|
|Ak|2

‖qk‖2
.

Let us fix ε > 0. Then this inequality together with (16) imply∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2 dt ≥ C

K(ε)2

∑
k

1

|Λk|
|Ak|2e−2ε<(Λk).

Taking ε = T/2, we see that∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2 dt ≥ C(T )

∑
k

1

|Λk|
|Ak|2e−<(Λk)T (20)

for some C(T ) > 0. Proceeding as before, but using q̃k instead of qk, we also get∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2 dt ≥ C(T )

∑
k

1

|Λk|
|Bk|2e−<(Λk)T . (21)

Now, combining (20) and (21), we find that∫ ∞
0

|
∑
j

(Aj + tBj)e
−Λjt|2 dt ≥ C(T )

∑
j≥1

|Aj |2 + |Bj |2

|Λj |
e−<(Λj)T .

Finally, from (19), we get (18).

Let us now present the proofs of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1:
In this proof, ‖ · ‖ will stand for the norm in L2(0,+∞). Part a) can be deduced from the

proof given in [9] (see also [8]); it can also be deduced from part b). However, for clarity and
completeness, we will include here the proof.

Thus, let us set pn(t) = e−Λnt and let us introduce the space

En = [pk : k 6= n]L2(0,∞) ,

that is to say, the closed span in L2(0,∞) of the functions pk with k 6= n. Thanks to Müntz’s
Theorem (see [22], p. 24), pn 6∈ En and there exists a unique rn ∈ En such that

‖pn − rn‖ = dist (pn, En).

Of course, rn is characterized by

rn ∈ En and (pn − rn)⊥En .
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Let us choose

hn =
pn − rn
‖pn − rn‖2

.

It is then clear that (hn, pk) = δkn for all k and n, i.e. the sequence {hn} is biorthogonal to{e−Λnt}.
Let us now prove the inequalities (15) or, equivalently, let us estimate ‖pn − rn‖ from below.
For each m ∈ N let us denote by rmn the projection of pn over

Emn = [pk : k 6= n, 1 ≤ k ≤ m]L2(0,∞) .

Then
rmn → rn in L2(0,∞) as m→∞

and ‖pn − rn‖ = limm→∞ ‖pn − rmn ‖. We also have

‖pn − rmn ‖2 = (e−Λnt, e−Λnt − rmn ) =

∫ ∞
0

e−Λnt
(
e−Λnt − rmn (t)

)
dt = Φ(Λn),

where Φ is given by

Φ(Λ) =

∫ ∞
0

e−Λt
(
e−Λnt − rmn (t)

)
dt ∀Λ ∈ C with <(Λ) ≥ 0.

Observe that Φ depends on n and m; however, in order to simplify the notation, from now on we
will not indicate explicitly this dependence.

Since rmn ∈ Emn , we can write

Φ(Λ) =
1

Λ + Λn
−

m∑
j=1,j 6=n

amj

Λ + Λj
=

g(Λ)

(Λ + Λn)
∏m
j=1,j 6=n(Λ + Λj)

for some amj ∈ C. Here, g is a polynomial of degree ≤ m− 1. The orthogonality properties of rmn
imply that Φ(Λj) = 0 for all j with 1 ≤ j ≤ m and j 6= n. As a consequence, this is also satisfied
by g and we have

g(Λ) = K

m∏
j=1,j 6=n

(Λ− Λj) (22)

for some K ∈ C. On the other hand, we also have

g(Λ) =

m∏
j=1,j 6=n

(Λ + Λj)− (Λ + Λn)

m∑
j=1, j 6=n

amj m∏
i=1, i 6=n,j

(Λ + Λi)

 ,

whence

g(−Λn) =

m∏
j=1,j 6=n

(Λj − Λn).

This and (22) together imply that

K =

m∏
j=1,j 6=n

Λn − Λj

Λn + Λj
and Φ(Λ) =

1

Λ + Λn

m∏
j=1,j 6=n

(Λn − Λj)(Λ− Λj)

(Λn + Λj)(Λ + Λj)
.

In particular, we see that

Φ(Λn) =
1

2<(Λn)

m∏
j=1,j 6=n

∣∣∣∣1− Λn
Λj

∣∣∣∣2∣∣∣∣1 +
Λn

Λj

∣∣∣∣2
. (23)
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Taking limits as m→∞ in (23), we get ‖pn − rn‖ = Pn , where

Pn =

(
1

2<(Λn)

)1/2 ∞∏
j=1,j 6=n

∣∣∣∣1− Λn
Λj

∣∣∣∣∣∣∣∣1 +
Λn

Λj

∣∣∣∣ . (24)

Following the ideas in [9] and [20], it can be proved that, for every ε > 0, there exists C(ε) > 0
such that

Pn ≥ C(ε)e−ε<(Λn). (25)

For completeness, we give a proof below. From these inequalities, taking into account the definition
of hn , we directly obtain (15).

This ends the proof of part a).
Let us now prove (25). Let us fix ε > 0. From (14), there exists N0(ε) ∈ N such that∑

j≥N0(ε)

1

|Λj |
≤ ε.

Thus, using the inequality 1 + x ≤ ex, x ∈ R, we can estimate the denominator of (24) as follows:

∞∏
j=1,j 6=n

∣∣∣∣1 +
Λn

Λj

∣∣∣∣ ≤ ∞∏
j=1,j 6=n

(
1 +
|Λn|
|Λj |

)
=

N0(ε)−1∏
j=1,

(
1 +
|Λn|
|Λj |

) ∞∏
j=N0(ε)

(
1 +
|Λn|
|Λj |

)

≤
N0(ε)−1∏
j=1,

(
1 +
|Λn|
c

) ∞∏
j=N0(ε)

e
|Λn|
|Λj | ≤

(
1 +
|Λn|
c

)N0(ε)−1

eε|Λn|

≤ C1(ε)e2ε|Λn| ∀n ∈ N,

(26)

for a positive constant C1(ε). In the previous inequality we have used that, for some constant
c > 0, one has |Λj | ≥ c > 0 for every j ∈ N.

Let us now work on the numerator of (24). We introduce

S1(n) = {j : |Λj | ≤
1

2
|Λn|}, S2(n) = {j 6= n :

1

2
|Λn| < |Λj | ≤ 2|Λn|} and

S3(n) = {j : |Λj | > 2|Λn|}.

Then ∏
j∈S1(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ ≥ ∏
j∈S1(n)

(
|Λn|
|Λj |

− 1

)
≥ 1 ∀n ∈ N. (27)

On the other hand,∏
j∈S3(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ ≥ ∏
j∈S3(n)

(
1− |Λn|
|Λj |

)
≥

∏
j∈S3(n)

e
−2
|Λn|
|Λj | = e

−2|Λn|
∑

j∈S3(n)
1
|Λj | . (28)

In this inequality we have used that e−2x ≤ 1− x if x ∈ [0, 1/2]. Using (14), we deduce that there
exists N1(ε) ∈ N such that, if n ≥ N1(ε), one has∑

j∈S3(n)

1

|Λj |
≤ ε.

From (28) and the previous inequality we deduce that, if n ≥ N1(ε), then∏
j∈S3(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ ≥ e−2ε|Λn|.
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Evidently, if n ≤ N1(ε), we get ∏
j∈S3(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ ≥ C2(ε)

for a new positive constant C2(ε). Therefore,∏
j∈S3(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ ≥ C2(ε)e−2ε|Λn| ∀n ∈ N. (29)

Finally, using again (14), we see that

∏
j∈S2(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ =
∏

j∈S2(n)

∣∣∣∣Λj − Λn
Λj

∣∣∣∣ ≥ ∏
j∈S2(n)

|j − n|ρ
2|Λn|

≥ rn!sn!

(
ρ

2|Λn|

)rn+sn

, (30)

where rn (resp. sn) is the number of elements j ∈ S2(n) such that j < n (resp. j > n).
Following [9], we find that

rn + sn
|Λn|

=
∑

j∈S2(n)

1

|Λn|
≤

∑
j∈S2(n)

2

|Λj |
=

∑
{j:|Λj |>|Λn|/2}

2

|Λj |
→ 0 as n→∞,

i.e. we can write rn = ηn|Λn| and sn = νn|Λn|, with lim ηn = lim νn = 0.
Let us now estimate the right hand side of (30). If the sequence {rn}n≥1 is bounded, then

rn!

(
ρ

2|Λn|

)rn
≥
(

ρ

2|Λn|

)M
≥ C(ε) e−ε|Λn|, ∀n ∈ N.

If rn → ∞ we can use the Stirling formula rn! = βn(rn/e)
rn
√

2πrn, with βn → 1 as n → ∞ and
deduce that

rn!

(
ρ

2|Λn|

)rn
= βn

(
rnρ

2e|Λn|

)rn √
2πrn ≡ βn

(ηnρ
2e

)ηn|Λn|√
2πηn|Λn|1/2

= βnα
|Λn|
n

√
2πηn|Λn|1/2,

with limαn = limβn = 1 and lim ηn = 0. Thus, if we fix ε > 0, there exists C̃(ε) > 0 such that

rn!

(
ρ

2|Λn|

)rn
≥ C̃(ε)e−ε|Λn|, ∀n ∈ N.

A similar inequality can be obtained for

sn!

(
ρ

2|Λn|

)sn
.

Therefore, we have proved the existence of a positive constant C3(ε) such that∏
j∈S2(n)

∣∣∣∣1− Λn
Λj

∣∣∣∣ ≥ C3(ε)e−2ε|Λn| ∀n ∈ N. (31)

Coming back to (24), using (14) and putting together the inequalities (26), (27), (29) and (31),
we find that

Pn ≥ C4(ε)

(
1

2<(Λn)

)1/2

e−6ε|Λn| ≥ C4(ε)

(
1

2<(Λn)

)1/2

e−6ε<(Λn)/δ ≥ C5(ε)e−7ε<(Λn)/δ,
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for some new positive constants C4(ε) and C5(ε). This last inequality shows (25).

Let us now prove part b). Let us set pn(t) = e−Λnt, p̃n(t) = te−Λnt,

Fn = [pk : k 6= n; p̃k, k ≥ 1]L2(0,∞) and F̃n = [pk : k ≥ 1; p̃k : k 6= n]L2(0,∞) .

Then there exists sn ∈ Fn satisfying ‖pn− sn‖ = dist(pn, Fn). The function sn is characterized by

sn ∈ Fn and (pn − sn)⊥Fn.

In a similar way, there exists s̃n ∈ F̃n such that ‖p̃n − s̃n‖ = dist(p̃n, F̃n), characterized by

s̃n ∈ F̃n and (p̃n − s̃n)⊥F̃n.

We will see later that sn 6= pn and s̃n 6= p̃n. Thus, we can introduce

qn =
pn − sn
‖pn − sn‖2

and q̃n =
p̃n − s̃n
‖p̃n − s̃n‖2

and then (qn, pk) = δnk, (q̃n, pk) = 0, (qn, p̃k) = 0 and (q̃n, p̃k) = δnk for all n and k.
In this way, we have obtained a family {qn, q̃n} that is biorthogonal to {pn, p̃n}. To conclude

the proof we have to estimate the norms ‖qn‖ and ‖q̃n‖. These are the goals of the next two
paragraphs.

Estimate of ‖qn‖: For any m ≥ 1, let us introduce the space

Fmn = [pk : 1 ≤ k ≤ m, k 6= n; p̃k : 1 ≤ k ≤ m]L2(0,∞) .

Let smn be the unique function in Fmn satisfying ‖pn − smn ‖ = minr∈Fm
n
‖pn − r‖. Then smn →

sn in L2(0,∞) as m→∞ and, consequently,

‖pn − sn‖ = lim
m→∞

‖pn − smn ‖.

So, let us look for an estimate of

‖pn − smn ‖2 = (e−Λnt, e−Λnt − smn ) = F (Λn),

where, for <(Λ) ≥ 0, we have set

F (Λ) = (e−Λt, e−Λnt − smn )

=

∫ ∞
0

e−Λt

e−Λnt −

 m∑
j=1,j 6=n

anj e
−Λjt +

m∑
j=1

b
n

j te
−Λjt

 dt
=

1

Λ + Λn
−

m∑
j=1,j 6=n

anj

Λ + Λj
−

m∑
j=1

b
n

j

(Λ + Λj)2
=

G(Λ)∏m
j=1(Λ + Λj)2

=
G(Λ)

R(Λ)
.

(32)

Here, G is a polynomial of degree ≤ 2m− 1.
We have F ′(Λ) = (−te−Λt, e−Λnt − smn ). Furthermore, the orthogonality relations satisfied by

e−Λnt − smn give

F (Λk) = 0 ∀1 ≤ k ≤ m, k 6= n, and F ′(Λk) = 0 ∀1 ≤ k ≤ m.

In terms of G, this can be rewritten as follows:

G(Λk) = 0 ∀1 ≤ k ≤ m, k 6= n and

{
G′(Λk) = 0 ∀1 ≤ k ≤ m, k 6= n,

G′(Λn)R(Λn) = G(Λn)R′(Λn).
(33)
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Consequently, we can write

G(Λ) = (AΛ +B)

m∏
j=1,j 6=n

(Λ− Λj)
2 (34)

for some complex coefficients A and B.
In view of (32), we also have

G(Λ) = (Λ + Λn)

m∏
j=1,j 6=n

(Λ + Λj)
2 + (Λ + Λn)2G1(Λ)− bnn

m∏
j=1,j 6=n

(Λ + Λj)
2 (35)

for some polynomial G1. From this expression and (34) (written for Λ = −Λn), we deduce that

b
n

n

m∏
j=1,j 6=n

(Λj − Λn)2 =

m∏
j=1,j 6=n

(Λj + Λn)2(AΛn −B),

that is to say,

b
n

n =
1

S

(
AΛn −B

)
, with S =

m∏
j=1,j 6=n

(
Λn − Λj

Λn + Λj

)2

. (36)

On the other hand, from (34) we get the following:

G′(Λ) = A

m∏
j=1,j 6=n

(Λ− Λj)
2 + 2(AΛ +B)

m∑
j=1,j 6=n

(Λ− Λj)

m∏
k=1,k 6=n,j

(Λ− Λk)2

 (37)

and

G′(−Λn) = A

m∏
j=1,j 6=n

(Λn + Λj)
2 + 2(AΛn −B)

m∑
j=1,j 6=n

(Λn + Λj)

m∏
k=1,k 6=n,j

(Λn + Λk)2

 .
From (35), we also have that

G′(−Λn) =

m∏
j=1,j 6=n

(Λj − Λn)2 − 2b
n

n

m∑
j=1,j 6=n

(Λj − Λn)

m∏
k=1,k 6=n,j

(Λk − Λn)2

 .
In view of these equalities and (36), we get:

A+ 2(AΛn −B)

m∑
j=1,j 6=n

(
1

Λn + Λj
+

1

Λj − Λn

)
= S. (38)

Notice that
R′(Λ)

R(Λ)
=

d

dΛ
logR(Λ) =

2

Λ + Λn
+ 2

m∑
j=1,j 6=n

1

Λ + Λj
.

Consequently, using (33) and (34), we also get:

G′(Λn) = G(Λn)
R′(Λn)

R(Λn)

= 2(AΛn +B)

 m∏
j=1,j 6=n

(Λn − Λj)
2

 1

2<(Λn)
+

m∑
j=1,j 6=n

1

Λn + Λj

 .
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But, from (37), we also have

G′(Λn) = A

m∏
j=1,j 6=n

(Λn − Λj)
2 + 2(AΛn +B)

m∑
j=1,j 6=n

(Λn − Λj)

m∏
k=1,k 6=n,j

(Λn − Λk)2

 .
Comparing these last two inequalities, we see that

−iA=(Λn)

<(Λn)
− B

<(Λn)
− 2(AΛn +B)

m∑
j=1,j 6=n

(
1

Λj − Λn
+

1

Λn + Λj

)
= 0. (39)

Let us consider the equalities (38) and (39). Introducing

Dm
n = 2

m∑
j=1,j 6=n

(
1

Λj − Λn
+

1

Λn + Λj

)
, α = AΛn −B and β = AΛn +B, (40)

it is not difficult to rewrite these identities in the form
1

2<(Λn)
(α+ β) +D

m

n α = S,

1

2<(Λn)
(β − α) +Dm

n β = 0.

In particular, we get

β =
2<(Λn)S

1 + |1 + 2<(Λn)Dm
n |2

and, recalling (32), we see that

‖pn − smn ‖2 = F (Λn) =
G(Λn)

R(Λn)
=

1

4<(Λn)2
βS =

|S|2

2<(Λn) (1 + |1 + 2<(Λn)Dm
n |2)

, (41)

where S is given in (36).
Let us recall that ‖pn − sn‖ = limm→∞ ‖pn − smn ‖. In view of (36), (40) and (41), this means

that

‖qn‖−1 ≡ ‖pn − sn‖ =
(2<(Λn))

1/2
P 2
n

[1 + |1 + 2<(Λn)Dn|2]
1/2

,

where Pn is given by (24) and

Dn ≡ 2

∞∑
j=1,j 6=n

(
1

Λn + Λj
+

1

Λj − Λn

)
.

We are looking for a lower bound of ‖qn‖−1. Thanks to (25), we know how to bound Pn from
below. Consequently, it will suffice to find an upper bound for |Dn|.

We can write |Dn| ≤ Dn,1 +Dn,2 with

Dn,1 = 2
∑
j≥1

1

|Λj + Λn|
≤ 2

∑
j≥1

1

<(Λj) + <(Λn)
≤ 2

∑
j≥1

1

<(Λj)
≤ 2

δ

∑
j≥1

1

|Λj |

and

Dn,2 = 2
∑

j=1,j 6=n

1

|Λj − Λn|
.

As in the proof of (25), let us introduce

A1(n) = {j : j 6= n, |Λj | ≤ 2|Λn|} and A2(n) = {j : |Λj | > 2|Λn|}.
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It is then clear that

Dn,2 = 2
∑

j∈A1(n)

1

|Λj − Λn|
+ 2

∑
j∈A2(n)

1

|Λj − Λn|
= Sn,1 + Sn,2.

Let us estimate each term in the right hand side. Thanks to (14),

Sn,1 ≤
2

ρ

∑
j∈A1(n)

1

|j − n|
≤ 2

ρ
cn,

where cn = cardA1(n). Observe that

cn
2|Λn|

≤
∑

j∈A1(n)

1

|Λj |
≤
∑
j≥1

1

|Λj |
,

whence
Sn,1 ≤ C|Λn| ≤ C<(Λn).

On the other hand,

Sn,2 ≤ 2
∑

j∈A2(n)

1

|Λj | − |Λn|
≤ 4

∑
j≥1

1

|Λj |
.

Therefore, |Dn| ≤ Dn,1 +Dn,2 ≤ C + C<(Λn) and

‖qn‖−1 =
(2<(Λn))

1/2
P 2
n

[1 + |1 + 2<(Λn)Dn|2]
1/2
≥ C(ε)e−ε<(Λn)

for all ε > 0.
This proves the estimate (16) for ‖qn‖.

Estimate of ‖q̃n‖: This will be easier. Let us introduce the space

F̃mn = [pk : 1 ≤ k ≤ m; p̃k : 1 ≤ k ≤ m, k 6= n]L2(0,∞)

and let s̃mn be the unique function in F̃mn such that ‖p̃n − s̃mn ‖ = minr̃∈F̃m
n
‖p̃n − r̃‖.

Again, we readily have limm→∞ ‖p̃n − s̃mn ‖ = ‖p̃n − s̃n‖. It suffices to estimate from below

‖p̃n − s̃mn ‖2 = (te−Λnt, te−Λnt − smn ) = −F̃ ′(Λn),

where we have set
F̃ (Λ) = (e−Λt, te−Λnt − s̃mn ).

Taking into account that s̃mn ∈ F̃mn , one has

F̃ (Λ) =
1

(Λ + Λn)2
−

m∑
j=1

ãnj

Λ + Λj
−

m∑
j=1,j 6=n

b̃nj

(Λ + Λj)2
=
G̃(Λ)

R(Λ)
. (42)

for appropriate coefficients ãnj and b̃nj . Again, in (42) G̃ is a polynomial of degree 2m − 1 and

R(Λ) =
∏m
j=1(Λ + Λj)

2.
The orthogonality properties of r̃mn imply

F̃ (Λj) = 0 ∀1 ≤ j ≤ m and F̃ ′(Λj) = 0 ∀1 ≤ j ≤ m, j 6= n.

It is not difficult to see that this can be rewritten in terms of G̃ as follows:

G̃(Λj) = 0 ∀1 ≤ j ≤ m and G̃′(Λj) = 0 ∀1 ≤ j ≤ m, j 6= n.
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Consequently,

G̃(Λ) = K(Λ− Λn)

m∏
j=1,j 6=n

(Λ− Λj)
2

for some K ∈ C. Notice that this gives

G̃(−Λn) = −2K<(Λn)

m∏
j=1,j 6=n

(Λn + Λj)
2.

But we also have from (42) that

G̃(−Λn) =

m∏
j=1,j 6=n

(Λn − Λj)
2.

Therefore,

K = − 1

2<(Λn)

m∏
j=1,j 6=n

(
Λn − Λj

Λn + Λj

)2

and F̃ ′(Λn) =
−1

(2<(Λn))
3

m∏
j=1,j 6=n

∣∣∣∣Λn − Λj

Λn + Λj

∣∣∣∣4 .
Since ‖q̃n‖2 = limm→∞ ‖p̃n − s̃mn ‖−2 and ‖p̃n − s̃mn ‖2 = −F ′(Λn), we see in particular that

‖q̃n‖−1 =
1

[2<(Λn)]
1/2

P 2
n ,

where Pn is again given by (24). The estimate (16) for ‖q̃n‖ can be deduced from (25).
This ends the proof of Lemma 3.1.

Proof of Lemma 3.2: As in the case of Proposition 3.4, we will only prove part b). Part a) is a
direct consequence of part b).

Let us consider the linear spaces
D∞ = {ϕ : ϕ(t) =

N∑
j=1

(aj + tbj)e
−Λjt ∀t ∈ (0,∞), with N ∈ N and aj , bj ∈ C};

DT = {ϕ : ϕ(t) =

N∑
j=1

(aj + tbj)e
−Λjt ∀t ∈ (0, T ), with N ∈ N and aj , bj ∈ C}.

Evidently, Γ : D∞ 7→ DT is bijective. What we have to prove is that, for some C(T ), one has

‖ϕ‖L2(0,∞) ≤ C(T )‖Γϕ‖L2(0,T ) ∀ϕ ∈ D∞.

We reason by contradiction. Thus, suppose that for every m ≥ 1 there exist N(m) and

km =
∑N(m)
j=1 (am,j + tbm,j) e

−Λjt such that

‖km‖L2(0,∞) > m‖Γkm‖L2(0,T ).

Let us set

k̃m =
1

‖km‖L2(0,∞)
km.

Then we can write k̃m =
∑N(m)
j=1 (ãm,j + t̃bm,j) e

−Λjt for some complex numbers ãm,j and b̃m,j .
Observe that, in view of (16), for every ε > 0 there exists Cε > 0 such that

|ãm,j | =
∣∣∣(k̃m, qj)L2(0,∞)

∣∣∣ ≤ ‖k̃m‖L2(0,∞)‖qj‖L2(0,∞) ≤ Cεeε<(Λj)
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and
|̃bm,j | =

∣∣∣(k̃m, q̃j)L2(0,∞)

∣∣∣ ≤ ‖k̃m‖L2(0,∞)‖q̃j‖L2(0,∞) ≤ Cεeε<(Λj)

for all m ≥ 1 and all 1 ≤ j ≤ N(m).
We also have

‖Γk̃m‖L2(0,T ) → 0 (43)

and
‖k̃m‖L2(0,∞) = 1 ∀m ≥ 1. (44)

Let 0 < ε < T/3 be given and let us introduce the set

Uε = {z ∈ C : <(z) > 3ε, |=(z)| <
(
δ−2 − 1

)−1/2
ε},

where δ > 0 is given in (14). Using assumption (14), we have |=(Λj)| ≤
(
δ−2 − 1

)1/2<(Λj) for all
j ≥ 1. Therefore, if z ∈ Uε, one has:

|e−Λjz| = e=(Λj)=(z)−<(Λj)<(z) ≤ e−(<(z)−ε)<(Λj) ∀j ≥ 1.

Observe that, thanks to (14), we have limj→∞<(Λj) =∞. Consequently,

|k̃m(z)| ≤
N(m)∑
j=1

(
|ãm,j |+ |z||̃bm,j |

)
|e−Λjz| ≤ Cε

N(m)∑
j=1

e−<(Λj)(<(z)−2ε) (1 + |z|)

= Cεe
−<(Λ1)(<(z)−2ε)(1 + |z|)

N(m)∑
j=1

e−[<(Λj)−<(Λ1)](<(z)−2ε)

≤ Cεe−<(Λ1)(<(z)−2ε)(1 + |z|)
∞∑
j=1

e−ε[<(Λj)−<(Λ1)] ≡ C̃εe−<(Λ1)(<(z)−2ε)(1 + |z|)

for all z ∈ Uε.
We deduce that the holomorphic function k̃m(z) is uniformly bounded in Uε. Therefore, there

exist a subsequence (still denoted by k̃m) and a holomorphic function k̃ in Uε such that k̃m → k̃

uniformly on the compacts of Uε. In particular, k̃m(t)→ k̃(t) for all t ∈ (3ε,∞) and

|k̃m(t)| ≤ C̃εe−<(Λ1)(t−2ε)(1 + t) ∀t ∈ (3ε,∞).

Using Lebesgue’s Theorem, we also deduce that k̃m → k̃ in L2(3ε,∞) (strongly). In view of (43),

k̃(t) = 0 for all t ∈ (3ε, T ). Since k̃ is holomorphic, we must have k̃ ≡ 0 in Uε, whence∫ ∞
T

|k̃m(t)|2 dt→ 0.

But this and (43) imply ‖k̃m‖L2(0,∞) → 0, which contradicts (44).
This ends the proof of Lemma 3.2.

4 Proof of Theorem 1.1

We will devote this Section to the proof of Theorem 1.1.
First of all, observe that the Kalman’s rank condition (6) is a necessary condition for the

controllability of system (1).
Indeed, if B = 0, it is clear that (1) is not null controllable at time T . Therefore, let us assume

that B 6≡ 0 and
rank [B |AB] = 1,

i. e. AB = αB for some α ∈ R.
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Let us choose B̃ ∈ R2 such that det P̃ = det [B | B̃] 6= 0. Then it is not difficult to see that

P̃−1B = e1 =

(
1
0

)
and P̃−1AP̃ = C̃ :=

[
α β1

0 β2

]
for some β1, β2 ∈ R. The change of variables z = P̃−1y leads to the following reformulation of (1): zt − zxx = C̃z in Q ,

z(0, ·) = e1v, z(1, ·) = 0 in (0, T ) ,

z(· , 0) = P̃−1y0 in (0, 1) .

But it is clear that this system is neither approximately nor null controllable, since the second
component of z is independent of v. Consequently, this is also the case for (1) and (6) is certainly
a necessary condition.

Henceforth, it will be assumed that (6) is satisfied.
Let us take P = [B |AB] and let us introduce ỹ = P−1y. Arguing as above, we obtain

P−1B = e1 and P−1AP = Ã :=

[
0 a1

1 a2

]
,

where a1 and a2 are the coefficients of the characteristic polynomial of A:

pA(µ) = µ2 − a2µ− a1.

The eigenvalues of A and Ã are the same. The system satisfied by ỹ is ỹt − ỹxx = Ãỹ in Q ,
ỹ(0, ·) = e1v, ỹ(1, ·) = 0 in (0, T ) ,
ỹ(· , 0) = P−1y0 in (0, 1) ,

Therefore, the previous change of variables reduces the situation to the case where

A =

[
0 a1

1 a2

]
and B =

(
1
0

)
. (45)

For simplicity, it will be assumed in the rest of the proof that A and B are given by (45).
In view of Proposition 2.3, we just have to see whether or not the solutions to the adjoint

system (10) satisfy the observability inequality (13). In order to deal with this inequality, we are
going to reformulate the original control problem in a more simple way.

Thus, let F be a fundamental matrix of the linear ordinary differential system ξt = Aξ. Let us
introduce w and ψ, with

y = F (t)w and ϕ = F (t)∗ψ,

where y is the solution to (1) (i.e. the state associated to y0 and v) and ϕ is the solution to (10)
(i.e. the adjoint state associated to ϕ0). Then the functions w and ψ respectively satisfy

wt − wxx = 0 in Q ,

w(0, ·) = B̃(t)v(t), w(1, ·) = 0 in (0, T ) ,
w(· , 0) = y0 in (0, 1)

(where B̃(t) = F (t)−1e1 for all t) and
ψt + ψxx = 0 in Q ,

ψ(0, ·) = 0, ψ(1, ·) = 0 in (0, T ) ,

ψ(· , T ) = ψ0 in (0, 1) .

(46)
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Obviously, (1) is null controllable at time T if and only if this is the case for the system satisfied
by w. Clearly, this property is also equivalent to the fact that the solutions to (46), where the
final data ψ0 belong to H1

0 (0, 1)2, satisfy the observability inequality

‖ψ(· , 0)‖2H1
0 (0,1) ≤ C

∫ T

0

|B̃∗(t)ψx(0, t)|2dt. (47)

We can now distinguish three different cases, depending on the spectrum of A:

Case 1: A has two different real eigenvalues.
Let µ1 and µ2 denote the eigenvalues of A, with µ1 < µ2, i. e. a2

2 + 4a1 > 0 and

µ1 =
a2

2
−
√
a2

2 + 4a1

2
, µ2 =

a2

2
+

√
a2

2 + 4a1

2
.

We can then choose M such that F is given by

F (t) =

[
−µ2e

µ1t −µ1e
µ2t

eµ1t eµ2t

]
.

Consequently, it can be assumed that

B̃(t) = F (t)−1e1 =
1

µ2 − µ1

(
−e−µ1t

e−µ2t

)

and (47) reads

‖ψ(· , 0)‖2H1
0 (0,1) ≤

C

|µ2 − µ1|2

∫ T

0

|e−µ1t∂xψ1(0, t)− e−µ2t∂xψ2(0, t)|2 dt. (48)

The eigenvalues and eigenfunctions of the (one-dimensional) Dirichlet Laplacian in (0, 1) are

λj = π2j2, θj(x) = sin(πjx), j = 1, 2, . . . .

Hence, if ψ0 ∈ L2(0, 1)2 is given, the associated solution ψ is

ψ(x, t) =
∑
j≥1

(
aj
bj

)
e−λj(T−t) sin(πjx),

where the aj , bj are the Fourier coefficients of the components of ψ0. Replacing this expression
in (48) and performing the change of variables t→ T − t, we readily see that (48) is equivalent to

∑
j≥1

λj
(
a2
j + b2j

)
e−2λjT ≤ C

∫ T

0

|
∑
j≥1

j
(
aje
−µ1(T−t) − bje−µ2(T−t)

)
e−λjt|2 dt. (49)

for every aj , bj such that
∑
j≥1 j

2
(
a2
j + b2j

)
<∞.

Case 1.1: there exists j0, k0 ∈ N with j0 6= k0 such that µ2 − µ1 = λj0 − λk0
.

Setting {
ak0

= j0e
−µ2T and aj = 0, ∀j 6= k0,

bj0 = k0e
−µ1T and bj = 0, ∀j 6= j0,

we see that the observability inequality (49) fails. Therefore, system (1) is not null controllable at
time T in this case.
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Remark 4.1. Actually, in view of this argument, when (7) is not satisfied, (1) is not approximately
controllable, since the solutions to the adjoint system (10) do not necessarily satisfy the related
unique continuation property; see Remark 2.1.

Case 1.2: µ2 − µ1 6= λj − λk for all j, k ≥ 1.
Let us show that in this case (49) holds and, consequently, (1) is null controllable.
Let us introduce the sequence {Λj}, where

{Λj : j ≥ 1} = {λk : k ≥ 1} ∪ {λk + µ2 − µ1 : k ≥ 1}

and the indexes are fixed in such a way that Λj ≤ Λj+1 for all j. Observe that Λ1 = π2 > 0, since
µ2 − µ1 > 0. Denoting by [x] the integer part of x, we see that, whenever

i ≥ i0 :=

[
µ2 − µ1

2π2
+

1

2

]
+ 1,

one has λi−1 + µ2 − µ1 < λi < λi + µ2 − µ1 < λi+1. Therefore,

Λ2k−1 = λk and Λ2k = λk + µ2 − µ1 ∀k ≥ i0 .

Let us check that the sequence {Λj} satisfies the assumptions of Lemma 3.1. Clearly, if
k ≤ 2i0 − 2, Λk+1 − Λk ≥ ρ1 > 0, where ρ1 only depends on µ2 − µ1. On the other hand, if
k ≥ 2i0 − 1, it is not difficult to check that

Λk+1 − Λk ≥ min{µ2 − µ1, (2i0 + 1)π2 − µ2 + µ1} = ρ2 > 0

and, again, ρ2 only depends on µ2−µ1. Hence, condition (14) is fulfilled by taking ρ = min{ρ1, ρ2}.
Finally, ∑

n≥1

1

Λn
<∞.

Thus, we can apply Proposition 3.4 to the sequence {Λj} with

Ck =

{
jaje

−µ1T if Λk = λj + µ2 − µ1,

−jbje−µ2T if Λk = λj .

Observe that, if k ≥ i0,

|C2k|2

Λ2k
=

k2a2
ke
−2µ1T

π2k2 + µ2 − µ1
≥ C|ak|2e−2µ1T ,

|C2k−1|2

Λ2k−1
=

1

π2
|bk|2e−2µ2T ,

where C = C(µ1, µ2) is a positive constant. Consequently, for 1 ≤ k ≤ 2(i0 − 1) we have

|Ck|2

Λk
≥


1

π2(i0 − 1)2 + µ2 − µ1
|aj |2e−2µ1T if Λk = λj + µ2 − µ1 ,

1

π2(i0 − 1)2
|bj |2e−2µ2T if Λk = λj .

Let us now prove the observability inequality (49). The following holds:

I =

∫ T

0

|
∑
j≥1

j
(
aje
−µ1(T−t) − bje−µ2(T−t)

)
e−λjt|2 dt

=

∫ T

0

e2µ2t|
∑
j≥1

jaje
−µ1T e−(λj+µ2−µ1)t −

∑
j≥1

jbje
−µ2T e−λjt|2 dt

≥ min{1, e2µ2T }
∫ T

0

|
∑
j≥1

jaje
−µ1T e−(λj+µ2−µ1)t −

∑
j≥1

jbje
−µ2T e−λjt|2 dt

= min{1, e2µ2T }
∫ T

0

|
∑
k≥1

Cke
−Λkt|2 dt.
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In view of (17), taking into account the properties of the sequence {Ck}k≥1, we get (C is a
positive constant which depends on µ1 and µ2):

I ≥ C(T ) min{1, e2µ2T }
∑
k≥1

|Ck|2

Λk
e−ΛkT

≥ CC(T ) min{1, e2µ2T }
∑
j≥1

(
a2
je
−(µ1+µ2)T + b2je

−2µ2T
)
e−λjT

≥ CC(T ) min{1, e−2µ2T }
∑
j≥1

(
a2
j + b2j

)
e−λjT ≥ C̃ ′T min{1, e−2µ2T }

∑
j≥1

λj
(
a2
j + b2j

)
e−2λjT ,

where C̃ ′T > 0 is such that

0 < C̃ ′T ≤
1

λj
C(T )eλjT ∀j ≥ 1. (50)

This proves (49) and concludes the proof in this first case.

Case 2: A has two complex eigenvalues.
In this case, a2

2 + 4a1 < 0,

µ1 = α+ iβ and µ2 = α− iβ, where α = a2/2 and β =
√
−(a2

2 + 4a1)/2.

We can choose M such that

F (t) = eαt

[
−(α cosβt+ β sinβt) −(α sinβt− β cosβt)

cosβt sinβt

]
.

Consequently,

B̃(t) = F (t)−1e1 =
e−αt

β

(
− sinβt

cosβt

)
.

Again, (47) and (49) are equivalent. Now, we consider the complex sequence {Λk}, with

Λ2k−1 = λk = π2k2, Λ2k = λk − 2iβ = π2k2 + 2iβ ∀k ≥ 1.

The assumptions in Lemma 3.1 are again fulfilled. Indeed, one has < (Λ2k−1) = λk = |Λ2k−1| and

< (Λ2k) = π2k2 ≥ δ(π4k4 + 4β2)1/2 = δ|Λ2k|

for some δ ∈ (0, 1) (which depends on β). On the other hand,
|Λ2k − Λ2n| = |Λ2k−1 − Λ2n−1| = π2|k2 − n2| ≥ 3π2|k − n|

=
3π2

2
|2k − 2n| = 3π2

2
|(2k − 1)− (2n− 1)|

and {
|Λ2k−1 − Λ2n|2 = π4|k2 − n2|2 + 4β2 ≥ 9π4|k − n|2 + 4β2

≥ min{9π4/8, 2β2}|2k − 1− 2n|2

for every k, n ≥ 1. Finally, ∑
n≥1

1

|Λn|
<∞.

As a consequence, we can apply Proposition 3.4 a), with

C2k−1 = kake
−µ1T and C2k = −kbke−µ2T ∀k ≥ 1,
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which satisfies
|C2k−1|2

|Λ2k−1|
≥ Ce−2αT |ak|2 and

|C2k|2

|Λ2k|
≥ Ce−2αT |bk|2

for a positive constant C = C(β). This gives:

I =

∫ T

0

|
∑
j≥1

j
(
aje
−µ1(T−t) − bje−µ2(T−t)

)
e−λjt|2 dt

≥ min{1, e2αT }
∫ T

0

|
∑
k≥1

Cke
−Λkt|2 dt.

If we now apply (17) to these Λk and Ck, we deduce that

I ≥ C(T ) min{1, e2αT }
∑
k≥1

|Ck|2

|Λk|
e−<(Λk)T

≥ CC(T ) min{1, e−2αT }
∑
j≥1

(
a2
j + b2j

)
e−λjT

≥ CC̃(T ) min{1, e−2αT }
∑
j≥1

λj
(
a2
j + b2j

)
e−2λjT ,

where C̃(T ) is a positive constant satisfying (50). This proves (49) in this case.

Case 3: A has a double real eigenvalue.
We denote by µ the eigenvalue of A. One has µ = a2/2 ∈ R and we can assume that

F (t) = eµt

[
−µ 1− µ(t− T )

1 t− T

]
and B̃(t) = e−µt

(
−(t− T )

1

)
, ∀t ∈ [0, T ].

The observability inequality (47) is now equivalent to prove that∑
j≥1

λj
(
a2
j + b2j

)
e−2λjT ≤ C

∫ T

0

|
∑
j≥1

jeµt (taj + bj) e
−λjt|2 dt

for all aj and bj such that
∑
j≥1 j

2
(
a2
j + b2j

)
< ∞. But this inequality can be readily obtained

from (18) by applying Proposition 3.4 to the sequences {λj}, {aj} and {bj} and taking into
account (50).

This ends the proof of Theorem 1.1.

Combining Proposition 2.3 and Theorem 1.1, we deduce the following:

In the conditions of Theorem 1.1, there exists a positive constant C, only depending
on T , such that the observability inequality (13) is satisfied by the solutions to (10) if
and only if conditions (6) and (7) hold.

5 Further results and open problems

5.1 Some changes in Theorem 1.1

Obviously, the statement of Theorem 1.1 is valid if, instead of (1), we consider the controlled
problem 

yt − yxx = Ay in Q,

y(0, ·) = 0, y(1, ·) = Bv in (0, T ),

y(·, 0) = y0 in (0, 1).
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Again, A ∈ L(R2) and B ∈ R2 are given, y0 ∈ H−1(0, 1)2 and v ∈ L2(0, T ) is a control function
to be determined.

On the other hand, system (1) can be posed in a general spatial interval (0, `) with ` > 0. In
this case, the additional condition (7) must be changed by

`2

π2
(µ1 − µ2) 6= j2 − k2 ∀k, j ∈ N with k 6= j. (51)

Finally, it is possible to identify the natural numbers n ≥ 1 that can be expressed in the form
n = j2 − k2 with k, j ∈ N and j > k ≥ 1. It is not difficult to see that, given n ∈ N, there exist
j, k ∈ N with j > k ≥ 1 such that n = j2 − k2 if and only if n = 4(m+ 1) or n = 2m+ 1 for some
m ≥ 1. Thus, the controllability result for the coupled parabolic system (1) in the spatial interval
(0, `) (with ` > 0) reads as follow:

Theorem 5.1. Let ` > 0, A ∈ L(R2) and B ∈ R2 be given and let us denote by µ1 and µ2 the
eigenvalues of A. Then, system (1) is exactly controllable to the trajectories at time T if and only
if

rank [B |AB] = 2,

and (`/π)2 (µ1 − µ2) is not an integer of the form 4(m+ 1) or 2m+ 1 for some m ≥ 1.

5.2 Approximate controllability

As a consequence of the result stated at the end of Section 4 and the arguments in the proof
of Theorem 1.1, the conditions (6) and (7) are also equivalent to the approximate controllability
at time T of system (1). To be precise, one has the following result, that we state without proof:

Theorem 5.2. Let A ∈ L(R2) and B ∈ R2 be given and let us denote by µ1 and µ2 the eigenvalues
of A. Then, system (1) is approximately controllable in H−1(0, 1)2 at time T if and only if (6)
and (7) hold.

5.3 The case of m control forces

Theorem 1.1 can be generalized to the case in which m control forces, with m ≥ 2, appear in
system (1), i. e. to the case B ∈ L(Rm;R2) and v ∈ L2(0, T )m. There are two possible situations:
• rankB ≤ 1: it is then easy to check that the controllability properties of system (1) are

determined by (6) and (7), as in Theorems 1.1 and 5.2.
• rankB = 2: then (6) is automatically satisfied. Let us see that system (1) is exactly

controllable to the trajectories independently of (7).
In fact, we will deduce this property as a consequence of a similar (and well known) result for

scalar parabolic problems. For convenience, this will be proved in a more general framework.
Thus, let us assume that N ≥ 1, Ω ⊂ RN is a bounded connected open set with boundary

∂Ω of class C2 and γ is a nonempty relative open subset of ∂Ω. For n,m ≥ 2, we consider the
controlled system 

yt −∆y = Ay in Q = Ω× (0, T ),

y = Bv1γ on Σ = ∂Ω× (0, T ),

y(·, 0) = y0 in Ω,

(52)

where A ∈ L(Rn), B ∈ L(Rm;Rn) and y0 ∈ H−1(Ω)n are given and 1γ is the characteristic
function on γ. In (52), y = (y1, . . . , yn)∗ is the state and v ∈ L2(Σ)m is the control function.

As in Section 2, it can be shown that, for every y0 ∈ H−1(Ω)n and v ∈ L2(Σ)m, the linear
system (52) possesses exactly one solution (defined by transposition)

y ∈ L2(Q)n ∩ C0([0, T ];H−1(Ω)n).

Our main assumption reads as follows:

rankB = n. (53)
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Then, one has:

Theorem 5.3. In the previous conditions, if (53) holds, then (52) is exactly controllable to the
trajectories and approximately controllable in H−1(Ω)n at time T > 0.

For the proof, we will use the global Carleman inequality given in the following result, by
Fursikov and Imanuvilov [12]:

Theorem 5.4. There exist a positive function α0 ∈ C2(Ω) and two positive constants σ0 and
C0 (only depending on Ω and γ) such that, for every s ≥ s0 = σ0

(
T + T 2

)
and every z ∈

L2(0, T ;H1
0 (Ω)) with zt ±∆z ∈ L2(Q), the following (global Carleman) estimate holds:

I(z) ≤ C0

(∫∫
Q

e−2sα |zt ±∆z|2 dx dt+ s

∫∫
γ×(0,T )

e−2sαρ

∣∣∣∣ ∂z∂n
∣∣∣∣2 dΓ dt

)
.

Here, I(z) and the functions α and ρ are given as follows:

I(z) =

∫∫
Q

(sρ)−1e−2sα
(
|zt|2 + |∆z|2 + (sρ)2 |∇z|2 + (sρ)4 |z|2

)
dx dt,

α(x, t) =
α0(x)

t(T − t)
∀(x, t) ∈ Q, ρ(t) = (t(T − t))−1 ∀t ∈ (0, T ).

Let us now present the main ideas of the proof of Theorem 5.3.
Let us consider the adjoint problem{

−ϕt −∆ϕ = A∗ϕ in Q,

ϕ = 0 on Σ, ϕ(·, T ) = ϕ0 in Ω,
(54)

where ϕ0 ∈ H1
0 (Ω)n. If ϕ is the (strong) solution to (54) associated to ϕ0 ∈ H1

0 (Ω)n, it is possible
to apply Theorem 5.4 to each component of ϕ and deduce that

I(ϕ) :=

n∑
i=1

I(ϕi) ≤ C1

(∫∫
Q

e−2sα|ϕ|2 dx dt+ s

∫∫
γ×(0,T )

e−2sαρ

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dΓ dt

)

for all s ≥ s0 = σ0

(
T + T 2

)
, where C1 is a new constant which depends on n, Ω, γ and A. If we

now take s3 ≥ 2−5T 6C1, then C1 ≤ (sρ)3/2 and we can write

I(ϕ) ≤ C2s

∫∫
γ×(0,T )

e−2sαρ

∣∣∣∣∂ϕ∂n
∣∣∣∣2 dΓ dt

for all s ≥ s1 = σ1

(
T + T 2

)
, where C2 = 2C1 and σ1 = max{σ0, 2

−5/3C
1/3
1 }.

Taking into account (53), we get the following global Carleman estimates for the solutions
to (54):

I(ϕ) ≤ C1s

∫∫
γ×(0,T )

e−2sαρ

∣∣∣∣B∗ ∂ϕ∂n
∣∣∣∣2 dΓ dt ∀s ≥ σ1

(
T + T 2

)
, (55)

where C3 is a positive constant depending on n, Ω, γ, A and B.
The Carleman inequality (55) leads to a unique continuation property for the solutions to (54):

“If ϕ ∈ C0([0, T ];H1
0 (Ω)n) is a solution to (54) and B∗ ∂ϕ∂n = 0 on γ × (0, T ), then ϕ ≡ 0.”

This is equivalent to the approximate controllability of (52) in H−1(Ω)n at time T .
We turn now to the exact controllability to trajectories. As above, this property is equivalent

to the observability of the adjoint problem (54), i.,e. to the following property: there exists a
positive constant C > 0 such that

‖ϕ‖2H1
0 (Ω) ≤ C

∫∫
γ×(0,T )

∣∣∣∣B∗ ∂ϕ∂n
∣∣∣∣2 dΓ dt ∀ϕ0 ∈ H1

0 (Ω)n.
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But, combining the global Carleman inequality (55) and the energy inequality satisfied by the
solutions to (54), it is easy to show that this is true; see for instance [11] for a detailed presentation
of the argument in the case of a similar scalar problem.

This ends the proof.

5.4 Possible generalizations to n× n coupled systems

It would be interesting to generalize the results presented in this work to the case of a n × n
coupled system (with n ≥ 3), controlled by m boundary control forces (m ≥ 1).

To be precise, let us consider the system (1) with A ∈ L(Rn), B ∈ L(Rm;Rn) and y0 ∈
H−1(0, 1)n. Then, it can be proved that the Kalman’s rank condition

rank [A |B] = n

is a necessary condition for the approximate controllability and also for the exact controllability
to the trajectories; for a proof, see for instance [3] and [4].

On the other hand, as in the case n = 2, there are some necessary conditions which arise in the
study of the controllability properties. Thus, let us assume that n ≥ 3 and m = 1, i.e., B ∈ Rn.
Let us also suppose that there exist j0, k0 ≥ 1 with j0 6= k0 and two eigenvalues µ and µ̃ of A such
that

π−2(µ− µ̃) = j2
0 − k2

0. (56)

Then, (1) is neither null nor approximately controllable in H−1(Ω)n at time T . Indeed, there
must exist P ∈ L(Cn) (with detP 6= 0) and J ∈ L(Cn−2), two matrices, such that

A = P

µ 0 0
0 µ̃ 0
0 0 J

P−1.

If ϕ0 ∈ H1
0 (Ω)n, then the solution ϕ to the adjoint problem (10) satisfies

B∗ϕx(0, t) = π
∑
j≥1

B∗j (P ∗)
−1

e(−πj2+µ)(T−t) 0 0

0 e(−πj2+µ̃)(T−t) 0

0 0 e(−πj2Id.+J∗)(T−t)

P ∗aj ,

where Id. is the identity matrix in L(Cn−2) and the aj ∈ Rn are the Fourier coefficients

aj =

∫ 1

0

ϕ0(x) sin(πjx) dx.

Let us set B∗ (P ∗)
−1

= (β1, β2, β̃
∗) and P ∗aj = (α1

j , α
2
j , α̃
∗
j )
∗, with β̃, α̃j ∈ Cn−2. Then

B∗ϕx(0, t) = π
∑
j≥1

j
(
β1e

(−πj2+µ)(T−t)α1
j + β2e

(−πj2+µ̃)(T−t)α2
j + β̃∗e(−πj2Id.+J∗)(T−t)α̃j

)
.

Choosing αj = 0, for every j ≥ 1, α1
j = 0, for every j 6= j0, α2

j = 0, for every j 6= k0, and α1
j0

and

α2
k0

such that

j0β1α
1
j0 = −k0β2α

2
k0

and
(
α1
j0

)2
+
(
α2
k0

)2 6= 0

and taking into account the equality (56) we deduce that ϕ 6≡ 0 in Q and nevertheless B∗ϕx(0, ·) ≡
0 on (0, T ). Therefore, the function ϕ does not satisfy the unique continuation property, nor the
observability inequality (13). Summarizing, we have proved that the opposite to (56) is a necessary
condition for the controllability of (1) when n ≥ 3 and m = 1.
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5.5 An example

In this paper, up to now, we have assumed that all the diffusion coefficients in the considered
systems are the same. In this Section we give a simple example which shows that, when the
diffusion matrix is not Id., the situation can be much more complex and, again, results valid for
distributed controls are no longer valid for boundary controls; see [14] and [4].

This gives an idea of the, in some sense, unnatural difficulties that arise when we try to control
a non-scalar system from the boundary.

We will be concerned with the following cascade system, where ν > 0: yt −Dyxx = Ay in Q,
y(0, ·) = Bv, y(1, ·) = 0 in (0, T ) ,
y(·, 0) = y0 in (0, 1) ,

(57)

where

D =

(
ν 0
0 1

)
, A =

(
0 0
1 0

)
and B =

(
1
0

)
.

We address the following approximate controllability question: Let ε > 0, y0 ∈ H−1(0, 1)2 and
y1 ∈ H−1(0, 1)2 be given; then, does there exist v ∈ L2(0, T ) such that the corresponding solution
to (57) satisfies

‖y(·, T )− y1‖H−1 ≤ ε?
In the present situation, the adjoint system is −ϕt −D∆ϕ = A∗ϕ in Q,

ϕ(0, ·) = ϕ(1, ·) = 0 in (0, T ),
ϕ(., T ) = ϕ0 in (0, 1)

(58)

and the previous controllability property is equivalent to the following:

B∗ϕx|x=0 = 0 in L2(0, T ) implies ϕ ≡ 0 in Q. (59)

We then have:

Theorem 5.5. Suppose that ν 6= 1. Then (57) is approximately controllable at time T > 0 if and
only if

√
ν 6∈ Q.

Proof: The proof is given of two parts. In the first part we prove the unique continuation property
when

√
ν 6∈ Q. In the second one, we give a counter-example to (59) when ν 6= 1 and

√
ν ∈ Q.

In what follows, λj denotes the j-th eigenvalue of the Dirichlet Laplacian in (0, 1) and wj is
the associated eigenfunction of norm 1 in L2(0, 1). That is, λj = π2j2 and wj(x) ≡ sin(πjx) for
all j ≥ 1.

First Part: Let ϕ0 ∈ H−1(0, 1)2 be given. Since ν 6= 1, we have the following expression for the
solution to (58):

ϕ(x, t) =
∑
j≥1


(
aj −

bj
(ν − 1)λj

)
e−νλj(T−t) +

bj
(ν − 1)λj

e−λj(T−t)

bj
(ν − 1)λj

e−λj(T−t)

wj(x),

with (
aj
bj

)
=

∫ 1

0

ϕ0(x) sin(πjx) dx ∈ R2.

Then,

B∗ϕx(0, t) =
∑
j≥1

(jπ)

((
aj −

bj
(ν − 1)λj

)
e−νλj(T−t) +

bj
(ν − 1)λj

e−λj(T−t)
)
.
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If ν is such that
√
ν 6∈ Q, the νλj and λj can be reordered as an increasing sequence

0 < µ1 < µ2 < · · · < µn < · · ·

and

B∗ϕx(0, t) =

∞∑
j=1

αje
−µj(T−t) ∀t ∈ (0, T ).

It is well known that f(t) = B∗ϕx(0, t) is an analytic function in (0, T ) which can be extended
to the interval (−∞, T ). Since {µj} is strictly increasing, it is not difficult to show that

B∗ϕx(0, ·) = 0 in (−∞, T )⇒ αj = 0 ∀j ≥ 1.

Consequently, bj = 0 for all j and, therefore, aj = 0 for all j. In particular, ϕ0 = 0 and the unique
continuation property is proved.

Second Part: Suppose now that
√
ν ∈ Q. That means that ν = i20/j

2
0 for some i0, j0 ≥ 1 and

νj2
0 = i20, νλj0 = λi0 .

Let us now take
bj0 = 0, aj0 = 1,

bi0 = −j0(ν − 1)π2i0, ai0 =
bi0

(ν − 1)λi0

and all the other coefficients aj and bj equal to zero. Then, B∗ϕx(0, ·) = 0 in (0, T ), but ϕ 6≡ 0.

Remark 5.1. Observe that the arguments used in the case
√
ν 6∈ Q are valid in a more general

context. Thus, suppose that A1 and A2 are two self-adjoint elliptic operators involving Dirichlet
conditions such that:

1. They have the same eigenfunctions but no common spectral value.

2. For both operators A1 and A2, the associated evolution equation satisfies the unique con-
tinuation property.

Then the coupled system associated to the equations yt + A1y = 0 and qt + A2q = y is
approximately controllable.

Appendix A: Proof of Proposition 2.2

First, observe that if g ∈ L2(Q)2 the solution to (8) satisfies{
ϕ ∈ L2(0, T ;D(−∆)2) ∩ C0([0, T ];H1

0 (0, 1)2) and

‖ϕ‖L2(D(−∆)) + ‖ϕ‖C0(H1
0 ) ≤ C‖g‖L2(Q).

From this regularity property it is immediate that, for any given y0 ∈ H−1(0, 1)2 and v ∈
L2(0, T ), there exists a unique solution by transposition to (1). It is also clear that this solution
satisfies the equality yt − yxx = Ay in D′(Q)2 and the estimate

‖y‖L2(Q) ≤ C
(
‖y0‖H−1(0,1) + ‖v‖L2(0,T )

)
.

Next, we are going to show that we also have yxx ∈ L2(0, T ; (D(−∆)′)2) and

‖yxx‖L2(D(−∆)′) ≤ C
(
‖y0‖H−1(0,1) + ‖v‖L2(0,T )

)
. (60)
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To this end, let us consider two sequences {ym0 }m≥1 ⊂ L2(0, 1)2 and {vm}m≥1 ⊂ H1(0, T ) such
that

ym0 → y0 in H−1(0, 1)2 and vm → v in L2(0, T ).

It is not difficult to see that problem (1) for ym0 and vm has a unique weak solution ym ∈
L2(0, T ;H1(0, 1))2 which satisfies∫∫

Q

ym · g dx dt = 〈ym0 , ϕ(·, 0)〉+

∫ T

0

B · ϕx(0, t) vm(t) dt,

for every g ∈ L2(Q)2 and where ϕ is the solution to (8). Using this last identity and (9) we get{
‖ym‖L2(Q) ≤ C

(
‖y0‖H−1(0,1) + ‖v‖L2(0,T )

)
,

ym → y in L2(Q)2 and ym,xx → yxx in D′(Q)2,
(61)

where C is a positive constant.
On the other hand, one has∫ T

0

〈ym,xx, ϕ〉 =

∫∫
Q

ymϕxx −
∫ T

0

Bvm(t)ϕx(0, t) dt,

for every ϕ ∈ L2(0, T ;D(−∆))2. From this equality we get {ym,xx}m≥1 is bounded in L2(0, T ;D(−∆)′)2.
This property together with (61) gives yxx ∈ L2(0, T ; (D(−∆)′)2) and (60).

Combining the identity yt = yxx + Ay and the previous property, we also see that yt ∈
L2(0, T ; (D(−∆)′)2) and

‖yt‖L2(D(−∆)′) ≤ C
(
‖y0‖H−1(0,1) + ‖v‖L2(0,T )

)
.

Therefore, y ∈ C0([0, T ];X2), where X is the interpolation space X = [L2(0, 1), D(−∆)′]1/2
(see [19], Theorem 3.1, p. 19). Notice that X = [D(−∆), L2(0, 1)]′1/2 ≡ H−1(0, 1) (see also [19],

Theorem 6.1, p. 29). In conclusion, we get

‖y‖C0(H−1(0,1)) ≤ C
(
‖y0‖H−1(0,1) + ‖v‖L2(0,T )

)
.

Finally, it is not difficult to check that y(· , 0) = y0 in H−1(0, 1)2. This ends the proof.

Appendix B: Proof of Proposition 2.3

As mentioned above, since (1) is linear, the first and second assertions are equivalent. The details
are left to the reader.

Let y0 ∈ H−1(0, 1)2, ϕ0 ∈ H1
0 (0, 1)2 and v ∈ L2(0, T ) be given. Let y be the state associated

to y0 and v and let ϕ be the adjoint state associated to ϕ0. Then:

〈y(·, t), ϕ(·, t)〉 − 〈y0, ϕ(·, 0)〉 =

∫ t

0

B∗ϕx(0, s) v(s) ds ∀t ∈ [0, T ]. (62)

This is a straightforward consequence of the properties of y stated in Proposition 2.2.
Let us prove that the exact controllability to the trajectories together with (12) imply (13).
Indeed, let us take ŷ ≡ 0 and let us choose y0 arbitrarily in H−1(0, 1)2 and ϕ0 arbitrarily in

H1
0 (0, 1)2. There exists v ∈ L2(0, T ) such that

‖v‖2L2(0,T ) ≤ C‖y0‖2H−1(0,1)

and the associated state satisfies y(· , T ) = 0 in H−1(0, 1)2. Then, from (62) (with t = T ), we get: 〈y0, ϕ(·, 0)〉 = −
∫ T

0

B∗ϕx(0, t) v(t) dt ≤ ‖B∗ϕx(0, ·)‖L2(0,T )‖v‖L2(0,T )

≤
√
C‖B∗ϕx(0, ·)‖L2(0,T )‖y0‖H−1(0,1).
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Since y0 and ϕ0 are arbitrary, we deduce (13).
Now, let us assume that (13) holds. Recall that it is enough to prove that (1) is null controllable,

with controls v satisfying (12) (with ŷ ≡ 0).
Let us fix y0 ∈ H−1(0, 1)2 and ε > 0 and let us consider the optimal control problem

min
v∈L2(0,T )

(
1

2

∫ T

0

|v(t)|2 dt+
1

2ε
‖y(·, T )‖2H−1(0,1)

)
,

where y ∈ L2(Q)2 is the state associated to y0 and v. We can deduce easily that this control
problem possesses exactly one solution vε ∈ L2(0, T ), characterized by the following optimality
system: 

yε,t − yε,xx = Ayε in Q,

yε(0, ·) = Bvε, yε(1, ·) = 0 in (0, T ),

yε(· , 0) = y0 in (0, 1),
−ϕε,t − ϕε,xx = A∗ϕε in Q,

ϕε(0, ·) = 0, ϕε(1, ·) = 0 in (0, T ),

ϕ(· , T ) =
1

ε
(−∆)−1yε(· , T ) in (0, 1),

vε = −B∗ϕε,x(0, ·).

From (62) written for yε and ϕε at t = T , we obtain

1

ε
〈yε(· , T ), (−∆)−1yε(· , T )〉 − 〈y0, ϕε(· , 0)〉 = −

∫ T

0

|B∗ϕε,x(0, t)|2 dt.

Observe that 〈yε(· , T ), (−∆)−1yε(· , T )〉 = ‖yε(· , T )‖2H−1(0,1). Therefore,

∫ T

0

|B∗ϕε,x(0, t)|2 dt+
1

ε
‖yε(·, T )‖2H−1(0,1) = 〈y0, ϕε(·, 0)〉

≤ C

2
‖y0‖2H−1(0,1) +

1

2C
‖ϕε(·, 0)‖2H1

0 (0,1)

≤ C

2
‖y0‖2H−1(0,1) +

1

2

∫ T

0

|B∗ϕε,x(0, t)|2 dt,

where C is the constant in (13). Taking into account that vε = −B∗ϕε,x(0, ·), we deduce that

‖vε‖2L2(0,T ) +
2

ε
‖yε(·, T )‖2H−1(0,1) ≤ C‖y0‖2H−1(0,1). (63)

This estimate allows us to extract a subsequence (still indexed with ε) such that

vε ⇀ v weakly in L2(0, T ).

Let y be the state associated to y0 and v. Thanks to Proposition 2.2, yε ⇀ y weakly in in L2(Q)2

and yε(·, T ) ⇀ y(·, T ) weakly in H−1(0, 1)2.
Consequently, using (63), we see that we have found a control v satisfying (12) for ŷ ≡ 0 such

that the associated state satisfies (2). This ends the proof.
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[13] M. González-Burgos, R. Pérez-Garćıa, Controllability results for some nonlinear cou-
pled parabolic systems by one control force, Asymptot. Anal. 46 (2006), no. 2, 123–162.
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