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Abstract: Container terminals are designed to 

provide support for the continuous changes in 

container ships. The most common schemes used 

for dock management are based on discrete and 

continuous locations. In view of the steadily 

growing trend in increasing container ship size, 

more flexible berth allocation planning is 

mandatory. The consideration of continuous 

location in the container terminal is a good 

option. This paper addresses the berth allocation 

problem with continuous dock, which is called 

dynamic berth allocation problem (DBAP). We 

propose a mathematical model and develop a 

heuristic procedure, based on a genetic 

algorithm, to solve the corresponding mixed 

integer problem. Allocation planning aims to 

minimise distances travelled by the forklifts and 

the quay crane, for container loading and 

unloading operations for each ship, according to 

the quay crane scheduling. Simulations are 

undertaken using Arena software, and 

experimental analysis is carried out for the most 

important container terminal in Spain. 

 

 

1 INTRODUCTION 

 

Container terminals (CT) are important nodes 

in intermodal transport networks. According to 

the International Maritime Organization, more 

than 90% of world trade is transported by sea, 

and almost 80% is transported in containers. This 

is a substantive reason to conduct all the 

operations of a container terminal in an 

optimised way (Ambrosino et al., 2006). 

Container ships are a major aspect in the 

development of the CT (Notteboom, 2007). The 

first ships that carried containers were known as 

barges, which had a capacity of 250 TEUs, and 

were replaced by the first generation of 

container ships that could carry around 800 

TEUs, a big change in the progress of shipping. 

Currently, the largest container ship in the world 

is the Emma Maersk. This ship is capable of 

carrying 12,508 TEUs, and its dimensions are: 

length 398 m, breadth 56.4 m, service speed 25 

knots (aprox. 50 km/hour), allowing a travel time 

of 4 days between China and the US west coast. 

Polo and Díaz (2006) research concludes that the 

current situation makes the design and operation 

of CT very complicated. 

The CT cannot forget about smaller vessels 

which make short trips; this type of 

transportation is called short sea shipping (SSS). 

This transport is promoted by many 

governments and international institutions, in 

order to reduce the environmental impact. 

Several works can be found in the literature 

showing the strengths and weaknesses of SSS 

(Paixao and Marlow, 2002), while other authors 
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discuss specific opportunities for SSS (Martinez 

and Olivella, 2005). 

The CTs are adapting their resources and 

facilities to support the different sizes of ships 

arriving at them. The most important adaptation 

has been carried out in the dock design, 

especially in the berths where containers are 

loaded and unloaded. Imai et al. (2005) and 

Cordeau et al. (2005) consider two types of 

docks, according to the scheme design: the first 

with a discrete location with fixed points for 

berths; and the second with a continuous 

location, which has no fixed points for berths. In 

this paper, we opted for the second scheme 

owing to its versatility, and proceeded to divide 

the dock into segments, allowing each ship to 

take the required amount. This approach allows 

higher flexibility for the CT, and permits the 

docking of very different types of ships in the 

port. This approach is different and superior to 

that considered in Arango et al. (2011). 

In this work, we propose a mixed integer 

model, to solve the dynamic berth allocation 

problem that considers the minimization of the 

distances travelled by the forklifts and the quay 

crane, for container loading and unloading 

operations as optimisation criteria. These 

distances are directly linked to the operation 

times of each ship over a specific time period. 

Also, we propose a simulation model, to carry 

out the validation of the models and develop a 

genetic algorithm to solve the optimization 

model in three different situations. We use the 

port of Algeciras that is one of the main ports in 

Spain and Southern Europe as the simulation 

scenario.  In Section 2, we explain the dynamic 

berth allocation problem. Section 3 tackles the 

optimisation model, detailing the required 

mathematical notation and formulation. Section 

4 depicts the characteristics of the implemented 

genetic algorithm. Section 5 tackles the 

simulation model. The experimentation and 

simulation results are detailed in Section 6. 

Finally, the main conclusions and future work are 

addressed in Section 7. 

 

2 THE DYNAMIC BERTH ALLOCATION 

PROBLEM  

 

When a ship arrives at a CT the planners must 

take into account its basic characteristics, such as 

size, number of containers to unload and load, 

and the locations of these in the storage area 

(SA), to decide the best berth allocation. This 

information is used in advance to plan the berth 

allocation, and considers: 

• Location of export containers in the SA that 

will be loaded on to the ship (loading 

operations). This must be as close as possible to 

the allocated berth, and also must include a 

reserve of space for container to be stored in the 

SA. (Unloading operations). 

• Required time for each dock segment 

according to the ship’s arrival. 

The objective of this problem is to minimise 

the total service time, which includes waiting 

time of the ship to come into the port, and 

loading and unloading operation time. 

Several authors have approached different 

forms of this berth allocation concept. So, Imai et 

al. (2001), Imai et al., (2005) and Nishimura et al. 

(2001) determine the berth allocation, defining a 

dynamic berth allocation problem (DBAP), which 

is a generalisation of the static berth allocation 

problem (SBAP). They propose a genetic 

algorithm in public berth systems, which can be 

adapted to real-world applications. Lim (1997), 

Park and Kim (2003), and Liu et al. (2005) 

consider the berth allocation and quay crane 

scheduling problem (QCSP) as a single problem, 

making berth scheduling dependent on the crane 

number that is assigned to the ship. They 

consider the docks to be a critical resource that 

determines the capacity of CT. This is because 

the cost of building a dock is a larger investment 

than the investment undertaken in other 
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facilities. So, they claim the planning of tasks at 

terminals as necessary, to optimise the use of 

the docks in order to increase their productivity. 

Most of the above authors solved the DBAP 

with the assumption that CT only considered the 

information sent by the maritime companies to 

the CT; that is: time of arrival for each ship; 

quantity of containers to be loaded and 

unloaded; containers’ location inside each ship 

etc. All these data are forecasts, but include a 

considerable degree of uncertainty owing to the 

presence of many maritime companies arriving 

at the CT.  

Discrete-event simulation provides an 

excellent tool in systems dynamics (Alvanchi et 

al., 2011). This tool is a good option for the 

evaluation of different allocation strategies, 

location of containers, crane scheduling and too 

aid to decision-making in the subsystems 

involved in CT. Authors such as Fu (2002) say that 

until the 1990s, the simulation and optimisation 

were used separately, but in the last decade, 

various studies have been conducted using these 

tools together as a powerful methodology. 

In the literature, there are some works 

combining simulation and optimisation 

approaches for the management of CTs, such as 

Cortés et al. (2007) who conducted case studies 

of the Seville inland port. Liu et al. (2002) 

analysed the productivity of automated 

container terminals, and more recently, Lagana 

et al. (2006) and Legato et al. (2009) developed 

optimisation and simulation models for 

scheduling the yard crane use at Gioia Tauro 

port. 

In this paper, we propose a mixed integer 

optimisation model, solved by a genetic 

algorithm that is integrated into a simulation 

model, to test the efficiency of the provided 

allocation by the algorithm. The model minimises 

the time that ship is in the CT carrying out 

operations with the containers. Most of the 

research in the literature considers forecast 

information only, leads to a high degree of 

uncertainty. In this work, we develop a 

simulation model together with an optimisation 

model that are run every time a ship arrives at 

the port. This moment is represented by a ship’s 

arrival to the CT canal. This place is where ships 

wait for the tugboats to be transported to the 

docks. The simulation model considers the 

system’s current information, as well as the 

information coming from the other processes 

that participate in the container loading and 

unloading operations. 

 

3 THE OPTIMISATION MODEL 

 

In this section, we explain the model proposed 

to solve the DBAP. The model is adapted for the 

Algeciras port, which is considered as a hub 

container terminal. Figure 1 shows the layout for 

the case of study depicting the most important 

areas: A) train area; b) truck area, c) storage area 

and d) ship operation area. 

 

 
Figure 1 Layout of the Algeciras port 

Every time that a ship arrives in the system, 

the model searches the best berth allocation for 

loading and unloading its containers, and 

determines the amount of quay cranes to be 

assigned to it. It takes into account the location 

of the container, the amount of loading and 

unloading in the storage area, and the availability 

of resources. The model takes into account the 

following assumptions: 

• The dock is divided into 82 segments of 24 

metres each. 

• Three types of ships are considered: small 

vessels, whose length does not exceed 8 
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segments; medium-sized ships with a length 

between 8 and 14 segments; and large ships with 

a length between 15 and 17 segments. 

• As quay cranes move on the same railway, 

possible interferences between displacements 

are considered. 

• Only a standard 40-feet container size is 

considered. 

• The maximum number of working sections 

per ship is three. 

• The container’s stacking plan is known. 

• One free segment is considered as a 

minimum between two ships in operation. 

• The optimisation model will decide which 

containers block (place) will store the containers 

unloaded. The precise location (micro-

simulation) is not considered in this work. 

Given the previous considerations, the DBAP 

may be formulated as follows: 

Sets 

B Number of ships where b ϵ B. 

M Segments of docks. 

T Time horizon where t ϵ T. 

S Storage sections in the ship where s ϵ S 

G Number of quay cranes where j ϵ G.  

C Number of container blocks in the storage 

area where c ϵ C 

 

Parameters: 

hb Quay crane time needed for ship b in 

minutes.  

Lb Length of ship b. 

Abs Vector with a length equal to s for each 

ship b. It shows integer figures if ship 

section has containers for 

loading/unloading, and zero otherwise. 

The integer number corresponds to the 

section number. 

mb Maximum limit of available quay crane 

for ship b. Limit is equal to work sections 

in the ship b.  

gjt Position of the quay crane j in the time t.  

CIbs Containers to be imported in the section 

s of the ship b. 

CEbs Containers to be exported in the section 

s of the ship b. 

dmc Distance between the container block c 

and the dock segment m.  

PEbc Binary vector with a length equal to c for 

each ship b. It takes a value equal to 1 to 

show the block c where containers are 

being stored to be exported in ship b. 

Kc Available space for containers in the 

block c. 

W Quay crane containers output. This time 

corresponds to each handling operations. 

N High constant number  

 

Decision Variables: 

Xb Dock segment assigned to ship b, the ship 

prow is located in this segment 

Zbmt Binary variable. It takes a value equal to 1 

if ship b is located in segment m in the 

time t, and 0 otherwise. 

Ybsjt Binary variable. It takes a value equal to 1 

if the section s of the ship b is operated 

with the quay crane j in the time t, and 0 

otherwise. 

PIbc Binary variable. It takes a value equal to 1 

if the containers of ship b are located in 

the block c, and 0 otherwise. 

Fbsjt Auxiliary variable. 

Ubsj Auxiliary variable. 

Vbsj Auxiliary variable. 

  

 

Minimise  
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The objective function (equation 1) minimises 

the distances travelled by the forklifts and the 

quay crane, for container loading and unloading 

operations. These distances are linked directly to 

the times travel owing to the handling 

operations carried out in each ship arriving at the 

CT. Therefore, the expression minimises three 

aspects: a) travelled distances carrying the 

export containers between the dock segments 

and the container blocks; b) travelled distances 

carrying the import containers between the 

container blocks and the dock segments; and c) 

travelled distances by quay cranes displacements 

in the work sections. It has to be taken into 

account that the third term of the objective 

function includes a non-linearity due to the fact 

of multiplying the binary variable Yjbst by the 

absolute value related to crane displacement. 

Non-linearities are reduced exclusively to this 

term of the objective function. 

Constraint number (2) ensures that each 

segment m can only be assigned to a ship b in 

the time t. Constraint (3) guarantees that the 

number of segments used by each ship is equal 

to its length during the operation time. 

Constraint (4) ensures that the segments 

assigned to each ship will be consecutive.  

Constraint (5) ensures that the sum of assigned 

quay cranes depends on the maximum amount 

of available quay cranes in the port. Constraint 

(6) guarantees the amount of dock segments 

allocated to each ship, with respect to maximum 

limit. Constraint (7) guarantees that the available 

capacity in block c, that has been assigned for 

storing the containers of ship b, has to be greater 

than the number of containers to be stored in 

this block. 

Constraints (8) and (9) ensure the minimum 

and maximum limits, with respect to the amount 

of allocated quay cranes for each ship. Constraint 

(10) guarantees that the quay cranes assigned to 

each ship complete their workload. Constraint 

(11) ensures that the quay cranes assigned to the 

each ship will be consecutive. Constraints (12) 

and (13) are constraints’ simplification that don´t 
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include the absolute value in the objective 

function. Finally equations (14–20) determine 

the specifications for the variables. 

 

4 GENETIC ALGORITHM: THE OPTIMISATION 

MODEL SOLUTION 

 

Non-linear mixed integer models, such the 

described section 3, are difficult to be solved. 

Soft computing based approaches have been 

commonly used to deal with them. That is the 

case of swarm intelligence or bio-inspired 

computation (Adeli et al. 1995a), (Chabuk et al., 

2012), (Petitjean et al., 2011), (Tao et al., 2012). 

In this paper, we propose a genetic algorithm 

(GA) to solve the model described in the 

previous section. A genetic algorithm is a search 

heuristic that reproduces the process of natural 

evolution. This heuristic is used routinely to 

generate feasible solutions to optimisation and 

search problems. Many authors in different 

industry areas have used this approach, such as 

Marano et al. (2011) in statistical studies, Baraldi 

et al. (2012) for nuclear power plants, Jiang 

(2008) and Hsiao et al. (2012) in 

telecommunications industries, and Sgambi et al. 

(2012) in the design and control of big 

infrastructures. Also this metaheuristic has been 

succesfully used for structural optimization 

models (Sarma et al., 2001),  (Adeli et al., 1995b) 

and its powerful is validated by many authors 

(Putha et al., 2012), (Hung and Kumar 1994), 

(Kim H. and Adeli H. 2001). They put in 

comparison different metaheuristics such as ant 

colony, fuzzy logic, tabu search, etc. with genetic 

algorithms. Also, the use of genetic algorithms 

together with other methodologies has very 

commonly proposed (Adeli et al., 1995c), (Adeli 

et al., 2006). Our solution approach based on 

genetic algorithms allows dealing with the non-

linear term appearing in the objective function in 

an easier way by simply evaluating the feasible 

solutions to assess its fitness. Genetic algorithms 

belong to the larger class of evolutionary 

algorithm, which generates solutions to 

optimisation problems using techniques inspired 

by natural evolution, such as inheritance, 

mutation, selection, and crossover. 

The genetic algorithm is run every time that a 

container ship arrives in the CT; more exactly 

every time a container ship arrives at the VBA 

modules. Each obtained solution applies to the 

ship that has just arrived and to the rest of ships 

waiting in queue for free segments of dock, 

because re-allocations are still possible while 

ships are waiting to dock. 

 

4.1 Solution encoding 

Instead of using the traditional binary bit 

representation, chromosomes are represented 

by charter strings. Figure 2 shows a generic 

chromosome representation for berth allocation. 

 

 

Figure 2 Chromosome representation 

 

 The chromosome used for berth programming 

is composed of 60 bits, which are grouped into 6 

representing a gene (ship in the port). Bit 1 of 

each group represents the location of the dock 

where the ship’s initial section is going to be 

located. Bit 2 shows the number of assigned 

cranes, which is complemented by bits 3, 4 and 

5, which state which specific cranes are assigned. 

Finally, bit 6 determines the block number in the 

storage area where the unloaded containers are 

stored. So, an individual of the population of the 

genetic algorithm is a feasible solution to the 

problem, and such an individual is characterised 

by its chromosome. 
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4.2 Fitness 

The fitness of every individual is calculated as 

the sum of the operation times each ship waiting 

in queue for free segments of the dock. The total 

time corresponds to: a) times as a result of the 

required transport for carrying the export 

containers between the container blocks and the 

dock segments; b) times as a result the required 

transport for carrying the import containers 

between the container blocks and the dock 

segments; and c) times as a result of required 

travel by quay crane displacements in the work 

sections (see equation 1 in the optimisation 

model).  

The DBAP is a minimisation problem; thus, 

lower fitness values lead to lower objective 

function values. To deal with this fact, the fitness 

function is defined as the reciprocal of the 

objective function as suggested by (Kim and Kim 

1996).  

 

4.3 Selection of parents and genetic operators 

The selection criteria to choose the parents in 

the population are based on the fitness of the 

individuals. Fitter individuals have a higher 

priority of being selected, with a discrete 

probability. This mechanism allows a faster 

convergence of the GA.  

The implemented genetic operators were 

crossover and mutation operators. Tests were 

carried out with different probabilities for 

crossover and mutation operators. In the case of 

mutation, it was found that varying the 

probability from 50% to 100% had little effect on 

performance, with a value of 80% to 90% being 

marginally optimal for tests carried out. A value 

of 90% is used in the main replications. For 

crossover, values between 10% and 20% were 

seen to give better results than typically smaller 

values. A value of 10% is used in the main 

replications, in order to enrich the genetic 

variety of the population. 

The genetic algorithm is used to solve the 

optimisation model immediately a ship arrives at 

the port. After iterating, the algorithm provides 

the better found solution; that is, the individual 

with a better fitness value within the population.  

Next, the main characteristics of the genetic 

operators are detailed as follows: 

 

4.3.1 Mutation 

The reproduced chromosomes constitute a 

new population, and mutation is performed to 

introduce new chromosomes. The process is 

divided into two steps: step 1 takes a single 

individual from the population making a random 

selection. Then its information is stored in the 

array offspring; step 2 changes the information 

in bits 1, 2 and 6 (location of the dock, quay 

cranes and block respectively). Settings remain 

subject to various relevant constraints of the 

model that are conditioned by bits 1, 2 and 6. 

Figure 3 shows the mutation operation. 

 

 
Figure 3 Mutation Operation 

 

4.3.2 Crossover 

The chromosome representation states 6 bits 

(a gene stating the ship in the port). So, the 

crossover operation can be undertaken only over 

those individuals with at least two genes 

different from zero. In other words, when there 

are at least two container ships in the waiting 

queue. Figure 4 shows an example of a crossover 

operator. 

 

  

 

 

1 

Chromosome 1 

60 

Step 1 

 

15 1 5 0 0 21 32 2 5 6 0 42 · · · 0 0 0 0 0 0 

                     
1 

Chromosome 2 
60 

 

15 1 5 0 0 21 32 2 5 6 0 42 · · · 0 0 0 0 0 0 

Step 2                      
1 

New chromosome 
60 

15 1 5 0 0 21 33 3 5 6 7 17 · · · 0 0 0 0 0 0 
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Figure 4 Mutation Operation 

 

4.4 Genetic algorithm structure 

The optimisation model is solved as many 

times as ships arrive at the port. The algorithm 

provides the better solution than one that has 

reached a better fitness value within the 

population. 

 

5 THE SIMULATION MODEL 

 

Some of the main operations carried out at a 

container terminal are: the container pre-

marshalling problem; the landside transport; the 

stowage planning problem; the yard allocation 

problem etc. (Steenken et al., 2004) and 

(Stahlbock and Voß 2008) have done complete 

and important reviews on the problems arising in 

a container terminal. The use of simulation 

models turns into a suitable tool to evaluate and 

assess the different decisions that have to be 

taken for the previously exposed problems. 

Figure 5 depicts the concept diagram for the 

starting, optimisation and simulation integrated 

modules. 

 
Figure 5 Models interaction 

           

 

5.1 The data 

The arrival times are obtained from a battery 

of data in an external file. These data were 

extracted from the Algeciras port real database 

in October 2010 (available at the Algeciras port 

website, www.apba.es/). To schedule the ship 

arrivals according to the real database, we 

introduce the set of modules, the most 

important of which is the ReadWrite, which 

reads or writes values in an external document 

type txt, dat, xls. 

After reading the external file, an entity is 

created, representing a container ship, and 

includes attributes information such as: length of 

the ship; number of sections with containers; 

number of containers to be loaded and 

unloaded; location of these containers in the 

storage area etc. 

 

5.2 The integration with the optimisation model 

When a ship is created (arriving at the CT), it is 

sent to a VBA module, which contains a genetic 

algorithm (GA), designed in Visual Basic 

language, and provides a solution to the 

proposed optimisation model. This module is 

shown in figure 6. The genetic algorithm is run 

every time an entity enters into the VBA module. 

The algorithm provides results for the ship 

entering, and for the rest of ships waiting in the 

queue for available resources. 

Once a ship leaves the VBA module the 

optimisation process has provided the best 

possible found solution, and this information is 

sent to the simulation model, which determines 

the quay crane scheduling, berth allocation and 

the container block, that is being carried by that 

ship, to be unloaded. 

 

 
Figure 6 VBA Module 

 

 

 1 

Parent 1 

60 

 

    · · · 35 3 6 7 8 34 · · · 21 2 3 4 0 25 · · ·     

 

 

1 

                       

60 

 

    · · · 37 2 7 8 0 34 · · · 23 2 4 5 0 25 · · ·     

 
Parent 2 

 

1 

                       

60 

 

    · · · 37 2 7 8 0 34 · · · 21 2 3 4 0 25 · · ·     

New Chromosome 
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5.3 The virtual dock 

Each ship has an attribute which states the 

assigned segments. We designed a virtual dock in 

the simulation model, which is used to take and 

represent the segments that each ship will need. 

So, this virtual dock moves along the dock line, 

representing the specific group of segments 

where the operations are being carried out. 

Thus, these modules simulate the process of 

unloading, loading and transport of all the 

containers. These modules are shown in figure 7. 

Figure 7 provides a global view of the virtual 

dock. Its global vision shows the main three 

constructive building blocks and explains their 

interrelation and interconnectivity amongst 

them. Three main constructive building blocks 

depict the operation of the whole virtual dock 

system. That is: 1) ship operations; 2) unloading 

and loading containers operations; and 3) 

counter for statics. 

 

 
Figure 7 Virtual dock modules 

 

Distances are considered by means of a matrix 

that stores the distances between all the points 

of the storage area and each location (segment) 

of the dock line. The ship will berth in the virtual 

dock until it has completed the handling 

operations. Then, the ship will be ready to leave 

the dock, entering the towing process output. In 

this way, the ship releases the dock segments, 

quay crane and virtual dock for other ships on 

leaving the simulation model. 

The quay crane scheduling is simulated in the 

virtual dock, by assigning the quay cranes by 

means of the optimisation model. Later, the 

simulation model distributes the workload 

between these quay cranes. In accordance with 

these assumptions, a ship will have between 1 

and 3 sections of work (with containers), and 

therefore 1, 2 or 3 quay cranes could be assigned 

to each ship.  Figure 8 depicts three different 

examples of ships operations: the first ship has 

three sections of work and one assigned quay 

crane; the second ship has three sections of work 

and two assigned quay cranes; and the third ship 

has two sections of work and two assigned quay 

cranes. 

 

 
Figure 8 Ships in operations 

 

6 RESULTS AND ANALYSIS 

 

Computational experiments have been carried 

out in one of the most relevant Southern Europe 

ports, i.e. the Algeciras port and its container 

terminal. To do so, we have introduced two 

specifics constraints (equations 21 and 22), in 

addition to the general model equations 

presented in Section 2. These constraints are as 

follows. 

 Z?de + Z?fe = 1			∀b & 1…B, ∀t
& 1…T								�21� 

Z?iMe � Z?i�e & 1			∀b & 1…B, ∀t

& 1…T				�22� 

 

These constraints complement constraints 3 

and 4. The aim is to guarantee that the segments 

8–9 and 70–71 cannot be allocated 

consecutively, because these segments are in 

corners, owing to the particular shape of the 

Algeciras port.  
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We produced three different scenarios to 

verify and validate the optimisation model 

proposal. The first scenario uses the historical 

input data recorded by the Algeciras terminal 

arrivals in October 2010 (which is available at the 

Algeciras port website, www.apba.es). The 

information includes the arrival times and 

lengths of ships. The remaining information, such 

as the number of sections of work and 

containers to load and unload, is calculated 

according to the real freight traffic. 

For the second scenario, the parameters that 

determine the arrival times per ship are constant 

with respect to the initial scenario, but the 

number of containers carried by each ship 

increases. For the third scenario, the parameters 

that determine the number of containers and 

sections by ship are constant with respect to the 

initial scenario, but it increases the number of 

ship arrivals to the CT by 20, which represents an 

increase of 12.5%. The time of arrival of these 

vessels has been taken randomly, within a time 

frame set at one month, as well as ships’ length. 

We undertook thirty model replications for 

each considered scenario, resulting in a total of 

ninety replications. In this section we analyse the 

results obtained for the three scenarios.  

Table 1 summarises the freight traffic for each 

scenario in a 30-day period, appreciating that the 

increase of containers moved in Scenario 2 with 

respect to 1 is almost 21%; a value that is near to 

the increase provided by scenario 3 (20%). In 

addition, scenario 3 increases the ship arrivals by 

12.5%. 

The objective of the optimisation model is to 

minimise the operation time for each ship. Table 

2 shows the minimum, maximum and average 

times for the handling operations, as well as the 

waiting times (the sum of both terms represents 

the total service time). 

 

Table 1 Ships and containers by scenario 

 
 

Table 2 Service time in hours 

Time Data Min Max Average

Waiting 

Real 0 6.25 0.29 

Scenario 

1 0 4.15 0.25 

Scenario 

2 0 10.48 0.30 

Scenario 

3 0 3.21 0.27 

Operation

Real 5.16 17.23 7.64 

Scenario 

1 4.96 15.96 6.85 

Scenario 

2 5.04 19.03 7.42 

Scenario 

3 5.24 19.07 6.31 

Total 

Real 5.16 18.05 7,96 

Scenario 

1 4.96 16.16 7.10 

Scenario 

2 5.04 21.4 7.72 

Scenario 

3 5.24 20.71 6.58 

 

We can observe the results obtained in the 

optimisation model in scenario 1, with respect to 

real data, reduced the average operations times 

by 10%, and the maximum operation times by 

7%. The minimum operation time has similar 

values in every scenario, because the probability 

that a ship has few containers to unload/load is 

the same for all. So the model reduced the 

average waiting time by 13%, and the maximum 

waiting time by 33%. The main reasons for this is 

Counters Scenario 1 Scenario 2 Scenario 3 

Unloaded containers  33,940 40,855 40,610 

Loaded containers  34,049 41,309 40,917 

Total containers 67,989 82,164 81,527 

Average number of containers by ship 427 516 513 

Ships with fewer than 300 containers 24 27 37 

Ships with 300–500 containers  88 68 90 

Ships with 500–700containers  16 18 15 

Ships with more than 700 containers 32 47 38 

Ship arrivals 160 160 180 

Average containers handled by quay crane 3,399 4,108 4,076 
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because of better assignment management, as 

the ships unload/load the containers in the 

berths closest to the container block where the 

containers are stored.  

The results show that although container 

traffic was increased in scenarios 2 and 3 by 21%, 

the average operations time in scenario 3 was 

reduced by 8% with respect to scenario 2 with 

the same increment. This reduction was a result 

of the allocation of new container traffic from 20 

new ships arriving at the CT. 

Figures 9, 10 and 11 show the total hours of 

operation by dock segment. The sections with a 

higher number of hours worked are grouped into 

the centre of the docks. This is owing to the 

special layout of the Algeciras port that is shown 

in Figure 1. 

In figures 9–11 we can see that certain sections 

present the highest workload because these 

sections are located very close to the paths 

between the container blocks in the storage 

area. These paths are used by all the vehicles, in 

order to transport the containers within the 

container terminal. 

 

 
Figure 9 Workload by each segment in hours 

for scenario 1 

 

 
Figure 10 Workload by each segment in hours 

for scenario 2 

 

 
Figure 11 Workload by each segment in hours 

for scenario 3 

 

To complement the service timetable, figure 

12 shows the number of ships classified into 7 

time ranges, according to the service time. The 

first range is for those with less than 6 hours, and 

the second range is for those within 6 to 7 hours. 

It can be appreciated that these two ranges 

represent more than 70% of arrivals to the 

container terminal. 

Finally, attending to the computational time 

figures of the simulation and optimisation 

models, and taking into account that numerical 

experimentations were performed on a personal 

computer equipped with 3 GB of RAM and 2.1 

GHz. Intel dual-core processor, we have to say 

that the results were feasible for a near-real time 

problem such as the DBAP. It has to be taken into 

account that the process of docking a ship 

implies a time scale of around half an hour from 

its first arrival into the port, so computational 

times in this magnitude order are adequate. 
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The average run-time in simulation models was 

17 minutes and 57 seconds. The simulation 

includes ship arrivals between 160 and 180, 

corresponding to the number of times that the 

genetic algorithm (VBA module) was run. The 

average run-time for the algorithm was 

approximately 2.07 seconds, with a maximum of 

4.12, and a minimum of 1.17 seconds. 

 

 
Figure 12 Ships according to the service time 

 

 

7 CONCLUSIONS 

 

Shipping lines are looking constantly for ways 

to reduce costs. One of its lines of action is to 

improve the capacity and speed of their ships in 

port. This fact leads the port to design dock lines 

with greater flexibility. At the same time, 

transport networks are being redesigned, 

considering two types of ports: hub ports and 

destination/source ports. In our paper, we 

considered a well-established hub port — 

Algeciras port — and analysed the container 

traffic for such a port. Three scenarios were 

considered. The first scenario took into account 

the container ship traffic in October 2010; the 

second scenario was constructed considering an 

increase in the container traffic; and, finally we 

considered an increase of ship arrivals for the 

third scenario. 

By analysing such a hub port, our work focuses 

on efficient planning and use of the docks to 

increase the competitiveness and status of the 

port. An optimisation model supporting berth 

allocation has been constructed and presented, 

and allows the improvement of internal 

organisation and operations management. 

The results allow us to affirm that our 

optimization model improves the performance of 

the port’s container terminal. The reduction of 

operation times at berths has been valued at 

10% respect to the real data. The other scenarios 

also show good results with respect to a future 

traffic increase, with a reduction in the maximum 

waiting time of 33%. These reductions in the 

operation time and waiting time are perceived 

directly by the shipping lines. 

The results obtained in the paper allow us to 

affirm that the combined use of simulation and 

optimisation tools is a valuable asset, with great 

potential for the scheduling and assignment of 

resources in ports in general, and particularly for 

this study about container terminals. The 

proposed genetic algorithm is also shown as a 

suitable approach to deal with this type of 

problem, to find a good solution in less than 3 

seconds. Now, our future work focuses on 

managing the handling equipment, such as 

forklifts and reach-stackers, as well as other 

equipment in ports. This equipment is used 

mainly by the quayside transport and the 

landside transport, and should be considered in 

order to minimise costs, handling operations 

time, bottlenecks etc. 

Another interesting research line falls into the 

definition of stochastic models covering all the 

port performance. This approach will allow to 

identify stochastic variables associated to vessel 

arrivals, docks’ occupancy, crane performance, 

etc., and the model solutions would allow to 

analyse very different vessel and container traffic 

situations. This can be viewed as a new 

promising research line for future works. 
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