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Abstract

The work presented in this thesis can be summarized as a compilation of five different
and comprehensive studies in the field of microfluidic flows, related to the formation
of jets, drops and bubbles; where the surface tension plays a major role. The topics
studied are classified in chapters where the problem formulation, procedures, and
results are individually presented.

Chapter 2 is devoted to understand the evolution of Newtonian capillary jets and
to study the instability transition of viscoelastic jets under axisymmetric perturba-
tions. A mathematical model has been used to determine the parameter conditions
for which the convective to absolute instability transition takes place, playing special
attention to the role played by unrelaxed elastic axial stress. Chapter 3 presents
results of a numerical study of rivulets in microchannels in order to characterize
stable and unstable regimes. The theoretical frame work and stability analysis are
presented in detail. It was found that a basic flow can become unstable when that
quantity exceeds a certain critical value, while the rest of governing parameters re-
main constant. Chapter 4 discuses a ubiquitous process in science and technology
- the dissolution of microbubbles. As in the previous chapters, detailed theoretical
and numerical approaches are developed from scratch, culminating in a set of care-
fully performed experiments. Numerical and experimental results agree well and
complement each other.

We move then onto Chapter 5 which studies the electrical disruption of pendant
liquid drops. The focus of the study here is the behaviour of suddenly electrified
pendant droplets in dielectric liquid. Supported by numerical and experimental
results, we argue that the viscosity of the surrounding fluid is responsible for the
development of more complex jetting processes such as what is called splashing in
which the tip of the cone explodes onto a mushroom-like structure, and splitting
regimes. Moreover, when the cone evolves into one of these modes they do it in a
way that is dependent on the large scale properties such as the initial droplet size
and on the applied voltage - contrary to the well-established (universal) mechanisms
encountered in the tip streaming mode. Finally, Chapter 6 presents a series of one-
to-one numerical and experimental runs with excellent agreement of a novel way
of producing drops that are significantly smaller than the nozzle from which they

ii



emerge. A very detailed discussion of the experimental rig is presented, including
the important parameters to be taken in account, such as the meniscus formed at the
nozzle and the deformation of the nozzle plate during the driving pressure pulses.
Finally, a predictive scaling law of the produced droplet size was obtained.
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Chapter 1

Introduction

Any review of the literature on the microfluidic systems related to capillary jets,

droplets and bubbles will reveal in short their interest and relevance. For instance,

a recent quick search in the SCOPUS database has returned 39605 items when the

word searched is “microfluidic”. If this search is combined with ”jet”, ”droplet”

or ”bubble” the figures of found items is still enormous; 1568, 8132 and 3253, re-

spectively. These large figures are just a reflect of the great importance in many

technological applications of such systems.

Capillary jets can be found in an enormous variety of processes of interest in very

diverse fields, such as pharmacy, biotechnology, industrial and chemical engineering,

or the food and agriculture industry. Typically in these fields the objective is to use

the capillary threads as a mid-stage step on the production of solid fibers. A variety

of physico-chemistry processes can be used to solidify the produced liquid threads

before their breakup. In this way, that sub-millimeter artificial fibers for the textile

industry can be obtained[1]. Note that the world production of textile fibers alone

has increased from about 24 million metric tons in 1975 to nearly 90 million tons in
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2 1. Introduction

2014, and the percentage of artificial fibers rose from around 50% in 1975 to nearly

75% in 2014.

Formation of drops is involved in many applications as for example, DNA ar-

raying, the printing of electronics and biomaterials, drug delivery, inkjet printing,

automatic pipetting of fluids and manufacture of particles. While, microbubbles are

used in drug delivery, biofilm removal and membrane cleaning, also they are used

as a contrast medium in images in medical diagnostics.

In this thesis, experimental and numerical studies have been carried out in order

to investigate diverse aspects of jets, drops and bubbles in micro/nano scale. Since

these fields are too broad, we have limited the aim of the present thesis to,

1. The study of viscoelastic jets. In particular we will perform the spatiotemporal

stability of viscoelastic jets subject to unrelaxed axial stress.

2. The study of the capillary instability of rivulets in order to control the pro-

duction of fibers and microdroplets/microbubbles, respectively, by performing

stability analysis of base (zeroth) solutions.

3. The study of the dissolution of gaseous bubbles ascending through a liquid

media. The analysis is either numerical and experimental.

4. The study of the liquid-liquid electrical dispersion problem. This issue was

also studied experimentally and numerically.

5. The study of “drop on demand” generator based in a novel collapsing tech-

nique.

Note that the first item could be categorized as related to capillary jets while the

rest falls in the generic field of droplet systems except item three which is related to
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bubble systems. Our general goal in these studies is to identify all governing param-

eters in order to gain a full control of the systems. This can only be gotten by the

complete comprehension of the physics behind the diverse systems. In what follows

in this introductory chapter, we will expose briefly the most remarking aspects of

state-of-art of these micofluidic systems.

1.1 Production and dissolution of microbubbles

Many different techniques have been proposed for the production of microbubbles.

One of these techniques is the injection of gas through a micronozzle in a bath of

liquid (see fig.1.1 (a)) [2]. The pore size of the nozzle affects on the size of the

bubble but another factor has more significant effect on the bubble’s size which is

the ratio of the surface energy of the nozzle to the surface tension of the liquid.

Higher surface energy means that smaller bubble could be produced. If the gas is

injected in a liquid stream parallel to the nozzle, this is called Co-flowing system

(see fig.1.1 (b)) [3]. Another technique is the flow focusing, in this technique the

pinching between the gas and the liquid streams occurs after an orifice located in

front of the needle gas. Two configurations are used. Axisymmetric configuration

illustrated in Fig.1.1 (c) and planar configuration illustrated in Fig.1.1 (d). The

axisymmetric configuration has been proposed by Alfonso Gañan et al [4]. In this

work, derived scaling laws are providing the bubble size. The scaling comes from

a balance between the local time derivative and convection terms of the inviscid

Navier-Stokes equations [5]. The planar configuration was introduced by Garstecki

et al [6]. Both configurations cover different ranges of Reynolds numbers and they

can work on the Stokes and inertial regimes, respectively. Fig.1.1 (e) shows the
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T-junction geometry which could be considered the most popular configuration to

produce microbubbles. It was presented as a microfluidic device by Thorsen et al

[7] to generate emulsions, then Gunther et al [8] used it to produce microbubbles.

In this technique a stream of gas is introduced into a stream of liquid by using T-

junction, the pinching happens due to the large stresses on the interface between the

two streams. Recently, the role of swirl to generate small mono-disperse bubbles has

been investigated. A 3D simulation model of an axisymetric T-junction showed that

the size of the bubbles are smaller than bubbles produced in the absence of swirl

[9]. A variation of the T-junction technique has been proposed by M. A. Herrada

et al (see Fig.1.1 (f)) [10]. In the new technique, a gas stream is injected into a

liquid stream moving in a channel through T-junction, the gas adheres to a strip

of hydrophobic material posted on the bottom surface of the channel forming a

rivulet. This rivulet breaks up into monodisperse microbubbles due to a capillary

instability developed at the rivulet. This technique could also be used to produce

microdroplets by posting a hydrophilic material strip rather than the hydrophobic

one. En chapter 3 a numerical analysis was realized to get a deeper insight on the

capillary instability of rivulet in order to control the production of microbubbles or

microdroplets by using Herrada’s T-junction.
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(Saeid Vafaei et al., 2010) (C. S. Smith, 1949) 

(P. Garstecki et al., 2004) (A. M. Gañan et al., 2001) 

(A. Gunther et al., 2004) (M. A. Herrada et al., 2013) 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 1.1: Methods to produce microbubbles.



6 1. Introduction

The evolution of gas bubbles in a liquid under buoyancy forces is a multifaceted

multi-phase problem: it does not only involve the obvious fluid mechanical phenom-

ena that can be mapped by the associated Reynolds and Weber numbers[11, 12, 13],

size distribution, and number concentration[14], but also comprises the complex

kinetics around the exchange of gases and vapors between the liquid and the bub-

ble, and the heterogeneous distributions of such constituents in both liquid and gas

domains[15, 16, 17, 18]. There is a set of quite generic applications where gas ex-

change is, among the many different aspects that one may entertain in the problem

of rising bubbles, the principal target factor to score performance. For example, in

the petroleum industry, the number of wells demanding gas injection for oil recov-

ery is soaring[19]. In this case, the high pressures and extreme conditions inside

the well or oil bed promotes gas dissolution even at very low diffusivities[20]. On

the other hand, CO2 sequestration by injection in water reservoirs (excluding deep

submarine injection in liquid phase), or the aeration of tanks or lakes demands a

careful choice of bubble size as a function of injection depth to achieve optimal per-

formance (total gas dissolution before the gas reaches the liquid surface)[21]. The

same demand applies to micro algae cultivation tanks or bioreactors. To assess the

dissolution process in realistic conditions, the Rising Bubble Apparatus (RBA) is

a customary instrument[22, 20]. In this device, used to measure what is called the

minimum miscibility pressure, the evolution of the gas bubble is monitored by a

video camera fixed to a rail parallel to the path of the rising bubble. The work in

chapter 4 is motivated by the problem of gas injection into an aqueous environment

(waste water, bioreactors, aquaculture, etc.) in the form of small bubbles.
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1.2 Production of microdroplets

There are many techniques to produce microdroplets. The methods to produce

microdroplets from large diameter could be grouped in two main categories according

to the energy source: hydrodynamic jetting and electrohydrodynamic jetting.

1.2.1 Hydrodynamic jetting

One of the hydrodynamic jetting methods is the flow focusing (FF) which is not used

only to produce microbubbles but also to produce microdroplets. The formation of

microdroplets could be done in FF technique by introducing the liquid from the

internal tube and the gas from the external one. Figure 1.2 shows the flow pattern

in FF. The energy source is the pressure drop applied to the flow focusing gas,

which draw a liquid jet much more smaller than the orifice size. The jet’s behavior

is characterized by the dimensionless Weber, Reynolds and Capillary numbers which

are defined as follow:

We = ρQ2/π2R3σ, (1.1)

Re = ρQ/πRµ, (1.2)

Ca = We/Re, (1.3)

being ρ is the liquid density, Q is the liquid flow rate, R is jet’s radius, µ is the

dynamic viscosity, and σ is the surface tension. The jet separates downstream to

monodisperse droplets due to Rayleigh instability.



8 1. Introduction

Figure 1.2: Flow pattern in FF technique (Alfonso M. Gañán-Calvo, 2009).

Another hydrodynamic jetting method called flow blurring (FB) has been been

developed by Alfonso gañan [23]. The configuration of FB is very similar to FF. The

only difference is the value of ψ = H/D (see fig. 1.3 (a)). At ψ > 0.25, the liquid

flow follows the FF pattern, but if ψ < 0.25 a back-flow pattern leads to small-scale

perturbation (see fig. 1.3 (b)). The gas flow turns to be radial and perpendicular to

the symmetry axis. Due to the circulation of the flow at the feed tube, a stagnation

point is created between the feed mouth and the exit orifice. Accordingly, very

small jets are produced at the tube exit, which breaks to polydisperse droplets.

The final droplet diameter distribution is governed by the dimensionless numbers

ψ,WeD, OhD, and GLR which are defined as follow:

WeD = ρgU
2
gD/2σ, (1.4)

OhD = µ/(ρlσD)1/2, (1.5)
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GLR = mg/ml, (1.6)

being ρg, ρl, Ug, D,mg, and ml are gas density, liquid density, gas velocity, nozzle

diameter, mass flow rate of gas, and mass flow rate of liquid respectively.

Figure 1.3: Configuration difference between FF an FB (Gañán-Calvo, 2005).

1.2.2 Electrohydrodynamic jetting

One important method to produce very small and monodisperse droplets is the cone-

jet electrospraying (ES) which is known also as Taylor’s cone [24, 25]. The idea of this

method is to apply an electric field to liquid meniscus. Then charges accumulates on

the interface producing Maxwell stresses which is proportional to the permittivity

of vacuum. The meniscus stretches and forms a conical shape when a balance

occur between pressure drop across the interface, the surface tension and Maxwell
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stresses. Subsequently, a microjet is emitted from its tip for a voltage difference

above the critical (see fig 1.4 (a)). The microjet breaks up downstream producing

the droplets. Voltage difference is the energy source in ES which is analog to pressure

drop in FF. In electrohydrodynamic jetting, another dimensionless numbers appear,

which are electric Bond number, relative permittivity, and dimensionless electrical

conductivity as:

Be = εiE
2R/σ, (1.7)

β = εi/εo, (1.8)

Kd = K(ρR3/σε2
o)

1/2, (1.9)

being K and εi are conductivity and permittivity of liquid, E is the electric field,

and εo is the permittivity of the ambient.

+ _ 

(A. Barrero et al., 2003) 

Figure 1.4: (a) Electospraying in air ambient, (b)Electrospraying in liquid ambient.
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The droplets produced are charged so, electrospraying has been applied widely

in mass spectrometry of large biomolecules. Electrohydrodynamic jetting is not only

useful to spray liquids in gas ambient but also into another liquid (see fig 1.4 (b)).

Liquid-Liquid dispersion is an essential step in many industrial processes nowadays.

It is part, for example, of applications like the encapsulation of drugs or food addi-

tives or the obtention of micro(nanometric)-range emulsions. Electrical forces have

been proven as an efficient dispersion mechanism. Watanabe et al. [26] produced

water-in-oil emulsions by applying a potential difference higher than the critical

voltage of emulsification. Their method was based on counteract surface tension

forces by means of electrical forces. They introduced a large quantity of additives

in the dispersed phase so that the electrical conductivity of continuous-phase liquid

were smaller than that of the dispersed-phase liquid. Sato and coworkers[27] used

the Inversed Electrostatic Spraying (IES) to disperse a dielectric liquid in a con-

ducting liquid medium. The IES is the technique introduced by Tsouris et al. [28]

to disperse a gas into an outer conducting medium by means of electrical fields. In

this technique the dispersed phase is injected continuously through an electrified, in

most cases metallic, needle. A grounded electrode is located downstream in the bath

chamber in order to create an intense enough electric field. Some improvements of

this technique can be found in the literature. More intense electric fields (result-

ing in smaller droplets) can be obtained by covering the metallic capillary nozzle

with an insulating material up to the needle’s tip[29]. Tsouris et al.[30] illustrated

that a conical tip sharpened capillary and negative polarity provide better pumping,

spraying and mixing. Gneist & Bart[31] used a high frequency AC power supply.

There was no effect of viscosity of dispersed phase on spraying process for viscosities

up to 100 mPa.s. In most of the aforementioned examples the droplet dispersion



12 1. Introduction

occurs within the electrified dripping regime[32]. Experimental and numerical study

was conducted in chapter 5 to explore new modes of electrohydrodynamic jetting in

liquid-liquid dispersion.

1.2.3 Other methods to produce droplets

Another method called drop-on-demand (DOD) ink jet printing, to produce drops,

is used widely in applications like printing [33], fabrication of transistors [34] and

biochip arraying [35]. There are two DOD technologies that predominate in ink jet

industry: piezo and thermal ink jet (TIJ). Piezo technology was developed by Zoltan

in 1972 [36] and by Kyser and Sears in 1976 [37]. In this technology, a capillary

tube made of glass is bonded to piezoelectric transducer (see fig. 1.5 (a)). The

transducer receives an electric signal to produce pressure wave. The wave squeezes

or relaxes the tube so, a drop of the same order of the tube size can be ejected from

the nozzle by selecting the suitable voltage pulse. The great deal of this method is to

get the correct shape of the waveform, amplitude and duration of the voltage pulse.

Thermal ink jet (TIJ) was developed separately by Canon [38] and Hewlett-Packard

[39]. The idea of this method is to use the expansion of vapor bubble formed on a

heating element near to the nozzle exit in order to eject a drop from the nozzle (see

fig. 1.5 (b)). One of the most important goals of many scientist is to reduce the

volume of the generated drop, in order to increase the resolution in printing and to

reduce the consumption of ink. So, we have conducted numerical and experimental

study en chapter 6 to have a better control on a novel technique to produce drop

on demand.
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Figure 1.5: Piezo and thermal ink jet technologies, (Basaran, 2002).

1.3 Formation of capillary jet

Capillary jets are produced by exerting intense axial forces to overcome the resis-

tance offered by viscosity and surface tension. In the simplest example of ejection

through a nozzle or spinneret, a strong pressure drop must be applied to the feeding

capillary and the ambient to provide the liquid with kinetic energy sufficient to cre-

ate the interface. In flow-focusing and electrospray (electrospinning) [40], an outer

stream and electric field, respectively, stretch a liquid meniscus until a thin jet tapers

from its very tip. In the case of viscoelastic jets, an intense axial elastic tension is

generated in the ligament at the ejection point. Viscoelastic material exhibits both

viscous and elastic behaviour when a force is applied to it. So, it forms a longer

jet than other fluids. If no further stretching occurs, the tension decays at a rate

that decreases as elasticity increases [41, 42, 43]. For high enough elasticity, the ax-

ial tension survives downstream over distances much longer than the jet’s diameter.

Most experiments with viscoelastic jets are conducted for a relatively high elasticity,
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so that its effects can be clearly appreciated. In this case, the axial tension becomes

a fundamental term in the analysis of the stability of non-Newtonian jets.

If the unperturbed state is subject to unrelaxed axial elastic tension, then the

nonlinear terms of the rheological model contribute to the linearized equations, and

therefore the results depend on the specific model even in the linear regime. The

Oldroyd-B constitutive equation [44] provides reasonably accurate predictions for

viscoelastic liquids under certain conditions. Specifically, it can describe both the

linear and nonlinear evolution of the so-called Boger liquids [45]. These liquids

are dilute polymer solutions in solvents with a sufficiently high viscosity for elastic

stresses to be measurable. They exhibit a constant viscosity (shear thinning can be

neglected) over a wide range of shear rates, so that the elastic effects can be separated

from the viscous ones. Goren and Gottlieb [41] analyzed the temporal linear stability

of the axisymmetric mode in an Oldroyd-B capillary jet. They showed that the

growth rate decreases as the axial tension increases, although there is always a

range of wave numbers for which the mode is unstable. Ruo et al. [42] extended that

analysis to non-axisymmetric perturbations in the presence of an unbounded inviscid

gas. They also concluded that the axial stress plays a stabilizing role (these results

must be reviewed because the effects of the unrelaxed tension were not accounted

for correctly in the boundary conditions at the free surface). The stability analysis

of annular liquid sheets also leads to the same conclusion [46].

Neither the temporal nor the spatial stability analysis can predict whether steady

jetting will occur in an experimental realization. For that purpose, the convective-

to-absolute instability transition must be determined from a spatiotemporal analysis

[47]. If the jet is convectively unstable, an unperturbed cylindrical ligament forms

next to the discharge orifice, while growing surface waves deform and eventually
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pinch the interface downstream. On the contrary, absolute instability implies that

perturbations travel both downstream and upstream over the jet’s surface, pre-

venting steady jetting. The convective-to-absolute instability transition has been

analyzed in relaxed capillary jets exclusively [48]. In line with the temporal analysis

results [41, 42, 46], one concludes that elasticity plays a destabilizing role, fostering

absolute instability at the expense of the convective one. This result was subse-

quently extended to electrified jets [49].

1.4 Objectives and document structure

Through this thesis we pretend to study some problems aspects to produce fibers,

drops and bubbles. Our objective is to study all the parameters that govern those

problems in order to control the production process in efficient manner.

In chapter 2, a numerical model has been developed to do a stability analysis

for an Oldroyd-B capillary jet subject to unrelaxed axial stress. Our purpose is to

determine the convective to absolute instability transition. By this mean, a better

control can be made on the production of fibers of viscoelastic materials.

In chapter 3, stability analysis of rivulet in mirochannel has been realized by

using numerical model. The objective is to characterize the stable and unstable

regimes. This study helps us to get a better knowledge of the limits where we can

produce drops or bubbles using T-junction technique.

In chapter 4, our target is to obtain a reliable model to predict the evolution

of a bubble of gas that slowly dissolves in an open environment, and whose size

is sufficiently small to remain spherical –even subject to its buoyant rise through

the surrounding liquid. In particular, our interest focuses on the total dissolution
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time and distance traveled by the evolving microbubble, with the idea to make that

distance traveled as close as possible to the distance from the bubble source to the

free surface of the liquid: in principle, this would allow an optimal dispersion of the

gas throughout the liquid column, with minimal gas loses at the free liquid surface.

In chapter 5, the objective is to study all parameters that govern the problem of

the electrical disruption of pendant liquid drops in another liquid. For this purpose,

a broad series of experiments have been done. Also, a numerical code was used in

this study. The results reveal new modes in liquid-liquid dispersion and determine

the limits of the production of micro-droplets in another liquid.

In chapter 6, experimental and numerical studies have been achieved on a novel

technique to produce drop on demand. The target is to control the different param-

eters affecting on the production process and to use the experimental and numerical

results to obtain a predictive scaling law for the droplet size.

The results in chapter 2, 3 and 4 have been published in the following articles:

• A. Said Mohamed, M. A. Herrada, and A. M. Gañán-Calvo and J. M. Mon-

tanero, ”Convective-to-absolute instability transition in a viscoelastic capillary

jet subject to unrelaxed axial elastic tension” Physical Review E, 92, 023006,

August 2015.

• A. Said Mohamed, Miguel A. Herrada, J.M. López-Herrera and Alfonso M.

Gañán-Calvo, ”Isothermal dissolution of small rising bubbles in a low viscosity

liquid” Chemical Engineering and Processing, 85:136-144, November 2014.

• Miguel A. Herrada, A.S. Mohamed, José M. Montanero and A.M. Gañán-

Calvo ”Stability of a rivulet flowing in a microchannel” International Journal

of Multiphase Flow, 69:1-7, October 2014.



Chapter 2

Instability transition in a

viscoelastic capillary jet

2.1 Introduction

Many practical applications involve the formation and controlled breakup of vis-

coelastic laminar jets. Elasticity alters fundamentally the evolution of the capillary

jet not only in the ultimate nonlinear stage of its breakup, but also in the initial

linear regime. It is well-known that the growth rates characterizing the linear in-

stability of a relaxed (zero axial elastic tension) capillary jet are greater than their

counterparts in the Newtonian case [50, 51, 52]. Therefore, elasticity plays a desta-

bilizing role for vanishing axial tension in the unperturbed state. Interestingly, these

predictions are independent of the form of the viscoelastic constitutive equation. If

the axial tension of the base solution vanishes, all nonlinear terms in the constitu-

tive relationship are eliminated after linearization, which leads to the general linear

viscoelastic Jeffreys model [52].

17
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The theoretical results mentioned above clearly contrast with most experimen-

tal observations, which repeatedly show that elasticity stabilizes the produced jets,

delaying considerably their breakup [53] (a feature exploited in the industrial pro-

duction of polymeric fibers). It has been argued that this discrepancy is due to

the inability of the linear stability analysis to provide relevant information about

the jet disintegration process. Although it is obvious that linear predictions cannot

be extrapolated beyond the very first stage of the thread breakup, there is yet an-

other effect that may also explain the lack of agreement between the linear stability

predictions and the experiments: the jet’s axial elastic tension [41, 42, 46].

In this chapter, we will conduct a spatiotemporal linear stability analysis of

the Navier-Stokes equations for an Oldroyd-B capillary jet subject to unrelaxed

axial stress. We will determine the parameter conditions for which the convective-

to-absolute instability transition takes place, paying special attention to the role

played by the unrelaxed elastic axial stress.

2.2 Mathematical model

In this section, we present the mathematical model with abbreviated expressions,

while the expanded equations can be found in the next section. Consider a cylindrical

jet of radius R and density ρ moving in the axial direction at the uniform velocity

V . The properties of the outer medium are such that its dynamical effects on the jet

can be neglected. Due to the smallness of the jet, the gravity effects are neglected

too. In what follows, we shall make all the variables dimensionless using the radius

R, velocity V , convective time R/V , and dynamic pressure ρV 2 as the characteristic

length, velocity, time, and pressure, respectively. The jet rheological behavior is
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described with the Oldroyd-B model [54]:

(1 + λG) τik = 2Re−1(1 + βG)Dik , (2.1)

where G[A] is the upper convected derivative operator, D the strain rate tensor, τ

is the extra stress tensor, Re=ρV R/µ the Reynolds number, and µ the Newtonian

(solvent) viscosity. The model also involves the stress and strain relaxation times

λ and β. These parameters are also referred to as the Deborah number and the

(dimensionless) retardation time, respectively.

The jet evolution is calculated from the conservation equations of mass and

momentum:

∇ · v = 0 ,
dv

dt
= −∇p+ ∇ · τ , (2.2)

where v(r, t) ≡ vr(r, t) er + vθ(r, t) eθ + vz(r, t) ez and p(r, t) stand for the velocity

and pressure fields in a cylindrical coordinate system (er, eθ, ez) whose z-axis is the

jet’s axis. These equations must be solved with the boundary conditions at the jet’s

free surface; namely, the kinematic compatibility condition and zero total stress on

that surface:

dF

dt
= 0 , −p+ n · τ · n = We−1∇ · n , t1 · τ · n = t2 · τ · n = 0 , (2.3)

where F (r, t) ≡ f(θ, z; t) − r, f is the distance of the free surface element from

the z-axis, n, t1, and t2 are the normal and two tangential unit vectors to the free

surface, respectively, We = ρV 2R/γ the Weber number, and γ the surface tension.

The governing equations are completed with the regularity conditions at the jet axis.

We restrict our analysis to the axisymmetric mode because it becomes dominant
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for small Weber numbers, the parameter region where the convective-to-absolute

instability transition is expected. In this case, one proposes the following dependence

for the stress and hydrodynamic fields, and the interface position:

τ (r, z; t) = We−1τ0 ezez + ε τ̂ (r)ei(kz−ωt) + c.c. , (2.4)

v(r, z; t) = V ez + ε {v̂r(r)er, v̂z(r)ez}ei(kz−ωt) + c.c. , (2.5)

p(r, z; t)−We−1 = ε p̂(r)ei(kz−ωt) + c.c. , (2.6)

f(z, t)− 1 = ε f̂ei(kz−ωt) + c.c. , (2.7)

where k = kr + iki is the axial wave number, and ω = ωr + iωi the corresponding

frequency. The parameter τ0 represents the unrelaxed axial stress of the base solution

in terms of the capillary pressure γ/R. If one introduces the expansions (2.4)–

(2.7) into the governing equations (2.1)–(2.3), and retains terms up to the order ε,

then a homogeneous system of linear equations is obtained for the perturbed fields

{τ̂ ,v̂r,v̂z,p̂,f̂}. These equations are discretized by expanding the fields in terms of

truncated Chebyshev series [55]. The solvability condition of the resulting system

of algebraic equations leads to the dispersion relation D(λ, β,Re,We, τ0; k, ω) = 0.

The critical Weber numbers We∗ corresponding to the convective-to-absolute

instability transition are determined by a spatiotemporal analysis of that dispersion

relation. They are obtained as those for which Brigg’s pinch condition [56, 47] is

satisfied. This condition establishes that there must be at least one pinching of a

k+ and a k− spatial branch with ωi = 0, where the k+ is the path of D = 0 in the

complex k plane which moves into the ki > 0 half-plane as ωi increases, while the

k− branch always remains in the ki < 0 half-plane as ωi increases.
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2.3 Governing equations and numerical method

The Oldroyd-B model [Eq. (2.1)] can be written as

τ + λ

[
∂τ

∂t
+ (v ·∇)τ − (∇v)T · τ − τ ·∇v

]
=

2Re−1D + 2Re−1β

[
∂D

∂t
+ (v ·∇)D − (∇v)T ·D −D ·∇v

]
,

(2.8)

where D = 1/2 (∇v + (∇v)T) is the strain rate tensor, and ∇v = ∂vj/∂xi the

velocity gradient tensor. The mass and momentum conservation equations [Eqs.

(2.2)] for an axisymmetric flow are

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0, (2.9)

∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

= −∂p
∂r

+
1

r

∂

∂r
(rτrr) +

∂τzr
∂z
− τθθ

r
, (2.10)

∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

= −∂p
∂z

+
1

r

∂

∂r
(rτrz) +

∂τzz
∂z

, (2.11)

while the boundary conditions at the free surface r = f(z, t) [Eqs. (2.3)] are

∂F

∂t
+ vr

∂F

∂r
+ vz

∂F

∂z
= 0, (2.12)

−p+
τrr − 2fzτrz + f 2

z τzz
1 + f 2

z

= −We−1 1 + f 2
z − ffzz

f(1 + f 2
z )3/2

, (2.13)

τrz − fz(τzz − τrr + fzτrz)

1 + f 2
z

= 0. (2.14)

In the above equations, fz = df/dz and fzz = d2f/dz2. The regularity conditions

∂p

∂r
= 0, vr = 0,

∂vz
∂r

= 0, (2.15)
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at the jet axis r = 0 complete the set of governing equations.

The linearization of the hydrodynamic equations (2.8)–(2.11) yields

τ̂ = α1


2
dv̂r
dr

0 ikv̂r +
dv̂z
dr

0 2
v̂r
r

0

ikv̂r +
dv̂z
dr

0 2ikv̂z

+ ikα2


0 0 v̂r

0 0 0

v̂r 0 2v̂z

 , (2.16)

1

r

d

dr
(rv̂r) +

dv̂z
dz

= 0, (2.17)

i(k − ω)v̂r = −dp̂
dr

+
dτ̂rr
dr

+ ikτ̂zr +
τ̂rr − τ̂θθ

r
, (2.18)

i(k − ω)v̂z = −ikp̂+
dτ̂rz
dr

+ ikτ̂zz +
τ̂rz
r
, (2.19)

where α1 and α2 are given by the expressions

α1 = Re−1 1− iβ(ω − k)

1− iλ(ω − k)
, α2 =

λWe−1τ0

1− iλ(ω − k)
. (2.20)

The linear boundary conditions at the free surface r = 1 [Eqs. (2.12)–(2.14)] are

f̂ = i
v̂r

ω − k
, −p̂+ τ̂rr = We−1(1− k2)f̂ , τ̂rz −We−1τ0ikf̂ = 0, (2.21)

while the regularity conditions at r = 0 lead to

v̂r = 0,
dv̂z
dr

= 0,
dp̂

dr
= 0. (2.22)

Use was made of the Chebyshev spectral collocation technique [57] to discretize

Eqs. (2.16)–(2.22). This technique is based on the approach developed by Khorrami

[57] for the stability analysis of swirling flows in pipes. The fields are expanded in
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terms of a truncated Chebyshev series, which accumulates the grid points in the

vicinity of the free surface, where larger gradients of the hydrodynamic fields are

expected. The expansion must exactly satisfy the boundary conditions, which leads

to an eigenvalue problem. We used the Matlab subroutine Eigs to calculate the

spectrum of eigenvalues and eigenfunctions. Spurious eigenvalues can be ruled out

by comparing the computed spectra obtained for different values of the number of

collocation points.

2.4 Results

Figure 2.1: Temporal growth rate ω as a function of the (real) wave number k for
λ = 100, β = 10, Re = 0.2083, and We = 0.03125. The circles correspond to the
solution obtained by Goren and Gottlieb [41] for τ0 = 0.1. The dashed line is the
solution for a Newtonian jet (λ = β = τ0 = 0).

Figure 2.1 shows the temporal growth rate ω as a function of the (real) wave

number k for different values of the unrelaxed axial stress. That quantity was

approximately calculated by applying Gaster’s theorem [58] to the corresponding

spatial branches. As can be observed, our solution for τ0 = 0.1 perfectly matches that
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obtained by Goren and Gottlieb [41]. The unrelaxed stress stabilizes the viscoelastic

jet reducing the growth rate of the capillary mode over the interval 0 ≤ k ≤ 1. This

effect has also been observed for other values of the governing parameters. This

occurs because elastic stresses originated by the polymer stretching increase the

liquid extensional viscosity. The comparison with the Newtonian case allows one

to appreciate the competition between the destabilizing effect of viscoelasticity [48],

and the stabilizing role played by the unrelaxed stress [41]. In fact, the growth rates

are larger than their Newtonian counterparts for small enough unrelaxed stresses,

while the contrary occurs for large values of this parameter. This last result partially

justifies the experimental observations without resorting to the failure of the linear

analysis during the jet breakup.

Figure 2.2: Critical Weber number We∗ as a function of the Reynolds number Re for
λ = 1 and 100, and τ0 = 0, 0.1, and 10. The dashed lines correspond to the critical
Weber number for a Newtonian jet [59]. The symbols for λ = 100 and τ0 = 0
correspond to the analytical solution for relaxed jets [48].

Now, we analyze the dependence of the critical Weber number with respect to

the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. We
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restrict ourselves to the case β = 0 because this parameter takes very small values

in most experiments with polymeric solutions. Figure 2.2 shows the critical Weber

number as a function of the Reynolds number for two values of the Deborah number,

λ = 1 and 100, and three values of the unrelaxed axial stress, τ0 = 0, 0.1, and 10.

The numerical results perfectly match the analytical solution [48] for τ0 = 0 and

λ = 100, which shows the accuracy of our numerical approach. The figure also

shows the convective-to-absolute instability transition curve for a Newtonian jet

(λ = τ0 = 0) [59]. As showed by by Montanero and Gañán-Calvo [48], elasticity

enhances the absolute instability in a relaxed (τ0 = 0) capillary jet over most part of

the analyzed interval of the Reynolds number. The unrelaxed tension only stabilizes

the liquid thread for sufficiently large Deborah and Reynolds numbers. It must be

noted that the limit Re → 0 must be taken with caution, because the effects of

the outer medium cannot be neglected in that case even for very small density and

viscosity ratios.

The stabilizing effect of the unrelaxed tension can be clearly appreciated in Fig.

2.3, where the dependency of the critical Weber number upon τ̂0 = τ0/We is shown.

This latter quantity is the unrelaxed axial stress in terms of the dynamic pressure

ρV 2 (instead of the capillary pressure γ/R). Contrary to what one might expect

from the temporal analysis, the critical Weber number increases with τ̂0 for λ = 1.

In this case, the axial stress favors the upstream climbing of unstable capillary waves

(absolute instability), while reducing their growth factors. For λ = 10 and 100, the

transitional Weber number decreases as the unrelaxed stress increases until a turning

point is reached. That point results from the crossover of two solution branches.

Only the dominant branch (i.e., that with the highest Weber number) is plotted

in the figure. This crossover corresponds to the existence of a double pinching
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Figure 2.3: Critical Weber number We∗ as a function of the unrelaxed axial tension
τ̂0 for Re=0.1,1, and 100, and λ = 1, 10, and 100.

verifying Brigg’s condition, a phenomenon also observed in compound capillary jets

[60]. Figure 2.4 illustrates this peculiar situation for the case {We = 0.164, Re=1,

λ = 10, τ0 = 1.04}, where one can observe how two saddle points “couple each other”

through one of the spatial branches. This circumstance has a purely mathematical

character, because it corresponds to a convective-to-absolute transition that could

not be distinguished from others experimentally.

The dominant solution branch for large axial stresses leads to a threshold of this
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Figure 2.4: Double pinching with zero growth rate for We=0.164, Re=1, λ = 10,
and τ0 = 1.04. The symbols correspond to spatial branches with ωi = 0. The arrows
indicate the direction in which ωr increases.

quantity above which the viscoelastic jet becomes absolutely unstable independently

of the Weber number. This critical value is τ̂0 ' 4.63 for sufficiently large Reynolds

and/or Deborah numbers. This conclusion can also be drawn from Fig. 2.5, where

the curves already plotted in Fig. 2.3 have been organized in a different manner. The

existence of such a critical unrelaxed stress can be interpreted in the following way.

The speed at which growing waves travel over unrelaxed viscoelastic jets increases

with the elastic axial stress [61]. One may expect that if this stress, measured in

terms of the dynamic (convective) pressure, exceeds a certain threshold, then the

jet will fail to sweep downstream those waves (absolute instability). Therefore,

the reduction of both the growth rates and the critical Weber numbers due to the

unrelaxed stress is not contradictory but reasonable.
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Figure 2.5: Critical Weber number We∗ as a function of τ̂0 for λ = 1, 10 and 100,
and Re=0.1,1 and 100.

2.5 Conclusions

To conclude, we have examined the convective-to-absolute instability transition un-

der axisymmetric perturbations in an Olroyd-B capillary jet subject to unrelaxed

axial stress. There is a critical Weber number below which the jet becomes abso-

lutely unstable. The unrelaxed stress destabilizes the viscoelastic jet for small values

of the Deborah number. For higher values of this parameter a more complex scenario
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arises. The transitional Weber number decreases as the unrelaxed stress increases

until two solution branches cross each other. The dominant branch for large axial

stresses yields a threshold value of this quantity above which the viscoelastic jet

becomes absolutely unstable independently of the Weber number. This threshold

takes a universal value for sufficiently large Reynolds and Deborah numbers. It is

well-known that the unrelaxed axial stress in a viscoelastic jet increases the speed

at which capillary waves move over the jet’s surface [61]. This effect allows one to

understand why the axial stress may favor absolute instability while reducing the

growth rates.

The linear stability analysis for Newtonian capillary jets provides valuable predic-

tions that can be extended to the nonlinear regime. For this reason, the convective-

to-absolute instability transition calculated with the linearized Navier-Stokes equa-

tions has been successfully linked to the jetting-to-dripping transition (see, e.g.,

[62, 63, 64]). On the contrary, polymers are significantly stretched by the growth

of axisymmetric perturbations in a viscoelastic jet, which alters drastically the non-

linear behavior of this system [53]. A natural question is whether the convective-

to-absolute instability transition for linear perturbations in a viscoelastic capillary

jet corresponds to a true jetting-to-dripping transition. In fact, one may expect the

absolute instability to manifest itself as sustained oscillations over the viscoelastic

jet, rather than as the appearance of a dripping-like, beads-on-a-string, or blistering

mode.

Most Boger liquids are manufactured by dissolving polymer solutes in water, and

thus the capillary jets are characterized by Reynolds numbers (based on the solvent

viscosity) on the order of or greater than unity. Previous results for Newtonian

liquids indicate that the effect of an outer gaseous medium can be neglected except
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in the limit of vanishing Reynolds numbers. Therefore, this approximation is also

expected to hold in most experimental realizations with viscoelastic liquids.



Chapter 3

Stability of a rivulet in a

microchannel

3.1 Introduction

When a jet touches and sticks to a solid wall, it forms a rivulet. This fluid configu-

ration plays an important role in a number of industrial applications. Here, we just

mention some examples. The interfacial shear caused by the overlying gas in heat

exchangers significantly affects the performance of these devices. Rivulets driven

by the shear force exerted by the surrounding air are frequently considered when

studying the icing of aircraft components. When gravity is the driving force, the

rivulet flow is exploited in trickle bed reactors and structured packings. Rivulets are

also formed to producing coated surfaces for varied applications. In this case, one

may be interested either in the formation of very uniform coatings or in the gener-

ation of certain fluid patterns. While in the former case the aim is to quench the

instability mechanisms, unstable shapes are exploited in the latter one to producing

31
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the desired pattern. Owing to the Rayleigh capillary instability [65], Newtonian

laminar jets break up into streams of droplets whose diameters commensurate with

that of the precursor jet. In this way, relatively monodisperse collections of droplets

can be obtained from jetting realizations to build, for instance, functional materials

for health care and pharmacy [66]. On the other hand, polydisperse sprays can be

produced from the breakage of liquid ligaments when turbulence sets in [67].

Fluid rivulets can be produced in microfluidic devices by printing micrometer hy-

drophilic/hydrophobic stripes on the channel surface. A number of methods can be

used for this purpose, including vapor deposition through grids, elastomer stamps,

domain formation in Langmuir-Blodgett monolayers, and photolithography of am-

phiphilic monolayers. These chemical ducts can only be created if the contact angles

characterizing the lyophilic and lyophobic surfaces verify certain conditions [68]. The

use of chemical ducts in microfluidics prevents from clogging by solute particles, such

as colloids or large bio-polymers, which constitutes an important advantage. Based

on this idea, Herrada et al. [10] have recently proposed a microfluidic technique

to produce quasi-monodisperse collections of microbubbles in a controlled manner.

In this technique, a gaseous stream is injected through a T-junction into a channel

transporting a liquid current. A hydrophobic strip is printed on one of the channel

surfaces, and thus the gas stream forms a rivulet over that strip. If the rivulet

is convectively unstable [47], it breaks up downstream due to a capillary pearling

instability, which leads to a quasi-monodisperse collection of microbubbles that can

be much smaller than the channel size. For the sake of illustration, Fig. 3.1 shows

numerical simulations of the fluid configuration analyzed by Herrada et al. [10].

Image (a) corresponds to the case in which the gaseous rivulet does not form, while

images (b) and (c) show a convectively unstable and stable rivulet, respectively.
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Figure 3.1: Flow snapshots for an air-ethanol rivulet [10]. The images correspond
to three different regimes depending on the gas Qg and liquid Ql flow rates: (a)
bubbling (Qg = 3.6 ml/h and Ql = 36 ml/h), (b) convectively unstable rivulet
(Qg = 1.8 ml/h and Ql = 72 ml/h), and (c) stable rivulet (Qg = 0.09 ml/h and
Ql = 72 ml/h).

The linear stability of liquid rivulets has been frequently studied over the last

two decades. It crucially depends on the behavior of the triple contact lines [69].

If they are allowed to move, the rivulet suffers from pearling instability in any

case (analogously to what happens in jets). If they are perfectly pinned, then a

static rivulet is unconditionally stable for an unperturbed contact angle lower than

90◦, while there is a range of unstable wavenumbers if the contact angle exceeds

that threshold. These results were originally obtained for an infinite rivulet resting

on a flat surface [70, 71], and subsequently extended to more complex equilibrium

configurations, such as rivulets of finite length [72, 68] or rivulets lying on substrates

of varied shapes [73].

The stability of flowing rivulets with anchored contact lines has also been con-

sidered by several authors. The lubrication and thin-film approximations have been
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used to calculate the basic flows driven not only by the gravitational force [74, 75]

but also by other factors, such as a prescribed uniform transverse shear stress at its

free surface [76]. Under those approximations, rivulets flowing over a vertical plane

[77] and under a sloping plate [78] have proved to be stable as long as their triple

contact lines are fixed. Weiland and Davis [79] have shown that shallow rivulets

with pinned contact lines flowing down over a vertical surface become unstable if

the driving force exceeds a critical value which increases as the Reynolds number

decreases. Koplik et al. [80] studied the stability of nano-rivulets driven by gravity

from both the linear stability analysis of the Navier-Stokes equations and molecular

dynamics simulations. The configurations analyzed were stable if and only if the

contact angle was lower than 90◦.

Linear stability analysis provides quantitative predictions for the size of the

droplets resulting from the rivulet breakup. Diez et al. [81] have found that the

distance between the drops that form during the nonlinear evolution is essentially

determined by the wavelengths predicted by the linear approximation. Herrada et

al. [10] have also shown a good agreement between the droplet size obtained from

the linear stability analysis and the simulations of the full Naver-Stokes equations.

Several authors have studied the rivulet’s stability by determining when it is

energetically favorable for the rivulet to break up into sub-rivulets. Schmuki and

Laso [82] found that this is the case for thin rivulets on a sloping plate under cer-

tain conditions. The combined action of a body force and a uniform longitudinal

shear stress have been examined from the energy approach too [83, 84, 85, 86]. For

instance, Wilson and Duffy [85] determined the conditions for which a thin rivulet

on a inclined substrate and in the presence of a prescribed uniform longitudinal

shear stress splits into sub-rivulets. It must be noted that it is not clear how lin-



3.1. Introduction 35

ear stability analysis results compare with those derived from the energy method,

because small disturbances are not necessarily capable of destabilizing equilibrium

states corresponding to local energy minima.

In this chapter, we will extend the analysis of the rivulet’s stability by considering

both gas and liquid rivulets, and by extending the explored parameter region. The

new results show that fluid rivulets can be unstable for contact angles smaller than

90◦ too. Contrarily to what one might expect, the maximum growth factor exhibits

a non-monotonic dependence with respect to the Reynolds number, so that there

are intervals of that parameter where the rivulet becomes unstable. As will be

explained, this implies that a certain basic flow can become unstable when viscosity

increases while the rest of governing parameters remain constant.

3.1.1 The governing equations

Consider an infinite rivulet of density ρ1 and viscosity µ1 moving over a strip of width

w (Fig. 3.2). The rivulet coflows with an outer stream of density ρ2 and viscosity

µ2 within a quadrangular channel whose side length is L. The interface surface

tension is σ. We assume that the triple contact lines perfectly anchor to the straight

lines delimiting the strip. Owing to the rivulet’s micrometer size, gravity effects are

negligible. Under this condition, the contact angle θs0 formed by the unperturbed

free surface and the strip univocally determines the rivulet’s shape. Both the rivulet

and the coflowing stream are driven by a constant pressure gradient P . The rivulet’s

average velocity W1 is a function of the above mentioned parameters. In what

follows, all the quantities are made dimensionless using R ≡ w/2, W1, and ρ1W
2
1 as

the characteristic length, velocity, and pressure, respectively.
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The velocity v(j)(r; t) = U (j)(r, θ, z; t)er + V (j)(r, θ, z; t)eθ +W (j)(r, θ, z; t)ez and

pressure P (j)(r, θ, z; t) fields are described in terms of the cylindrical coordinate

system (er, eθ, ez). The z axis of this coordinate system is parallel to the rivulet,

and the origin is located at the center of the rivulet base. Here, the superscripts

j = 1 and 2 refer to the rivulet and coflowing stream domains, respectively. The

rivulet equilibrium shape and the free surface oscillations are characterized by the

functions F0(θ) and F (θ, z; t), respectively. These functions measure the distance

between a surface element and the z axis (Fig. 3.2).

The above quantities are calculated from the (incompressible) Navier-Stokes

equations

(rU (j))r
r

+
V

(j)
θ

r
+W (j)

z = 0, (3.1)

ρδj2
(
U

(j)
t + U (j)U (j)

r +
V (j)

r
U

(j)
θ +W (j)U (j)

z −
V (j)2

r

)
=

−P (j)
r +

µδj2

Re

[
(rU

(j)
r )r
r

+
U

(j)
θθ

r2
+ U (j)

zz −
U (j)

r2
− 2V

(j)
θ

r2

]
, (3.2)

ρδj2
(
V

(j)
t + U (j)V (j)

r +
V (j)

r
V

(j)
θ +W (j)V (j)

z +
U (j)V (j)

r

)
=

−P
(j)
θ

r
+
µδj2

Re

[
(rV

(j)
r )r
r

+
V

(j)
θθ

r2
+ V (j)

zz −
V (j)

r2
+

2U
(j)
θ

r2

]
, (3.3)

ρδj2
(
W

(j)
t + U (j)W (j)

r +
V (j)

r
W

(j)
θ +W (j)W (j)

z

)
=

−P (j)
z +

µδj2

Re

[
(rW

(j)
r )r
r

+
W

(j)
θθ

r2
+W (j)

zz

]
, (3.4)



3.1. Introduction 37

where ρ ≡ ρ2/ρ1, µ ≡ µ2/µ1, δij is the Kronecker delta, the subscripts stand for the

partial derivative with respect to the corresponding variable, and Re ≡ ρ1W1R/µ1 is

the Reynolds number. Equations (3.1)-(3.4) are integrated considering the kinematic

compatibility

Ft − U (j) +
Fθ
F
V (j) + FzW

(j) = 0, (3.5)

and the equilibrium of both normal and tangential stresses

P (1) + n · τ (1) · n = P (2) + n · τ (2) · n + We−1∇ · n, (3.6)

t1 · τ (1) · n = t1 · τ (2) · n, (3.7)

t2 · τ (1) · n = t2 · τ (2) · n, (3.8)

at the free surface position r = F (θ, z; t). Here, τ (1) = Re−1ε(1) and τ (2) = µRe−1ε(2)

stand for the viscous stress tensor on the rivulet and coflowing stream sides of the

interface, respectively, while ε(1) and ε(2) are the corresponding values of the strain

rate tensor. In addition, n, t1, and t2 are the normal and two orthogonal tangential

unit vectors with respect to the free surface, respectively, whilst We ≡ ρ1W
2
1R/σ

is the Weber number. The anchorage condition F (0, z; t) = 1 is imposed at the

edge of the strip, while non-slip conditions are prescribed at the solid surfaces.

Finally, symmetry conditions are set over the plane θ = π/2. The solution {v(j)(r; t),

P (j)(r; t), F (θ, z; t)} of the governing equations is therefore obtained in terms of ratio

L/R and the contact angle θs0 characterizing the geometry, the fluid properties ρ

and µ, and the Reynolds Re and Weber We numbers.
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Figure 3.2: Sketch of a cross section of the fluid configuration considered. The
dashed (solid) line represents the unperturbed (perturbed) rivulet shape.

3.1.2 Basic flow

The basic solution of the problem described above is the parallel flow v0
(j) =

W
(j)
0 (r, θ)ez and P

(j)
0 = P̂

(j)
0 −Pz, where P̂

(1)
0 = 1 and P̂

(2)
0 = 0 are the pressures at

the section z = 0 on both sides of the circular interface

F0(θ) = (1 + cot2 θs0 sin2 θ)1/2 − cot θs0 sin θ . (3.9)

The functions W
(j)
0 (r, θ) verify the Poisson equations

−PRe = µδj2

[
(rW

(j)
0r )r
r

+
W

(j)
0θθ

r2

]
(3.10)
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for the rivulet and coflowing stream domains. Both the velocity and tangential

stresses are continuous functions across the interface, i.e.,

W
(1)
0 (F0, θ) = W

(2)
0 (F0, θ), (3.11)

a−1W
(1)
0r (F0, θ) + b(aF0)−1W

(1)
0θ (F0, θ) = µ

[
a−1W

(2)
0r (F0, θ) + b(aF0)−1W

(2)
0θ (F0, θ)

]
,

(3.12)

where a =
√

1 + b2, b = −F ′0/F0, and the prime denotes the derivative with respect

to θ. The velocity vanishes at the solid walls, and is a symmetric function with

respect to the plane θ = π/2. Because of the linear character of the problem, the

product PRe in Eq. (3.10) is a function of the parameters {L, θs0, µ} governing the

basic flow.

3.1.3 Linear perturbations

In order to study the stability of the above basic flow, we consider the infinitesimal

perturbations

{ũ(j), ṽ(j), w̃(j), p̃(j)}(r, θ, z; t) = {u(j), v(j), w(j), p(j)}(r, θ) exp [i(kz − Ωt)] , (3.13)

where k and Ω = Ωr + iΩi are the axial (real) wavenumber and frequency, respec-

tively. The interface position is also perturbed in the form

F (θ, z; t) = F0 {1 + f(θ) exp [i(kz − Ωt)]} , (3.14)
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where f(θ) � 1 is the amplitude of the perturbation. The unit vector normal to

the interface is perturbed accordingly:

n = n0 + ñ, ñ = n∗ exp [i(kz − Ωt)] , n∗ =

(
bf ′

a3
er −

f ′

a3
eθ −

fikF0

a
ez

)
, (3.15)

and n0 is the unit vector perpendicular to the unperturbed interface shape.

If one introduces the basic flow and perturbations into the incompressible Navier-

Stokes equations (3.1)-(3.4), and neglects nonlinear terms, one gets

ikw(j) + v
(j)
θ /r + (ru(j))r/r = 0, (3.16)
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0r u

(j) +
1

r
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(j)
0θ v

(j) + ρ−δj2ikp(j) −
(
µ

ρ

)δj2 1

Re
∇̂2w(j) = 0, (3.19)

where Ω∗(j) = (−iΩ + ikW
(j)
0 ), ∇̂2 = ∂2/∂r2 + r−1∂/∂r − k2 + r−2∂2/∂θ2.

Equations (3.16)-(3.19) must be solved subject to the following boundary condi-

tions. At the unperturbed interface position r = F0(θ), the kinematic compatibility

condition verifies,

iΩfF0 − ikfF0W
(1)
0 + u(1) = 0, (3.20)

the velocity field is continuous,

u(1) = u(2), v(1) = v(2), w(1) + F0fW
(1)
0r = w(2) + F0fW

(2)
0r , (3.21)
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and the stresses on both sides of the interface are balanced,

τ
(1)
t1 = µτ
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t1 , τ

(1)
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At the solid walls and the edge of the hydrophilic/hydrophobic strip, no-slip u(j) =

v(j) = w(j) = 0 and anchorage f = 0 conditions are imposed, respectively. Finally,

all the fields are symmetric functions with respect to the mid-plane θ = π/2.
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3.1.4 Temporal stability analysis

The solution of the temporal linear stability analysis is obtained in terms of the set

of parameters {L, θs0,ρ,µ,Re,We}. First, the basic flow is calculated by solving the

Poisson equations (3.10) with the corresponding boundary conditions. This solution

is used in the linear problem (3.16)-(3.22) to get a homogeneous system of equations

whose solvability condition leads to the dispersion relation D(k,Ω) = 0.

Both the basic flow and linear perturbations are calculated numerically. The

rivulet and coflowing stream domains are mapped onto fixed quadrangular domains

through a coordinate transformation. The equations are discretized in the radial

direction by expanding the fields in terms of truncated Chebyshev series [55, 60].

The angular derivatives were calculated with fourth-order central finite differences

using uniformly distributed points. Both the fluid domain mapping and the spec-

tral discretization accumulate the grid points in the vicinity of the free surface and

solid walls, where larger gradients of the hydrodynamic fields are expected. This

discretization method allows one to get very accurate results with a reduced num-

ber of grid points. Use is made of the Matlab subroutine Eigs to calculate the

eigenvalues corresponding of the resulting system of linear equations.

3.1.5 Results

In this section, we present the values of the growth factor Ωi obtained for two fluid

configurations: an air rivulet surrounded by ethanol (ρ = 650 and µ = 83.8) and

an ethanol rivulet surrounded by air (ρ = 1.54 × 10−3 and µ = 1.19 × 10−2). We

considered L = 10 (a value close to that of the experimental analysis that is currently

underway) and three values of the unperturbed contact angle: θs0 = 80◦, 89◦, and
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Figure 3.3: Growth factor Ωi for an air rivulet surrounded by ethanol with Re = 3,
We = 0.04, and θs0 = 89◦ (left) and 120◦ (right).

120◦. The Weber number was We = 0.04, 1, and 5, while the Reynolds number was

varied over several orders of magnitude.

Figure 3.3 illustrates the dependence of the growth factor Ωi with respect to the

wavenumber for two air rivulets. In both cases, two capillary modes can be found

within the range of wavenumbers and growth factors analyzed. The dominant mode,

i.e., that for which the growth factor takes the maximum value, Ωmax
i , determines

the system stability. If Ωmax
i < 0, then the rivulet is stable under the perturbations

considered, while it becomes unstable otherwise. As can be observed, the rivulet with

θs0 = 89◦ (left-hand graph) is stable because all the perturbations are damped by

viscous stresses. On the contrary, the case θs0 = 120◦ (right-hand graph) corresponds

to an unstable configuration because the growth factor characterizing one of the

modes becomes positive as θs0 increases, and thus that mode grows driven by the

surface tension force. We have verified that Ωr 6= 0 in all the cases analyzed, which

means that the perturbation possesses an oscillating character.

Figure 3.4 shows the isolines of the magnitude of the velocity field perturbation
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Figure 3.4: Isolines of the magnitude of the velocity field perturbation corresponding
to the unstable (left) and stable (right) capillary modes obtained for k = 0.4 in an
air rivulet surrounded by ethanol with Re = 3, We = 0.04, and θs0 = 120◦. The
red (blue) lines correspond to the higher (lower) values. The results are normalized
with the maximum value in each case.

corresponding to the two capillary modes with k = 0.4 in Fig. 3.3-right. The left

and right graphs correspond to the unstable and stable modes, respectively. The

kinetic energy associated with the unstable perturbation concentrates in the gaseous

rivulets, while the opposite occurs in the stable situation.

The size of the bubbles resulting from the rivulet breakup is essentially deter-

mined by the wavenumber kmax corresponding to the maximum value Ωmax
i of the

growth factor (Fig. 3.5). In all the cases considered, kmax was at most of order unity,

which means that the bubble radius was at least on the order of the strip width R.

The quantity kmax (and therefore the bubble radius) was a monotonic function of

neither the Weber nor the Reynolds number. In what follows, we will pay attention
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Figure 3.5: Wave number kmax corresponding to the maximum value of the growth
factor, Ωmax

i , for an air rivulet surrounded by ethanol with θs0 = 120◦.

to the dominant mode, and plot the maximum value Ωmax
i of the growth factor for

unstable systems.

Figure 3.6 shows the values of Ωmax
i for an air rivulet surrounded by ethanol. The

rivulet is unconditionally unstable for θs0 = 120◦. For θs0 = 80◦ and 89◦, there is a

critical Reynolds number below which the rivulet becomes unstable. This instability

transition is analyzed in Fig. 3.7, which shows the growth factor Ωi as a function

of the wavenumber just above and below the critical Reynolds number. Figure 3.6

also indicates that the gaseous rivulet does not stabilize as the Reynolds number

decreases, which means that this fluid configuration is unstable even for θs0 < 90◦

and in the Stokes limit.

The above results can also be interpreted in the following way. As explained

in Sec. 3.1.2, the Reynolds number does not affect the (dimensionless) zeroth-order

solution. Thus, if the rest of the governing parameters remain constant, then so does

the basic flow. One can vary the Reynolds number while keeping the rest of the gov-

erning parameters constant by changing just the two viscosities. Therefore, the same
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Figure 3.6: Maximum value of the growth factor, Ωmax
i , for an air rivulet surrounded

by ethanol.

basic flow becomes unstable when the gas rivulet (and the coflowing stream) vis-

cosity exceeds a certain critical value. The conclusion is somewhat counterintuitive:

despite its dissipative character, viscosity can destabilize the fluid configuration.

The fact that the growth rate (damping rate) can increase (decrease) as viscosity

increases (while both the basic flow and the rest of parameters remain constant) re-

sembles to a certain extent what happens in other systems. In axisymmetric liquid

bridges, the damping rate that characterizes the dominant mode appearing after the

eigenfrequency bifurcation also decreases as viscosity increases [87, 88]. In Blasius’

velocity profile over a flat plate, the viscosity effects on the perturbations are neces-
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Figure 3.7: Growth factor Ωi for an air rivulet surrounded by ethanol.

sary to explain the existence of growing modes in a convex velocity distribution [89].

As also occurs in our problem, the maximum value of the growth factor exhibits a

non-monotonic dependence with respect to the viscosity for a given base flow. In

fact, there is a minimum value of the Reynolds number below which the base flow

recovers the stability that characterizes the inviscid case. In all these cases, viscosity

appears to produce an extraction of energy from the basic motion in favor of the

disturbance.

Figure 3.8 shows the maximum value of the growth factor for an ethanol rivulet

surrounded by air. The results for θs0 = 80◦ are not presented because they corre-
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Figure 3.8: Maximum value of the growth factor, Ωmax
i , for a ethanol rivulet sur-

rounded by air.

spond to stable configurations. Interestingly, the stability condition for θs0 = 89◦

and 120◦ is the opposite to that of gaseous rivulets: there is a critical Reynolds

number above which the rivulet becomes unstable. The system stabilizes for suffi-

ciently low values of the Reynolds number, which is compatible with the predictions

obtained from the lubrication theory for liquid rivulets [79, 77, 78]. This conclusion

does not apply to the case θs0 = 89◦ and We = 0.04, where the rivulet was unstable

for all the Reynolds numbers considered.

3.2 Conclusions

To summarize, we have shown in this chapter the rich topology of the stability

map of a rivulet coflowing with a current in a quadrangular channel. The results

are qualitatively different from those of similar capillary systems, like cylindrical

jets. The contact-line-anchorage condition influences fundamentally the rivulet’s

stability. The most noticeable results were obtained for gaseous rivulets. In spite

of the dissipative character of viscosity, a basic flow can become unstable when
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that quantity exceeds a certain critical value, while the rest of governing parameters

remain constant. In fact, gaseous rivulets can be unstable even for θs0 < 90◦ in the

Stokes limit. Contrarily to what occurs in the static case, the stability of a flowing

liquid rivulet is not determined by its contact angle θs0 exclusively. The Reynolds

number plays a critical role too. Thus, unstable liquid rivulets with θs0 < 90◦ can

be found for large enough Reynolds numbers.

A novel microfluidic technique has been recently proposed to produce microbub-

bles from a gaseous rivulet injected through a T-junction into a microchannel trans-

porting a liquid current [10]. The rivulet breaks up downstream due to a capillary

pearling instability, which leads to a quasi-monodisperse collection of microbubbles

with diameters on the order of the width of the strip over which the rivulet formed.

Decreasing the bubble diameter well below that size would imply the production

of unstable rivulets with contact angles well below 90◦. This is an unrealistic task

because that occurs within a small parameter region.



Chapter 4

Dissolution of Micro-bubbles

4.1 Introduction

The transport in either closed channels[90] or in an open environment present radi-

cal differences not only in the obvious mechanical aspects, but most importantly –in

the context of our work– in the mass exchange processes between the bubble and

the environment. The dissolution of a gas bubble containing a single or multicom-

ponent mixture has been investigated by Chain-Nan Yung et al [91]. They assumed

that the gasses inside the bubble are uniform and ideal. Therefore, it will not be

necessary to solve coupled equations of Navier-Stokes inside and outside the bub-

ble. They integrated the continuity equation inside the bubble to get the velocity

of the interface. Chain solved Navier-Stokes equations and the convection-diffusion

equation by using finite difference procedure. Forward difference procedure was

used for the time march, while central difference method was used for the space

discretization. Up-wind difference was used for the convective term to overcome the

problems of nonlinearity. Fumio Takemura et al [15] studied the gas dissolution of a

50
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single rising bubble, they estimated numerically the drag coefficients and Sherwood

number. In the analysis, they considered that the flow effect inside the bubble is

negligible during the dissolution process, so that it is only needed to solve Navier-

Stokes equation and the convection-diffusion in surrounding atmosphere to model

the problem. They neglected the unsteady term and they used a K-K scheme which

is a third-order upwind scheme to differentiate the equations. Then, the set of linear

discretized equations, that were resulted, was solved using the SOR method.

Figure 1 shows a sketch of the fluid configuration considered in this work. A

spherical gas bubble with initial radius Ro is released in a still liquid bath of density

ρ and viscosity µ from the bottom of a tube filled with liquid (water). the height of

the liquid column is Ho and its free surface is open to air at atmospheric pressure

pa. The mass concentration of gas dissolved in the liquid bulk, c∞, is assumed to

be homogeneous. Denoting by χ the molar fraction of oxygen of the atmosphere at

the upper free surface of the liquid, the partial pressure of O2 in that location is

given by Dalton’s law, χpa and, consequently, the concentration c∞ is given by the

Henry’s law, c∞ = χpa/KH . KH is the Henry constant. Due to the buoyancy force,

the bubble rises at velocity V (t). Simultaneously, the bubble exchanges gas with the

liquid, and its radius R(t) varies on its way to the surface due to either the change of

liquid hydrostatic pressure and the dissolution of the gas in the surrounding liquid.

We assume that the surface tension γ between the gas and the liquid is large enough

to ensure that the bubble remains spherical during its ascent. i. e. γ >> ρgR2
o,

where g is the acceleration of gravity. The bubble radius for which buoyancy and

surface tension forces become comparable is Rc =
(

γ
4ρg

)1/2

. For an air bubble

in water, that gives Rc = 1.35 mm. In this work, we will always consider sub-

millimeter bubbles. Thus, the pressure inside the bubble, pg(t), is assumed nearly



52 4. Dissolution of Micro-bubbles

homogeneous, being its value given by the external liquid hydrostatic pressure and

the surface tension force, pg(t) = pa + ρgH(t) + 2γ/R(t) − pv(t) ≡ pb(t) − pv(t),

where pv(t) is the liquid vapor pressure at the local liquid temperature, assuming

that the kinetics of evaporation into the small bubble has characteristic times much

smaller than the hydrodynamic times (i.e., assuming that the gas in the bubble is

saturated with water vapor). pv(t) is given by:

pv(t) = (pa + ρgH(t) + 2γ/R(t)) exp

[∫ T

To

Lw(T )<−1T−2dT

]
(4.1)

where < is the universal gas constant, To the boiling temperature of the liquid at

pg(t), and T its local temperature. Lw is the latent heat of vaporization. The specific

systems onto which we will apply our model work at room temperature and thus,

for the case of water, one has that the molar fraction of liquid vapor in the bubble

is

pv(t)/(pa + ρgH(t) + 2γ/R(t)) ∼ exp
[
Lw<−1T−2(T − To)

]
. O(10−2). (4.2)

Assuming that the gas in the bubble has a dominant constituent, and that pa �

ρgH, one may compare surface tension overpressure and vapor pressure through the

non-dimensional number

ξ1 =
pa exp [Lw<−1T−2∆T ]

γ/Ro

(4.3)

where ∆T = To − T . This number defines a critical bubble radius R∗o, sufficiently

below (above) which surface tension overpressure (vapor pressure) dominates. For

water in atmospheric conditions, R∗o ' 0.05 mm. Next, the relative weight of the
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hydrostatic overpressure and the vapor pressure of the liquid can be expressed by

the non dimensional number

ξ2 =
ρgHo

pa exp [Lw<−1T−2∆T ]
(4.4)

The critical height sufficiently above (below) which hydrostatic pressure (vapor pres-

sure) dominates is given by H∗o =
pa exp[Lw<−1T−2∆T ]

ρg
. Our working conditions (air in

water, atmospheric pressure) provide H∗o ' 150mm. Thus, both the liquid surface

tension and vapor pressures can be neglected in the analysis for bubble sizes larger

than R∗o, and rising bubble columns sufficiently larger than H∗o .

We use spherical coordinates (r, θ, ϕ) centered in the bubble and aligned with

the vertical tube (see Fig.4.1 (b)) to analyze the problem. In this frame of ref-

erence the liquid far-velocity field corresponds to a uniformly descending velocity

V (t). Moreover, since we consider relatively small bubbles, in principle we assume

dominance of viscous forces, although we will not dismiss inertia. Thus, the problem

is axisymmetric as far as the Reynolds number Reo = 2
(

2ρ2gR3
o

µ2

)1/2

remains smaller

than about 102, and henceforth we drop the coordinate ϕ.

In this chapter, we propose a model made of a set of relatively general equations

and boundary conditions that are resolved by an efficient pseudospectral technique.

Then the experimental validation of our results is performed by the use of a setup

inspired in the previous mentioned Rising Bubble Apparatus without resorting to

pressurization. Finally, gathers results from both simulation and experiments to

show a satisfactory agreement, thus validating our approach.
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4.2 Problem formulation

4.2.1 Governing equations

Figure 4.1: Scheme of the problem.

To study the problem of the dissolved bubble rising in a still liquid, a derivation

of the differential form of continuity equation and momentum equation has been

made to get the final form of incompressible axisymmetric Navier-Stokes equations

for the liquid velocity v(r, θ; t) and dynamic pressure pd(r, θ; t) fields as follow:

The differential form of the continuity equation, for incompressible flow

∇ · v = 0, (4.5)

That writes in spherical coordinate as,
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ur +
2u

r
+
wθ
r

+
w cot θ

r
= 0, (4.6)

where subscripts r and θ denote the spatial derivatives with respect to r and with

respect to θ. The differential form of the momentum equation taking into account

the incompressible assumption and assuming constant viscosity is

ρ (vt + v · ∇v) = −∇pd + µ∇2v, (4.7)

In spherical coordinate for r-direction writes

ρ

(
ut + uur +

wuθ
r
− w2

r

)
= −pdr+µ

(
urr +

2ur
r

+
uθθ
r2

+
uθ cot θ

r2
− 2u

r2
− 2wθ

r2
− 2w cot θ

r2

)
,

(4.8)

For θ-direction writes,

ρ
(
wt + uwr +

wwθ
r

+
wu

r

)
= −1

r
pdθ+µ

(
wrr +

2wr
r

+
wθθ
r2

+
wθ cot θ

r2
+

2uθ
r2
− w

r2 sin2 θ

)
,

(4.9)

where subscript t denote the derivative with respect to the time. The incompressible

axisymmetric Navier-Stokes equations for the liquid velocity v(r, θ; t) and dynamic

pressure pd(r, θ; t) fields, are made dimensionless by using as characteristic quantities

Ro = R(0), and the terminal velocity for a bubble of radius Ro in the Stokes limit,

Uc = ρgR2
o/(3µ) are

ur +
2u

r
+
wθ
r

+
w cot θ

r
= 0, (4.10)
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ut+uur+
wuθ
r
−w

2

r
= −pdr+

1

Re

[
urr +

2ur
r

+
uθθ
r2

+
uθ cot θ

r2
− 2

(
u

r2
+
wθ
r2

+
w cot θ

r2

)]
,

(4.11)

wt+uwr+
wwθ
r
−wu

r
= −pdθ

r
+

1

Re

[
wrr +

2wr
r

+
wθθ
r2

+
wθ cot θ

r2
− w

r2 sin2 θ
+

2uθ
r2

]
,

(4.12)

where u/w is the radial/meridional velocity component and Re = ρUcRo/µ is the

Reynolds number. Note that the Stokes limit underestimates drag above Re ∼ 10,

and thus one should switch to a more realistic Reynolds as defined above, Reo, to

estimate the drag forces, where Reo = 241/2Re1/2. When Reo ∼ Re, both viscous

and inertia drag forces become comparable. The critical radius for which Reo = Re

is R∗∗o =
(

72µ
ρg

)1/3

. For an air bubble in water, this gives R∗∗ = 0.194 mm. Note that

the total pressure field, p, is the sum of the dynamic pressure and an hydrostatic

part, p = pd + ph, being

−∇ph + ρg − ρV̇ = 0, (4.13)

ph =

∫ (
ρg − ρV̇

)
dz, (4.14)

Thus, the dimensionless hydrostatic pressure is,

ph = C +
z

Fr
− V̇ z, (4.15)
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where C is a constant, z the vertical coordinate, Fr = U2
c /gRo the Froude number

and the symbol ˙ denotes time derivative. The last term in (4.15) is due to the use

of a non-inertial frame of reference.

We impose the equilibrium of tangential stress and the kinematic condition,

r
(w
r

)
r

+
uθ
r

= 0, (4.16)

wr −
w

r
+
uθ
r

= 0, (4.17)

where uθ = 0 and the velocity in r-direction is constant with respect to θ

As a consequences, the boundary condition at the bubble surface, r = R(t),

u = Ṙ, and wr − w/r = 0. (4.18)

Additionally, it has to be considered the convection-diffusion equation to get

c(r, θ, t) which is the volume fraction of dissolved gas around the bubble,

The differential form of the convection-diffusion equation,

ct + v · ∇c = D∇2c, (4.19)

being each term,

v · ∇c = ucr +
wcθ
r
, (4.20)

∇2c =
2cr
r

+ crr +
cθ cot θ

r2
+
cθθ
r2
, (4.21)
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So that,

ct + ucr + w
cθ
r

= D

(
crr +

2cr
r

+
cθθ
r2

+
cot θcθ
r2

)
, (4.22)

The dimensionless convection-difussion equation for the volume concentration in

dimensionless form has is,

Φt + uΦr + w
Φθ

r
=

1

Pe

(
Φrr +

2Φr

r
+

Φθθ

r2
+

cot θΦθ

r2

)
, (4.23)

where the dimensionless concentration of dissolved gas, Φ, is given by,

Φ =
c− c∞
cso − c∞

, (4.24)

being c(r, θ, t) the mass fraction of gas inside the liquid, cso = cs(0) the initial mass

concentration at the surface of the bubble, c∞ the initial volume concentration of

gas dissolved in the liquid and Pe = RoUc/D the Peclet number, where D is the

gas-liquid molecular diffusivity.

The Henry’s law yields the partial pressure of the gas in the liquid p(r, θ, t)

as a function of the concentration of gas c(r, θ, t), pp = KHc, where KH is the

Henry’s constant. Depending on the definition of the concentration used (i.e.mass

concentration, molar concentration, mass fraction, etc.), the physical dimensions of

the proportionality constant KH would vary accordingly. In the present work KH

has dimensions of pressure since the concentration is defined as the mass fraction.

The mass fraction of gas in the liquid at the bubble surface, cs(t), can be related to

the gas pressure inside the bubble as cs(t) = pg(t)/KH , and, in the liquid bulk, it

can be written χpa = KHc∞. Therefore, the surface condition for Φ can be written
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as,

Φs =
cs − c∞
cso − c∞

=
pg(t)− χpa
pg(0)− χpa

= α1 + α2H(t), (4.25)

where

α1 =
pa − χpa
pref

and α2 =
ρgRo

pref
, (4.26)

being pref = pg(0)− χpa.

Away from the bubble, r → ∞, the velocity matches the external field and the

volume fraction the bulk volume fraction,

lim
r→∞

u = V (t) cos θ, lim
r→∞

w = −V (t) sin θ and lim
r→∞

Φ = 0. (4.27)

At any time,V (t), is computed by the integration of the equation of motion for

the spherical bubble, which neglecting the mass of the gas inside the bubble writes

as follow,

4

3
πR3ρgV̇ = −4

3
πR3ρgg −Dh −Drag, (4.28)

where ρg is the density of the gas inside the bubble, Dh is the static part of the drag

and Drag it’s dynamic part,

Drag = 2πR2

∫ π

0

(−pdRe+ 2ur) cos θ sin θdθ . (4.29)

The static part is,

Dh =

∫
Σ

ph~ndσ =

∫
Ω

∇phdΩ, (4.30)
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Dh =

∫
Ω

(
−ρg + ρV̇

)
dΩ =

4

3
πR3

(
−ρg + ρV̇

)
, (4.31)

So,

4

3
πR3ρgV̇ =

4

3
πR3

(
ρg − ρgg − ρV̇

)
−Drag, (4.32)

4

3
πR3 (ρ+ ρg) V̇ =

4

3
πR3 (ρ− ρg) g −Drag, (4.33)

ρg is neglected since ρg � ρ, resulting,

4

3
πR3ρV̇ =

4

3
πR3ρg −Drag, (4.34)

Finally, the above equation in dimensionless form is,

V̇ =
1

Fr

(
1− Drag

4πR3

)
. (4.35)

By applying the mass balance relationship at the bubble-liquid interface[15],

d

dt

(
4

3
πR3ρg

)
= 2πR2ρlD

∫ π

0

cr sin θdθ, (4.36)

The dimensionless form of the previous equation is

2

3

Ro

to<T

(
3Ṙ (Φspref + p∞) +RΦ̇spref

)
=
cso − c∞
Ro

ρlD

∫ π

0

Φr(r = R, θ) sin θdθ,

(4.37)
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Or,

2

3pref

RoKHUc
ρlD<T

(
3Ṙ (Φspref + p∞) +RΦ̇spref

)
=

∫ π

0

Φr(r = R, θ) sin θdθ, (4.38)

finally, the above equation writes in dimensionless form as,

2

3
λ[3Ṙ(Φs + α3) +RΦ̇s] = −Sh, (4.39)

where λ = RoBUc/D , being B = KH/(ρl<T ) and α3 = pp∞
pref

. At each time the

Smith’ number Sh is computed numerically as

Sh = −
∫ π

0

Φr(r = R, θ) sin θdθ. (4.40)

The derivative of the pressure with respect to time Φ̇s = α2Ḣ results in,

3Ṙ(Φs + α3) + α2RḢ = −3Sh
2λ

, (4.41)

Taking into account equation (4.25) and the equation for the evolution of H,

Ḣ = −V, (4.42)

it is obtained the equation for the time evolution of the radius of the bubble

Ṙ =
−3/2λ−1Sh + α2RV

3(Φs + α3)
. (4.43)

Present problem must to be closed by the appropriate value of the partial pressure

of O2 at the upper water-air interface in the tube or, in other words, by the proper
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value of the molar fraction of oxygen at the upper interface, χ. If the surrounding

atmosphere is renovated with pure air,the value of χ should be close to 0.21 (i.e.,

pp∞ = 0.21pa). However, if the atmosphere is locally enriched by the liberation of

oxygen and the renovation is hampered, this value can easily raise, reaching nearly

pure oxygen atmosphere concentrations. Thus, when air renovation is not dominated

by horizontal convection or mixing, which is the case in the tube over the water-air

interface, the proper value would come by imposing a global mass balance between

the injected oxygen in the bath and that released by diffusion and convection in

vertical direction over the upper free surface.

4.2.2 Numerical procedure

Since the size of the bubble is changing with time, the following mapping was made

from the physical plane (r, θ, t) to the computational plane (η, ζ, τ),

η =
r

R(t)
, ζ = θ, τ = t. (4.44)

Due to the large differences between the Re and Pe numbers present in the

experiments (Re ∼ 50 and Pe ∼ 30000) two different computational domains will be

used to solve the velocity and pressure fields and the gas concentration in the liquid

at the corresponding boundary layers of characteristic width δc and δv, respectively

(see figure 4.1.b). For the mechanical problem it is sufficient to truncate the radial

domain to an external radius, RV (t) = 30R(t) (ηv = 30), while for solving the

concentration boundary layer the domain is truncated at a much closer external

radius, Rc(t) = 200Pe−0.5R(t) (ηc = 200Pe−0.5).

The time procedure is described next. The time domain is discretized using a
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fixed time step dτ . At given time, τN = Ndτ , the terminal velocity, V N , the height

of the bubble, HN and the radius of the bubble, RN are obtained from previous

times, τN−1 and τN−2, by discretizing in time equations (4.35), (4.42) and (4.43) at

time τN−1, using 2nd order central finite differences

V N = V N−2 + 2dτ
1

Fr

(
1− DragN−1

4π(RN−1)3

)
, (4.45)

HN = HN−2 − 2dτV N−1, (4.46)

RN = RN−2 + 2dτ
−3/2λ−1ShN−1 − α2RV

N−1

3(ΦN−1
s + α4)− α3/RN−1

. (4.47)

By the other hand, for the computation of the time evolution of Navier-Stokes

equations (4.10)-(4.12) and the convection-diffusion equation (4.23), a mixed implicit-

explicit second order projection scheme based on backwards differentiation is employed.[92]

Spatial discretization in the (η, ζ) semiplanes employs nη Chebyshev spectral collo-

cation points in η, and nζ points in the ζ direction.

These schemes lead to the following set of Helmholtz-type equations:

(
3Re

2dτ
− 1

R2

∂2

∂η2
− 2

ηR2

∂

∂η
+

2

η2R2

)
ũN − 1

η2R2

(
∂2

∂ζ2
+ cotθ

∂

∂ζ

)
ũN = fu(4.48)(

3Re

2dτ
− 1

R2

∂2

∂η2
− 2

ηR2

∂

∂η

)
w̃N − 1

η2R2

(
∂2

∂ζ2
+ cotζ

∂

∂ζ
+

1

sin2ζ

)
w̃N = fw(4.49)(

3Pe

2dτ
− 1

R2

∂2

∂η2
− 2

ηR2

∂

∂η

)
c̃N − 1

η2R2

(
∂2

∂ζ2
+ cotζ

∂

∂ζ

)
c̃N = fc(4.50)
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where,

fu = Re

(
−2convuN−1 + convuN−2 − 1

R

∂p

∂η
+

4uN−1 − uN−2

2dτ

)
, (4.51)

fw = Re

(
−2convwN−1 + convwN−2 − 1

ηR

∂p

∂ζ
+

4wN−1 − wN−2

2dτ

)
, (4.52)

fc = Pe

(
−2convcN−1 + convcN−2 +

4cN−1 − cN−2

2dτ

)
, (4.53)

and,

convu =
1

R

(
u− ηṘ

) ∂u
∂η

+
w

ηR

(
∂u

∂ζ
− w

)
+

2

η2R2Re

(
∂w

∂ζ
+ wcotζ

)
(4.54)

convw =
1

R

(
u− ηṘ

) ∂w
∂η

+
w

ηR

(
∂w

∂ζ
+ u

)
− 2

η2R2Re

∂u

∂ζ
. (4.55)

convc =
1

R

(
u− ηṘ

) ∂c
∂η

+
w

ηR

∂c

∂ζ
. (4.56)

The previous equations is used to get the predicted values of velocity components

and concentration, where the symbol ˜ denotes predicted value, while to get the

pressure corrections, the poisson equation is discretized as follows:

(
1

R2

∂2

∂η2
+

2

ηR2

∂

∂η

)
p̃N +

1

η2R2

(
∂2

∂ζ2
+ cotζ

∂

∂ζ

)
p̃N =

1

2dτ

(
1

ηR

∂w̃N

∂ζ
+

1

R

∂ũN

∂η
+

2

ηR
ũN +

w̃N

ηR
cotζ

)
.

(4.57)

This approach allows to use the matrix diagonalization method [93], whose com-

putational cost is of order nη × nζ ×min(nη, nζ), to solve the four Helmholtz-type

equations (4.48), (4.49), (4.50) and (4.57) resulting from the momentum and con-

centration equations and the Poisson equation needed to calculate the pressure cor-
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Figure 4.2: Flow chart of the numerical scheme.

rections. The nonlinear terms are evaluated using a pseudospectral method.[94] At

any time, the required velocity field in the convective term of the discretized concen-

tration equation, is obtained by interpolating the velocity field from the mechanical

domain to the concentration domain using a second order interpolation operator

along the η coordinate.

After getting the predicted values, the real value of (ut+1, wt+1, ct+1, pt+1) can be

obtained by solving the additional following equations:
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pN = p̃N + pN−1. (4.58)

uN = ũN − 2dτ

R

∂p̃N

∂η
. (4.59)

wN = w̃N − 2dτ

ηR

∂p̃N

∂ζ
. (4.60)

cN = c̃N . (4.61)

A flow chart of the numerical scheme used in the present work is depicted in

Fig.4.2.

Note that both the spectral resolution used and the two different computational

domains considered, allow us to use a much less number of grid points that using

standards finite-differences in a single mesh. Therefore, we have carried out the

numerical simulations in a grid with nη = 60 and nζ = 25 for the cases presented

in this study. The time step employed in the simulations was ∆τ = 0.005, since

no significant differences in the temporal evolution of the flow were found by using

smaller time steps.

4.3 Experimental setup

4.3.1 Apparatus Configuration

It has been prepared an experimental setup in order to validate the numerical code.

The experimental setup is sketched in figure 4.3. Bubbles of oxygen, liberated at the

bottom of a test section filled with quiescent distilled water, ascends freely through

the test section. The test section consists in a tube of 9 mm diameter and 116 cm



4.3. Experimental setup 67 

Distilled water from the 
pump

 

Oxygen from the pressure 
regulator

 

Optical Fiber

 

High Speed Video 
Camera

 

Optical Lenses

 
Z-axis Stage

 

3D Micrometer 
Screw

 

Bubble 
Generator

 
Test Section

 

Optical Table

 

Bubble

 

Figure 4.3: Configuration of the experiment.

long being the upper extreme of the tube open to the air. The bubble generator is

a microfluidic flow-focusing device (Ingeniatrics Technologies). In the present flow

focusing configuration (shown in figure 4.4), a focusing stream of distilled water is

created by means a syringe pump (Harvard Apparatus PHD4400). The focusing

stream pinches off the gas meniscus giving up to the oxygen bubbles. The size of

the bubbles and its frequency of formation is controlled by a proper combination of

the flowrate of the focusing water and pressure of the gas in the meniscus. To this

end, the pressure of the gas is controlled by means of a pressure regulator (Swagelok

KLF) and a digital manometer (Digitron 2003P).
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Figure 4.4: The microfluidic flow-focusing device.

The size of the bubbles is determined by analyzing its digital images. To this

end, images of the bubbles are acquired using a high-speed video camera (Redlake

MotionPro X4) equipped with a magnification zoom lens. The camera could be

displaced both horizontally and vertically using a triaxial translation stage to focus

the bubbles being them illuminated from the back by a cool white light provided by

an optical fiber (Schott KL2500 LCD). The test section is supported by a z-axis stage

in order to select the height’s position of recording. Typical images of the bubbles

at different height are shown in figure 4.5. The bubbles, although spherical, appears

elliptical in the images due to the distortion created by the cylindrical geometry of

the test section. So, the radius of the droplet is determined by measuring in the

vertical direction. Pictures of 512x512 pixels at a rate of 5130 frames per second

are recorded. This rate of recording suffices to avoid blurring images of the bubbles.

Since the bubble generator does not produce perfectly monodisperse bubbles, for

each height a calibration process has been made and 20 measurements of the bubble’s

diameter has been taken for each test section and operating conditions. We have

assessed the spherical character of the bubbles in the present experimental conditions

by using a square glass test chamber for some experimental runs under the same
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Figure 4.5: Pictures of the bubbles at different height.

operating conditions as those of the more systematic study. In these selected runs,

in which any optical distortion is avoided, the maximum discrepancy between the

height and the width of the bubble as measured was 3.96 µm for a diameter of 468

µm.

4.3.2 Objective and Procedures

The objective of the experiment is to relate the size of the bubble with the distance

to the the free surface,i.e. the height. This relationship depends on the properties

of the quiescent liquid bath. So the fist step of the experiment is to characterize

the distilled water bath. To this end, prior to refill the test section, the water is

agitated (with an agitator SBS ACS-161) to degas. Then, using oxygen concentra-

tion meter (A.Lab 821), it is measured the amount of dissolved oxygen in the the



70 4. Dissolution of Micro-bubbles

water. Additionally, viscosity and surface tension are measured by means of a ro-

tating viscometer (Brookfield DV-E) and a plate tensiometer (Krüss), respectively.

Two different series has been experimented being the concentrations of oxygen of

6.15 mg/L and 8.13 mg/L, respectively. In table 4.1 are summarized the conditions

and the relevant physical parameters of the two series. Table 4.1 shows the value B

which is KH/(ρR
∗T ), where KH is Henry’s constant and R∗ is the gas constant.

Table 4.1: Experimental conditions

Experiments I II

Ho (mm) 825 825

p∞ (KPa) 25 37.3

pa (KPa) 101.3 101.3

Ro (mm) 0.269 0.21

µ (cP ) 1.1 1.1

ρ (kg/m3) 997 997

γ (mN/m) 0.072 0.07

B 52.3 53.2

T (K) 297.15 298.15

4.3.3 Diffusivity, Henry’s constant and the Partial pressure

To calculate the diffusivity we used the following correlation[95] based on Stokes-

Einsten equation,

DO2−H2O = 7.4 10−8T (ΨH2OMH2O)0.5

µ(VO2)
0.6

, (4.62)

where T is the temperature in Kelvin, ΨH2O is an association parameter equal to

2.26 for water [96], MH2O is the molecular weight of water, µ is the viscosity in
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centipoise and VO2 is the molar volume of the oxygen. The Henry’s constant is

determined by means of the Van’t Hoff equation,

KH(T ) = KH(298) exp

[
−A

(
1

T
− 1

298

)]
(4.63)

where Henry’s constant for oxygen in water at 298 K is equal to 2.43x109Pa (equiv-

alent to 769.23 L.atm
mole

) and A is a constant equal to 1700 for oxygen. Finally, to set

the value of χ we have to realize that the upper interface is inside the test tube,

and that an open gas column about 26cm height in the tube stands over that inter-

face,the distribution of the partial pressure of oxygen in that column is not given by

its value in the open atmosphere(i.e., pp∞(0) = 0.21pa). The reason is that a contin-

uous flow rate QO2 of oxygen is fed through the water-air interface and discharged

at the upper open end of the test tube. From a global balance(see Appendix A) we

have calculated that the value of χ is approximately 0.5 with errors smaller than

about 20%.

4.4 Results and conclusions

The dimensionless parameters required to carry out the numerical simulations for

both series of experiments are summarized in table 4.2. It can be seen from the

values in the table that in both cases the Reynolds numbers is too large to fit well

the Stokes law for the drag of a sphere, (what would avoid the numerical resolution

of equations (4.10), (4.11), (4.12) and (4.23)). However, the Re numbers are small

enough to ensure that the fluid motion remains axisymmetric for both experiments.

By the other hand, the large value of the Peclet numbers justify the employ of two
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different meshes for the mechanical and the concentration problem. Note that in

both experimental series, the Weber number ,We = ρlU
2
cRo/γ, is sufficiently small

(We < 1) to assume that the bubble remains perfectly spherical.

Table 4.2: Dimensionless parameters

Experiment Re Pe Fr λ α1 α2 α3 Ho/Ro

I 52.3 2.9 104 17.4 1.52 106 0.90 3.1 10−5 0.294 3070

II 25 1.4 104 8.34 7.36 105 0.88 2.8 10−5 0.514 3930

Numerical simulations are started at the first position in the tank where we are

able to measure the bubble radius Ro. In that starting point it is assumed that the

velocity of the bubble is zero. However, in that position, which is about 20 cm above

the position where the bubble is released, the bubble has already reached a non-zero

terminal velocity which changes slowly as the radius of the bubble decreases. In our

problem there are two different characteristic time scales, the time required for the

bubble to reach a quasi terminal velocity, tT , and the time required to appreciate

changes in the bubble radius, tR, being very dissimilar, tR � tT . Therefore, the

value of the initial velocity of the bubble is not critical for the simulations. That

both times are quite different for the conditions considered here it is illustrated in

figure (4.6) where the numerical time evolution of the velocity of the bubble for the

experimental case I is plotted. In figure (4.6a) it can be seen that the bubble starting

from the rest reaches a cuasi-terminal velocity for t = tT ∼ 0.1s being negligible the

change of the radius of the bubble in that period, R(tT ) ∼ Ro. In figure (4.6b) it can

be seen the latter slowly evolution of the velocity once the radius of the bubble start

to decreases. The numerical simulations allow to investigate in great detail how is

the evolution of the flow and the concentration around the sphere at the beginning
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of the process before the bubble reaches the quasi-terminal velocity. For example,

figure (4.7) show contours of the dynamic pressure of the liquid around the bubble

at different times. It can be seen how during this short period of time the change in

the bubble radius is negligible. On the other hand, the contour of the concentration

depicted in figure (4.8) show the development of a quite thin concentration boundary

layer around the sphere with its corresponding wake. The correct computation of

this boundary layer is critical to get an accurate value of the Smith’ number Sh

(equation 4.39) and, consequently, to get a good estimation of the change of the

bubble radius with time (equation 4.43).

In our experimental setup the positions at which the radius of the bubble are

measured are fixed. Therefore, in other to compare the experimental results and

the numerical ones, it is better to plot the radius of the bubble as a function of

the bubble’s deep instead of plotting the radius versus the time. Note that from a

numerical point of view, the time and the bubble’s deep are relate through equation

(4.42). The results for both case are shown in in figure (4.9). The solid lines

correspond to the numerical prediction while the solid (open) symbols correspond

to the experimental mean (standard deviation) values of the 20 series of experimental

measurements.

To conclude, a tracking-interface numerical method was used to achieve this

work. The method has been applied to study the isothermal dissolution of small

single rising bubble. The key elements of the method are the use of a frame of

reference moving with the bubble and the application of different meshes to solve the

mechanical and mass-diffusion problems. An experiment of a small oxygen bubble

rising in water has been carried out with remarkable agreement to the numerical

model.
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Figure 4.6: Time evolution of the velocity of the bubble for experimental series I:
a) Short time evolution (time scale to reach a quasi-terminal velocity tT ); b) Long
time evolution (time scale tR)
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Figure 4.7: Pressure distribution around the bubble for case I at different times; a)
t=0.0122 s, b) t=0.0245 s, c) t=0.0612 s and d) t=0.1224 s.
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Figure 4.8: Concentration contours around the bubble for case I at different times;
a) t=0.0122 s, b) t=0.0245 s, c) t=0.0612 s and d) t=0.1224 s.
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Figure 4.9: Radius of the bubble as a function of the deep for the two experiments,
the solid lines correspond to the simulations results while the closed (open) circles
correspond with the mean (standard deviation) experimental values.



Chapter 5

Electrical disruption of pendant

liquid drops

5.1 Introduction

The study of steady cone-jets of liquids in air re-emerged vigorously in the decade

of the 90 as a result of the important findings of Fenn et al [97]. In the wake of

this impulse, Barrero et al. [98] showed experimentally that, the electrodispersion

of conducting liquids into non-conducting liquids in the steady cone-jet mode is

possible. The cone-jet, understood as a technique to produce a continuous stream

of monodisperse micro(nano) droplet, broaden ,therefore, its use to new fields of

interest[99]. For example, liquid-liquid cone-jet electrospraying, in accordance to

low surface tension values in liquid-liquid interfaces, requires lower states of electri-

fication to be formed being, therefore, less hazardous the handling of biological or

biomedical agents[100].

77
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Recent advances in analytical chemistry pursue minimal sample consumption by

restricting the analysis to just the first droplets (or droplets) selectively withdrawn

by electrical means[101]. The same selective and precise “on-demand” manipulation

by electrical means is also an objective in microfluidic liquid-liquid devices[102]. It is

worth, therefore, to gain a deeper insight on the physic of formation of this primary

electrically generated droplet. Previous works has been conducted to study related

issues. The tip streaming arising in low-conductivity drops after a step change in

the electric field magnitude in a dynamically neutral atmosphere has been examined

both numerically[103] and experimentally [104, 105, 106, 107, 103]. The size and

charge of this primary droplet generated in air has been also object of interest.

Numerical[108, 109] and experimental[109] studies have been used to derive scaling

laws for this primary electrified droplet.

In the present chapter we aim to study both numerically and experimentally

the dynamic of suddenly electrified droplets focusing in the dynamical role played

by an non-negligible outer incompressible atmosphere. It is well known that the

applied electric field plays a major role in the dynamics[110]. Not surprisingly,

after the sudden onset of a subcritical electric field the more elongated equilibrium

position is reached after the oscillations have died out. The supercritical dynamic is

more rich and varied. Beside to the well-known tip streaming mode appears others

modes shown in figure 5.3 like the splitting mode and the splashing mode. The

transition from the splitting mode to the tip streaming in the case of a conducting

droplet of lower viscosity than the outer dielectric medium was analyzed in previous

works[111, 112]. In the present chapter we will focus in characterizing the splashing

mode.
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Figure 5.1: Sketch of the problem. The red box shows the computational domain.

5.2 Formulation of the problem

The geometrical and electrical configuration considered in this work is sketched in

Fig. 5.1. A certain liquid droplet of volume Ω pends of a infinity plate being the rim

of the droplet anchored at a distant R of the axis of symmetry. A second infinity

plate is faced in parallel at the distance H. The gap between these parallel plates is

filled with a second fluid immiscible with the droplet. The droplet fluid properties

are the density, ρi, viscosity µi, electrical conductivity κi and permittivity εi while

the corresponding properties for the surrounding phase are formed by substituting

the subscript “i” by “o”. Both fluids are assumed to be incompressible but the

surrounding fluid is not conducting (κo = 0). The surface tension between fluids is

denoted by γ.

At a certain instant a drop of voltage, V , (or, equivalently, an electric field

Eo = V/H) is onset between the plates. The dynamical behaviour of the droplet
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after the sudden electrification is determined by the magnitude of Eo.

5.2.1 Numerical model

5.2.1.1 Governing equations

Equations of the model below are written in dimensionless form using as character-

istic quantities the outer permittivity εo, the rim radius R, the surface tension γ

and the inner density, ρi. We use the EHD-Volume of Fluid (VoF) solver developed

by Lopez-Herrera et al.[113] for the GERRIS platform[114]. This solver has been

thoroughly tested in previous works[115, 103, 109]. Since VoF method treats immis-

cible fluids as a single one with spatially varying properties through the interface,

the governing equations for both fluids writes,

∇ · v = 0 , (5.1)

ρ̃
(v

t
+ v · ∇v

)
= −∇p+∇·

[
µ̃
(
∇v +∇vT

)]
+∇·

[
ε̃

(
EE− E · E

2
I
)]

+Box+δsζn

(5.2)

and

∇ · (ε̃∇ϕ) = −q with E = −∇ϕ , (5.3)

where v(x, t), p(x, t) and ϕ(x, t) are the velocity field, pressure distribution and

electric potential in the computational domain, respectively. E is naturally the

electric field. The gravitational forces, orientated in direction x, results, after non-

adimensionalization, in the Bond number Bo = ρigR
2/γ. The third term in the

r.h.s of Eq. (5.2) corresponds to the electric stresses and results of applying the

divergence of the Maxwell stress tensor where I denotes the unity tensor.
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The last term in the momentum equation (5.2) corresponds to the surface ten-

sion term that acts only at the interface (δs is the Dirac delta). n denotes the

unitary vector normal to the interface being ζ the interface curvature. q(x, t) is the

dimensionless volume charge density that obeys to the conservation equation,

q

t
+∇ · (qv) = ∇ · (−κ̃E) . (5.4)

Observe that q has only sense in the inner conducting fluid phase being strictly zero

in the outer fluid phase given its dielectric (non-conducting) nature.

ρ̃(x, t), µ̃(x, t), ε̃(x, t) and κ̃(x, t) stand for the spatial varying dimensionless fluid

properties, density, viscosity, electrical permittivity and conductivity, respectively,

ρ̃ = Ψ + ρr(1−Ψ) , (5.5)

µ̃ = Cµ(Ψ + µr(1−Ψ)) , (5.6)

1

ε̃
=

1

βΨ
+

1

1−Ψ
, (5.7)

and

κ̃ = αβΨ . (5.8)

being ρr and µr the outer to inner ratio of densities and viscosities, respectively,

ρr = ρo/ρi and µr = µo/µi. Cµ is the Ohnesorge number based on the inner fluid

properties, Cµ = µi/(ρiRγ)1/2. β is the relative permittivity, β = εi/εo. α is the

relaxation parameter[116], α = (κ2R3ρi/γε
2
i )

1/2. Note that α coincides with the ratio

of the capillary time tc = (R3ρi/γ)1/2 to the electrical relaxation time te = εi/κi.

Finally, Ψ(x, t) is the volume fraction that serves to track the interface position.
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Ψ(x, t) is governed by the equation,

Ψ

t
+∇ · (Ψv) = 0 . (5.9)

5.2.1.2 Computational domain and boundary conditions

Profiting of the axisymmetric character of the problem, the computational domain

has been restricted to the red rectangle (H/R)× (R∞/R) shown in Fig. 5.1. Trying

to reproduce as much as possible the experimental setup described below we have set

H/R to 4.29 and R∞/R has been fixed to 8.6. We have checked that the enlargement

of the computational domain (R∞ > 8.6R) does not have sense since the dynamic

of the droplet is unaffected. The degree of the electrification level is measured by

the dimensionless electric field, χ given by,

χ =

(
RεoE

2
o

γ

)1/2

, (5.10)

Therefore, this electrification level is obtained by imposing a constant dimensionless

voltage to the upper plate equal to ϕ(0, r; t) = Hχ/R while the downstream plate

is kept grounded.

Far away of the droplet, at the boundary r = R∞/R, the voltage drop is assumed

to be linear and the fluid velocity is considered negligible.

Known the density of the fluids, ρo and ρi, and the volume of the inner fluid

Ω, it is calculated the dimensionless position of the interface, r = Z(x), imposing

equilibrium between gravitational/buoyacy forces and surface tension forces and the



5.2. Formulation of the problem 83

conservation of the liquid volume,i. e.

Borel x+
1√

1 + Z ′2

(
1

Z
− Z ′′

1 + Z ′2

)
= cte together with

3

2

∫
Z2(x) dx =

Ω

(2πR3/3)
= ϑ

(5.11)

where the prime denotes differentiation respect x and Bor is the reduced Bond

number Borel = (ρi − ρo)gR
2/γ and ϑ is the dimensionless volume. This calcu-

lated dimensionless interface position, Z(x) is used as initial condition for the VoF

calculations.

5.2.2 Experimental setup
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OpticalEFiber

High Speed VideoECamera
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OpticalETable

ConductingEliquid

Figure 5.2: Experimental setup with detail of the fluid box.

A series of experiments were done by using the apparatus illustrated in figure
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5.2. The setup consists of a polymethyl methacrylate box with glass windows at

sides. Two parallel circular electrodes of radius Rplate = 4.5cm, made of brass, were

placed at the top and the bottom inside the box. The distance between the parallel

plates is H = 10.3mm. At the center of the upper electrode, a brass disk of radius

R = 2.4mm and thickness h = 0.8mm was attached (depicted in green in the detail

of figure 5.2). This brass disk serves to provide a cleared edge where the triple

contact line could anchor. A circular orifice of radius r = 0.1mm was made at the

center of the disk and the upper electrode. A syringe pump (Harvard Apparatus

PHD4400) was used to introduce the conducting liquid through the orifice. The

upper electrode was connected to DC high voltage power supply (Bertan 205A-10R)

and the lower electrode was connected to the ground. The power supply can apply

a voltage difference of 10 kVolts. Images were captured at 16000 frame per second

by using high speed video camera (Shimadzu HPV-2) with an optical magnification

lens (Optem 301200). Another camera (Redlake MotionPro X4), perpendicular to

the first camera, with an optical magnification lens (Navitar 1-60123), was used also

to acquire images at 5130 frame per second from another direction (not shown in

figure 5.2). Double on/off switch was used to synchronize between applying the

voltage and recording the images. The complete droplet ejection lasts for about

10 microseconds since the onset of the voltage. Both cameras could be displaced

both horizontally and vertically using a triaxial translation stage to focus on the

drop. These are back-illuminated by a cool white light provided by an optical fiber

(Schott KL2500 LCD) and a light source (WalimexPro VC-600) for both cameras

respectively. A diffuser was placed between the optical fiber and the box to provide

uniform lighting. All the equipment described was mounted on an optical table.

In each experiment, the conducting liquid was injected through the orifice to
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form the pendant drop with the desired volume. The dielectric liquid was poured

into the box to surround the pendent drop. Both cameras were used in order to make

sure that the drop anchored ideally with the disk edge. We wait for 2 min. to let

the drop relax. Then, after switching on the power supply, the double on/off switch

was turned on to apply the desired voltage and to acquire images at the same time.

The first camera (Shimadzu HPV-2) was used to acquire images of the jet neck with

a frame covering an area of about 3.9 × 3.25mm2. The second camera (Redlake

MotionPro X4) was used to capture images of the jet nucleation position with a

frame covering an area of about 5.88 × 5.88mm2. To calculate the initial volume

of the drop, jet neck and the jet nucleation position, the images was processed to

detect the free surface contour by using a commercial program (ImageJ). In this

study, pure water, a mixture of methanol+ 5% wt pure water and ethylene glycol

were used as conducting liquids. While, Silicone oils of 5, 20, 100 and 10000 cSt were

used as Dielectric liquids. The interfacial tension between liquids that were used

in the different experiments with their corresponding temperature are indicated in

table 5.1. The rest of physical properties are listed in table 5.2.

Table 5.1: Interfacial tension

Conducting Liquid Dielectric Liquid γ (mN/m) T (K)

Methanol+5% wt water mix. Silicone oil(5cSt) 2.69 292

Pure water Silicone oil(5cSt) 46 289

Pure water Silicone oil(20cSt) 46 289

Pure water Silicone oil(100cSt) 46.2 289.4

The position of the interface has been determined with an subpixel image pro-

cessing technique[117, 118]. Briefly, the technique consists in two-stage procedure;
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in the first stage, a set of pixels probably pertaining to the contour are selected. In

the second stage, the accuracy of the detected contours was improved to the sub-

pixel level by analyzing the gray intensity profile along the direction normal to the

contour.

Table 5.2: Physical properties

Liquid ρ (kg/m3) µ (cP ) K (S/m) β

Methanol+5% wt water mix. 804 1.038 9.05x 10−5 –

Pure water 997 1.33 1.8x 10−5 –

Ethylene glycol 1110 21 3.1x 10−5 –

Silicone oil(5cSt) 905.2 5.37 – 2.59

Silicone oil(20cSt) 947.15 18.9 – 2.68

Silicone oil(100cSt) 957.12 95.7 – 2.8

Silicone oil(10000cSt) 973.9 9739.2 – 2.8

5.3 Results and discussion

Basaran & Scriven[110] determined that only below a certain threshold value of

the electric field an equilibrium position is possible. In effect, subcritical value of

electric field results in more elongated equilibrium position that it is reached after

a damped oscillation[119, 120]. On the other hand, in air, with supercritical values,

the droplet goes unstable in a two stages process[103]: (i) a quasi-equilibrium slow

stretching of the droplet in which electric force barely overcome capillary forces (ii)

a very fast jetting stage where a microjet is emitted. However, if the outer medium

is not, from the dynamic point of view, negligible, the droplet dynamic can be more

complex. Beside to the tip streaming mode appears others modes shown in figure
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5.3 like the splitting mode and the splashing mode. We have not pursued in the

present work an exhaustive parametrical mapping of the different modes. We have

observed, however, that the onset of the different breakup modes depends mainly

on the viscosity of the outer medium. Tip streaming regime typically appears if the

viscosity of outer medium is low. It will appear with whipping if the inner medium

is very viscous. The splashing mode is predominant for moderate outer viscosity

(for the oils tested: 5 and 20 cSt). The splitting mode is characteristic of very

high viscosity (10000 cSt). Interestingly, for intermediate viscosities (100 cSt in our

case), the observed mode is, often, neither a pure splitting mode nor the splashing

mode but a mix of both. The droplet seems to break in the splitting mode but

before the pinching were completed, the daughter drop breaks in a splashing mode.

We will focus in next sections first, briefly, in the subcritical regime and later, in

the splashing mode.
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500 µm 

A 

B 

C 

D 

E 

whipping 

1st splash 2nd splash 

Figure 5.3: Different modes of droplet disruption: (A) and (B) tip streaming mode

without and with whipping instability. respectively; (C) splashing mode, (D) split-

splashing mode and (E) splitting mode.
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5.3.1 Subcritical regime
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Figure 5.4: Temporal evolution of the dimensionless apex position Z(t) for ϑ = 1.26,

Cµ = 4.1× 10−3, Borel = 2.254, χ = 1.46, ρr = 0.912 , µr = 4.54. The symbols and

solid line are the experimental and the numerical results, respectively.

The liquid flow in the equipotential drop is originated by the appearance of electric

stresses at the free surface. Both the electric charge density and the electric stress

reach their maximum values at the apex. The electric stress is balanced by the

hydrostatic and capillary pressures (viscous stresses normal to the free surface can

be generally neglected). Therefore, the reduced pressure decreases at the apex,
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and the liquid is suctioned towards that region. This liquid motion stretches the

drop, increasing the free surface curvature at the apex. Consequently, a restoring

capillary force appears in that region. If the electric stresses are not high enough to

overcome the surface tension force, then the drop reaches a new equilibrium state. In

principle, the new equilibrium shape could be reached through either an overdamped

extensional deformation or the damping of free surface oscillations. Figure 5.4 shows

the temporal evolution of the apex position,Zapex, of a subcritical drop.
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5.3.2 Supercritical regime: The splashing mode
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Figure 5.5: The droplet splashing at different stages. The right column shows the

numerical predictions. Green lines correspond to electric isopotential lines. Dimen-

sionless values for this case are: ϑ = 0.64, Cµ = 4.1 × 10−3, χ = 0.39, ρr = 0.908

and µr = 4.04.
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Different instants of a droplet breaking in the splashing mode are shown in figure

5.5. The splashing mode is characterized by two stages: (i) the droplet is slowly

stretched in axial direction up to a certain neck radius, dn (and length, Ls) is reached

(ii) the front of the droplet, then, expands faster in radial direction that in axial

direction forming a jellyfish splashing structure. The characteristic time for both

stage is similar. Interestingly, in some cases this “jellyfish” splashing structure is

repeated in cascade (see figure 5.3, C).

At first glance, the early stage of axial stretching is common in all modes. This

first stage is essentially the result of the competition between the electric pressure

and surface tension being the drop regarded as equipotential. However, the sec-

ond stage is radically different in tip-streaming mode and splashing mode from the

electrical point of view. While the jetting in the tip streaming can be seen as a

consequence of the finite conductivity of the fluid[121, 103], the splashing occurs

in times of the order of the capillary time behaving the fluid as equipotential since

electric relaxation time is much shorter. Consequently, the conductivity and permit-

tivity of the inner fluid are unimportant in the splashing mode. We have assessed

the conducting character of the fluid by means of the numerical computations (see

electric isopotential lines in figure 5.5).
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Figure 5.6: Effect of droplet volume on splashing size: (A) Ω = 17.77mm3 (B)

Ω = 21.28mm3 (C) Ω = 25.35mm3.
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Figure 5.7: Neck diameter Vs. droplet volume for voltage 2100, 2300 and 2500.

Some other differences can be pointed out between the modes tip-streaming and

splashing. Tip streaming is of local (and universal) nature. The ejected jet obeys to

universal scaling laws based on the liquid properties[108, 103, 109] being independent

of large scale variables as the applied voltage, the droplet radius or the particular

geometrical configuration used (pendant from a plate, levitating or pending from a

needle, for example). On the contrary we found that either the applied voltage and

the droplet volume affect the form of the splashing. This effect can be seen clearly

in figure 5.6. Also, figure 5.7 shows the change of the neck diameter dn with the

droplet volume Ω and the applied voltage V . These large scale variables have the

same effect on other modes (Split-Splashing and Splitting).
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Figure 5.8: Non dimensional splash length, Ls/R, versus: (A) The dimensionless

volume, ϑ, (B) the dimensionless neck diameter, dn/R. Experiments shown cover

two orders of magnitude of the viscosity ratio, µr ∈ [0.78, 71.96].

Moreover some interesting remarks arise from experimental data. In figure 5.8 we

plot the dimensionless splash length, Ls/R, as a function of the dimensionless volume

ϑ (subplot A). In subplot B it is explored the relationship between the splash length

and the neck radius. A first aspect worth to be noted is the negligible influence of the

outer viscosity in the splashing process. The reason for this negligible effect of the

viscosity ratio can be attributed to the relatively large characteristic hydrodynamic

time of the process. Despite the high values of the outer viscosity the splashing

developing is slow enough to have unimportant outer viscosity forces compared to

electric or capillary ones. The effect of the outer medium is, some how, paradoxical,

the splashing mode develops because the outer medium is not negligible from the

dynamic point of view, but experiments shows that the outer viscosity is trivial in

the formation of the splashing. On the contrary, it would expect that the density

ratio ρr were significant in the process. However, it is difficult to verify this point
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experimentally since the density ratio can not be varied too much with the present

experimental setup. It seems also to exist a decoupling between the splashing length

and the neck radius (see figure 5.8, subplot B). Summarizing, experiments suggest

that the splash length is an only function of the dimensionless volume ϑ.

The dimensionless neck radius has to be, necessarily, a function of all the dimen-

sionless parameters governing the problem,

dn
R

= f(ϑ, χ, Cµ, ρr, µr, β, α,H/R), i.e. (5.12)

the dimensionless volume, electrification level, inner viscosity; relative density, vis-

cosity and permittivity; electrical conductivity and distance between plates, respec-

tively. Since we claim (supported by the numerical simulations) that the droplet

can be assumed equipotential along the first stages of the splashing, either the rela-

tive electrical permittivity β and dimensionless conductivity, α, are irrelevant. Also,

since the experimental setup is fixed and the ratio of densities in our experiments

are very close to the unity either the width of the gap H/R and the relative density

can be also safely dismissed in relation (5.12). Finally, we assume that the relative

viscosity µr, as in the case of the splash length, is negligible. Thus, the relation

(5.12) reduces to,

dn
R
' f(ϑ, χ, Cµ) = f(ϑ1/3χ2/3C−1/5

µ ). (5.13)

In the above functional relationship (5.13) we have assumed that the dimensionless

neck radius scales with the single parameter, ϑ1/3χ2/3C
−1/5
µ being the exponent those

that better suited the experiments. In figure 5.9 we plot the dimensionless neck

radius as a function of the scaling proposed in relation (5.13) using the same data
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of figure 5.8.
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Figure 5.9: Non dimensional splash neck radius, dn/R, versus the scaling

ϑ1/3χ2/3C
−1/5
µ .

5.4 Conclusions

To conclude, intensive experiments have been carried out in order to study all pa-

rameters that could affect on the electrical disruption of pendant conducting liquid

drop in a dielectric liquid. Various conducting and dielectric liquids have been used

to study the inner and outer, liquid medium properties, effect on our drop dispersion.

Experiments have showed two regime; subcritical regime, when the drop oscillate

to a stable equilibrium position just like in the case of surrounding air atmosphere.

The second one is a supercritical regime, when the electrical force overcome cap-
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illary forces and a very fast microjet is emitted. The last behaviour is known as

tip streaming mode. But, our results show that this is not the only mode in the

super-critical regime. We have found out that other modes are exist. With changing

the outer medium viscosity three more modes have been revealed. With low outer

medium viscosity appears tip streaming mode. Splashing mode is shown when the

outer viscosity is moderate (5 and 20 cSt). Split-Splashing is observed with high

viscosity (100 cSt). While, with very high viscosity (10000 cSt) appears the splitting

mode. Numerical model has been made to simulate the behavior of the electrified

pendant drop. A great agreement was observed between the experimental and nu-

merical results. Depending on massive experimental results, a scaling law has been

obtained to characterize the neck diameter in the splashing mode. It was found

that the neck diameter in the split-splashing mode also obey the scaling law. This

study has a great importance. It is not only helping to get a better understanding of

an interesting topic like liquid-liquid dispersion, but also it estimates the threshold

limitation of producing micro-droplets in another liquid considering the conducting

and the dielectric liquid properties. Estimating such limitation has a great impact

on application like micro-encapsulation.



Chapter 6

Small drops from large nozzles

6.1 Introduction

In this chapter, we present experimental and numerical study on a novel technique

to produce drops smaller than the nozzle from which they are produced. In drop

on demand (DOD) technology, it has been a major limitation to generate small

drops. The only way known was to reduce the radii of the nozzle [122, 123, 124,

125, 126, 127, 128]. Many problems arise in commercial systems that depend on this

method. Beside complexity of fabricating such small nozzles, the nozzle could be

subjected to clogging. Alvin U. Chen and Osman A. Basaran [129] were managed to

produce drops 50% smaller in radii than those of nozzles. This could be achieved by

carefully controlling capillary, viscous and inertial time scale. They produced such

drop’s size by using squeeze mode DoD glass nozzle (see figure 6.1). The main idea

is to introduce pull-push-pull waveform pulse (see figure 6.2) in order to suppress the

formation of the large primary drop that could be produced by using only pull-push

waveform pulse. This technique is limited. It is not able to form small drops if the

99



100 6. Small drops from large nozzles

viscosity is too small or too large.

Figure 6.1: Squeeze mode DoD nozzle [129]

Figure 6.2: pull-push and pull-push-pull waveform pulse [129]

A.A. Castrejón-pita et al. [130] have presented another method to produce drops

smaller than the nozzle. Rather than using squeeze made glass nozzle, they used

another configuration called Large-Scale system (LS). The system consists of a cylin-

drical reservoir and two endplates. One plate is a thin metal sheet with a small orifice

in the center, which acts as the nozzle. The other end consists of a piston which act

as the driving inertial force (see figure 6.3-up). The key in this system is to apply

a negative pulse which forms a cavity near to the nozzle. Then, the cavity collapse

forming a thin and fast jet. Later a small drop as the same size of the jet separates

and the jet go back to the reservoir (see figure 6.3-down). This system is able to
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produce droplets loaded with particles. Also, it has a wider region, in which droplets

can be generated, than other conventional methods (see figure 6.4). In this chapter,

series of experiments and numerical simulation have been carried out on the later

system (LS) in order to study the effect that the pulse amplitude, pulse width and

liquid properties have on the final droplet size.

Figure 6.3: Configuration of (LS) prototype and it’s jetting process [130]
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Figure 6.4: Region in which droplers can be generated [130]

6.2 Experimental setup

In order to study the effect that the pulse amplitude, pulse width and liquid prop-

erties have on the final droplet size (d), generated by the novel method, series of

experiments were carried out on print-head prototype ”large-scale system” (LS)

[130]. It consists of a cylindrical reservoir made from polymethyl methacrylate with

a diameter D = 30mm and two endplates with a distance in between H = 20mm.

One plate is a thin brass sheet of thickness t = 0.25mm with an orifice in the cen-

ter of radius R0 = 1mm. The other end consists of a piston which moves by the

action of an elecromechanical actuator (YMC MS-20) which in turn is driven by

simple pull-mode sine pulses. The working liquid is introduced into the reservoir

through a tube connected to a syringe exposed to the atmosphere. The syringe can
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Figure 6.5: Experimental setup

move up and down in order to fill the reservoir and attach the interface meniscus to

the orifice border. To provide the actuator with the signal pulse, data acquisition

card (National Instrument USB X Series) connected to PC and integrated amplifier

(ROTEL RA-921) were used. In order to control our experiment, fiber optic dis-

placement sensor (D6-C1H1) and pressure transducer (Honeywell 40PC001B) were

used to measure the displacement of the piston and the pressure inside the reservoir

respectively. They were both connected to the data acquisition card in order to

visualize the displacement and the pressure with the time on LabView program.

Images were captured at 50000 frame per second by using high speed video camera

(Phantom V12.1) with an optical lenses (Navitar 1-62922). The high speed video
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camera was used to acquire images of the cavity collapse, the jetting and the droplet

separation with a frame covering an area of about 5.12 × 8mm2. To calculate the

diameter of the drop, the images were processed to detect the free surface contour

by using a commercial program (ImageJ). The camera could be displaced both hor-

izontally and vertically using a triaxial translation stage to focus on the drop. It

is back-illuminated by a cool white light provided by an optical fiber (PhotoFluor

II). A diffuser was placed between the optical fiber and the prototype to provide

uniform lighting. All the equipment described was mounted on an optical table (see

experimental setup in figure 5.2).

6.3 Numerical simulations

Numerical simulations of the print-head configuration illustrated in figure 6.6 have

been performed. The mass continuity, momentum conservation, and liquid volume

fraction equations for the incompressible regime were resolved by the finite-volume

scheme implemented in the commercial solver FLUENT14.0. It was assumed a

uniform velocity distribution at the inlet which corresponds to the velocity of the

piston vp. A uniform pressure distribution was prescribed over the outlet section,

which was located sufficiently far away from the nozzle. Also, Nonslip boundary

conditions were imposed at the solid walls.

To reduce the computing time, axisymmetric plane of the fluid configuration was

simulated. It was used mesh consisting of 286 792 rectangular cells with different

side lengths from 500 to 5µm to spatially discretize the equations. The fine mesh

has been used in the interface region to avoid numerical diffusion of the interface.We

checked that with this refinement our results become practically independent of the
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mesh size. The interface between the two phases was tracked by solving a continuity

equation for the volume fraction of one of the phases.

This calculation was performed by using an explicit time-marching scheme, while

the rest of the equations were solved implicitly. The time step ∆t was sufficiently

small to ensure that the global Courant number Co = vm∆t/∆y based on the mean

velocity vm in the cell and the cell size ∆y was much less than unity. Regarding

the spatial discretization of the equations, the third-order modified MUSCL scheme

[131] was used to obtain the face fluxes whenever a cell was completely immersed in a

single phase. When the cell was near the interface, the GEO-RECONSTRUCTION

algorithm was used. The pressure corrections were computed with the bodyforce-

weighted scheme, and the pressure-velocity coupling in a segregated solver was

treated with the PISO method [132]. All the simulations were conducted with
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D = 30mm, H = 20mm and R0 = 1mm.

It was noticed from experiments that the size of the drops generated is very sen-

sitive to the interface meniscus. Also, we can see in figure 6.7, numerical simulation

of the evolution of the interface for plan meniscus (left) and concave meniscus (right)

with a produced droplet of 116µm and 126µm respectively. It is obvious that the

meniscus form is an important parameter, therefore, the profile of the meniscus was

modified to be as in the experiment.

Figure 6.7: Simulation showing the influence of the initial meniscus form. At left
(plane meniscus) and at right (concave meniscus).



6.4. Results and discussion 107

6.4 Results and discussion

6.4.1 Experimental jetting process

In this study, a mixture of water+ 60% wt glycerol and Silicone oils of 5 and 10 cSt

were used as working liquids. The physical properties are listed in table 5.1. The

input pulse width were set to be tpw = 3 and 4ms.

Table 6.1: Physical properties of working liquids

Liquid ρ (kg/m3) µ (cP ) γ (mN/m)

water+ 60% wt glycerol mix. (5cSt) 1116 5 61.9

Silicone oil(5cSt) 912 4.2 21.9

Silicone oil(10cSt) 936 8.7 23.1

In each experiment, the sine pulse amplitude and width were introduced by

LabView program. The input pulse and the measured displacement of the piston

are illustrated in figure 6.8(a). While the corresponding velocity and pressure inside

the reservoir are shown in figure 6.8(b). When the negative pulse is applied, the

free surface of the meniscus is pulled back into the reservoir forming a cavity. Then,

the piston moves into the other direction making a positive pressure a round the

cavity. The cavity collapses forming a very thin jet smaller than the orifice. Finally,

a drop as the same order of the jet separates and the meniscus returns back to the

equilibrium. Figure 6.9 shows Experimental observation of the jetting process of

silicone oil (10 cSt).

Experimental results shows that many parameters affect on the produced drop

size. In figure 6.10 the effect of the pulse amplitude can be seen. Increasing the

velocity amplitude of the piston makes the cavity collapse faster as the kinetic energy
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Figure 6.8: (a) The input pulse (dashed line) and the measured displacement of the
piston (solid line). (b) The pressure inside the reservoir(solid line) and the velocity
of the piston (dashed line).

that transfers to the fluid around the nozzle increases which leads to a thinner jet

and a smaller droplet. Also, the speed of of the jet (and the drop) increase at faster

collapse.

The introduced kinetic energy to the system does not affect only on the droplet

size and it’s speed, but also it characterizes the mode where only one droplet could

be produced. Beside the piston velocity, there are other important parameters. At

figure 6.11, we plot the generated drop diameter versus the velocity of the piston
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Figure 6.9: Jetting process of Silicone oil 10cSt from a 2 mm diameter nozzle

for various working liquids in order to study the effect of the velocity amplitude,

pulse width and liquid properties on the final droplet size. And also to identify the

range of velocity where we can produce only one droplet for each working liquid. It

is obvious that the drop size decreases with the increasing of the velocity amplitude.

After a certain amplitude, more than one drop are generated. A wider rang of drop

size was achieved with lower viscosity. Also, it was observed that a lower surface

tension helps to generate smaller drop. It was managed to generate a drop of silicon

oil (5cSt) with a radius of 27µm , being the surface tension 21.9mN/m. Also it was

noticed that the pulse width tpw does not have a great influence if we have used the

positive velocity amplitude vp to be the piston velocity parameter.
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Figure 6.10: Images of Drops generated with different piston velocity

6.4.2 Numerical to experimental results

In our numerical model, we assumed that the reservoir has only one inlet/exit to

the fluid which is the nozzle, while in the experiment we have also the syringe that

is connected to the reservoir and exposed to the atmosphere. So, we assumed in

the simulation that the volume of the formed cavity (Vcavity) is equal to the volume

of liquid moved by the piston (Vpiston), while in the experiment (Vpiston) equal to

(Vcavity) and the volume displaced inside the syringe. Also, in the simulation the

nozzle is a rigid solid that does not deform and as it was mentioned before, the upper

plate of the print-head prototype in the experiment has a thickness of 0.25mm. So,

there is a chance that the plate deforms with the movement of the piston. Therefore,

to make sure that our model simulate the same condition of the experiment, we had

compared (Vpiston) with (Vcavity) of the experiment during the pulse period. Vpiston

was calculated by multiply the displacement of the piston by the area of the reservoir.

While, Vcavity was measured by detecting the border of the cavity from the images

using an image processing program (ImageJ).
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Figure 6.11: Drop size versus piston velocity with different governing parameters

It is clear from figure 6.12 that there is discrepancy between the volume of the

cavity and the volume moved by the piston. So, if we have used in the simulation

the same piston velocity that is in the experiment, we will have a higher kinetic

energy around the nozzle. So, the droplet size in the simulation will be smaller than

the one in the experiment.

The cavity volume in the experiment ' 0.67Vpiston. So, depending on this result

the piston velocity could be correlated in our simulation to give the same cavity

volume as follow:

0.67Vpiston = A

∫
vpdt. (6.1)
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vp = 0.67
dh

dt
. (6.2)

being, A is the reservoir cross sectional area and h is the piston displacement.
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Figure 6.12: Comparison between (Vpiston) and (Vcavity)

mst 24.2 mst 7.3 mst 2.7 mst 9.9

Figure 6.13: Numerical simulation of Jetting process for Silicone oil 10cSt at pressure
amplitude 232 Pascal and pulse width 4 ms

Figure 6.13 shows numerical simulation of the jetting process of silicone oil

(10cSt) at pressure amplitude 232 Pascal and pulse width 4 ms. The numerical
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simulation has a good agreement with the experiment.

In figure 6.14, we plot experimental and numerical results of the droplet diameter

front the velocity amplitude. The results illustrate the efficiency of our numerical

model and the reliability of the piston velocity correlation.
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Figure 6.14: Comparison between experimental and numerical results

6.4.3 Scaling analysis

In this section, an analysis has been made to obtain scaling law for the drop size

generated by (LS) print-head prototype. From the previous results we can say

that the dimensionless droplet diameter is a function of the following dimensionless

parameters,

d

R0

= f(vp/vc, oh, tp/tc, H/R0, D/R0), i.e. (6.3)



114 6. Small drops from large nozzles

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 5.5 6 6.5 7 7.5 8

d
/R

0

(vp/vc)
-1 oh0.5 (tp/tc)

2

g/w 5cSt

silicone oil 10cSt

silicone oil 5cSt

Experimental fitting

Figure 6.15: Dimensionless diameter of the drop d/R0 versus the scaling groups
(vp/vc)

−1oh0.5(tp/tc)
2

Being, capillary velocity vc = (σ/ρR0)1/2, ohnesorge number oh = µ/
√
ρgR0σ and

capillary time tc = (ρR3
0/σ)1/2. In relation (6.3), beside positive velocity amplitude,

liquid properties and geometrical parameters, we have introduced a new parameter

which is (tp) the width of the positive part in the velocity pulse (see figure 6.8(b)).

Although we have seen in section (6.4.1) that the pulse width tpw does not have

significant effect on the droplet size, we found that tp have a great influence. It was

shown from the piston velocity measurement for each experimental point, that tp is

directly related to liquid properties as the positive part of the pulse is considered

to be the system response to the negative applied part. Our numerical simulation

showed that H and D do not have influence on the drop size which make sense as

H,D ≫ R0. So, H/R0 and D/R0 can be omitted and the relation (6.3) reduces to,

d

R0

' f(vp/vc, oh, tp/tc) = f((vp/vc)
−1, oh0.5, (tp/tc)

2), i.e. (6.4)
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We have used the exponents illustrated in relation (6.4) in order to collapse

all experimental series of data. Finally, the droplet size can be expressed in the

following form,

d = C1R0

(
(vp/vc)

−1oh0.5(tp/tc)
2
)C2 . (6.5)

In figure 6.15 many experimental measurements are plotted for various tp, work-

ing liquid silicone oil (5-10cSt) and 60% glycerol in water. The best fit within

experimental uncertainty is reduced to C1 = 4e− 8 and C2 = 8.

6.5 Conclusions

We report experimental and numerical results of the generation of drops significantly

smaller than the nozzle from which they are generated. Briefly, the system consists

of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with

a small orifice in the center, which acts as the nozzle. The other end consists of a

piston which moves by the action of an electromechanical actuator which in turn

is driven by simple pull-mode sine pulses. The meniscus (formed at the nozzle)

is first overturned, forming a cavity. This cavity collapses and a thin and fast jet

emerges from its center. Under appropriate conditions the tip of this jet breaks up to

produce a single diminutive drop. A good agreement between the experimental and

numerical results was found. Also, it was found that the initial interface meniscus

profile is another parameter that could affect on the produced droplet size. Series

of experiments have been carried out in order to study the effect that the pulse

amplitude, pulse width and liquid properties have on the final droplet size. Based
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on these experiments, a predictive scaling law for the droplet size has been obtained.

The initial interface meniscus profile was the same at the numerical simulation and

the experiments that have been carried out.
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[14] C. Mart́ınez-Bazán, J. L. Montañés, and J. C. Lasheras. Statistical description

of the bubble cloud resulting from the injection of air into a turbulent water

jet. International Journal of Multiphase Flow, 28:597–615, 2002.

[15] Fumio Takemura and Akira Yabe. Gas dissolution process of spherical rising

gas bubble. Chemical Engineering Science, 53(15):2691–2699, 1998.



BIBLIOGRAPHY 125

[16] F. Takemura and A. Yabe. Rising speed and dissolution rate of a carbon

dioxide bubble in slightly contaminated water. Journal of Fluid Mechanics,

378:319–334, 1999.

[17] D.F. McGinnis, J. Greinert, Y. Artemov, S.E. Beaubien, and A. Wüest. Fate
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