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Reproductive solution for grade-two fluid

model in two dimensions

L. Friz∗

F. Guillén-González∗∗

M. A. Rojas-Medar∗∗∗

Abstract. We treat the existence of reproductive solution (weak periodic
solution) of a second-grade fluid system in two dimensions, by using the
Galerkin approximation method and compactness arguments.

1. Introduction

For a general incompressible fluid of grade 2, the Cauchy stress tensor is given by

T = −pI+ µA1 + α1A2 + α2A
2
1,

where µ ≥ 0 is the viscosity, α1, α2 are material coefficients, namely normal stress

moduli, p is the pressure and A1, A2 are the first two Rivlin-Ericksen (see [8] or [9])

tensors defined by

A1 = ∇u+ (∇u)T ,

A2 =
d

dt
A1 +A1∇u+ (∇v)TA1.
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From the thermodynamical principles we have that α1+α2, and the requirement that the

free energy be a minimum in equilibrium implies that α1 ≥ 0. With all these conditions

the equations of motion for an incompressible fluid of grade two are given by
{

∂

∂t
(u− α∆u) − ν∆u+ curl(u− α∆u)× u+∇p = f in Ω×]0, T [,

divu = 0 in Ω×]0, T [,
(1)

with homogeneous Dirichlet boundary conditions

u = 0, on ∂Ω,

and initial condition

u(0) = u0, in Ω.

Here, ν > 0 represents the Kinematic viscosity and f the external forces.

The study of this kind of fluids was initiated by Dunn and Fosdick in [4] and by Fosdick

and Rajapogal in [5]. The first successful mathematical analysis of (1) was done by

Cioranescu and El Hacène in [1]. Another interesting work is due to Galdi and Sequeira

[6], where the authors obtain some existence results.

Later Cioranescu and Girault in [2] establish existence, uniqueness and regularity of

a global weak solution of (1) with small data f and u(0) and the same result on some

interval for arbitrary data. The existence is obtained by applying Galerkin’s method

with a special basis.

In this paper we seek reproductive solutions of the two-grade fluid system, i.e. solutions

of the following system:




∂

∂t
(u− α∆u) − ν∆u+ curl(u− α∆u) × u+∇q = f in Ω×]0, T [,

divu = 0 in Ω×]0, T [,
u = 0 on ∂Ω×]0, T [,

u(0) = u(T ),

(2)

by supposing that f depends on the time t (notice that if f does not depend on t,

the solution of the associated steady-state system of the second- grade fluid is actually

a reproductive solution). As the reader can see, the usual initial condition has been

changed by a time periodic condition.

The next theorem is the main result of this paper.

Theorem 1.1. For any f ∈ L2(0, T ;H(curl; Ω)) ∩ L∞(0, T ;L2(Ω)), there exists a weak

solution of the two-grade fluid system (2).
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2. Preliminaries

Let Ω be a bounded domain of R2 of the class C2,1. To solve a grade 2 fluid system

means to find a vector valued function u = (u1, u2) and a scalar function p defined on

Ω×]0, T [ satisfying (2).

Since we are in two dimensions (see [7]), the curl operator is defined by

curl u =
∂u2

∂x1
−

∂u1

∂x2
,

and if z is a scalar function, we define

z × u = (−zu2, zu1).

In what follows, the spaces in bold face represent spaces of bi-dimensional vector func-

tions. We define the Hilbert spaces H and V in the following manner:

H = {Ψ ∈ L2(Ω) : div Ψ = 0, Ψ · n = 0 on ∂Ω},

V = {v ∈ H1(Ω) : div v = 0, v = 0, on ∂Ω},

H(curl; Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}.

For α ∈ R
+, we introduce the space (see [1] and [2])

V2 =
{
v ∈ V : curl (v − α∆v) ∈ L2(Ω)

}
, (3)

equipped with the scalar product

(u,v)V2
= (u,v) + α(∇u,∇v) + (curl (u− α∆u), curl (v − α∆v)), (4)

and associated norm and semi-norm

‖v‖V2
= (v,v)

1/2
V2

, |v|V2
= ‖curl (v − α∆v)‖L2(Ω). (5)

In the following lemma it is proved that the semi-norm | · |V2
is a norm in H3.

Lemma 2.1 ([1] p 182). Let Ω be a bounded, simply-connected open set of R2 of the class

C2,1. Then every v ∈ V2 belongs to H3(Ω). Moreover, there exists C > 0 such that

‖v‖H3(Ω) ≤ C‖curl (v − α∆v)‖L2(Ω).

An easy but tedious computation gives us the following equality:
∫

Ω

curl (u− α∆u)× u · vdx = b(u;u,v) − αb(u; ∆u,v) + αb(v; ∆u,u);
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here b(u;v,w) =

3∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wjdx. From this, the variational formulation of the prob-

lem (1) is the following: Given f ∈ L2(0, T ;H(curl; Ω) ∩ L∞(0, T ;L2(Ω)) and u0 ∈ V2,

find u ∈ L∞(0, T ;V2) such that

(u′,v) + α(∇u,∇v) + ν(∇u,∇v) + b(u;u,v)

− αb(u; ∆u,v) + αb(v,∆u,u) = (f ,v), ∀v ∈ V. (6)

3. A priori estimates of the Galerkin solutions

By following the ideas given in [1] and [2] we consider the basis {wj}j∈N, the eigen-

functions of the problem: For j ∈ N, wj ∈ V2 is the solution of

(wj ,v)V2
= λj{(wj ,v) + α(∇wj ,∇v)}, ∀v ∈ V2, (7)

where (·, ·)V2
is the scalar product in V2. Since the imbedding of V2 into V is compact,

there exists a sequence of eigenvalues (λj)j≥1 and a sequence of eigenfunctions (wj)j≥1

that constitutes a basis of V2.

Lemma 3.1 ([2] p 326). Let Ω be a bounded simply-connected open set of R
3 with a

boundary Γ of class C3,1. Then the eigenfunctions of the problem (7) belong to H4(Ω).

For every m ∈ N, we define Vm
2 the vector space spanned by the first m eigenfunctions

{w1, . . . ,wm}, and by Pm the orthogonal projection on Vm
2 for the scalar product in

V2. In order to construct a periodic solution of the problem (2) we will use Galerkin’s

discretization. Indeed, for j ∈ {1, 2, . . . ,m} we find

um(t) =
m∑

j=1

cmj (t)wj ,

solution of

(u′
m(t),wj) + α(∇u′

m(t),∇wj) + ν(∇um(t),∇wj) + b(um(t);um(t),wj),

−αb(um(t);∆um(t),wj) + αb(wj ,∆um(t),um(t)) = (f(t),wj), (8)

um(0) = Pm(u0). (9)

By multiplying both sides of (8) by cmj (t) and summing with respect to j, from the

anti-symmetry of b we obtain the equality

1

2

d

dt

(
‖um(t)‖2

L2(Ω) + α|um|2
H1(Ω)

)
+ ν|um|2

H1(Ω) = (f(t),um(t)).
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Reproductive solution for grade-two fluid model in two dimensions 19

Therefore, by integrating in time for t ∈ [0, T ] the above equality we obtain the following

lemma.

Lemma 3.2 ([2] p 327). The solution um(t) of the problem (8)-(9) satisfies the following

differential inequality for each t ∈ [0, T ]:

‖um(t)‖2
L2(Ω) + α‖∇um(t)‖2

L2(Ω)

≤ e−νKt
(
‖um(0)‖2

L2(Ω) + α‖∇um(0)‖2
L2(Ω)

)
+

P2

ν

∫ t

0

e−νK(t−s)‖f(s)‖2
L2(Ω)ds,

where P > 0 is the Poincaré constant and K = (P2 + α)−1.

In order to obtain an estimation for the norm ‖um‖V2
, we adapt the proof of Theorem

4.4 in [2] and the proof of the differential inequality given in [1] p 189.

At first, we define the vector-valued function F(um,um) by

(F(um(t),um(t)),v) = ν(∇um(t),∇v) + b(um(t);um(t),v)

− αb(um(t);∆um(t),v) + αb(v; ∆um(t),um(t)),
(10)

for every v ∈ H1
0(Ω). For 1 ≤ m ≤ m, by construction of F(um,um),

(u′
m(t),wj) + α(∇u′

m(t),∇wj) + (F(um(t),um(t)),wj)− (f(t),wj) = 0. (11)

From Lemma 3.1, F(um(t),um(t)) ∈ H1(Ω).

Next for each t, let vm(t) ∈ V be solution of the Stokes equation

vm(t)− α∆vm(t) +∇qm(t) = F(um(t),um(t))− f(t). (12)

By classical regularity results, vm(t) ∈ H3(Ω) and then, curl(vm(t)− α∆vm(t)) belongs

to L2(Ω). Therefore, vm ∈ V2.

By multiplying (12) by wj , we obtain

(vm(t),wj) + α(∇vm(t),∇wj) = (F(um(t),um(t))− f(t),wj),

thus (11) can be written

(u′
m(t),wj) + α(∇u′

m(t),∇wj) + (vm(t),wj) + α(∇vm(t),∇wj) = 0. (13)

Multiplying equation (13) by λjc
m
j (t) and adding for j = 1, . . . ,m, we get

(u′
m,um)V2

+ (vm,um)V2
= 0,
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in other words,

(curl(u′
m − α∆u′

m), curl(um − α∆um)) + (curl(vm − α∆vm), curl(um − α∆um)) = 0.

By taking curl in (12),

curl(vm − α∆vm) = curl(F(um,um)− f),

and thus

(curl(u′
m − α∆u′

m), curl(um − α∆um)) + (curl(F(um,um)− f), curl(um − α∆um)) = 0.

Using definition (10) we find

1

2

d

dt
‖curl(um − α∆um)‖2

L2(Ω) + (curlF(um,um), curl(um − α∆um))

= (f ,um) + (curlf , curl(um − α∆um)).
(14)

Now, we will estimate the term:

T = (curlF(um,um), curl(um − α∆um)).

Since div um = 0 and Ω ⊆ R
2, it is not so difficult to prove that

curl(curl(um − α∆um)× um) = um · ∇(um − α∆um),

and

(um · ∇(um − α∆um), curl(um − α∆um)) = 0,

and thus

T = (−ν∆curlum, curl(um − α∆um)) + (um · ∇(um − α∆um), curl(um − α∆um))

=
ν

α
‖curl(um − α∆um)‖2

L2(Ω) −
ν

α
(curlum, curl(um − α∆um)).

Therefore, the equation (14) can be written

1

2

d

dt
‖curl(um − α∆um)‖2

L2 +
ν

α
‖curl(um − α∆um)‖2

L2(Ω)

= (curlf , curl(um − α∆um)) +
ν

α
(curlum, curl(um − α∆um)).
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Reproductive solution for grade-two fluid model in two dimensions 21

Then, we get the following inequality:

1

2

d

dt
‖curl(um − α∆um)‖2

L2 +
ν

α
‖curl(um − α∆um)‖2

L2(Ω)

≤ ‖curlf‖L2(Ω)‖curl(um − α∆um))‖L2(Ω) +
ν

α
‖curlum‖L2(Ω)‖curl(um − α∆um)‖L2(Ω)

≤
1

2

(
λ‖curlf‖2

L2(Ω) +
1

λ
‖curl(um − α∆um))‖2

L2(Ω)

)

+
ν

2α

(
ε‖curlum‖2

L2(Ω) +
1

ε
‖curl(um − α∆um))‖2

L2(Ω)

)
.

If we take ε = 2 and λ =
2α

ν
we have that

1

2

d

dt
‖curl(um − α∆um)‖2

L2 +
ν

α
‖curl(um − α∆um)‖2

L2(Ω)

≤
2ν

α
‖curlum‖2

L2(Ω) +
2α

ν
‖curlf‖2

L2(Ω).

But ‖curlum‖2
L2(Ω) ≤ 2‖∇um‖2

L2(Ω), thus

1

2

d

dt
‖curl(um − α∆um)‖2

L2 +
ν

α
‖curl(um − α∆um)‖2

L2(Ω)

≤
4ν

α
‖∇um‖2

L2(Ω) +
2α

ν
‖curlf‖2

L2(Ω).

From Lemma 3.2

1

2

d

dt
‖curl(um(t)− α∆um(t))‖2

L2 +
ν

α
‖curl(um(t)− α∆um(t))‖2

L2(Ω)

≤
4ν

α2
(‖um(0)‖2

L2(Ω) +α‖∇um(0)‖2
L2(Ω)) +

4P2

ανK
‖f‖L∞(0,T ;L2(Ω)) +

2ν

α
‖curlf(t)‖2

L2(Ω).

From all this considerations, we have proved the following lemma.

Lemma 3.3. The solution um of the problems (8) and (9) satisfies the a priori estimate

for all t ∈ [0, T ]:

‖curl(um(t)− α∆um(t))‖2
L2(Ω) ≤ e−

νt
α ‖curl(um(0)− α∆um(0))‖2

L2(Ω)

+
2

α
(‖um(0)‖2

L2(Ω)+α‖∇um(0)‖2
L2(Ω))+

2P2

ν2K
‖f‖L∞(0,T ;L2(Ω))+

2α

ν
‖f‖L2(0,T ;H(curl;Ω)).

4. Proof of the Theorem 1.1

In this section, we prove the Theorem 1.1. To this end, at first we prove the existence of

a sequence of Reproductive Galerkin solutions, by following the ideas given in [3], which

converges to the reproductive solution of the grade two system fluid.
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We define the operator Lm(t) : [0, T ] → R
m as

Lm(t) = (cm1 (t), cm2 (t), . . . , cmm(t)), (15)

where cmj (t) are the coefficients of the expansion of um.

For every (ξ1, ξ2, . . . , ξm) ∈ R
m, we define the following equivalent norms:

‖(ξ1, ξ2, . . . , ξm)‖2a,Rm := ‖u‖2
L2(Ω) + α‖∇u‖2

L2(Ω),

‖(ξ1, ξ2, . . . , ξm)‖2b,Rm := ‖curl(u− α∆u)‖2
L2(Ω),

where u = ξ1w1 + ξ2w2 + · · ·+ ξmwm.

We define the operator Φm : Rm → R
m in the following manner: Given Lm

0 ∈ R
m, we

define Φm(Lm
0 ) = Lm(T ), where Lm(t) is defined in (15). It is clear that Φm is continuous

and we want to prove that it has a fixed point. In order to prove this result, we will

use the Leray-Schauder Theorem. Indeed, it suffices to show that for all λ ∈ [0, 1], the

possible solution Lm
0 (λ) of the equation

Lm
0 (λ) = λΦm(Lm

0 (λ)) (16)

are bounded independently of λ.

Since Lm
0 (0) = 0, we will consider λ ∈ (0, 1]. In this case, (16) can be written as

Φm(Lm
0 (λ)) =

1

λ
Lm
0 (λ).

Thus, by definition of Φm and Lemma 3.2, we obtain

∥∥∥∥
1

λ
Lm
0 (λ)

∥∥∥∥
2

a,Rm

≤ e−νKT‖Lm
0 (λ)‖2a,Rm +

P2

ν

∫ T

0

eνKs‖f(s)‖2L2(Ω)ds,

which implies that

‖Lm
0 (λ)‖2a,Rm ≤

P2

ν

∫ t

0

eνKs‖f(s)‖2L2(Ω)ds

1− e−νKT
= M0.

Now, from Lemma 3.3 and definition of Φm, we have that

∥∥∥∥
1

λ
Lm
0 (λ)

∥∥∥∥
2

b,Rm

≤ e−
νT
α ‖Lm

0 (λ)‖2b,Rm +
2

α
‖Lm

0 (λ)‖2a,Rm

+
2P2

ν2K
‖f‖L∞(0,T ;L2(Ω)) +

2α

ν
‖f‖L2(0,T ;H(curl;Ω)),
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then, we deduce that

‖Lm
0 (λ)‖2b,Rm ≤

2M0

α
+

2P2

ν2K
‖f‖L∞(0,T ;L2(Ω)) +

2α

ν
‖f‖L2(0,T ;H(curl;Ω))

1− e−
νT
α

= M1,

for each λ ∈ (0, 1]. This last estimate is independent of λ ∈ [0, 1] and m ∈ N . Con-

sequently, Leray-Shauder Theorem implies the existence of al least one fixed point of

Φm, and then the existence of reproductive Galerkin solution um. Moreover, since the

previous estimates do not depend on m ∈ N and by Lemma 3.3, there exists M ∈ R

independent of m such that

‖um(t)‖V2
≤ M, (17)

for each t ∈ [0, T ], it means that (um)m≥1 is bounded in L∞(0, T ;V2). By Lemma 2.1,

we can write ‖um(t)‖H3(Ω) ≤ M , for each t ∈ [0, T ].

It remains to pass to the limit with respect to m. This is a standard argument and

we have only to prove that (u′
m)m≥1 is bounded in L∞(0, T ;V′

2). In order to prove this

bound, we use the arguments given in [1], p 190.

At first, we note that

|b(um(t),um(t),v)| ≤ C‖∇um‖2
L2(Ω)‖v‖V2

,

which implies that there exists T 1
m(t) ∈ V′

2) such that

b(um(t),um(t),v) = 〈T 1
m(t),v〉, ∀v ∈ V2,

and by estimate (17), we have that (T 1
m)m≥1 is bounded in L∞(0, T ;V′

2). In the same

manner, there exists a bounded sequence (T 2
m)m≥1 in L∞(0, T ;V′

2) such that

b(um(t),∆um(t),v) = 〈T 2
m(t),v〉, ∀v ∈ V2.

Finally, from equation (8), we can conclude that u′
m = TmPm, where (Tm)m≥1 is a

bounded sequence of L∞(0, T ;V′
2) and Pm is the projection of V2 on Vm

2 . This completes

the proof.
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