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Reproductive solution for grade-two fluid
model in two dimensions

L. Friz*
F. GUILLEN-GONZALEZ**
M. A. ROJAS-MEDAR***

Abstract. We treat the existence of reproductive solution (weak periodic

solution) of a second-grade fluid system in two dimensions, by using the
Galerkin approximation method and compactness arguments.

1. Introduction

For a general incompressible fluid of grade 2, the Cauchy stress tensor is given by
T=—pl+ puA1 +a1As + CYQA%,

where p > 0 is the viscosity, a1, as are material coefficients, namely normal stress

moduli, p is the pressure and Ay, Ay are the first two Rivlin-Ericksen (see [8] or [9])
tensors defined by

A, =Vu+ (Vu)T,
d

AQ g aAl + A1Vu + (VV)TAl.
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From the thermodynamical principles we have that o1 + s, and the requirement that the
free energy be a minimum in equilibrium implies that a; > 0. With all these conditions
the equations of motion for an incompressible fluid of grade two are given by
0
E(u —alAu) —vAu+ curl(u — aAu) x u+Vp =£f in Ox]0,T7], (1)
divu =0 in Qx]0, T,

with homogeneous Dirichlet boundary conditions
u=20, on 99,
and initial condition
u(0) = uy, in Q.

Here, v > 0 represents the Kinematic viscosity and f the external forces.

The study of this kind of fluids was initiated by Dunn and Fosdick in [4] and by Fosdick
and Rajapogal in [5]. The first successful mathematical analysis of (1) was done by
Cioranescu and El Hacéne in [1]. Another interesting work is due to Galdi and Sequeira

[6], where the authors obtain some existence results.

Later Cioranescu and Girault in [2] establish existence, uniqueness and regularity of
a global weak solution of (1) with small data f and u(0) and the same result on some
interval for arbitrary data. The existence is obtained by applying Galerkin’s method

with a special basis.

In this paper we seek reproductive solutions of the two-grade fluid system, i.e. solutions

of the following system:

%(u—aAu) —vAu+ curl(u — aAu) xu+ Vg =f in Qx]0, T,
divu =0 in Qx]0, T, (2)
u=0 on 00x]0,T7,
u(0) = u(7),

by supposing that f depends on the time ¢ (notice that if f does not depend on ¢,
the solution of the associated steady-state system of the second- grade fluid is actually
a reproductive solution). As the reader can see, the usual initial condition has been

changed by a time periodic condition.

The next theorem is the main result of this paper.

Theorem 1.1. For any f € L?*(0,T; H(curl; Q)) N L>(0,T;L3(R)), there exists a weak
solution of the two-grade fluid system (2).
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2. Preliminaries

Let © be a bounded domain of R? of the class C*!. To solve a grade 2 fluid system
means to find a vector valued function u = (u1,u2) and a scalar function p defined on
0x]0, T satisfying (2).

Since we are in two dimensions (see [7]), the curl operator is defined by

1 6’11,2 6u1
curlu= —= - —

8171 8$2 ’
and if z is a scalar function, we define

zxu=(—zug,zuy).

In what follows, the spaces in bold face represent spaces of bi-dimensional vector func-

tions. We define the Hilbert spaces H and V in the following manner:

H={VcL*Q) : div¥ =0, ¥ -n=0on0dN},
V={veH Q) : divv=0, v=0, on 90},
H(cur; Q) = {v € L3(Q) : curl v € L*(Q)}.
For a € R™, we introduce the space (see 1| and [2])
Vy={veV : cul (v—aAv) e L*(Q)}, (3)
equipped with the scalar product
(u,v)v, = (u,v) + a(Vu, Vv) + (curl (u — aAu), curl (v — aAv)), (4)
and associated norm and semi-norm
Vllve = (vl vl = flewrd (v = aAv) |z o). (5)
In the following lemma it is proved that the semi-norm | - |v, is a norm in H3.

Lemma 2.1 ([1] p 182). Let Q be a bounded, simply-connected open set of R? of the class
C*Y. Then every v € Va belongs to H3(Q). Moreover, there exists C > 0 such that

[VIlas @) < Cllcurl (v — alAv)|[12(q)-
An easy but tedious computation gives us the following equality:

/ curl (u— aAu) X u-vdz = b(u;u,v) — ab(u; Au,v) + ab(v; Au, u);
Q
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3
ov;
here b(u; v, w) = E / uia—]wj dz. From this, the variational formulation of the prob-
= Q X
i,j=1

lem (1) is the following: Given f € L2(0,T; H(curl; 2) N L°°(0,T; L?(2)) and ug € Vo,
find u € L*(0,T; V2) such that

(', v) + a(Vu, Vv) + v(Vu, Vv) + b(u;u, v)
—ab(u; Au,v) + ab(v,Au,u) = (f,v), Yv e V. (6)

3. A priori estimates of the Galerkin solutions

By following the ideas given in [1] and [2] we consider the basis {w;};en, the eigen-

functions of the problem: For j € N, w; € V3 is the solution of
(Wj? V)Vz = /\J'{(ij V) + a(ijv VV)}, Vv € Vg, (7)

where (-, -)v, is the scalar product in V5. Since the imbedding of V5 into V is compact,
there exists a sequence of eigenvalues (A;);>1 and a sequence of eigenfunctions (w;);>1

that constitutes a basis of V.

Lemma 3.1 ([2] p 326). Let Q be a bounded simply-connected open set of R® with a
boundary T of class C31. Then the eigenfunctions of the problem (7) belong to H*(€).

For every m € N, we define V§* the vector space spanned by the first m eigenfunctions
{W1,...,wn}, and by P, the orthogonal projection on V3 for the scalar product in
Vj. In order to construct a periodic solution of the problem (2) we will use Galerkin’s
discretization. Indeed, for j € {1,2,...,m} we find

m
w,(t) =Y e (tw;,

j=1

solution of

(w,, (£), W) + (Vi (8), VW;) + v(Vam (), VW) + b(um (£); um (), w;),
—ab(un (t); Auy, (), ;) + ab(w, Auy, (1), wn (t) = (£(2), w;), (8)
U (0) = Pn(ao). (9)
By multiplying both sides of (8) by ¢}'(#) and summing with respect to j, from the

anti-symmetry of b we obtain the equality

1d
5= (@13 @) + At @) + o @) = E0), wn().
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Therefore, by integrating in time for ¢ € [0, T] the above equality we obtain the following

lemma.

Lemma 3.2 ([2] p 327). The solution u,,(t) of the problem (8)-(9) satisfies the following
differential inequality for each t € [0,T):

[ () 1220y + @l Vi ()32 0
732

t
< (O s+ 0l Ve O ) + = [ Iy

where P > 0 is the Poincaré constant and K = (P? + «)71.

In order to obtain an estimation for the norm ||u,,||v,, we adapt the proof of Theorem

4.4 in [2] and the proof of the differential inequality given in [1] p 189.

At first, we define the vector-valued function F(u,,, u,,) by

(F(um(t), um(t)),v) = v(Vun(t), Vv) + b(wy, (t); umn (t), v)

— ab(un (t); Aup(t),v) + ab(v; Aup (1), un(t)), .
for every v € H}(Q). For 1 < m < m, by construction of F(u,, un),
(ur, (1), W) + (Y, (£), Vw;) + (F(am (t), um (), w;) — (£(), w;) = 0. (11)
From Lemma 3.1, F(u,,(t), un(t)) € HY(Q).
Next for each ¢, let v, (t) € V be solution of the Stokes equation
V() = AAV (1) + T (£) = F(1t(£), (1)) — £(1). (12)

By classical regularity results, v,,(t) € H3(Q) and then, curl(v,, (t) — aAv,,(t)) belongs
to L2(€2). Therefore, v,,, € Va.

By multiplying (12) by w;, we obtain
(Vin(t), W) + (Vv (t), Vw;) = (F(ap (1), um(t)) — £(t), w;),
thus (11) can be written
(w, (£), W) + oV, (£), VW) + (Vi (£), W) + a(Vvin (1), Vw;) = 0. (13)
Multiplying equation (13) by A;c}*(t) and adding for j = 1,...,m, we get
(W W) vy + (Vin, Um) v, =0,
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in other words,
(curl(u), — aAul,), curl(u,, — aAu,,)) + (curl(vy, — aAv,,), curl(u,, — aAu,,)) = 0.
By taking curl in (12),
curl(v,, — aAvy,) = curl(F(uy,, u,) — ),
and thus
(curl(ul, — aAU!)), curl(u,, — aAu,,)) + (curl(F(u,, u,) — f), curl(u,, — alAu,,)) = 0.

Using definition (10) we find

| &

[[curl(uy, — aAum)|[izq) + (CurlF (U, uy,), curl(u, — aAu,y,))

N | =
Sy

t (14)

= (f,u,,) + (curlf, curl(u,, — cAu,,)).

Now, we will estimate the term:
T = (cwrlF(uy,, uy ), curl(u, — aAu,,)).
Since div u,, = 0 and Q C R?, it is not so difficult to prove that
curl(curl(u,, — cAu,,) X Uy) = Uy, - V(u, — aAu,,),

and

(up, - V(upm, — aAuy,), curl(u, — aAu,,)) =0,
and thus

T = (—vAcurlu,,, curl(u, — aAuy,)) + (U, - V(u, — aAuy,), curl(u,, — aAu,,))

= K||curl(um - ozAum)H%;(Q) — —(curluy,, curl(u,, — aAuy,)).
a

v
(0%

Therefore, the equation (14) can be written

| =

[curl(u,, — aAu,,)|: + churl(um — aAuy)|{z 0

N =
U

t

= (curlf, curl(u,, — cAu,,)) + Z(curlum7 curl(u,, — aAuy,)).
a
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Then, we get the following inequality:

! v
5@“&11‘1(11171 - OéAU.m)Hiz + Echrl(um — aAum)H%z(Q)
v
S fleurlflluz @ fleurl(um = alttm))fra@) + E”CUﬂumHL%Q)HCurl(um — aAuy,)||L2o)
<

1 1
5 (Mewlfl g + 5 leuriu, - adun) o)
v 2 1 2
+ 5 elleurlum, [|12(q) + g||curl(um —alup))|izq@) | -

If we take e =2 and \ = 2_a we have that
v

| =

v
|curl(u,, — aAuw,,) |7z + > leurl(uy, — aAuy,)|[iz )

N =
Sy

t
2v 2a
< —chrlumHiz(Q) + —chr1f||i2(9).
a v
But [lewrlun,[[7: o) < 2 Vum[[f2 (g, thus

1d y
QEHCurl(um — CYAum)H%Z + a”cur](um _ aAum)”%z(Q)

4v 2a
< E”vumH%ﬂ(Q) + THCUIH”%?(Q)'

From Lemma 3.2

1d v
S lleurl(n(6) = @l ()22 + 2 lewrl(wn(t) — @l (6)] 20

4v 9 9 4P?
< 2 R 0) ey + @V (O) ) + s

From all this considerations, we have proved the following lemma.

2v
£l (0,712 () + EHCUﬂf(f)Hiz(Q)-

Lemma 3.3. The solution u,, of the problems (8) and (9) satisfies the a priori estimate
for allt €10,T):

Jeurl(u (8) = @l (1)) 32 ) < e % lenrl(un (0) = aAug (0)) o)

2 ) 9 2P? 2a
+ a(”um(O)HLz(sz) + o Vun (0)[lL2 ) + K I£[lLe (0, 7:L2(0) + —~ Il L2 (0,7; H (curl:)) -

4. Proof of the Theorem 1.1

In this section, we prove the Theorem 1.1. To this end, at first we prove the existence of
a sequence of Reproductive Galerkin solutions, by following the ideas given in [3], which

converges to the reproductive solution of the grade two system fluid.
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We define the operator L™(t) : [0,7] — R™ as

Lm(t) = (CT(t)vcgl(t)v"'ch(t))v (15)

where c}'(t) are the coefficients of the expansion of u,.

For every (£1,&2,...,&mn) € R™, we define the following equivalent norms:
(61,62, &) 2 o = Iullfe) + @l VulTa),
(61,25 -5 Em) Iy g = [lcur](u — aAu)”%Q(Q)?

where u = w1 + Eawo + -+ + Wy,

We define the operator ®™ : R™ — R™ in the following manner: Given L7’ € R™, we
define @™ (L7") = L™(T), where L™ (t) is defined in (15). It is clear that ®™ is continuous
and we want to prove that it has a fixed point. In order to prove this result, we will
use the Leray-Schauder Theorem. Indeed, it suffices to show that for all A € [0, 1], the

possible solution L{*(\) of the equation
Lg'(A) = A@™ (L' (M) (16)

are bounded independently of .

Since L§*(0) = 0, we will consider A € (0,1]. In this case, (16) can be written as
m m 1 m
L) = TLE ).

Thus, by definition of ™ and Lemma 3.2, we obtain

2 T
7)2

1 -V m VIKS
< e ML G e + V)€ B OIS

|30

a,R™

which implies that

Gl PN
S e
1O < 20—

= M.

Now, from Lemma 3.3 and definition of ", we have that

2

Lo _vT om 2 m
3580 <R OB an + 21OV e

b,R™

2p? 2

(6%
+ ﬁHfHLoo(o,T;m(Q)) + —IfllL2(0,7;H(curts)) s

v
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then, we deduce that

2My  2P? 2a
5 e 2K €]l 0.75m2(2)) + 7||f||L2(0.,T;H(curl;Q))
bRm = T = M,

l—e "

116" (M

for each A € (0,1]. This last estimate is independent of A\ € [0,1] and m € N. Con-
sequently, Leray-Shauder Theorem implies the existence of al least one fixed point of
@™ and then the existence of reproductive Galerkin solution u,,. Moreover, since the
previous estimates do not depend on m € A and by Lemma 3.3, there exists M € R

independent of m such that
[ (t)[lv, < M, (17)

for each t € [0,T7], it means that (w;,)m>1 is bounded in L>°(0,T;V3). By Lemma 2.1,
we can write ||, (t)|lusq) < M, for each t € [0,7].

It remains to pass to the limit with respect to m. This is a standard argument and
we have only to prove that (ul,,)m,>1 is bounded in L*>(0,7; V4). In order to prove this

bound, we use the arguments given in [1], p 190.

At first, we note that
[b(am (1), i (1), V)] < C[VUm|lEz (o) [VIv.,
which implies that there exists T}, (t) € V%) such that
bWy (), W (), v) = (T (t),v), Vv € Vy,

and by estimate (17), we have that (T)},),,>1 is bounded in L°(0,7;V}). In the same

manner, there exists a bounded sequence (T72),,>1 in L>(0,T; V}) such that
b(wn (1), A, (1), v) = (T7, (), v), Vv € Va.

Finally, from equation (8), we can conclude that u), = T,,P,,, where (T),)m>1 is a
bounded sequence of L>(0,T’; V) and P, is the projection of V5 on VJ*. This completes
the proof.
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