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Abstract. Lotka-Volterra systems are the canonical ecological models used to analyze popula-
tion dynamics of competition, symbiosis or prey-predator behaviour involving different interacting
species in a fixed habitat. Much of the work on these models has been within the framework of
infinite-dimensional dynamical systems, but this has frequently been extended to allow explicit time
dependence, generally in a periodic, quasiperiodic or almost periodic fashion. The presence of more
general non-autonomous terms in the equations leads to non-trivial difficulties which have stalled
the development of the theory in this direction. However, the theory of non-autonomous dynamical
systems has received much attention in the last decade, and this has opened new possibilities in the
analysis of classical models with general non-autonomous terms. In this paper we use the recent
theory of attractors for non-autonomous PDEs to obtain new results on the permanence and the ex-
istence of forwards and pullback asymptotically stable global solutions associated to non-autonomous
Lotka-Volterra systems describing competition, symbiosis or prey-predator phenomena. We note in
particular that our results are valid for prey-predator models, which are not order-preserving: even
in the ‘simple’ autonomous case the uniqueness and global attractivity of the positive equilibrium
(which follows from the more general results here) is new.
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1. Introduction. Partial differential equations have proved a very useful tool in
the modelling of many ecological phenomena related to the dynamics between species
interacting in a given habitat. Many authors have allowed explicit dependence on
both space and time in the parameters of the equation, a natural way to take into
account the spatial and temporal variations that influence real species interactions.

In this paper we consider a non-autonomous model for two species (u and v),
evolving within a habitat Ω that is a bounded domain in RN , N ≥ 1, with a smooth
boundary ∂Ω, of the following type

ut − d1∆u = uf(t, x, u, v) x ∈ Ω, t > s
vt − d2∆v = vg(t, x, u, v) x ∈ Ω, t > s
B1u = 0, B2v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs,

(1.1)
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FQM-02468) (langa@us.es).

†Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.
(j.c.robinson@warwick.ac.uk). Partially supported by a Royal Society University Research
Fellowship.
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where f and g are regular functions, d1, d2 are positive constants and Bi denotes one
of the boundary operators

Bu = u, or Bu =
∂u

∂~n
, or Bu = d

∂u

∂~n
+ σ(x)u,(1.2)

for Dirichlet, Neumann or Robin case, respectively, ~n is the outward normal vector-
field to ∂Ω, σ(x) a C1 function. Note that we take diffusion coefficient di and boundary
potential σi(x) for the case of Robin boundary condition Bi. Also note that we allow
all of the nine possible combinations of boundary conditions in (1.1).

A particularly interesting class of models of the form (1.1) are the non-autonomous
Lotka-Volterra models:

ut − d1∆u = u(λ(t, x) − a(t, x)u − b(t, x)v) x ∈ Ω, t > s
vt − d2∆v = v(µ(t, x) − c(t, x)u − d(t, x)v) x ∈ Ω, t > s
B1u = 0, B2v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs.

(1.3)

We refer for example to [6] for the biological meaning of the parameters d1, d2,
λ, µ, a, b, c, d involved in (1.3).

In line with the ecological interpretation of these models we will only consider
positive solutions, and in the light of this we note here that us, vs ≥ 0 implies that
the solution of (1.1) satisfies u, v ≥ 0.

Note that our hypotheses on b and c allow different models of population dynam-
ics: competition if b, c > 0, symbiosis if b, c < 0 and prey-predator if b > 0 and c < 0,
although we do not allow sign changing coeffcients.

Of course, it is an important problem to determine the asymptotic behaviour of
solutions of the system (1.1). Since in general this is a very complicated task, one may
try to solve simpler problems, e.g. one can try to determine whether or not the two
species will survive in the long term or if, on the contrary, one of them will be driven
to extinction. Survival of the species has been formalised in the notion of permanence,
see Hale and Waltman [15] or Hutson and Schmitt [20]. Loosely speaking, the system
(1.1) is said to be permanent if for any positive initial data us and vs, within a finite
time the values of the solution (u(t, s, x;us, vs), v(t, s, x; us, vs)), for x ∈ Ω, enter and
remain within a compact set in R2 that is strictly bounded away from zero in each
component. Note, however, that this is an imprecise statement in the presence of
Dirichlet boundary conditions.

Note that permanence is a form of coexistence of the species, since none is extin-
guished at any part of the habitat domain at any time.

A related situation, which implies that the system is permanent but gives more
detail since it also indicates the expected final state of the system, is when there exists
a solution, bounded away from zero, to which all other solutions tend asymptotically.

These two are the main topics with which we are concerned in this paper.
Before going further observe that both (1.1) and (1.3) always posses the trivial

solution (0, 0) and semitrivial solutions of the form (u, 0) and (0, v). In the latter
case the non–trivial component satisfies a scalar parabolic problem, of logistic type in
the case of (1.3). The dynamics of these solutions have a deep impact on the global
dynamics of general solutions. Indeed, if the system is permanent, this implies that
semitrivial solutions must be unstable in some sense. On the other hand, if semitrivial
solutions are stable, then it can be expected that some solutions of the system exhibit
extinction, that is, one of the species (or both) approaches asymptotically the value
zero.
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Some results are already known along these lines. For example in the autonomous
case, assume that all the coefficients in (1.3) are constants and consider, for example,
the problem with Dirichlet boundary conditions. In this case results about perma-
nence for problem (1.3) depend on the values of λ and µ with respect to the first
eigenvalue of certain associated linear elliptic problems, which we now describe. Given
d ∈ R, d > 0 and f ∈ L∞(Ω), we denote by Λ(d, f) (we write Λ0 := Λ(d, 0)) the first
eigenvalue of the problem{

−d∆w = σw + f(x)w in Ω,
w = 0 on ∂Ω,

and given γ, α ∈ R with α > 0, we denote by ω[d,γ,α] the unique positive solution of{
−d∆w = γw − αw2 in Ω,
w = 0 on ∂Ω.

If λ and µ satisfy

λ > Λ(d1,−bω[d2,µ,d]) and µ > Λ(d2,−cω[d1,λ,a])(1.4)

then the autonomous version of the competition or prey-predator cases of (1.3), with
Dirichlet boundary conditions in both components, are permanent and moreover there
exists a positive equilibrium solution (Cantrell et al. [4], [6], [7], [8] and López-Gómez
[27]).

Although the case of symbiosis, b, c < 0, is not treated in these papers, a similar
result holds provided that

bc < ad,

a condition which is used to obtain a priori bounds for the solutions (see, for instance,
Pao [30] or Theorem 9.8 in Delgado et al. [12], where moreover the coefficients a, b, c
and d depend on x).

Note that (1.4) is a condition that expresses the instability of semitrivial solutions.
However, in the competition case it is well-known that if λ ≤ Λ0 or µ ≤ Λ0, then

one of the two species (or both of them) will be driven to extinction (see López-Gómez
and Sabina [29] for an improvement of this result). Similar results can be obtained
in the other cases, see [6] and [30]. Note that, in contrast with (1.4), the condition
above expresses the stability of either one of the semitrivial solutions.

When non-autonomous terms are allowed in the equations, this is usually done
under the assumption of periodicity, quasiperiodicity or almost periodicity, and in this
case similar results can be obtained to those for autonomous equations (see Hess [17],
Hess and Lazer [18], and Hetzer and Shen [19] and references there in). For the case
of periodic coefficients, the use of the Poincaré map implies that the system resembles
an autonomous one in many respects.

Cantrell and Cosner [5] assume general non-autonomous terms that are bounded
by periodic functions, and using a comparison method give conditions on λ and µ
that guarantee that (1.3) is permanent.

Note that most of the references cited in the papers above are concerned (besides
periodicity or almost periodicity) with some particular choice of boundary conditions
(typically Neumann, or even Dirichlet, in both components) and one of the competi-
tion, symbiosis or prey–predator cases. In the first two cases a common tool in the
references is the use of order-preserving properties of the Lotka–Volterra system.
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For example, in the case of almost periodic time dependence, Hetzer and Shen [19]
proved similar results for the competition case, assuming that d1 = d2 and λ = µ are
constant and both components of the system satisfy Dirichlet boundary conditions (no
such restrictions are required in the case of Neumann BCs). In that paper, limitation
to almost periodic cases is due to the use of skew–product techniques which require,
some way or another, some sort of time recurrence in the coefficients of the system.

Note that in [25] Langa et al. studied permanence for the competition case with
Dirichlet boundary conditions when only the coefficient a is allowed to depend on
time.

In this paper we allow general non-autonomous terms, and do not restrict our-
selves to (for example) almost periodic time dependence. As said before, we also
consider all nine possible choices of boundary conditions and treat competition, sym-
biosis and prey–predator models, since we do not rely in monotonicity properties of
the system. Note that the only restriction that we impose on the coefficients is that
d1 = d2 in the symbiotic case, a condition that we assume only in order to have ex-
plicit upper bounds on the solutions, but not for the permanence results. Also note
that as we employ for the solutions of (1.1) or (1.3) the approach of non–autonomous
processes rather than skew-product techniques, we have to pay attention to both the
initial time, s, and the observation time for the solutions, t > s. This implies that
concepts like permanence, stability, instability and attractivity can be defined and
analyzed in both pullback and forwards senses; see Section 2 for further details and
also [24]. Observe also that while pullback properties (e.g. permanence, attraction)
are usually the most one can expect for general non-autonomous terms, in this case
we can also show results on permanence and attractivity also forwards in time; see
Langa et al. [25, 23] for cases of pullback but not forwards permanence or attraction
in non-autonomous reaction-diffusion equations.

In Section 3, using results for the scalar non–autonomous logistic equations from
e.g. [25, 34], which we compile in Section 3.1, we make use of the theory of attractors
for non-autonomous PDEs as developed by Chepyzhov and Vishik [9] (see also Crauel
et al. [11] or Kloeden and Schmalfuss [21]). Thus, we prove in Section 3.2 that under
the assumption s

inf
R×Ω

a(t, x) > 0 and inf
R×Ω

d(t, x) > 0

the system (1.3) has a non–autonomous attractor; see Theorem 3.5. The existence
of non–autonomous attractor in this case implies the presence of bounded complete
trajectories, i.e. solutions defined for all time.

From here we derive in Section 3.3 some sufficient conditions for the extinction
of one (or both) of the species of the system. These conditions are far from optimal
but qualitatively describe the stability of semitrivial solutions; see Proposition 3.6.

Then, in Section 3.4 we give sufficient conditions reflecting the instability of
semitrivial solutions that guarantee that (1.3) is permanent both in a pullback and in
a forwards sense. We want to stress here that these sufficient conditions involve only
information about the behaviour of the coefficients of the system at either t → −∞
or t → ∞. Also, they are given in such a way that the result is robust with respect
to perturbations of the coefficients.

The rest of the paper is then devoted to a more detailed analysis of the asymptotic
behaviour of the solutions of (1.3). After some preparatory material in Sections 4 and
5, we will prove in Section 6 that under appropriate conditions on the parameters all
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non–semitrivial solutions of (1.3) have the same asymptotic behavior as t → ∞. In
particular all bounded complete trajectories in the non–autonomous attractor have
the same asymptotic behaviour as t → ∞. For this we make use of the permanence
results in Section 3.4 and impose a smallness condition on the product of the coupling
parameters:

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0

for some suitable constant ρ0 > 0, see Theorem 6.1.
Moreover we show that, under a similar smallness condition on the coupling coef-

ficients, now as t → −∞, if one of the bounded complete trajectories of (1.3) (which
exists from the existence of the non–autonomous attractor) is bounded away from
zero at −∞, it is the unique such trajectory, and it also describes the unique pull-
back asymptotic behavior of all non–semitrivial solutions of (1.3), see Theorem 6.2.
When these two theorems can be applied together, there is a unique bounded com-
plete trajectory (u∗(t), v∗(t)) that is both forwards and pullback attracting for (1.3),
i.e. (u∗, v∗) is a bounded trajectory such that, for any s ∈ R and for any positive
solution (u(t, s), v(t, s)) of (1.3) defined for t > s, one has

(u(t, s) − u∗(t), v(t, s) − v∗(t)) → (0, 0) as t → ∞, or s → −∞.(1.5)

To obtain these results we need some non trivial machinery for the linear scalar
case, Section 4.1, and some perturbation results about the exponential decay for
solutions of linear parabolic non–autonomous systems, Section 4.2. In particular, we
find conditions guaranteeing that any bounded solution of{

ut − d1∆u = p(t, x)u
vt − d2∆v = q(t, x)v(1.6)

gives rise to a solution that tends to zero as t → ∞, when (1.6) is perturbed in a
certain way, see Theorem 4.6. It is because we are able to study the linear part of the
system in detail that we can obtain results for the nonlinear system.

Since we are able to treat the difference of two solutions of problem (1.3) within
this framework, as a consequence of this argument we can apply our results to the
Lotka-Volterra model in all three standard cases: competition, symbiosis and prey-
predator. It is noteworthy that these different situations are usually studied separately
in the literature, but since we do not make any use of monotonicity arguments (which
do not apply in the prey-predator case) we are able to give a unified treatment.

We close this paper in Section 7 with a discussion of our results and some possi-
bilities for further developments.

In the case in which all the coefficients are autonomous or periodic, our results
in Section 6 that we described above in (1.5), imply the uniqueness of the asymptotic
behavior of all non-semitrivial solutions.

Hence, in the autonomous case our results agree with all the classical results of
uniqueness and stability of the non-semitrivial steady states of (1.3) for the three
cases of competition, symbiosis and prey-predator (see for instance Theorem 4.4 in
Furter and López-Gómez [13] and Corollary 4.3 in López-Gómez and Sabina de Lis
[29] in the competition case, and Corollary 9.5 in Delgado et al. [12] in the symbiosis
case).

Moreover, in the prey-predator case, with (1.5) we are able to conclude the unique-
ness and global stability of a steady state, solving (for particular ranges of parameter
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values) one of the most interesting open problems in this field. We emphasize that
this result is new even in the autonomous case, where until now only local stability
has been proved, see Theorem 4.1 in Leung [26], see also Lakos [22], López-Gómez
and Pardo [28], and Yamada [36].

2. Some notations and preliminaries. In this section we introduce some
basic notations and terminology that will be used throughout the rest of the paper.
In particular, we make precise the way systems (1.1) or (1.3) are said to be permanent.

2.1. Asymptotic behavior and complete trajectories for nonlinear sys-
tems. Note that if the solutions of (1.1) are global, then we can define a non-
autonomous nonlinear process in some Banach space X appropriate for the solutions,
i.e. a family of mappings {S(t, s)}t≥s : X → X, t, s ∈ R satisfying:

a) S(t, s)S(s, τ)z = S(t, τ)z, for all τ ≤ s ≤ t, z ∈ X,
b) S(t, τ)z is continuous in t > τ and z, and
c) S(t, t) is the identity in X for all t ∈ R.

S(t, τ)z arises as the value of the solution of our non-autonomous system at time t
with initial condition z at initial time τ . For an autonomous system the solutions
only depend on t − τ , and we can write S(t, τ) = S(t − τ, 0).

In order to describe the asymptotic behavior of non–autonomous systems like (1.1)
and (1.3), we rely in the concept of non-autonomous pullback attractor (Chepyzhov
and Vishik [9], Kloeden and Schmalfuss [21]), which is the sensible generalization of
an attractor for non-autonomous systems. For A,B ⊂ X we denote the Hausdorff
semidistance between A and B by dist(A,B) = supa∈A infb∈B d(a, b).

Definition 2.1. We say that a family of compact sets {A(t)}t∈R ⊂ X is a
pullback attractor associated to S if

a) S(t, τ)A(τ) = A(t), for all t ≥ τ and
b) for all t ∈ R and D ⊂ X bounded

lim
τ→−∞

dist(S(t, τ)D,A(t))) = 0.

Observe that the attraction in b) fixes the final time and moves the initial time
backwards towards −∞. We are not evolving one trajectory backwards in time, but
rather we consider the current state of the system (at the fixed time t) which would
result from the same initial condition starting at earlier and earlier times.

To guarantee the existence of such a pullback attractor, one is usually faced with
the task of proving the existence of a pullback absorbing family, defined as follows

Definition 2.2. Given t0 ∈ R, we say that B(t0) ⊂ X is pullback absorbing at
time t0 if for every bounded D ⊂ X there exists a T = T (t,D) ∈ R such that

S(t0, τ)D ⊂ B(t0), for all τ ≤ T.

A family {B(t)}t∈R is pullback absorbing if B(t0) is pullback absorbing at time t0, for
all t0 ∈ R.

The general result on the existence of non-autonomous pullback attractors is a
generalization of the abstract theory for autonomous dynamical systems (Temam [37],
Hale [14]):

Theorem 2.3. (Crauel et al. [11], Schmalfuss [35])
Assume that there exists a family of compact pullback absorbing sets. Then, there

exists a pullback attractor {A(t)}t∈R that is minimal in the sense that if {C(t)}t∈R

is another family of closed pullback attracting sets, then A(t) ⊂ C(t) for all t ∈ R.
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To have a more precise description of the dynamical objects within the pullback
attractor, we make the following definition:

Definition 2.4. Let S be a process. We call the continuous map w : R → X a
complete trajectory if, for all s ∈ R,

S(t, s)w(s) = w(t) for all t ≥ s.

According to Chepyzhov and Vishik [9], when the family of absorbing sets is
uniformly bounded, the pullback attractor can be characterized as

A(t) = {w(t) : w(·)is a bounded complete trajectory for S}.(2.1)

2.2. Pullback and forwards permanence for non–autonomous systems.
Consider the nonlinear system (1.1) and assume that f and g are regular functions.
Hence, we can assume that for initial data (us, vs) ∈ CB1(Ω) × CB2(Ω) there exists a
unique (local) smooth solution such that (u, v) ∈ C1

B1
(Ω) × C1

B2
(Ω) for t > s, where,

for j = 0, 1,

Cj
B(Ω) =

{
Cj

0(Ω) for Dirichlet BCs,
Cj(Ω) for Neumann or Robin BCs,

with Cj
0(Ω) denoting functions in Cj(Ω) that are zero on ∂Ω and C0(Ω) = C(Ω).

Note that in practice we will be interested only in non-negative solutions and that
if us ≥ 0 and vs ≥ 0 in (1.1), then the local solution satisfies u, v ≥ 0. In fact, the
maximum principle implies that if both us ≥ 0 and vs ≥ 0 are non-trivial, then u and
v are strictly positive in Ω.

Although at this point we only assume local existence of solutions, it still makes
sense to consider complete trajectories of (1.1), which roughly speaking are solutions
defined for all times. These objects will play a central role in our analysis below, as
can be seen from (2.1). More precisely, a restatement of Definition 2.4 gives

Definition 2.5. A continuous function U =
(

u
v

)
: R → CB1(Ω) × CB2(Ω) is

a complete trajectory of (1.1), if for all s < t in R, (u(t), v(t)) is the solution of (1.1)
with initial data us = u(s), vs = v(s).

Now we define several concepts that will help us in making precise the concepts
of pullback and forwards permanence for the solutions of (1.1) or (1.3). Note that the
concepts below are related to the spaces CBi(Ω) above. We start with the following

Definition 2.6. A set of non-negative functions B ⊂ C(Ω) is bounded away
from zero, if there exists a non-negative non-trivial continuous function ϕ0(x) ≥ 0 in
Ω (vanishing on ∂Ω in case of Dirichlet boundary conditions) such that

u(x) ≥ ϕ0(x) for all x ∈ Ω, u ∈ B.

The set B is non–degenerate if the function ϕ0(x) above is in C1(Ω) and ϕ0(x) > 0
in Ω.

Note that ϕ0 above can be a positive constant in the case of Neumann or Robin
boundary conditions.

Then we have the following definitions for curves in the space of continuous func-
tions.

Definition 2.7. A positive function with values in C(Ω) is non–degenerate at ∞
(respectively −∞) if there exists t0 ∈ R such that u is defined in [t0,∞) (respectively
(−∞, t0]) and

{u(t), t ≥ t0} is a non–degenerate set
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(respectively for t ≤ t0), that is, there exists a C1(Ω) function ϕ0(x) > 0 in Ω,
(vanishing on ∂Ω in case of Dirichlet boundary conditions), such that

u(t, x) ≥ ϕ0(x) for all x ∈ Ω, t ≥ t0

(respectively for all t ≤ t0).
A family of curves in C(Ω), denoted {uσ(t)}σ∈Σ, is non–degenerate at ∞ if there

exists t0 ∈ R such that uσ is defined in [t0,∞) and

{uσ(t), t ≥ t0, σ ∈ Σ} is a non–degenerate set.

Finally, a family of curves in C(Ω), denoted {uσ(t, s)}σ∈Σ, defined in the intervals
[s,∞) is non–degenerate as s → −∞ if there exists s0 ∈ R such that for all s ≤ s0

{uσ(t), s ≤ t ≤ s0, σ ∈ Σ} is a non–degenerate set

For systems, analogously to Definition 2.6, a set B ⊂ (C(Ω))2 is bounded away
from zero if each projection of B is bounded away from zero in C(Ω). In a similar way,
as in Definition 2.7, a family of curves Uσ(x, ·) ∈ (C(Ω))2, σ ∈ Σ, is non-degenerate
if both components are non-degenerate in C(Ω).

Now we can finally define when the system (1.1) or (1.3) is pullback permanent.
Observe that we assume here that solutions are globally defined.

Definition 2.8. We say that system (1.1) is pullback permanent if for any
bounded set of intial B ⊂ (C(Ω))2 bounded away from zero, there exists t0 ∈ R such
that for any t ≤ t0 the family of solutions

{
(
u(t, s;u0, v0), v(t, s; u0, v0)

)
, s ≤ t, (u0, v0) ∈ B}(2.2)

is non–degenerate at s → −∞.
The system (1.1) is uniformly pullback permanent if it is pullback permament and

the functions ϕ0 in Definition 2.7 are independent of B.
Note that using the regularizing properties of the solutions of (1.1) or (1.3), if the

system is pullback permanent, as defined above, then the set (2.2) is non–degenerate
at s → −∞ for any fixed t ∈ R.

In an analogous although subtly different way we can define when system (1.1)
or (1.3) is forwards permanent

Definition 2.9. We say that system (1.1) is forwards permanent if for any
bounded set of initial B ⊂ (C(Ω))2 bounded away from zero, and for any s ∈ R, the
family of solutions

{
(
u(t, s;u0, v0), v(t, s; u0, v0)

)
, s ≤ t, (u0, v0) ∈ B}(2.3)

is non–degenerate at ∞.
The system (1.1) is uniformly forwards permanent if it is forwards permanent

and the functions ϕ0 in Definition 2.7 are independent of B.
Note that (1.1) always has the trivial solution (0, 0) as well as semitrivial solutions

(u, 0) and (0, v). Hence, if the system is permanent, as defined above, this implies
that trivial and semitrivial solutions are unstable in the pullback or forwards sense, see
e.g. Langa, Robinson, & Suárez [24]. Also, note that permanence implies coexistence
of the species, since the values of the solutions eventually remain far from zero in
all points of the domain (except at the boundary in the case of Dirichlet boundary
conditions).

In the next section we will give conditions on the coefficients of (1.3) for uniform
permanence (both forwards and pullback) which will be moreover robust with respect
to suitable perturbations on the coeffcients.
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3. Extinction and permanence for non-autonomous Lotka-Volterra equa-
tions: competition, symbiosis and prey-predator models. In this section we
give results on extinction and pullback and forwards permanence for non-autonomous
Lotka-Volterra systems of the type

ut − d1∆u = u
(
λ(t, x) − a(t, x)u − b(t, x)v

)
, x ∈ Ω, t > s

vt − d2∆v = v
(
µ(t, x) − c(t, x)u − d(t, x)v

)
, x ∈ Ω, t > s

B1u = 0, B2v = 0, x ∈ ∂Ω, t > s
u(s) = us ≥ 0, v(s) = vs ≥ 0,

(3.1)

with d1, d2 > 0; λ, µ, a, b, c, d ∈ Cθ(Q), and Q = R× Ω. Given a function e ∈ Cθ(Q),
we define

eL := inf
Q

e(t, x) eM := sup
Q

e(t, x).

We assume from now on that

aL, dL > 0(3.2)

and consider the three classical cases depending on the signs of b and c:
1. Competition: bL, cL > 0 in Q.
2. Symbiosis: bM , cM < 0 in Q.
3. Prey-predator: bL > 0, cM < 0 in Q.

Also, note that we consider all nine possible choices for Bi as in (1.2).

Using standard techniques, see for instance Pao [30], it can be shown that given
0 ≤ us ∈ C(Ω), 0 ≤ vs ∈ C(Ω) there exists, locally in time, a unique solution of (3.1)
which is non-negative, and which we will denote by

u = u(t, s, x; us, vs) ≥ 0, v = v(t, s, x;us, vs) ≥ 0.

In fact, due to the strong maximum principle, if us ≥ 0 and vs ≥ 0 are both non-
trivial then u and v are strictly positive in Ω. Furthermore, if we denote by Ci and
int(Ci) for i = 1, 2 respectively, the positive cones in C1

Bi
(Ω) and their corresponding

interior sets, we have

int(Ci) := {u ∈ Ci : u > 0 in Ω, and
∂u

∂~n
< 0 on ∂Ω} if Biu = u

and

int(Ci) := {u ∈ Ci : u ≥ δ > 0, for some δ > 0 in Ω},

if Biu = ∂u
∂~n or Biu = di

∂u
∂~n + σi(x)u.

Thus, if us ≥ 0 and vs ≥ 0 are both non-trivial, then (u, v) ∈ int(C1)× int(C2) for
t > s.

Note also that (3.1) also admits semitrivial solutions of the form (u, 0) or (0, v).
As indicated in the Introduction, the stability properties of semitrivial solutions play
an important role in the global dynamics of (3.1). In fact, extinction requires some
semitrivial solution is stable whereas permanence is only possible if semitrivial solu-
tions are somehow unstable.

Thus, we first review some results on the solutions of scalar logistic equations that
will be used further below. These results will be used to prove that the local solutions
of (3.1) above, are in fact globally defined. Also, they will be crucially used to prove
the existence of a pullback attractor as in Section 2.1, and to obtain our results on
extinction and permanence as well.
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3.1. On the non-autonomous logistic equation. Note that (3.1) always ad-
mits semitrivial solutions of the form (u, 0) or (0, v). In this case, when one species is
not present, the other one satisfies the non-autonomous logistic equation ut − d∆u = h(t, x)u − g(t, x)u2 in Ω, t > s

Bu = 0 on ∂Ω,
u(s) = us ≥ 0 in Ω,

(3.3)

where d > 0 and B as in (1.2), us ∈ C(Ω), h, g ∈ Cθ(Q), and

gL > 0 in Q.

For m ∈ L∞(Ω) we denote by ΛB(d,m) the first eigenvalue of{
−d∆u = λu + m(x)u in Ω,
Bu = 0 on ∂Ω.(3.4)

In particular, we denote by Λ0,B(d) = ΛB(d, 0) the first eigenvalue of the operator −d∆
with boundary conditions B. It is well known that ΛB(d,m) is a simple eigenvalue
and a continuous and decreasing function of m. Also note that if m1 is constant then

ΛB(d,m1 + m2) = ΛB(d, m2) − m1.(3.5)

We write ϕ1,B(d,m) for the positive eigenfunction associated to ΛB(d,m), normalized
such that ‖ϕ1,B(d,m)‖L∞(Ω) = 1.

If there is no possible confusion we will suppress the dependence on d and B in
the notations above. When we need to distinguish these quantities with respect to
Bi, or di, i = 1, 2, we will employ superscripts as Λi(m) or Λi

0.
Finally, for h, g ∈ L∞(Ω) with gL > 0 consider the elliptic equation{

−d∆u = h(x)u − g(x)u2 in Ω,
Bu = 0 on ∂Ω.(3.6)

The following result is well known (Cantrell and Cosner [6]).
Proposition 3.1. If Λ(h) ≥ 0, the unique non-negative solution of (3.6) is the

trivial one, i.e. ω[h,g](x) = 0. On the other hand, if Λ(h) < 0 there exits a unique
positive solution of (3.6), which we denote by ω[h,g](x). Moreover, 0 < ω[h,g](x) ≤
Ψ(x) in Ω, where

Ψ(x) =

{
hM

gL
for Dirichlet or Neumann BCs,

− Λ(h)
ϕLgL

ϕ(x) for Robin BCs,

with ϕ = ϕ1,B(m).

The following result will be used in what follows.
Lemma 3.2. Assume that hn ∈ L∞(Ω) and that

hn → h∞ in L∞(Ω),

with Λ(h∞) < 0. Then, there exist n0 ∈ IN, and ϕ ∈ int(C) such that

ϕ(x) ≤ ω[hn,g](x) in Ω, for all n ≥ n0
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where ω[hn,g](x) is given by Proposition 3.1.
Proof. Since Λ(h∞) < 0, we can take ε > 0 such that 0 < ε < −Λ(h∞). For this

ε > 0, there exists n0 ∈ IN such that for n ≥ n0

−ε < hn − h∞ < ε for all x ∈ Ω.

Consider ϕ∞ ∈ int(C) the eigenfunction associated to Λ(h∞) with ‖ϕ∞‖L∞(Ω) = 1.
It is not hard to show that δϕ∞ is subsolution of (3.6) with h = hn provided that

δ ≤ −ε + Λ(h∞)
gM

.

So, δϕ∞(x) ≤ ω[hn,g](x) in Ω. This completes the proof.

In [25] and [34] the following properties of (3.3) were proved.
Theorem 3.3. Assume that in (3.3)

hM < ∞ and gL > 0 in Q.

Then
1. For every non-trivial us ∈ C(Ω), us ≥ 0, there exists a unique positive solu-

tion of (3.3) denoted by Θ[h,g](t, s, us). Moreover,

0 ≤ Θ[h,g](t, s, us) ≤ K(3.7)

where

K :=

 max
{

(us)M , hM

gL

}
for Dirichlet or Neumann BCs,

max
{

(us

ϕ )M , −Λ(hM )
ϕLgL

}
for Robin BCs,

and ϕ is the positive eigenfunction associated to Λ(hM ) with ‖ϕ‖L∞(Ω) = 1.
2. For fixed t > s, us, the map h 7→ Θ[h,g](t, s, us) is increasing and g 7→

Θ[h,g](t, s, us) is decreasing.
For fixed t > s, h and g, the map us 7→ Θ[h,g](t, s, us) is increasing.

3. Define, for x ∈ Ω,

h0(x) := inf
t∈R

h(t, x), H0(x) := sup
t∈R

h(t, x)

and

g0(x) := inf
t∈R

g(t, x), G0(x) := sup
t∈R

g(t, x).

Then, if us ∈ int(C) and Λ(h0) < 0 we have, for any t > s,

0 < εϕ1(x) ≤ Θ[h,g](t, s, x; us) in Ω,(3.8)

where ϕ1 is the positive eigenfunction associated to Λ(h0) and

ε = ε(us) := min
{

(
us

ϕ1
)L,

−Λ(h0)
gM

}
.
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4. If Λ(H0) > 0, then for all initial data us ≥ 0, Θ[h,g](t, s, us) → 0, in C1(Ω),
as t − s → ∞. Moreover the convergence is exponential and uniform for
bounded sets of initial data us.

5. If Λ(h0) < 0 then there exists a unique bounded, complete and non-degenerate
trajectory at ±∞ of (3.3), ϕ[h,g], which moreover satisfies that for all s and
any bounded set of non-trivial initial data us ≥ 0, bounded away from 0,

Θ[h,g](t, s, us) − ϕ[h,g](t) → 0 as t → ∞.

That is, ϕ[h,g] describes the forwards behaviour of all solutions. Also, ϕ[h,g]

describes the pullback behaviour of all non-degenerate solutions of (3.3), that
is, for each t, if s 7→ us ≥ 0 is bounded and non-degenerate, then

Θ[h,g](t, s, us) − ϕ[h,g](t) → 0 as s → −∞.

Both limits above are taken in C1(Ω). Furthermore for all t ∈ R, we have

ω[h0,G0](x) ≤ ϕ[h,g](t, x) ≤ ω[H0,g0](x) in Ω.

6. If h, g are independent of t and are in L∞(Ω) with gL > 0 and Λ(h) < 0,
then ϕ[h,g](t, x) = ω[h,g](x) is the unique positive solution of (3.6) and for all
t > s and us

Θ[h,g](t, s, us) = Θ[h,g](t − s, us) → ω[h,g] in C1(Ω) as t − s → ∞

uniformly for bounded sets of initial data us ≥ 0 bounded away from zero. In
particular, there exist m ≤ 1 ≤ M such that

mω[h,g] ≤ Θ[h,g](t, s, us) ≤ Mω[h,g],

for t − s large.
Moreover in statements 4, 5 and 6 above the convergence as t → ∞ is exponentially
fast (see [33]).

3.2. Existence of the pullback attractor and complete trajectories for
non-autonomous Lotka–Volterra systems. Our first purpose is to prove the ex-
istence of a non-autonomous pullback attractor for (3.1). To do this we will derive
suitable estimates on the solutions of (3.1). In doing this we will use the following
notation for the solutions of (3.3) with diffusion coefficients d1 and d2 and boundary
conditions B1 and B2 respectively

ξ[λ,a](t, s) = Θ[λ,a](t, s, us), η[µ,d](t, s) = Θ[µ,d](t, s, vs),

where us ≥ 0 and vs ≥ 0 in Ω.
Theorem 3.4. Provided that aL, dL > 0, for any solution (u, v) of (3.1), with

initial data us ≥ 0, vs ≥ 0, the following lower and upper bounds hold:
1. Competition, bL > 0, cL > 0:

ξ[λ−bη[µ,d],a] ≤ u ≤ ξ[λ,a], η[µ−cξ[λ,a],d] ≤ v ≤ η[µ,d].

2. Symbiosis, bM < 0, cM < 0: Assume

bLcL < aLdL.(3.9)



NON-AUTONOMOUS LOTKA-VOLTERRA SYSTEMS 13

Then,

ξ[λ−bη[µ,d],a] ≤ u, η[µ−cξ[λ,a],d] ≤ v.

Assume furthermore that d1 = d2 and define

γ = max{λM , µM}, M =
aL − cL

dL − bL
> 0, K =

aLdL − bLcL

dL − bL
> 0,

and choose ws such that ws ≥ max{us,
1
M vs}. Denote by Θ[γ,K](t, s, ws) the

solution of (3.3) with d = d1 and certain boundary condition that depends on
B1 and B2 and that will be specifies in the proof. Then, we have the upper
bounds

u ≤ Θ[γ,K](t, s, ws), v ≤ MΘ[γ,K](t, s, ws).

3. Prey-predator, bL > 0, cM < 0:

ξ[λ−bη[µ−cξ[λ,a],d],a] ≤ u ≤ ξ[λ−bη[µ,d],a] ≤ ξ[λ,a], η[µ,d] ≤ v ≤ η[µ−cξ[λ,a],d].

Proof. 1. Assume that bL, cL > 0. If we write the equation for u as

ut − d1∆u = u(λ − bv) − au2,

then using Theorem 3.3 we get

u = ξ[λ−bv,a] ≤ ξ[λ,a],

and similarly,

v ≤ η[µ,d].

Hence, again by Theorem 3.3

u = ξ[λ−bv,a] ≥ ξ[λ−bη[µ,d],a].

2. Assume now that bM , cM < 0. To have the lower bounds it is enough to check that
in the equation for u one has

ξ[λ−bη[µ,d],a](λ−aξ[λ−bη[µ,d],a]−bη[µ,d]) ≤ ξ[λ−bη[µ,d],a](λ−aξ[λ−bη[µ,d],a]−bη[µ−cξ[λ,a],d]),

or equivalently,

η[µ−cξ[λ,a],d] ≥ η[µ,d],

which is true since c < 0. Similarly, for the equation for v.
On the other hand, assuming d1 = d2, define

u = Θ[γ,K](t, s, ws), v = MΘ[γ,K](t, s, ws)

with a suitable boundary condition, B to be described below. Then using the equations
we get that we get that u and v are supersolutions if

−K ≥ −a − bM, −K ≥ −dM − c,
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which is satisfied with the choice of M and K. To compare the solutions with the
uppersolutions on the boundary, if either u or v satisfies Dirchlet boundary conditions
we take B the boundary condition of the other component. If both u and v satisfy
Robin or Neumann (i.e. σi = 0 in the latter case) boundary conditions we define

σ = min{σ1, σ2},

and Bu = d1
∂u
∂~n + σ(x)u.

3. Assume finally that bL > 0, cM < 0, then

u ≤ ξ[λ,a] and η[µ,d] ≤ v.

Hence

v = η[µ−cu,d] ≤ η[µ−cξ[λ,a],d],

and then,

u = ξ[λ−bv,a] ≥ ξ[λ−bη[µ−cξ[λ,a],d],a].

With the upper bounds in Theorem 3.4 and using the results for scalar logistic
equations in Theorem 3.3, we get the following result.

Theorem 3.5. Under the assumptions in cases 1)-3) of Theorem 3.4, all solu-
tions of (3.1) are global in time and moreover there exists a pullback attractor A(t) of
(3.1), which is bounded for all t ∈ R. More precisely, we have

lim sup
t−s→∞

u(t, s; us, vs) ≤ M∞, lim sup
t−s→∞

v(t, s; us, vs) ≤ N∞,

uniformly in Ω and for bounded sets of intial data us, vs ≥ 0, for some constants
M∞ ≥ 0 and N∞ ≥ 0 that depend on the coefficients of (3.1).

In particular, there exists at least one complete bounded trajectory (u∗(t), v∗(t)),
t ∈ R, for (3.1). Furthermore, all complete bounded trajectories of (3.1) are uniformly
bounded by M∞ and N∞ and for all t ∈ R.

Proof. Thanks to the upper bounds in Theorem 3.4, the positive solutions of
(3.1) are always bounded by solutions of the logistic equation of the type (3.3). In
particular, all solutions of (3.1) are globally defined.

Now we use that

0 ≤ Θ[α,β](t, s; z) ≤ Θ[αM ,βL](t − s; z),

statements 4)–6) in Theorem 3.3 and that 0 ≤ ω[αM ,βL](x) ≤ ΨM , whith ω and Ψ as
in Proposition 3.1, to get the estimates.

In particular, this implies the existence of bounded pullback absorbing sets for
(3.1) in C(Ω) × C(Ω).

Then following the proof of Section 6 in Langa et al. [25] we can show the
existence of a bounded pullback absorbing set in C1(Ω) × C1(Ω), and so compact in
C(Ω)×C(Ω). Hence, we conclude using Theorem 2.3 the existence of a bounded non-
autonomous pullback attractor A(t) and thus the existence of at least one bounded
complete trajectory (u∗(t), v∗(t)), t ∈ R, follows.
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3.3. Extinction for non-autonomous Lotka–Volterra systems. Note that
with the arguments above there are some cases, when statement 4) in Theorem 3.3
can be used, in which one (or both) constants M∞ and N∞ are zero and we have
then extinction of one of the species. This implies, in turn, that semitrivial (or the
trivial) solutions are stable in a forwards and pullback senses. More precisely, we have
the following result. Observe that these sufficient conditions are far from optimal but
qualitatively they describe the global stability of trivial or semitrivial solutions.

Proposition 3.6. With the notations in Theorem 3.4 and 3.5, we have
1. Competition, bL > 0, cL > 0. If

λM < Λ1
0, then M∞ = 0,

while if

µM < Λ2
0, then N∞ = 0.

2. Symbiosis, bM < 0, cM < 0, d1 = d2 and (3.9), that is bLcL < aLdL. If

γ < Λ1
0, then M∞ = 0,

while if

γ < Λ2
0, then N∞ = 0.

3. Prey-predator, bL > 0, cM < 0. If

λM < Λ1
0, then M∞ = 0,

and in this case, if

µM < Λ2
0, then M∞ = 0.

On the other hand, if

Λ1
0 < λM , and µM − cL

λM

aL
< Λ2

0 then N∞ = 0.

In all the cases, when M∞ = 0 the u component of the solutions of (3.1) extin-
guishes in pullback and forwards senses, while the v component of the solutions asymp-
totically follows the dynamics of the scalar logistic equation (3.3) with h(t, x) = µ(t, x)
and g(t, x) = d(t, x) as described in Theorem 3.3.

The case when N∞ = 0 is analogous.
Proof. In fact, in the case of competition we have 0 ≤ u ≤ ξ[λM ,aL] and 0 ≤

v ≤ η[µM ,dL]. Hence, from statement 4) in Theorem 3.3 and using (3.5), if Λ1(λM ) =
Λ1

0 − λM > 0 then M∞ = 0, while N∞ = 0 if Λ2(µM ) = Λ2
0 − µM > 0.

In the case of symbiosis, assuming d1 = d2, we have 0 ≤ u ≤ Θ[γ,K](t, s, ws),
0 ≤ v ≤ MΘ[γ,K](t, s, ws). Hence, if Λ1(γ) = Λ1

0−γ > 0 then M∞ = 0, while N∞ = 0
if Λ2(γ) = Λ2

0 − γ > 0.
Finally, in the case of prey-predator, we have 0 ≤ u ≤ ξ[λM ,aL], 0 ≤ v ≤

η[µM−cLξ[λM ,aL],dL]. Hence, if Λ1(λM ) = Λ1
0 − λM > 0 then M∞ = 0. In this case,

N∞ = 0 if Λ2(µM ) = Λ2
0 − µM > 0.

On the other hand, if Λ1
0 < λM , then for large values of t − s we have v ≤

η[µM−cL(ω[λM ,aL]+ε),dL], and then N∞ = 0 if Λ2(µM − cL
λM

aL
) = Λ2

0 −µM + cL
λM

aL
> 0.
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The rest is immediate.

As we are interested in the “permanence” problem for (3.1), we will consider in
what follows only the cases in wich M∞ > 0 and N∞ > 0. In particular, note that for
sufficiently large values of λM > 0 and µM > 0 we can take, for the case of Dirichlet
or Neumann boundary conditions in either one of the components u or v,

M∞ =


λM

aL
in the competition case

γ
K in the symbiosis case,
λM

aL
in the prey-predator case

N∞ =


µM

dL
in the competition case

M γ
K in the symbiosis case,

µM−cL
λM
aL

dL
in the prey-predator case,

while for Robin boundary conditions we have

M∞ =


λM−Λ1

0
(ϕ1)LaL

in the competition case
γ−Λ1

0
(ϕ1)LK in the symbiosis case,
λM−Λ1

0
(ϕ1)LaL

in the prey-predator case

N∞ =


µM−Λ2

0
(ϕ2)LdL

in the competition case

M
γ−Λ2

0
(ϕ2)LK in the symbiosis case,

µM−cL
λM−Λ1

0
(ϕ1)LaL

−Λ2
0

(ϕ2)LdL
in the prey-predator case,

where ϕi denotes the positive eigenfunction associated to Λi
0 with ‖ϕi‖L∞(Ω) = 1.

Note that similar expressions can be given in the remaining five cases for the boundary
conditions, although their explicit form becomes more cumbersome.

In fact in the next section we will impose conditions on the coefficients to ensure
that the pullback and forwards behaviour of the solutions of (3.1), with non-trivial
initial data is far from the semitrivial and the trivial solutions.

3.4. Permanence for non–autonomous Lotka–Volterra systems: non-
degeneracy of solutions. Now, using the lower bounds in Theorem 3.4, we will
give sufficient conditions for the system (3.1) to be uniformly permanent in pullback
and forwards senses, as in Section 2.2. For reasons that will become clear further
below, we are interested in obtaining such non-degeneracy in a uniform way with
respect to the coefficients λ, µ, a, b, c, d in the system. For this, recall the notations in
(3.4) and that we always take non-negative non-trivial initial data us, vs.

Also note that in the results of this section we will use the quantities λI ≤ λS ,
µI ≤ µS , aI ≤ aS , bI ≤ bS , cI ≤ cS and dI ≤ dS , to control the asymptotic sizes of
the coefficients λ, µ, a, b, c, d as t → ±∞. As all the results will be given in terms of
such quantities, the statements below show the robustness of the results with respect
to perturbations in the coefficients of the system.

Finally, we stress here once again that the results below imply the instability of
trivial and semitrivial solutions.
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3.4.1. Competition.
Proposition 3.7. (Forwards permanence. Competitive case)
Assume (3.2) and bL, cL > 0. Then:
i) If λI > Λ1(−bSω[µS ,dI ]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , µ(t, x) ≤ µS , b(t, x) ≤ bS , a(t, x) ≤ aS and d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≥ t0, for any us, vs > 0, the solution for t > s ≥ t0 of
(3.1) satisfies ψ11(x) ≤ u(t, s, x; us, vs) for t − s large enough.

ii) If µI > Λ2(−cSω[λS ,aI ]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≤ λS , µ(t, x) ≥ µI , a(t, x) ≥ aI > 0, d(t, x) ≤ dS , c(t, x) ≤ cS

for all x ∈ Ω and t ≥ t0, for any us, vs > 0, the solution for t > s ≥ t0 of
(3.1) satisfies ψ22(x) ≤ v(t, s, x; us, vs) for t − s large enough.

Hence, if

λI > Λ1(−bSω[µS ,dI ]) and µI > Λ2(−cSω[λS ,aI ]),(3.10)

then there exist ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that for any choice of coefficients
that satisfy

λI ≤ λ(t, x) ≤ λS , µI ≤ µ(t, x) ≤ µS , 0 < aI ≤ a(t, x) ≤ aS ,

0 < bI ≤ b(t, x) ≤ bS , 0 < cI ≤ c(t, x) ≤ cS , 0 < dI ≤ d(t, x) ≤ dS ,

for all x ∈ Ω and for all t ≥ t0, and for all non-trivial us ≥ 0, vs ≥ 0 in a fixed
bounded set of C(Ω) bounded away from 0, the solution (u, v) of (3.1) for t > s ≥ t0
is non-degenerate at ∞ and for all t − s large enough

u(t, s, x; us, vs) ≥ ψ11(x) and v(t, s, x; us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly forwards permanent.
Proof. Since λI > Λ1(−bSω[µS ,dI ]), by the continuity of Λ1(m) with respect to

m, there exists ε > 0 such that

λI > Λ1(−bS(ω[µS ,dI ] + ε)) or equivalently by (3.5) Λ1(λI − bS(ω[µS ,dI ] + ε)) < 0.

Using Theorems 3.3 and 3.4, we get, for t > s ≥ t0,

u(t, s, us, vs) ≥ ξ[λ−bη[µ,d],a](t, s, us) ≥ Θ[λI−bSη[µS,dI ],aS ](t − s, us).

Moreover, η[µS ,dI ](t, s, vs) → ω[µS ,dI ] in C1(Ω) and uniformly for vs in bounded sets
bounded away from zero, as t − s → ∞, and so

u(t, s, us, vs) ≥ Θ[λI−bS(ω[µS,dI ]+ε),aS ](t − s, us) → ω[λI−bS(ω[µS,dI ]+ε),aS ](3.11)

in C1(Ω) and uniformly for us in bounded sets bounded away from zero, as t−s → ∞
by Theorem 3.3 and where we have used (3.10). Hence, the result follows for u.

On the other hand, we have analogously for the v component, for t > s ≥ t0,

v(t, s, us, vs) ≥ η[µ−cξ[λ,a],d](t, s, vs) ≥ Θ[µI−cSξ[λS,aI ],dS ](t − s, vs).
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Now, from (3.10), ξ[λS ,aI ](t, s, us) → ω[λS ,aI ] in C1(Ω) and uniformly for us in bounded
sets bounded away from zero, as t − s → ∞, and so

v(t, s, us, vs) ≥ Θ[µI−cS(ω[λS,aI ]+ε),dS ](t − s, vs) → ω[µI−cS(ω[λS,aI ]+ε),dS ](3.12)

in C1(Ω) and uniformly for vs in bounded sets bounded away from zero, as t−s → ∞
by Theorem 3.3.

The same arguments as above, carried in a pullback way lead to the following
result. Note that, in particular, this proposition guarantees the equi–non–degeneracy
at −∞ of complete non–degenerate trajectories with respect to the coefficients in the
system.

Proposition 3.8. (Pullback permanence. Competitive case)
Assume (3.2) and bL, cL > 0. Then:
i) If λI > Λ1(−bSω[µS ,dI ]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , µ(t, x) ≤ µS , b(t, x) ≤ bS , a(t, x) ≤ aS d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≤ t0 (for some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t − s large enough.
In particular, any complete trajectory of (3.1) that is non-degenerate at −∞
satisfies u(t, x) ≥ ψ11(x) for all x ∈ Ω and t ≤ t0.

ii) If µI > Λ2(−cSω[λS ,aI ]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≤ λS , µ(t, x) ≥ µI , a(t, x) ≥ aI > 0, d(t, x) ≤ dS , c(t, x) ≤ cS

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x; us, vs) for t − s large enough.
In particular, any complete trajectory of (3.1) that is non-degenerate at −∞
satisfies v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Hence, if

λI > Λ1(−bSω[µS ,dI ]) and µI > Λ2(−cSω[λS ,aI ])(3.13)

there exist functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x) ≤ λS , µI ≤ µ(t, x) ≤ µS , 0 < aI ≤ a(t, x) ≤ aS ,

0 < bI ≤ b(t, x) ≤ bS , 0 < cI ≤ c(t, x) ≤ cS , 0 < dI ≤ d(t, x) ≤ dS ,

for all x ∈ Ω and t ≤ t0 (for some t0 ∈ R), and for all non-trivial us ≥ 0, vs ≥ 0
in a fixed bounded set, B, of C(Ω) bounded away from 0, the set of solutions of (3.1)
{(u, v), s < t ≤ t0, (us, vs) ∈ B} is non-degenerate as s → −∞ and for all t− s large
enough

u(t, s, x; us, vs) ≥ ψ11(x) and v(t, s, x; us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly pullback permanent and any bounded complete tra-
jectory that is non-degenerate at −∞ satisfies

u(t, x) ≥ ψ11(x) and v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.
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Proof. The first part of the statements follow from (3.11) and (3.12), with t−s →
∞ but now s < t ≤ t0.

For a complete solution, arguing as in Proposition 3.7 we get for any for t0 ≥ t > s,

u(t) ≥ ξ[λ−bη[µ,d],a](t, s, u(s)) ≥ Θ[λI−bSη[µS,dI ],aS ](t − s, u(s)).

As v is non-degenerate at −∞, 5) in Theorem 3.3 implies η[µS ,dI ](t, s, v(s)) → ω[µS ,dI ](t)
in C1(Ω) as s → −∞. Thus, for sufficiently negative s,

u(t) ≥ Θ[λI−bS(ω[µS,dI ]+ε),aS ](t − s, u(s)) → ω[λI−bS(ω[µS,dI ]+ε),aS ](3.14)

in C1(Ω) as s → −∞, because u is non-degenerate at −∞ and 5) in Theorem 3.3
again. Hence the result follows for u.

On the other hand, we have analogously for the v component for any for t0 ≥ t > s,

v(t) ≥ η[µ−cξ[λ,a],d](t, s, v(s)) ≥ Θ[µI−cSξ[λS,aI ],dS ](t − s, v(s)).

Now, ξ[λS ,aI ](t, s, u(s)) → ω[λS ,aI ] in C1(Ω) as s → −∞, because u is non-degenerate
at −∞, and so, for sufficiently negative s,

v(t) ≥ Θ[µI−cS(ω[λS,aI ]+ε),dS ](t − s, v(s)) → ω[µI−cS(ω[λS,aI ]+ε),dS ](3.15)

in C1(Ω) as s → −∞ by Theorem 3.3, because v is non-degenerate at −∞.

Results for the other cases can be proved analogously, as we now show.

3.4.2. Symbiosis. First for the case of symbiosis, we have the following result.
Note that as we make no use here of the upper bound in Theorem 3.4, we do not
assume below that d1 = d2.

Proposition 3.9. (Forwards permanence. Symbiotic case)
Assume (3.2), bM , cM < 0 and (3.9), that is

bLcL < aLdL.

Then:
i) If λI > Λ1(−bSω[µI ,dS ]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , µ(t, x) ≥ µI , b(t, x) ≤ bS < 0, a(t, x) ≤ aS , d(t, x) ≤ dS

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t − s large enough.

ii) If µI > Λ2(−cSω[λI ,aS ]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≥ λI , µ(t, x) ≥ µI , a(t, x) ≤ aS , d(t, x) ≤ dS , c(t, x) ≤ cS < 0

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x; us, vs) for t − s large enough.

Hence, if

λI > Λ1(−bSω[µI ,dS ]) and µI > Λ2(−cSω[λI ,aS ])(3.16)

then there are functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x), µI ≤ µ(t, x), a(t, x) ≤ aS ,

b(t, x) ≤ bS < 0, c(t, x) ≤ cS < 0, d(t, x) ≤ dS
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x ∈ Ω and t ≥ t0 (some t0 ∈ R), and for all us > 0, vs > 0 in a fixed bounded set of
C(Ω) bounded away from 0, the solution (u, v) of (3.1) for t > s ≥ t0 is non-degenerate
at ∞, and for all t − s large enough

u(t, s; us, vs) ≥ ψ11(x) and v(t, s; us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly forwards permanent.
Proof. We proceed as in the Proposition 3.7 using now that, as t − s → ∞,

u ≥ ξ[λ−bη[µ,d],a] ≥ ξ[λI−bSη[µI ,dS ],aS ] → ω[λI−bSω[µI ,dS ],aS ]

and

v ≥ η[µ−cξ[λ,a],d] ≥ η[µI−cSξ[λI ,aS ],dS ] → ω[µI−cSω[λI ,aS ],dS ].

On the other hand, for pullback permenence and for complete non-degenerate
solutions, we have along the same lines as above

Proposition 3.10. (Pullback permanence. Symbiotic case)
Assume (3.2), bM , cM < 0 and (3.9), that is

bLcL < aLdL.

Then:
i) If λI > Λ1(−bSω[µI ,dS ]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , µ(t, x) ≥ µI , b(t, x) ≤ bS < 0, a(x, t) ≤ aS , d(t, x) ≤ dS .

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t − s large enough.
In particular, any complete trajectory of (3.1) that is non-degenerate at −∞
satisfies u(t, x) ≥ ψ11(x) for all x ∈ Ω and t ≤ t0.

ii) If µI > Λ2(−cSω[λI ,aS ]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≥ λI , µ(t, x) ≥ µI , a(t, x) ≤ aS , d(t, x) ≤ dS , c(t, x) ≤ cS < 0,

x ∈ Ω and t ≤ t0 (some t0 ∈ R) for any us, vs > 0, the solution for s < t ≤ t0
of (3.1) satisfies ψ22(x) ≤ v(t, s, x; us, vs) for t − s large enough.
In particular, any complete trajectory of (3.1) that is non-degenerate at −∞
satisfies v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Hence, if

λI > Λ1(−bSω[µI ,dS ]) and µI > Λ2(−cSω[λI ,aS ])(3.17)

there exist ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x), µI ≤ µ(t, x), a(t, x) ≤ aS ,

b(t, x) ≤ bS < 0, c(t, x) ≤ cS < 0, d(t, x) ≤ dS .

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), and for all non-trivial us ≥ 0, vs ≥ 0 in
a fixed bounded set, B, of C(Ω) bounded away from 0, the set of solutions of (3.1)
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{(u, v), s < t ≤ t0, (us, vs) ∈ B} is non-degenerate as s → −∞ and for all t− s large
enough

u(t, s, x; us, vs) ≥ ψ11(x) and v(t, s, x; us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly pullback permanent and any bounded complete tra-
jectory that is non-degenerate at −∞ satisfies

u(t, x) ≥ ψ11(x) and v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

3.4.3. Prey–predator. We also have, for the prey-predator case the following
result.

Proposition 3.11. (Forwards permanence. Prey-predator case)
Assume (3.2) and bL > 0 and cM < 0. Then:
i) If λI > Λ1(−bSω[µS−cIω[λS,aI ],dI ]) there exists ψ11 ∈ int(C1) such that when-

ever

λS ≥ λ(t, x) ≥ λI , µ(t, x) ≤ µS , aS ≥ a(t, x) ≥ aI > 0,

b(t, x) ≤ bS , c(t, x) ≥ cI , d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t − s large enough.

ii) If µI > Λ2
0 there exists ψ22 ∈ int(C2) such that whenever

µ(t, x) ≥ µI , d(x, t) ≤ dS

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x; us, vs) for t − s large enough.

Hence, if

λI > Λ1(−bSω[µS−cIω[λS,aI ],dI ]) and µI > Λ2
0(3.18)

there are are functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x) ≤ λS , µI ≤ µ(t, x) ≤ µS , aS ≥ a(t, x) ≥ aI > 0,

0 < bI ≤ b(t, x) ≤ bS , cI ≤ c(t, x) ≤ cS < 0, dS ≥ d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), and for all us > 0, vs > 0 in a fixed
bounded set of C(Ω) bounded away from 0, the solution (u, v) of (3.1) for t > s ≥ t0
is non-degenerate at ∞ and for all t − s large enough

u(t, s, x; us, vs) ≥ ψ11(x) and v(t, s, x; us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly forwards permanent.
Proof. As before, we use now that as t − s → ∞,

u ≥ ξ[λ−bη[µ−cξ[λ,a],d],a] ≥ ξ[λI−bSη[µS−cI ξ[λS,aI ],dI ],aI ] → ω[λI−bSη[µS−cI ω[λS,aI ],dI ],aI ]

and

v ≥ η[µ,d] ≥ η[µI ,dS ] → ω[µI ,dS ].

And also
Proposition 3.12. (Pullback permanence. Prey-predator case)
Assume (3.2) and bL > 0 and cM < 0. Then:
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i) If λI > Λ1(−bSω[µS−cIω[λS,aI ],dI ]) there exists ψ11 ∈ int(C1) such that when-
ever

λS ≥ λ(t, x) ≥ λI , µ(t, x) ≤ µS , aS ≥ a(t, x) ≥ aI > 0,

b(t, x) ≤ bS , c(t, x) ≥ cI , d(t, x) ≥ dI > 0.

for all x ∈ Ω and t ≤ t0 (some t ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t − s large enough.
In particular, any complete trajectory of (3.1) that is non-degenerate at −∞
satisfies u(t, x) ≥ ψ11(x) for all x ∈ Ω and t ≤ t0.

ii) If µI > Λ2
0 there exists ψ22 ∈ int(C2) such whenever

µ(t, x) ≥ µI , d(x, t) ≤ dS .

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x; us, vs) for t − s large enough.
In particular, any complete trajectory of (3.1) that is non-degenerate at −∞
satisfies v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Hence, if

λI > Λ1(−bSω[µS−cIω[λS,aI ],dI ]) and µI > Λ2
0,(3.19)

there exist functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such whenever

λI ≤ λ(t, x) ≤ λS , µI ≤ µ(t, x) ≤ µS , aS ≥ a(t, x) ≥ aI > 0,

0 < bI ≤ b(t, x) ≤ bS , cI ≤ c(t, x) ≤ cS < 0, dS ≥ d(t, x) ≥ dI > 0,

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), and for all non-trivial us ≥ 0, vs ≥ 0 in
a fixed bounded set, B, of C(Ω) bounded away from 0, the set of solutions of (3.1)
{(u, v), s < t ≤ t0, (us, vs) ∈ B} is non-degenerate as s → −∞ and for all t− s large
enough

u(t, s, x; us, vs) ≥ ψ11(x) and v(t, s, x; us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly pullback permanent and any bounded complete tra-
jectory that is non-degenerate at −∞ satisfies

u(t, x) ≥ ψ11(x) and v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Remark 3.13. Note that in order to apply the previous results one has to check
that the assumptions in Propositions 3.7–3.12 are meaningful. Indeed, conditions
(3.10), (3.16) and (3.18) must define nonempty sets of coefficients. Here we analyze
only Dirichlet or Neumann boundary conditions; Robin ones can be treated in a similar
way although the estimates are a little more involved.

In fact, (3.16) includes all coefficients such that

λI > Λ1
0, µI > Λ2

0

since in this case λI > Λ1
0 > Λ1(−bSω[µI ,dS ]) and µI > Λ2

0 then µI > Λ2(−cSω[λI ,aS ]),
see also [12].
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However, in order to show that (3.10) defines a non-empty set we must impose
some conditions on b or c. If for example bS → 0 then Λ1(−bSω[µS ,dI ]) → Λ1

0. Also,
if cS → 0 then Λ2(−cSω[λS ,aI ]) → Λ2

0. Hence if bS or cS are small the conditions in
(3.10) can be met, see also [27] and [29].

We analyze condition (3.18) for the prey-predator case in more detail. From
Proposition 3.1, in the case of Dirichlet or Neumann boundary conditions, we have
ω[h,g] ≤ hM/gL, and so

ω[λS ,aI ] ≤
λS

aI
and then ω[µS−cIω[λS,aI ],dI ] ≤

µS − cI

(
λS

aI

)
dI

,

and then using the monotonicity of Λ(m) with respect to m and (3.5), we get

Λ1(−bSω[µS−cIω[λS,aI ],dI ]) ≤ Λ1(−bS
(aIµS − cIλS)

aIdI
) = Λ1

0 + bS
(aIµS − cIλS)

aIdI
.

Hence, if λI and µI satisfy

λI > Λ1
0 +

bSµS

dI
+

−bScI

aIdI
λS , µI > Λ2

0,

then (3.18) defines a non–empty set of parameters.
Observe that the first condition above is a restriction on the oscillation of λ(t, x)

as t → ±∞.
In particular, if Λ1

0 + bSµS

dI
> 0 then a necessary condition is

aIdI + bScI > 0.

In such a case the conditions above can be met.

Now, for reasons that will be apparent in the next sections, we are interested in
some uniformity in the previous results with respect to the coefficients bI ≤ bS and
cI ≤ cS . More precisely, we are going to show that the functions ψ11(x) and ψ22(x) in
all the previous propositions, can be taken independent of b(t, x) and c(t, x), provided
one of the numbers bI ≤ bS or cI ≤ cS is sufficiently small. In fact we have the
following:

Theorem 3.14. i) The competitive case: bL, cL > 0. Assume either
1. λI > Λ1

0, µI > Λ2(−cSω[λS ,aI ]), and bS is sufficiently small, or
2. λI > Λ1(−bSω[µS ,dI ]), µI > Λ2

0, and cS is sufficiently small.
Then the functions ψ11(x) and ψ22(x) in Propositions 3.7 and 3.8 can be taken

also independent of bS and cS.
ii) The symbiotic case: bM , cM < 0 and bLcL < aLdL. Assume either

1. λI > Λ1
0, µI > Λ2(−cSω[λI ,aS ]), or

2. λI > Λ1(−bSω[µI ,dS ]), µI > Λ2
0.

Then the functions ψ11(x) and ψ22(x) in Propositions 3.9 and 3.10 can be taken
also independent of bI and cI .
iii) The prey-predator case: bL > 0, cM < 0. Assume either

1. λI > Λ1
0, µI > Λ2

0, and bS is sufficiently small, or
2. λI > Λ1(−bSω[µS ,dI ]), µI > Λ2

0, and |cI | is sufficiently small.
Then the functions ψ11(x) and ψ22(x) in Propositions 3.11 and 3.12 can be taken

also independent of bS and cI .
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Proof. We analyze only the competitive case. By the proof of Proposition 3.7 and
Theorem 3.3 statement 6 we get

u(t, s, us, vs) ≥ Θ[λI−bSη[µS,dI ],aS ](t − s, us) ≥
≥ ω[λI−bS(ω[µS,dI ]+ε),aS ] ≥ mω[λI−bS(ω[µS,dI ]+ε),aS ].

It suffices to apply Lemma 3.2 as bS → 0.
On the other hand,

v(t, s, us, vs) ≥ Θ[µI−cS(ω[λS,aI ]+ε),dS ](t − s, vs) → ω[µI−cS(ω[λS,aI ]+ε),dS ],

and so taking ε small the result follows.
The other cases can be studied in an analogous way by Propositions 3.9, 3.10,

3.11 and 3.12.

4. Exponential decay for non-autonomous linear systems. Once the re-
sults on permanence of the previous section have been established we turn now our
attention to determining ranges of parameters such that there exists some special
asymptotically stable trajectories describing the asymptotic behavior of solutions of
(3.1), either forwards or in a pullback sense. For this we have to develop some tools
on linear systems.

Hence, in this section we give sufficient conditions for certain linear systems to
have exponential decay. The results are of a perturbative nature and are based upon
results in [33] for scalar equations.

4.1. Preliminary results for the scalar case. We start by recalling some
results for the following scalar equation ut − d∆u = c(t, x)u x ∈ Ω, t > s

Bu = 0, x ∈ ∂Ω, t > s
u(s) = us.

(4.1)

Assume that d > 0, c ∈ Cθ(R, Lp(Ω)), with 0 < θ ≤ 1 and some p > max(N/2, 1).
Then for any us ∈ X, where X = Lq(Ω) with 1 ≤ q < ∞, or X = C(Ω), (4.1) has
a unique solution given by u(t, s; us), which is a strong solution in Lr(Ω) for any
1 ≤ r < p. This solution can be used to define an order-preserving evolution operator
Tc in X via the definition Tc(t, s)us = u(t, s; us).

Moreover for each q and r with 1 ≤ q ≤ r ≤ ∞ and R0 > 0 there exist L0 =
L0(R0, r, q) > 0 and δ0 = δ(R0, r, q) > 0 such that the evolution operator Tc(t, s)
satisfies

‖Tc(t, s)u0‖Lr(Ω) ≤ L0
eδ0(t−s)

(t − s)
N
2 ( 1

q −
1
r )

‖u0‖Lq(Ω), t > s(4.2)

for every c ∈ Cθ(R, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2, such that

‖c‖L∞(R,Lp(Ω)) ≤ R0.

Also, the evolution operator smooths the solutions. More precisely, for every
u0 ∈ Lq(Ω) and t > s, the map

(s,∞) 3 t 7−→ u(t, s; u0) := Tc(t, s)u0 ∈
{

Cν
B(Ω) if p > N/2,

C1,ν
B (Ω) if p > N,
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is continuous for some ν > 0. Here

Cj,ν
B (Ω) =

{
Cj,ν

0 (Ω) for Dirichlet BCs,
Cj,ν(Ω) for Neumann or Robin BCs,

see e.g. Rodŕıguez-Bernal [32].
The following proposition is taken from Lemma 4.1 in Robinson et al. [31] and

Lemma 2.1 in Rodŕıguez-Bernal [33]:
Proposition 4.1. Suppose that for some q with 1 ≤ q ≤ ∞ there exist M > 0

and β ∈ R such that

‖Tc(t, s)‖L(Lq(Ω)) ≤ Meβ(t−s) for all t > s.(4.3)

Then for any 1 ≤ r ≤ ∞ there exists a K ≥ 1 such that

‖Tc(t, s)‖L(Lr(Ω)) ≤ Keβ(t−s) for all t > s.(4.4)

The constant K can be taken as a continuous function of β,M .
Moreover, for each r with 1 ≤ r ≤ q ≤ ∞ and for any ε > 0, we have

‖Tc(t, s)‖L(Lq(Ω),Lr(Ω)) ≤ M(β, ε)
e(β+ε)(t−s)

(t − s)δ
, t > s,(4.5)

where δ = N
2

(
1
r − 1

q

)
,

M(β, ε) = κ(β,M)

{ (
δ
e

)δ
ε−δ if 0 < ε < ε0 = δ

e

1 if ε ≥ ε0 = δ
e

(4.6)

and

κ(β,M) = L0ε
δ0 max{1,Mε−β}.

Note that the constants K and κ in the proposition also depend on q and r but
we will not pay attention to this dependence.

Our main argument, further below in the paper, will rely on results of the following
type. We start with an evolution operator Tc(t, s) that satisfies the estimate

‖Tc(t, s)‖L(Lq(Ω)) ≤ M1 for t ≥ s and M1 > 0

for either s ≥ s0 or for t ≤ t0. Then, we add to c(t, x) a perturbation p(t, x) in the class
Cθ(R, Lp(Ω)), with 0 < θ ≤ 1 and some p > max(N/2, 1), and we want to guarantee
that the solutions of the new evolution operator Tc+p(t, s) decay exponentially. This
means that we want to get estimates of the type

‖Tc+p(t, s)‖L(Lq(Ω)) ≤ M ′
1e

β′(t−s) for all t > s and some β′ < 0(4.7)

and for either s ≥ s0 or for t ≤ t0. Note also that we can always assume, without loss
of generality, that the L∞(R, Lp(Ω)) norms of both c(t, x) and p(t, x) are bounded by
R0, so (4.2) holds for Tc(t, s) and Tc+p(t, s).

In this direction, the following important result is a particular case of Corollary 3.3
in Rodŕıguez-Bernal [33], and it provides sufficient conditions on p(t, x) to ensure that
(4.7) holds.

Proposition 4.2. Assume that

‖Tc(t, s)‖L(Lq(Ω)) ≤ M1 for t ≥ s and M1 > 0(4.8)
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and for either s ≥ s0 or for t ≤ t0.
Let p ∈ Cθ(R, Lp(Ω)), for some 0 < θ ≤ 1 and p > max(N/2, 1), and assume

that for |t| sufficiently large, we have p(t, x) ≤ −ϕ(x) where

ϕ ∈ C1(Ω), ϕ ≥ 0, and ∇ϕ 6= 0 at the points at which ϕ = 0.

Then

‖Tc+p(t, s)‖L(Lq(Ω)) ≤ M ′
1e

β′(t−s) for all t > s and some β′ < 0(4.9)

and for either s ≥ s0 or for t ≤ t0, with M ′
1 = M ′

1(M1, ϕ) and β′ = β′(M1, ϕ).
The constants M ′

1 = M ′
1(M1, ϕ) and β′ = β′(M1, ϕ) depend continuously on M1

and on ϕ ∈ C1(Ω).

Note that the condition above holds, in particular if p(t, x) ≤ −δ < 0 (in which
case the constants M ′

1 and β′ can be chosen so that they depend continuously on δ),
or if ϕ ∈ C1

0 (Ω) is positive in Ω and ∂ϕ
∂~n < 0 on ∂Ω. The former is a common situation

in the case of Neumann or Robin boundary conditions and the latter in the case of
Dirichlet boundary conditions.

In order to apply the above result, we need to show first that (4.8) holds. The next
result gives conditions for an evolution operator to have bounds of the type (4.8), see
[34], [33]. For this recall the definitions of complete trajectory and of non–degeneracy
in Section 2.2, which we apply here to solutions of (4.1). Hence, according to [33], we
have

Proposition 4.3. i) If there exists a positive non-degenerate solution u(t, s;us)
of (4.1) defined for all t > s ≥ s0 such that for some M > 0 and some q with
1 ≤ q ≤ ∞

‖u(t, s; us)‖Lq(Ω) ≤ M,

then

0 < M0 ≤ ‖Tc(t, s)‖L(Lq(Ω)) ≤ M1 for t ≥ s ≥ s0,(4.10)

where M0,M1 are independent of t and s and depend continuously on M and ϕ0 ∈
C1(Ω).
ii) If there exists a positive complete non-degenerate solution u(t) of (4.1) that is
bounded as t → −∞, i.e.

‖u(t)‖Lq(Ω) ≤ M for t ≤ t0

then

0 < M0 ≤ ‖Tc(t, s)‖L(Lq(Ω)) ≤ M1 for s ≤ t ≤ t0(4.11)

where M0,M1 are independent of t and s and depend continuously on M and ϕ0 ∈
C1(Ω).

4.2. Perturbation and decay of linear systems. In this section we gener-
alize the perturbation result in the previous section to the case of a system of linear
equations. The main theorem in this section will be crucial in the analysis of Lotka-
Volterra models in the following sections.
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Consider the linear coupled non-autonomous system
ut − d1∆u = a11(t, x)u + a12(t, x)v, x ∈ Ω, t > s
vt − d2∆v = a21(t, x)u + a22(t, x)v, x ∈ Ω, t > s
B1u = 0, B2v = 0
u(s) = us, v(s) = vs,

(4.12)

in Lq(Ω,R2) .= [Lq(Ω)]2. Then define

D = diag(d1, d2) and A =
(

a11 a12

a21 a22

)

and note that setting U =
(

u
v

)
, (4.12) can be written as

Ut − D∆U = A(t, x)U

with boundary conditions BU =
(

B1u
B2v

)
= 0 on the boundary of Ω.

If A ∈ Cθ(R, Lp(Ω,R4)), with 0 < θ ≤ 1, p > N/2 and p > q ≥ 1, the exis-
tence of a unique solution U(t, s; Us) of (4.12), in Lq(Ω,R2), can be obtained from
Theorems 11.2, 11.3 and 11.4 in Amann [1]. Thus, the time-dependent operator
−D∆−A(t, x) generates an evolution operator, TA(t, s), in Lq(Ω,R2) (Theorem 4.4.1
in Amann [2]) via the definition TA(t, s)Us = U(t, s; Us).

The following result, analogous to (4.2), can be proved along the lines of the scalar
arguments in Rodŕıguez-Bernal [33], [32] and Robinson et al. [31].

Proposition 4.4. For any 1 ≤ q ≤ r ≤ ∞, and R0 > 0 there exist L0 =
L0(R0, r, q) > 0 and δ0 = δ0(R0, r, q) > 0 such that the evolution operator TA(t, s)
satisfies

‖TA(t, s)Us‖Lr(Ω,R2) ≤ L0
eδ0(t−s)

(t − s)
N
2 ( 1

q −
1
r )

‖Us‖Lq(Ω,R2),(4.13)

for every ‖A‖L∞(R,Lp(Ω,R4)) ≤ R0. In particular, TA(t, s) extends to an evolution
operator in Lq(Ω,R2) for every 1 ≤ q < ∞.

Furthermore, the results of Proposition 4.1 for the scalar case remain true for
system (4.12).

Along the same lines as for scalar equations, we consider the linear uncoupled
system 

ut − d1∆u = q11(t, x)u, x ∈ Ω, t > s
vt − d2∆v = q22(t, x)v, x ∈ Ω, t > s
B1u = 0, B2v = 0
u(s) = us, v(s) = vs.

(4.14)

Observe that with the notations above and setting

Q = diag(q11, q22),

then the evolution operator TQ(t, s) is well defined in Lq(Ω,R2), 1 ≤ q < ∞.
Now we assume that each separate equation in (4.14) satisfies

‖Tqii(t, s)‖L(Lq(Ω)) ≤ M1, t > s,
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with M1 independent of t and s and for either t ≤ t0 or s ≥ s0. Therefore the
evolution operator TQ(t, s) satisfies (4.8).

Our goal is to give conditions on the coupling perturbations such that the solutions
of the perturbed system

ut − d1∆u = q11(t, x)u + p11(t, x)u + p12(t, x)v, x ∈ Ω, t > s
vt − d2∆v = q22(t, x)v + p21(t, x)u + p22(t, x)v, x ∈ Ω, t > s
B1u = 0, B2v = 0
u(s) = us, v(s) = vs,

decay exponentially. Note that the perturbed system can be written as

Ut − D∆U = Q(t, x)U + P (t, x)U(4.15)

with

Q = diag(q11, q22), P =
(

p11 p12

p21 p22

)
, and U =

(
u
v

)
,

with Q,P ∈ Cθ(R, Lp(Ω,R4)), with 0 < θ ≤ 1, p > max(N/2, 1).
Hence our goal is to obtain an estimate of the type

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤ M ′
1e

β′(t−s) for all t > s and some β′ < 0(4.16)

and for either s ≥ s0 or for t ≤ t0.
Note that again we will assume, without loss of generality, that all the evolution

operators considered satisfy (4.13) with the same constants L0 and δ0.
In what follows we will make use of the following singular Gronwall lemma (see

Henry [16]):
Lemma 4.5. (A singular Gronwall lemma)
Assume that a ∈ L∞(τ0,∞) with τ0 ≥ −∞ and that z(t) ≥ 0 is a locally bounded

function that for t ≥ s > τ0 satisfies

z(t) ≤ A +
∫ t

s

a(τ)
(t − τ)δ

z(τ) dτ(4.17)

with δ < 1. Then we have for t ≥ s > τ0

0 ≤ z(t) ≤ A(δ)eγ(t−s)

with γ = γ(a, s, δ) =
(
‖a‖L∞(s,∞)Γ(1 − δ)

)1/(1−δ) and A(δ) depends only on the
constants A and δ but not on the function a(·) or on s, γ or τ0.

Our next result states that if the diagonal perturbing terms pii(t, x) are sufficiently
strong and the coupling terms pij(t, x), i 6= j, are ‘small’ at ±∞, then (4.16) is
achieved.

Theorem 4.6. With the notations in (4.15), assume that the scalar evolution
operators Tqii(t, s) satisfy

‖Tqii(t, s)‖L(Lq(Ω)) ≤ M1, t > s,(4.18)

with M1 independent of t and s and for either t ≤ t0 or s ≥ s0.
Assume also that pii(t, x) satisfies pii(t, x) ≤ −ϕii(x) with ϕii(x) as in Proposi-

tion 4.2.
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Then there exists a ρ = ρ(M1, ϕ11, ϕ22) > 0 such that if

lim sup
|t|→∞

‖p12(t)‖Lp(Ω) lim sup
|t|→∞

‖p21(t)‖Lp(Ω) ≤ ρ2(4.19)

then

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤ M ′′
1 eβ′′(t−s) for all t > s and some β′′ < 0(4.20)

and for either s ≥ s0 or for t ≤ t0, where M ′′
1 = M ′′

1 (M1, ϕ11, ϕ22) and β′′ =
β′′(M1, ϕ11, ϕ22).

The constants ρ, M ′′
1 and β′′ depend continuously on M1 and ϕ11, ϕ22 as in

Proposition 4.2.
Proof. Note that, using Proposition 4.4, we just need to prove the result for some

suitably chosen 1 ≤ q < ∞. We proceed in several steps.

Step 1: If we define

P1 =
(

p11 0
0 p22

)
then Proposition 4.2 applied to each separate equation gives the estimate

‖TQ+P1(t, s)‖L(Lq(Ω,R2)) ≤ M ′
1e

β′(t−s) for all t > s and some β′ < 0(4.21)

and for either s ≥ s0 or for t ≤ t0, with M ′
1 = M ′

1(M1, ϕ11, ϕ22) and β′ = β′(M1, ϕ11, ϕ22).

Step 2: We will show that there exists a ρ = ρ(M ′
1, β

′), which depends continuously
on M ′

1, β
′, such that if

‖p12‖L∞(R,Lp(Ω)) ≤ ρ and ‖p21‖L∞(R,Lp(Ω)) ≤ ρ

then

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤ M ′′
1 eβ′′(t−s) for all t > s and some β′′ < 0(4.22)

and for either s ≥ s0 or for t ≤ t0, with

P = P1 + P2, P2 =
(

0 p12

p21 0

)
,

where M ′′
1 = M ′′

1 (M ′
1, β

′, ρ) and β′′ = β′′(M ′
1, β

′, ρ), depend continuously on M ′
1, β

′, ρ.
In fact, we have, by the variation of constants formula, that for every U0 ∈

Lq(Ω,R2) the solution U(t, s; U0) = TQ+P (t, s)U0 of (4.15) satisfies for t ≥ s,

U(t, s; U0) = TQ+P1(t, s)U0 +
∫ t

s

TQ+P1(t, τ)P2(τ)U(τ, s; U0) dτ.

Now we choose q such that p ≥ q′, so that 1/p + 1/q ≤ 1. In what follows we will
apply (4.5) with 1

r = 1
p + 1

q , and so with δ = N/2p. With this choice, we have (4.21)
and from (4.5)

‖TQ+P1(t, s)‖L(Lr(Ω,R2),Lq(Ω,R2)) ≤ M(β′, ε)
e(β′+ε)(t−s)

(t − s)
N
2p

,
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where M(β′, ε) is as in (4.6).
Since P2(τ) ∈ Lp(Ω,R2) and U(τ, s; U0) ∈ Lq(Ω,R2), then the term P2(τ)U(τ, s; U0)

can be estimated, using Hölder’s inequality, in Lr(Ω,R2) with 1
r = 1

p + 1
q . Thus,

‖U(t, s; U0)‖Lq(Ω,R2) ≤ M ′
1e

(β′+ε)(t−s)‖U0‖Lq(Ω,R2)+

M(β′, ε)
∫ t

s

e(β′+ε)(t−τ)

(t − τ)
N
2p

‖P2(τ)‖Lp(Ω,R2)‖U(τ, s; U0)‖Lq(Ω,R2)dτ.

Then, multiplying by e−(β′+ε)(t−s), and denoting A = M ′
1‖U0‖Lq(Ω,R2),

z(t) = e−(β′+ε)(t−s)‖U(t, s; U0)‖Lq(Ω,R2), and a(τ) = M(β′, ε)‖P2(τ)‖Lp(Ω,R2)

we get, for all t ≥ s,

z(t) ≤ A +
∫ t

s

a(τ)

(τ − s)
N
2p

z(τ) dτ.

We can apply the singular Gronwall Lemma above with δ = N
2p < 1 and we get,

‖U(t, s;U0)‖Lq(Ω,R2) ≤ M ′′
1 e(β′+µ(ε))(t−s)‖U0‖Lq(Ω,R2), t ≥ s(4.23)

where

µ(ε) = ε +
(
M(β′, ε)Γ(1 − δ)‖P2‖L∞((s,∞),Lp(Ω,R2))

) 1
1−δ .

Recalling (4.6), we get that

µ(ε) =

 ε + ε
−δ
1−δ A0‖P2‖

1
1−δ

L∞((s,∞),Lp(Ω,R2)) if 0 < ε < ε0 = δ
e

ε + A1‖P2‖
1

1−δ

L∞((s,∞),Lp(Ω,R2)) if ε ≥ ε0,

where

A1 =
(
L0eδ0 max{1,M ′

1e
−β′

}Γ(1 − δ)
)1/(1−δ)

, A0 = A1

(
δ

e

)δ/(1−δ)

,

and L0 and δ0 are the constants in (4.2).
Thus µ(0) = µ(∞) = ∞. But the function

h(ε) = ε + ε
−δ
1−δ A0‖P2‖

1
1−δ

L∞((s,∞),Lp(Ω,R2))

has a unique minimum at

ε1 = (A0
δ

1 − δ
)1−δ‖P2‖L∞((s,∞),Lp(Ω,R2)),

and

h(ε1) =
1
δδ

(
A0

1 − δ
)1−δ‖P2‖L∞((s,∞),Lp(Ω,R2)).

Therefore, comparing ε0 and ε1, and minimizing µ(ε) leads to

‖U(t, s; U0)‖Lq(Ω,R2) ≤ M ′′
1 eβ′′(t−s)‖U0‖Lq(Ω,R2), t ≥ s
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with

β′′ = β′ + min
{ε>0}

µ(ε) =

= β′ +

{
c0‖P2‖L∞((s,∞),Lp(Ω,R2)), if ‖P2‖L∞((s,∞),Lp(Ω,R2)) ≤ s∗,

c1 + c2‖P2‖
1

1−δ

L∞((s,∞),Lp(Ω,R2)), if ‖P2‖L∞((s,∞),Lp(Ω,R2)) ≥ s∗,

where

c0 =
1
δδ

(
A0

1 − δ
)1−δ, c1 =

δ

e
, c2 = A1, s∗ =

δ

e
(
1 − δ

A0δ
)1−δ.

Thus, it is then clear that (4.22) follows, i.e. β′′ < 0, provided that

‖P2‖L∞((s,∞),Lp(Ω,R2)) < min{s∗, −β′

c0
},

which reads

‖P2‖L∞((s,∞),Lp(Ω,R2)) < ρ := δ(
1 − δ

δA0
)1−δ min{−β′,

1
e
}.(4.24)

Step 3: Now we show that the result in Step 2 above can be obtained only in terms
of lim sup|t|→∞ ‖P2(t)‖Lp(Ω,R2).

In fact, note that from (4.24), if we take s ≥ s0 sufficiently large, the conclusion
with lim supt→∞ ‖P2(t)‖Lp(Ω,R2) is clear.

On the other hand, observe that we can set P2 = 0 for t ≥ t0 and we still
have (4.23) for s ≤ t ≤ t0. Taking then t0 very negative, (4.24) gives the result for
lim supt→−∞ ‖P2(t)‖Lp(Ω,R2).

In particular, (4.22) follows, provided that

lim sup
|t|→∞

‖P2(t)‖Lp(Ω,R2) < ρ,(4.25)

with ρ as in (4.24).

Step 4: The change of variables

U =
(

u
v

)
→ V =

(
αu
βv

)
with α, β > 0, transforms the system (4.15) into

Vt − D∆V = Q(t, x)V + P̃ (t, x)V

with

D = diag(d1, d2), Q = diag(q11, q22), P̃ =

 p11
α

β
p12

β

α
p21 p22

 .

Hence, we can apply Step 3 provided

α

β
lim sup
|t|→∞

‖p12(t)‖Lp(Ω) ≤ ρ and
β

α
lim sup
|t|→∞

‖p21(t)‖Lp(Ω) ≤ ρ,
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with ρ > 0 as in (4.24). We can choose α, β such that the above inequalities are
satisfied if

lim sup
|t|→∞

‖p12(t)‖Lp(Ω) lim sup
|t|→∞

‖p21(t)‖Lp(Ω) ≤ ρ2

with ρ > 0 as in (4.24).
Remark 4.7. Note that (4.24) gives a quantitative threshold for the size of the

perturbation. In fact, from (4.24) and the expression of A0, it can be deduced that

ρ = ρ(M ′
1, β

′) =
eδ(1 − δ)1−δ

Γ(1 − δ)
min{−β′, 1

e}
L0eδ0 max{1,M ′

1e−β′}
,

where M ′
1, β′ are from Step 1.

Observe that Step 4 above is the only place where we used the fact that the
system has only two components.

5. Attracting trajectories for general non-autonomous nonlinear sys-
tems. In this section we sketch out our approach to the existence of asymptotically
stable complete trajectories for Lotka-Volterra systems. The key point is to write the
equation satisfied by the difference of two solutions as a perturbation of an associated
linear system. Using then the permanence results in Section 3 we can apply Theorem
4.6 to conclude that the difference of two solutions converges to zero as t → ∞. A
similar convergence result as the initial time s → −∞ will imply the uniqueness of
complete non–degenerate solutions, which moreover describes the pullback behavior
of the system.

First we treat the case of general non-autonomous nonlinear systems, before spe-
cializing to Lotka-Volterra models. Consider the general non-autonomous nonlinear
system 

ut − d1∆u = uf(t, x, u, v) x ∈ Ω, t > s
vt − d2∆v = vg(t, x, u, v) x ∈ Ω, t > s
B1u = 0, B2v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs,

(5.1)

We now sketch our strategy for analyzing the asymptotic behaviour of solutions
to (5.1). Consider two different pairs of non-negative initial conditions (u1

s, v
1
s) and

(u2
s, v

2
s) and consider the corresponding solutions of (5.1), U1 =

(
u1

v1

)
and U2 =(

u2

v2

)
, respectively. Write y = u2 − u1 and z = v2 − v1. Then, (y, z) satisfies


yt − d1∆y = q11(t, x)y + p11(t, x)y + p12(t, x)z x ∈ Ω, t > s
zt − d2∆z = q22(t, x)z + p21(t, x)y + p22(t, x)z x ∈ Ω, t > s
B1y = 0, B2z = 0 x ∈ ∂Ω, t > s
y(s) = ys, z(s) = zs,

(5.2)

with ys = u2
s − u1

s, zs = v2
s − v1

s and

q11(t, x) = f(t, x, u2, v2), q22(t, x) = g(t, x, u2, v2)
p11(t, x) = u1

f(t,x,u2,v1)−f(t,x,u1,v1)
u2−u1

, p12(t, x) = u1
f(t,x,u2,v2)−f(t,x,u2,v1)

v2−v1
,

p21(t, x) = v1
g(t,x,u2,v1)−g(t,x,u1,v1)

u2−u1
, p22(t, x) = v1

g(t,x,u2,v2)−g(t,x,u2,v1)
v2−v1

.
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Most of the analysis that follows in the next section will be based on proving
that the following results can be applied. The first one gives sufficient conditions to
guarantee that two solutions have the same forwards asymptotic behaviour, while the
second gives a criterion to prove the coincidence of two complete trajectories and also
describes the pullback behavior of solutions.

Theorem 5.1. (Forwards behaviour)

Assume that both solutions of (5.1), U1 =
(

u1

v1

)
and U2 =

(
u2

v2

)
are globally

defined and bounded in L∞(Ω,R2) for t > s > t0. Moreover, suppose that u1, v1

are positive in Ω and U2(t) is positive, non-degenerate for t > t0 and for some p >
max(N/2, 1) and 0 < θ ≤ 1, the coefficients in (5.2) satisfy pij , qii ∈ Cθ(R, Lp(Ω))
for i, j = 1, 2 and pii(t, x) ≤ −ϕii(x), for t > t0, with ϕii(x) as in Proposition 4.2.

Then there exists a ρ such that if

lim sup
t→∞

‖p12(t)‖Lp(Ω) lim sup
t→∞

‖p21(t)‖Lp(Ω) ≤ ρ2,(5.3)

both solutions have the same forwards asymptotic behaviour, i.e.,

U1(t) − U2(t) → 0 exponentially in C1
B1

(Ω) × C1
B2

(Ω) as t → ∞.

In particular, U1(t) is also non-degenerate at +∞.
Proof. Clearly, (5.2) can be written as

Wt − D∆W = QW + PW

where

D = diag(d1, d2), Q = diag(q11, q22), P =
(

p11 p12

p21 p22

)
, W =

(
y
z

)
.(5.4)

Since U2 =
(

u2

v2

)
is a positive, bounded and non-degenerate solution, for t > s > t0,

of the diagonal system

Wt − D∆W = QW,

it follows from Propositions 4.3 and 4.4 that for any 1 ≤ q < ∞,

‖TQ(t, s)‖L(Lq(Ω,R2)) ≤ M1, t > s > t0,(5.5)

with M1 independent of t and s, t > s > t0.
Then, we apply Theorem 4.6 to obtain that there exists ρ > 0 such that if (5.3)

holds, then

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤ M ′′
1 eβ′′(t−s) for all t > s > t0 and some β′′ < 0.

Thus, from Proposition 4.4 (see also Proposition 4.1), we have, writing Ws =
(ys, zs) and for t > s > t0,

‖W (t, s;Ws)‖L∞(Ω,R2) ≤ M2e
β′′(t−s)‖Ws‖L∞(Ω,R2) → 0, t → ∞.(5.6)

The uniform forwards convergence of trajectories follows. Standard parabolic regu-
larization implies the C1

B1
(Ω) × C1

B2
(Ω) convergence.
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In the following result we use similar arguments to prove the coincidence of com-
plete non-degenerate trajectories, and show that such a trajectory, in case it exists,
attracts (in the pullback sense) all bounded positive trajectories. In particular, the
following results guarantee the uniqueness of complete non–degenerate solutions.

Theorem 5.2. (Coincidence of Complete trajectories and pullback be-
haviour)

Assume that U1 =
(

u1

v1

)
is a complete trajectory that is bounded in L∞(Ω,R2)

at −∞, and non-degenerate for t ≤ t0. Suppose further that for some p > max(N/2, 1)
and 0 < θ ≤ 1, the coefficients in (5.2) satisfy pij , qii ∈ Cθ(R, Lp(Ω)) for i, j = 1, 2
and pii(t, x) ≤ −ϕii(x), for t ≤ t0, with ϕii(x) as in Proposition 4.2.

Then there exists a ρ > 0 such that if

lim sup
t→−∞

‖p12(t)‖Lp(Ω) lim sup
t→−∞

‖p21(t)‖Lp(Ω) ≤ ρ2(5.7)

then:
(i) U1(t) is the unique complete trajectory that is bounded in L∞(Ω,R2) at −∞,

and
(ii) if U2(s) is a family of positive initial data which is bounded in L∞(Ω,R2) as

s → −∞ then U1(·) pullback attracts S(t, s)U2(s), i.e. for any t ∈ R

S(t, s)U2(s) − U1(t) → 0 in C1
B1

(Ω) × C1
B2

(Ω) as s → −∞.

Proof.
(i) Let U2(t) be a complete trajectory bounded in L∞(Ω,R2) at −∞. We write

(5.2) as

Wt − D∆W = QW + PW, W (s) = Ws = U2(s) − U1(s)

where Q, P and W are defined as in (5.4). Since U1 = (u1, v1) is a complete,
positive bounded and non-degenerate solution of the diagonal system

Wt − D∆W = QW,

it follows from Proposition 4.3 that for any 1 ≤ q < ∞, and sufficiently
negative t0,

‖TQ(t, s)‖L(Lq(Ω,R2)) ≤ M1, s < t ≤ t0,(5.8)

with M1 independent of t and s.
Then, we apply Theorem 4.6 to obtain that there exists ρ > 0 such that if
(5.7) holds, then

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤ M ′′
1 eβ′′(t−s) for all s < t ≤ t0 and some β′′ < 0.

Thus,

‖U1(t)−U2(t)‖Lq(Ω,R2) = ‖W (t, s; Ws)‖Lq(Ω,R2) ≤ M ′′
1 eβ′′(t−s)‖Ws‖Lq(Ω,R2).

(5.9)
The right hand side tends to zero as s → −∞ since both complete trajectories
are bounded, and the result follows.
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(ii) Proceeding as above, we obtain

‖U1(t) − S(t, s)U2(s)‖Lq(Ω,R2) ≤ M ′′
1 eβ′′(t−s)‖U1(s) − U2(s)‖Lq(Ω,R2).

for s < t ≤ t0 and some β′′ < 0.
Thus, from Proposition 4.4 (see also Proposition 4.1), we get for s < t ≤ t0,

‖U1(t) − S(t, s)U2(s)‖L∞(Ω,R2) ≤ M2eβ′′(t−s)‖U1(s) − U2(s)‖Lq(Ω,R2) → 0

as s → −∞. Standard parabolic regularization implies the convergence in
C1

B1
(Ω) × C1

B2
(Ω).

Now for every τ ≥ t0, using the continuity of the nonlinear evolution process,
we get, as s → −∞,

U1(τ, s) = S(τ, t)U1(t, s) → S(τ, t)U2(t).

The theorems above may perhaps appear more general than they really are. To
verify the assumptions involved one must restrict the nonlinearities of the system and
carefully choose the classes of solutions being considered. For example the conditions
pii(t, x) ≤ −ϕii(x) and the smallness conditions on pij(t, x), i 6= j depend on the
particular solutions considered.

Nevertheless, in the next section we will show that the assumptions required can
be verified for our example of a general non-autonomous Lotka-Volterra system.

6. Attracting trajectories for non-autonomous Lotka–Volterra systems.
As (5.1) is far too general to apply Theorems 5.1 and 5.2 in a straightforward manner,
in this section we apply these results to the solutions of (3.1). Note that we handle
the three cases, competition, symbiosis and prey-predator, in a unified way.

Then, for the difference of two solutions the coefficients in (5.2) are given by

q11(t, x) = λ(t, x) − a(t, x)u2 − b(t, x)v2, q22(t, x) = µ(t, x) − c(t, x)u2 − d(t, x)v2,

p11(t, x) = −a(t, x)u1, p12(t, x) = −b(t, x)u1,

p21(t, x) = −c(t, x)v1, p22(t, x) = −d(t, x)v1.
(6.1)

Hence, to apply Theorems 5.1 or 5.2, since aL, dL > 0 and u1, v1 ≥ 0, in order to
find positive functions ϕii(x) such that pii(t, x) ≤ −ϕii(x), i = 1, 2 we need positive
functions ψii(x) such that ψ11(x) ≤ u1(t, x) and ψ22(x) ≤ v1(t, x), that is, we must
consider non–degenerate solutions. The results in Section 3.4 guarantee then that all
solutions are non–degenerate.

On the other hand we must show that the product of the coupling terms

p12(t, x)p21(t, x)

is small at ±∞. Having obtained bounds on u1, v1 this will be achieved by a smallness
condition on the coefficients b(t, x) or c(t, x).

But note that the non-degeneracy of solutions above depends on the functions
b(t, x) and c(t, x) themselves. Therefore, we will use the results in Section 3.4 which
tell that solutions of (3.1) are non-degenerate for all sufficiently small “coupling”
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coefficients b(t, x) or c(t, x) and that the functions ψii(x), i = 1, 2 do not converge to
zero as b or c vanish.

We first start with the forwards behaviour in Theorem 5.1. Then we can prove
Theorem 6.1. There exists ρ0(M∞, N∞) > 0, where M∞ and N∞ are given in

Theorem 3.5, such that if

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0(M∞, N∞),

and for some t0 the coefficients of (3.1) satisfy for t ≥ t0 the assumptions of Theo-
rem 3.14, then for any bounded set of positive initial data bounded away from zero,
all solutions of (3.1) that start at a sufficiently large s > t0, have the same asymptotic
behaviour as t → ∞.

In particular, all complete positive trajectories in the pullback attractor have the
same asymptotic behaviour as t → ∞.

Proof. Note that Theorem 3.14 implies that all forwards solutions of (3.1) that
start at s ≥ t0 are equi-non-degenerate with respect to a bounded set of initial data
us > 0, vs > 0, bounded away from zero, and the coefficients. In particular, from
Propositions 4.2 and 4.4 the constant M1 in (5.5) can be taken independent of such
us > 0, vs > 0 and the coefficients.

Moreover, for such initial data and t > s ≥ t0, we have in (6.1)

p11(t, x) = −a(t, x)u1 ≤ −aLψ11(x) = −ϕ11(x),

p22(t, x) = −d(t, x)v1 ≤ −dLψ22(x) = −ϕ22(x)

with ψ11(x) and ψ22(x) independent us > 0, vs > 0 and of the coefficients. In
particular ϕ11(x), ϕ22(x) satisfy the assumptions in Proposition 4.2.

Hence the threshold value ρ > 0 in Theorem 5.1 is also uniform for us > 0, vs > 0
and of the coefficients as in Theorem 3.14.

Now we have in (6.1) p12(t, x) = −b(t, x)u1, p21(t, x) = −c(t, x)v1 and hence (5.3)
is satisfied if

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ2(p, Ω,M∞, N∞) = ρ0,

where M∞ and N∞ are given in Theorem 3.5.
Therefore, from Theorem 5.1, all solutions have the same forwards behaviour.

Our next result proves that if there is a complete trajectory that is non-degenerate
at −∞, then it must be unique and be pullback attracting, as in Theorem 5.2:

Theorem 6.2. Assume there exists a complete, bounded solution of (3.1) that is
non-degenerate at −∞, U∗(t), t ∈ R.

Then there exists ρ0(M∞, N∞) > 0, where M∞ and N∞ are given in Theo-
rem 3.5, such that if

lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ0(M∞, N∞),

and for some t0 the coefficients of (3.1) satisfy for t ≤ t0 the assumptions of The-
orem 3.14, then U∗(t) is the unique bounded complete solution of (3.1) that is non-
degenerate at −∞. Moreover, for every t ∈ R, U∗(t) pullback attracts solutions
U1(t, s) such that U1(s) are positive and bounded as s → −∞.
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If in addition

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0(M∞, N∞),

and for some t1 the coefficients of (3.1) satisfy for t ≥ t1 the assumptions of The-
orem 3.14, then for any s ∈ R and for any positive solution U(t, s) of (3.1) we
have

U(t, s) − U∗(t) → 0 as t → ∞.

Proof. Assume there exists a complete, bounded non-degenerate solution at −∞.
Then Theorem 3.14 implies that all bounded non-degenerate solution at −∞ are equi-
non-degenerate with respect to the coefficients. In particular, from Propositions 4.2
and 4.4 the constant M1 in (5.5) can be taken independent of the complete non-
degenerate solution under consideration and of the coefficients. Moreover, we have in
(6.1)

p11(t, x) = −a(t, x)u1 ≤ −aLψ11(x) = −ϕ11(x),
p22(t, x) = −d(t, x)v1 ≤ −dLψ22(x) = −ϕ22(x)

with ψ11(x) and ψ22(x) independent of the complete non-degenerate solution and
of the coefficients. In particular ϕ11(x), ϕ22(x) satisfy the assumptions in Proposi-
tion 4.2.

Hence the threshold value ρ > 0 in Theorem 5.2 is also independent of the com-
plete non-degenerate solution and of the coefficients.

Now we have in (6.1) p12(t, x) = −b(t, x)u1, p21(t, x) = −c(t, x)v1 and hence (5.7)
is satisfied if

lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ2(p, Ω,M∞, N∞) = ρ0.

Therefore, from Theorem 5.2, there exists at most a complete non-degenerate solution
at −∞.

To show that U∗(t) is pullback attracting, observe that for sufficiently negative
t0 we can proceed as in the proof of Theorem 5.2 to conclude that U∗(t) pullback
attracts solutions U1(t, s) such that U1(s) are positive and bounded as s → −∞.

The rest follows from Theorem 6.1.

7. Conclusions. We have obtained some results on permanence in non-auto-
nomous Lotka-Volterra models without the assumption of any kind of periodicity. In
particular we have found conditions under which there exists at least one complete
trajectory, and for which all trajectories convergence together as t → +∞. The key
argument is a perturbation result for an associated linear system satisfied by the
difference between two solutions, and using this we have been able to treat all the
different classical cases – competition, symbiosis, and prey-predator – in a unified way.
While this unified approach has its advantages, our method requires at least one of the
coupling parameters in the system to be sufficiently small. Hence, we hope that a more
detailed study of each particular situation could lead to some improvements in the
conditions imposed on the non-autonomous terms while still using similar techniques.

It is a very interesting open problem to prove, for this Lotka-Volterra exam-
ple, the existence of a complete trajectory that is non-degenerate at −∞. Given
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this non-degeneracy one would get the uniqueness of such a trajectory, and its pull-
back attracting property. We believe that use of the concepts of sub- and super-
trajectories (cf. Arnold & Chueshov [3] and Chueshov [10]), along with the sub- and
super-solutions technique (cf. for example Pao [30]) should be able to provide this,
and we intend to pursue this direction in a future paper.

However, it is certainly the case that the hypothesis that the time-dependent
terms are bounded is important throughout the literature, as this assumption implies
the existence of bounded global solutions, and in particular of bounded attracting
trajectories. As the analysis in Langa et al. [23] shows, different kinds of forward
asymptotic behaviour, such as the non-existence of asymptotically stable trajectories,
is possible if solutions are allowed to be unbounded.
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