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Abstract. We present some results concerning the controllability of a quasi-linear parabolic
equation (with linear principal part) in a bounded domain of R

N with Dirichlet boundary conditions.
We analyze the controllability problem with distributed controls (supported on a small open subset)
and boundary controls (supported on a small part of the boundary). We prove that the system is
null and approximately controllable at any time if the nonlinear term f(y,∇y) grows slower than

|y| log3/2(1+ |y|+ |∇y|)+ |∇y| log1/2(1+ |y|+ |∇y|) at infinity (generally, in this case, in the absence
of control, blow-up occurs). The proofs use global Carleman estimates, parabolic regularity, and the
fixed point method.
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1. Introduction and main results. Let Ω ⊂ R
N be a bounded connected

open set with boundary ∂Ω of class C2. Let O ⊂ Ω be a nonempty open subset,
let γ ⊂ ∂Ω be a nonempty relative open subset of the boundary, and assume that
T > 0. We will use the following notation: Q = Ω× (0, T ), Σ = ∂Ω× (0, T ). For any
p ∈ [1,+∞], we will denote by ‖ · ‖p the usual norm in Lp(Q).

We will consider parabolic systems of the form
∂ty −∆y + f(y,∇y) = v1O in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω

(1)

and 
∂ty −∆y + f(y,∇y) = 0 in Q,
y = v1γ on Σ,
y(x, 0) = y0(x) in Ω,

(2)

where y0 and v are given in appropriate spaces. In (1) and (2),

f : R × R
N → R

is a locally Lipschitz-continuous function and 1O and 1γ denote the characteristic
functions of the setsO and γ, respectively. We will assume that y0 ∈W 1,∞(Ω)∩H1

0 (Ω)
(for simplicity), v ∈ L∞(O × (0, T )) in (1), and v ∈ L∞(γ × (0, T )) in (2).
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CONTROLLABILITY OF PARABOLIC SYSTEMS 799

The main goal of this paper is to analyze the controllability properties of (1)
and (2). It will be said that (1) (resp., (2)) is null-controllable at time T if, for
each y0 ∈ W 1,∞(Ω) ∩ H1

0 (Ω) (resp., y0 ∈ W 1,∞(Ω) ∩ V , where V is given below
by (10)), there exists v ∈ L∞(O × (0, T )) (resp., v ∈ L∞(γ × (0, T ))) such that
the corresponding initial boundary problem (1) (resp., (2)) admits a solution y ∈
C0([0, T ];L2(Ω)) satisfying

y(x, T ) = 0 in Ω.(3)

On the other hand, it will be said that (1) (resp., (2)) is approximately controllable
in L2(Ω) at time T if, for any y0 ∈ W 1,∞(Ω) ∩ H1

0 (Ω) (resp., y0 ∈ W 1,∞(Ω) ∩ V ),
any yd ∈ L2(Ω), and any ε > 0, there exists a control v ∈ L∞(O × (0, T )) (resp.,
v ∈ L∞(γ × (0, T ))) such that the corresponding initial boundary problem (1) (resp.,
(2)) possesses a solution y ∈ C0([0, T ];L2(Ω)), with

‖y(·, T )− yd‖L2 ≤ ε.(4)

The controllability of linear and semilinear parabolic systems has been analyzed
in several recent papers. Among them, let us mention [I], [FI], [F], [B], [AB], and
[FZ2] in what concerns null controllability and [FPZ], [Z2], and [FZ2] for approximate
controllability.

This paper generalizes all previous results, in particular those in [FZ2], where the
nonlinear term is assumed to be of the form f(y).

Notice that, under the hypothesis above, we can write

f(s, p) = f(0, 0) + g(s, p)s+G(s, p) · p ∀(s, p) ∈ R × R
N(5)

for some L∞
loc functions g and G. These are respectively given by

g(s, p) =

∫ 1

0

∂f

∂s
(λs, λp) dλ, Gi(s, p) =

∫ 1

0

∂f

∂pi
(λs, λp) dλ for 1 ≤ i ≤ N.

Our first result is the following one.
Theorem 1.1. Assume that f is locally Lipschitz-continuous, f(0, 0) = 0 and

lim
|(s,p)|→∞

|g(s, p)|
log3/2(1 + |s|+ |p|) = 0, lim

|(s,p)|→∞
|G(s, p)|

log1/2(1 + |s|+ |p|) = 0.(6)

Then (1) is null-controllable at any time T > 0.
Remark 1.1. This result generalizes at least two cases that have been studied

exhaustively before. First, the case of a globally Lipschitz-continuous function f , i.e.,
when g ∈ L∞(R × R

N ) and G ∈ L∞(R × R
N )N . In this case, f is a function with

sublinear behavior at infinity, and the proof of the corresponding controllability result
is easier (cf. [IY]). Second, the case where G ≡ 0 and g = g(s) satisfies g(0) = 0 and

lim
|s|→∞

|g(s)|
log3/2(1 + |s|) = 0.(7)

The proof is again easier (cf. [FZ2]).
Remark 1.2. In [FZ2], it is proved that, for each β > 2, there exist functions

f = f(s) with f(0) = 0 and

|f(s)| ∼ |s| logβ (1 + |s|) as |s| → ∞(8)
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800 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

such that (1) is not null-controllable for all T > 0. In view of Theorem 1.1, we see
that when f satisfies (8) with 3/2 ≤ β ≤ 2, the null controllability problem of (1) is
an open question.

Remark 1.3. Theorem 1.1 says in particular that, under assumption (6), for
each y0 there exists a control v such that (1) possesses a solution globally defined in
[0, T ]. This claim is not true for any right-hand side and any y0 ∈W 1,∞(Ω)∩H1

0 (Ω),
since we are in the range in which blow-up may occur (for instance, see [CH]).

A consequence of Theorem 1.1 is the approximate controllability of (1). In this
case, f(0, 0) will not be necessarily 0 and we will assume that f verifies (5) and (9),
a condition slightly different from (6). Thus, our second main result is the following.

Theorem 1.2. Let T > 0. Assume that f : R × R
N → R is locally Lipschitz-

continuous and verifies
lim

|(s,p)|→∞
1

log3/2(1 + |s|+ |p|)

∣∣∣∣∫ 1

0

∂f

∂s
(s0 + λs, p0 + λp) dλ

∣∣∣∣ = 0,
lim

|(s,p)|→∞
1

log1/2(1 + |s|+ |p|)

∣∣∣∣∫ 1

0

∂f

∂pi
(s0 + λs, p0 + λp) dλ

∣∣∣∣ = 0
(9)

uniformly in (s0, p0) ∈ K for every compact set K ⊂ R × R
N . Then (1) is approxi-

mately controllable at time T .
Remark 1.4. It will be seen in section 4 that, for systems like (1), the approxi-

mate controllability result is actually a consequence of the exact controllability to the
trajectories in C0([0, T ];W 1,∞(Ω)).

Remark 1.5. Again, Theorem 1.2 generalizes two known results. First, the case
where f is globally Lipschitz-continuous, i.e., the case in which ∂f/∂s and ∂f/∂pi
( 1 ≤ i ≤ N) are uniformly bounded (cf. [Z2]). On the other hand, Theorem 1.2 is
also a generalization of the approximate controllability result in [FZ2], where G ≡ 0,
g = g(s), and (7) is satisfied.

In the first draft of this paper (and also in the approximate controllability results in
[FZ2]), an additional assumption was imposed in Theorem 1.2, namely, the existence
of a globally defined solution y∗ corresponding to appropriate data y∗0 and v∗. But
one of the referees provided an argument that shows that this hypothesis is in fact
unnecessary (see the proof of Theorem 1.2 in section 4).

Remark 1.6. In particular, (9) holds whenever ∂f/∂s and ∂f/∂pi (1 ≤ i ≤ N)
satisfy

lim
|(s,p)|→∞

∣∣∣∣∂f∂s (s, p)
∣∣∣∣

log3/2 (1 + |s|+ |p|) = 0, lim
|(s,p)|→∞

∣∣∣∣ ∂f∂pi (s, p)
∣∣∣∣

log1/2 (1 + |s|+ |p|) = 0.

On the other hand, the assumptions (9) can be easily interpreted when f = f(s).
Indeed, in this case they simply read as follows:

lim
|s|→∞

1

log3/2(1 + |s|)

∣∣∣∣∫ 1

0

f ′(s0 + λs) dλ

∣∣∣∣ = 0
uniformly in s0 ∈ K for every compact set K ⊂ R.

The arguments in [FZ2] show that this is equivalent to (7) and also to

lim
|s|→∞

1

log3/2 (1 + |s|)

∫ 1

0

f ′(λs) dλ = 0.
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CONTROLLABILITY OF PARABOLIC SYSTEMS 801

Remark 1.7. It is proved in [FZ2] that, for each β > 2, there exists a function
f = f(s) satisfying (8) such that the corresponding system (1) is not approximately
controllable for all T > 0. As in the case of null controllability, for f satisfying (8)
with 3/2 ≤ β ≤ 2, the approximate controllability of (1) is an open question.

We can establish similar results for (2) under hypotheses of the same kind for f
and y0. More precisely, let us introduce the Hilbert space

V = { z ∈ H1(Ω) : z = 0 on ∂Ω \ γ }.(10)

One has the following.
Theorem 1.3. Let T > 0. Assume that the assumptions in Theorem 1.1 are

satisfied. Then (2) is null-controllable at any time T > 0.
Theorem 1.4. Let T > 0. Assume that f is locally Lipschitz-continuous and

verifies (9). Then (2) is approximately controllable at time T .
Remark 1.8. In the proofs of the previous controllability results, we will con-

struct controls satisfying the appropriate properties. These controls are smooth. In
particular, they will be such that the associated solutions of (1) and (2) belong to
C0([0, T ];W 1,∞(Ω)), a space where we can ensure uniqueness.

The rest of this paper is organized as follows. Section 2 is devoted to proving
some technical lemmas we will use below. In section 3, we will prove Theorem 1.1. In
section 4, we will give the proof of the approximate controllability result for system
(1) (Theorem 1.2). Finally, the proofs of Theorems 1.3 and 1.4 will be sketched in
section 5.

2. Some technical results. Before giving the proofs of the theorems above, we
have to present some technical results.

Let us consider the linear problem
∂ty −∆y +B · ∇y + ay = F in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω,

(11)

where y0 and F are given, a ∈ L∞(Q), and B ∈ L∞(Q)N . One has the following
lemma, whose proof is essentially given in [LSU].

Lemma 2.1. Assume that F ∈ Lq(Q) with q > N + 2, y0 ∈ W 2,p(Ω) ∩ H1
0 (Ω)

with p > N , a ∈ L∞(Q), and B ∈ L∞(Q)N . Then the solution y of (11) satisfies{
y ∈ Lq(0, T ;W 2,β(Ω)), ∂ty ∈ Lq(0, T ;Lβ(Ω)),

with β = min (p, q) > N
(12)

and {
‖y‖Lq(0,T ;W 2,β) + ‖∂ty‖Lq(0,T ;Lβ)

≤ C(Ω, T, ‖a‖∞, ‖B‖∞) (‖y0‖W 2,p + ‖F‖q) .
(13)

Furthermore, we also have y ∈ C0([0, T ];W 1,∞(Ω)) and

‖y‖C0([0,T ];W 1,∞) ≤M(Ω, T, ‖a‖∞, ‖B‖∞) (‖y0‖W 2,p + ‖F‖q) ,(14)

where 
M(Ω, T, ‖a‖∞, ‖B‖∞)

= exp
[
M0

(
1 + T + (T + T 1/2)‖a‖∞ + (T + T 1/2)‖B‖2

∞
)](15)
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802 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

and M0 is a positive constant depending only on Ω.
For the reader’s convenience, we have sketched the proof of this result in the

appendix.
We will also recall a global Carleman inequality from [IY] for the linear problem

−∂tϕ−∆ϕ = F0 +

N∑
i=1

∂Fi
∂xi

in Q,

ϕ = 0 on Σ,
ϕ(x, T ) = ϕT (x) in Ω,

(16)

where F0, Fi ∈ L2(Q) (1 ≤ i ≤ N) and ϕT ∈ L2(Ω). One has the following.
Lemma 2.2. There exists a smooth function α0 = α0(x) that is defined and

strictly positive for x ∈ Ω, and there exist positive constants C0 and σ0 (only depending
on Ω and O) such that

s3
∫∫

Q

e−2sαt−3(T − t)−3|ϕ|2 ≤ C0

(
s3
∫∫

O×(0,T )

e−2sαt−3(T − t)−3|ϕ|2

+

∫∫
Q

e−2sα|F0|2 + s2
N∑
i=1

∫∫
Q

e−2sαt−2(T − t)−2|Fi|2
)(17)

for all s ≥ s0 = σ0(T+T
2), where ϕ is the solution of (16) associated to ϕT ∈ L2(Ω).

In (17), the function α = α(x, t) is given by

α(x, t) =
α0(x)

t(T − t)
.

Remark 2.1. The inequality (17) is based on a similar Carleman inequality for
the heat equation with a right-hand side in L2(Q). The precise way s0 depends on T
has been analyzed in [FZ1] and is essential in our analysis.

In what follows, unless otherwise specified, C will stand for a generic positive
constant depending only on Ω and O, whose value can change from line to line. Let
us introduce the following (adjoint) system:

−∂tq −∆q −∇ · (qB) + aq = 0 in Q,
q = 0 on Σ,
q(x, T ) = qT (x) in Ω,

(18)

where qT ∈ L2(Ω). Arguing as in [FZ1], we can deduce from the Carleman estimates
(17) an observability inequality for (18), as follows.

Theorem 2.3. For any a ∈ L∞(Q), B ∈ L∞(Q)N , and qT ∈ L2(Ω), one has

‖q(·, 0)‖2
L2 ≤ exp [C B(T, ‖a‖∞, ‖B‖∞)]

∫∫
O×(0,T )

|q|2,(19)

where

B(T, ‖a‖∞, ‖B‖∞) = 1 + 1

T
+ T‖a‖∞ + ‖a‖2/3

∞ + (1 + T )‖B‖2
∞

and q is the solution to the corresponding system (18).
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CONTROLLABILITY OF PARABOLIC SYSTEMS 803

Proof. Let a, B, and qT be given and let q be the solution to (18). Let us first
see that∫∫

Ω×(T/4,3T/4)

|q|2 ≤ exp

[
C

(
1 +

1

T
+ ‖a‖2/3

∞ + ‖B‖2
∞

)]∫∫
O×(0,T )

|q|2 .(20)

We can write (17) for ϕ = q. This gives

s3
∫∫

Q

e−2sαt−3(T − t)−3|q|2 ≤ C0

(
s3
∫∫

O×(0,T )

e−2sαt−3(T − t)−3|q|2

+

∫∫
Q

e−2sα|aq|2 + s2
∫∫

Q

e−2sαt−2(T − t)−2|Bq|2
)(21)

for all s ≥ s0. We can estimate the terms on the right as follows:∫∫
Q

e−2sα|aq|2 ≤ 2−6T 6‖a‖2
∞

∫∫
Q

e−2sαt−3(T − t)−3|q|2

and ∫∫
Q

e−2sαt−2(T − t)−2|Bq|2 ≤ 2−2T 2‖B‖2
∞

∫∫
Q

e−2sαt−3(T − t)−3|q|2.

Thus, we deduce from (21) that∫∫
Q

e−2sαt−3(T − t)−3|q|2 ≤ C

∫∫
O×(0,T )

e−2sαt−3(T − t)−3|q|2,(22)

provided

s ≥ s1 = max
(
s0, 2

−4/3C
1/3
0 T 2‖a‖2/3

∞ , C0T
2‖B‖2

∞
)
.

On the other hand, it can be easily verified that

e−2sαt−3(T − t)−3 ≤ 26T−6 exp
(−CsT−2

) ∀(x, t) ∈ Q(23)

and

e−2sαt−3(T − t)−3 ≥
(
16

3

)3

T−6 exp
(−CsT−2

) ∀(x, t) ∈ Ω× [T/4, 3T/4](24)

whenever

s ≥ s2 = max

(
s1, 3T

2

(
8min
x∈Ω

α0(x)

)−1
)
.

Analyzing the definitions of s1 and s2, we see that s2 ≤ s3, where s3 is of the
form

s3 = σ3

(
T + T 2 + T 2‖a‖2/3

∞ + T 2‖B‖2
∞
)

and σ3 depends only on Ω and O. From now on, we fix s, with s = s3. Taking into
account (23) and (24) and coming back to (22) (written for s = s3), we deduce that
(20) is satisfied for any solution q of (18).
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804 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

Let us now prove that

‖q(·, T/4)‖2
2 ≤ exp

[
C

(
1

T
+ T‖a‖∞ + T‖B‖2

∞

)]∫∫
Ω×(T/4,3T/4)

|q|2.(25)

Multiplying (18) by q and integrating in Ω, we obtain

−1
2

d

dt

∫
Ω

|q|2 dx+
∫

Ω

|∇q|2 dx = −
∫

Ω

qB · ∇q dx−
∫

Ω

a|q|2 dx ∀t ≥ 0.

Thus,

− d

dt

∫
Ω

|q|2 dx+
∫

Ω

|∇q|2 dx ≤ (‖B‖2
∞ + 2‖a‖∞

) ∫
Ω

|q|2 dx

and

d

dt

(
exp

(
(2‖a‖∞ + ‖B‖2

∞)t
) ∫

Ω

|q|2 dx
)

≥ 0(26)

for all t ≥ 0. Integrating this inequality with respect to the time variable in [T/4, t],
where t ∈ [T/4, 3T/4], we obtain

∫
Ω

|q(x, t)|2 dx ≥ exp
[(
2‖a‖∞ + ‖B‖2

∞
)
(T/4− t)

] ∫
Ω

|q(x, T/4)|2 dx

≥ exp

[
−
(
‖a‖∞ +

1

2
‖B‖2

∞

)
T

] ∫
Ω

|q(x, T/4)|2 dx
(27)

for all t ∈ [T/4, 3T/4]. Integrating (27) again with respect to t, we find that
T

2

∫
Ω

|q(x, T/4)|2 dx ≤ exp

[(
‖a‖∞ +

1

2
‖B‖2

∞

)
T

] ∫∫
Ω×(T/4,3T/4)

|q(x, t)|2,(28)

whence we easily deduce (25).
Finally, let us prove that∫

Ω

|q(x, 0)|2 dx ≤ exp
[
CT

(‖a‖∞ + ‖B‖2
∞
)] ∫

Ω

|q(x, T/4)|2 dx.(29)

This, together with (25) and (20), will lead to the desired observability estimate (19).
To prove (29), it suffices to integrate (26) in the time interval [0, T/4]. Indeed,

we find at once that∫
Ω

|q(x, 0)|2 dx ≤ exp

[(
2‖a‖∞ + ‖B‖2

∞
) T
4

] ∫
Ω

|q(x, T/4)|2 dx

and thus (29) holds. This completes the proof of Theorem 2.3.
In fact, for the analysis of the controllability of (1) and (2), where f is not

necessarily globally Lipschitz-continuous, we need a refined version of the observability
inequality (19). This is furnished by the following result.

Theorem 2.4. For any a ∈ L∞(Ω), B ∈ L∞(Ω)N , and qT ∈ L2(Ω), one has

‖q(·, 0)‖2
L2 ≤ exp [C K (T, ‖a‖∞, ‖B‖∞)]

(∫∫
O×(0,T )

|q|
)2

,(30)
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CONTROLLABILITY OF PARABOLIC SYSTEMS 805

where

K (T, ‖a‖∞, ‖B‖∞) = 1 + 1

T
+ T + (T + T 1/2)‖a‖∞ + ‖a‖2/3

∞ + (1 + T )‖B‖2
∞.(31)

Proof. Let O′ be a nonempty open set such that O′ ⊂⊂ O. From Theorem 2.3
applied to O′ and the time interval [T/4, 3T/4], we deduce that

‖q(·, T/4)‖2
L2 ≤ exp [CK ′(T, ‖a‖∞, ‖B‖∞)]

∫∫
O′×(T/4,3T/4)

|q|2,(32)

where q is the solution of (18) associated to qT ∈ L2(Ω), K ′(T, ‖a‖∞, ‖B‖∞) is given
by

K ′(T, ‖a‖∞, ‖B‖∞) = 1 + 1

T
+ T‖a‖∞ + ‖a‖2/3

∞ + (1 + T ) ‖B‖2
∞,

and C is a new positive constant depending only on O′ (i.e., on O) and Ω. Using
(26), we obtain∫

Ω

|q(x, 0)|2 dx ≤ exp

[
T

4

(
2‖a‖∞ + ‖B‖2

∞
)] ∫

Ω

|q(x, T/4)|2 dx,

and combining this with (32), we find that

‖q(·, 0)‖2
L2 ≤ exp [CK ′(T, ‖a‖∞, ‖B‖∞)]

∫∫
O′×(T/4,3T/4)

|q|2.(33)

At this point, we are going to use a technical result, related to the regularizing
effect of the heat equation, whose proof will be given below.

Lemma 2.5. Let Oi, Ti, ri, and γi (i = 0, 1) be given, with
O′ ⊂ O0 ⊂⊂ O1 ⊂ O, 0 ≤ T1 < T0 < T/2, 1 ≤ r1 < r0 <∞,

1 ≤ γ1 < γ0 <∞,
1

γ1
− 1

γ0
+
N

2

(
1

r1
− 1

r0

)
<
1

2
.

Then

(∫ T−T0

T0

(∫
O0

|q|r0 dx
)γ0/r0

dt

)1/γ0

≤ C TλH(T, T0, T1, ‖a‖∞, ‖B‖∞)
(∫ T−T1

T1

(∫
O1

|q|r1 dx
)γ1/r1

dt

)1/γ1
(34)

for all qT ∈ L2(Ω), with C = C(Ω,Oi, ri, γi, N), λ = λ(ri, γi, N), and
H(T, T0, T1, ‖a‖∞, ‖B‖∞)

= 1 +
T 1/2

T0 − T1
+ T 1/2(1 + ‖a‖∞) + (1 + T 1/2)‖B‖∞.

(35)

We will now apply this lemma together with (33). To this end, let us set r0 =
γ0 = 2 and let us introduce the numbers γi and ri, given by the equalities

1

γi
=
1

ri
=
1

2
+

i

2(N + 2)
, 1 ≤ i ≤ N + 2.
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806 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

It is immediate that γN+1 > 1, rN+1 > 1, and γN+2 = rN+2 = 1. Now, let us set
δ = T/4(N + 2). Accordingly,

[T/4− (N + 2)δ, 3T/4 + (N + 2)δ] = [0, T ].

Let us also introduce a family of open sets Oi such that
O′ = O0 ⊂⊂ O1 ⊂⊂ O2 ⊂⊂ · · · ⊂⊂ ON+1 ⊂⊂ ON+2 = O.

For 0 ≤ i ≤ N + 1, we can use inequality (34) with O0, O1, T0, T1, r0, r1, γ0, and
γ1, respectively, replaced by Oi,Oi+1, T/4− iδ, T/4− (i+1)δ, ri, ri+1, γi, and γi+1.
The whole set of these inequalities gives(∫∫

O′×(T/4,3T/4)

|q|2
)1/2

≤ CTαH(T, ‖a‖∞, ‖B‖∞)β
(∫∫

O×(0,T )

|q|
)
,(36)

where β = N+2 and α is the sum of the exponents λi. If we now combine the inequal-
ities (33) and (36), we obtain (30). This completes the proof of Theorem 2.4.

Proof of Lemma 2.5. Let ρ1 and ρ2 be functions in D(O1) and D((T1, T − T1)),
respectively, such that

ρ1 ≡ 1 in O0, ρ2 ≡ 1 in (T0, T − T0),

and 0 ≤ ρ1 , ρ2 ≤ 1. Let us put ρ(x, t) = ρ1(x)ρ2(t) and u = ρq, where q is the
solution to (18) associated to qT ∈ L2(Ω). Obviously,

suppu ⊂ O1 × (T1, T − T1)

and
−∂tu−∆u = −aρq +∇ · (ρqB)− (∂tρ+∆ρ)q − 2∇ρ · ∇q − (∇ρ ·B)q in Q,

u = 0 on Σ,

u(x, T ) = 0 in Ω.

In order to clarify the computations, let us put ũ(x, t) = u(x, T − t) for (x, t) ∈ Q. In

a similar way, let us introduce the functions ã, B̃, ρ̃, and q̃. We then have
∂tũ−∆ũ = F in Q,

ũ = 0 on Σ,

ũ(x, 0) = 0 in Ω,

where F is given by

F = −ãρ̃q̃ +∇ · (ρ̃q̃B̃) + (∂tρ̃−∆ρ̃)q̃ − 2∇ρ̃ · ∇q̃ − (∇ρ̃ · B̃)q̃.
Let us denote by {S(t) : t ≥ 0} the semigroup generated by the heat equation with
Dirichlet boundary conditions. Then one has

ũ(·, t) =
∫ t

0

S(t− s)F (·, s) ds,(37)

where the integral can be understood, for instance, in Lr0(Ω).
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CONTROLLABILITY OF PARABOLIC SYSTEMS 807

Thanks to the regularizing effect of the heat equation, taking Lr0-norms in (37),
we obtain the following for t ∈ (T1, T − T1):

‖ũ(·, t)‖Lr0 ≤ C

[
(‖B‖∞ + 1)

∫ t

T1

(t− s)
−N

2

(
1
r1

− 1
r0

)
− 1

2 ‖q̃(·, s)‖Lr1 (O1)ds

+

(
1 +

1

T0 − T1
+ ‖a‖∞ + ‖B‖∞

)∫ t

T1

(t− s)
−N

2

(
1
r1

− 1
r0

)
‖q̃(·, s)‖Lr1 (O1)ds

]
.

(38)

Here, C is a positive constant depending on O0 and O1. This gives

‖ũ(·, t)‖Lr0 ≤ C H

∫ t

T1

(t− s)
−N

2

(
1
r1

− 1
r0

)
− 1

2 ‖q̃(·, s)‖Lr1 (O1)ds(39)

for all t ∈ (T1, T − T1), where H = H(T, T0, T1, ‖a‖∞, ‖B‖∞) is given by (35). Due
to the assumption

N

2

(
1

r1
− 1

r0

)
+
1

γ1
− 1

γ0
<
1

2

we can apply Young’s inequality to (39) and estimate the Lγ0(0, T ;Lr0(Ω))-norm of
ũ as follows:(∫ T−T1

T1

‖ũ(·, t)‖γ0Lr0 dt

)1/γ0

≤ C HTλ

(∫ T−T1

T1

‖ũ(·, t)‖γ1Lr1 (O1)
dt

)1/γ1

.(40)

Here, C is a new positive constant only depending on Ω, Oi , ri , and γi , and N and
H are given by (35) and

λ = −
[
N

2

(
1

r1
− 1

r0

)
+
1

γ1
− 1

γ0

]
+
1

2
.

Inequality (34) is directly obtained from (40). This completes the proof of Lem-
ma 2.5.

Remark 2.2. As an easy consequence of Theorem 2.4 and (30), we can also
deduce for each r ∈ (1,∞) an observability inequality in Lr(O × (0, T )):

‖q(·, 0)‖2
L2 ≤ exp [CrK (T, ‖a‖∞, ‖B‖∞)]

(∫∫
O×(0,T )

|q|r
) 2

r

(41)

for any a ∈ L∞(Ω), B ∈ L∞(Ω)N , and qT ∈ L2(Ω). In (41), K (T, ‖a‖∞, ‖B‖∞) is
given by (31) and Cr only depends on Ω, O, and r.
3. Proof of the null controllability result. This section is devoted to proving

Theorem 1.1. Using Theorem 2.4, we will first establish a null controllability result
for a similar linear heat equation with controls in L∞(O × (0, T )). We will then
apply a fixed point argument to obtain the desired result. The structure of the proof
(the controllability of a similar linear system together with a fixed point argument) is
rather general. It was introduced in [Z1] in the context of the boundary controllability
of the semilinear wave equation. For other results proved in a similar way, see, for
instance, [FPZ] and [FI].
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808 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

3.1. A null controllability result for a linear problem. We will consider
the linear system 

∂ty −∆y +B · ∇y + ay = v1O in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω,

(42)

where a ∈ L∞(Q), B ∈ L∞(Q)N , and y0 ∈ L2(Ω) are given. The following holds.
Theorem 3.1. Assume that T > 0, a ∈ L∞(Q), B ∈ L∞(Q)N , and y0 ∈ L2(Ω).

Then there exists a control v̂ ∈ L∞(O × (0, T )) such that the corresponding solution
of (42) satisfies

ŷ(x, T ) = 0 in Ω.(43)

Furthermore, v̂ can be chosen in such a way that

‖v̂‖L∞(O×(0,T )) ≤ exp [C K (T, ‖a‖∞, ‖B‖∞)] ‖y0‖L2 ,(44)

where K(T, ‖a‖∞, ‖B‖∞) is given by (31).
Proof. For every ε > 0, let us consider the functional Jε, with

Jε(qT ) =
1

2

(∫∫
O×(0,T )

|q|
)2

+ ε‖qT ‖L2 +

∫
Ω

q(x, 0) y0(x) dx ∀qT ∈ L2(Ω).(45)

Here, q is the solution of (18) associated to qT ∈ L2(Ω).
It is easy to see that Jε is a continuous and strictly convex functional in L

2(Ω).
Furthermore, from (22), it is immediate to deduce the following unique continuation
property for (18): If q = 0 in O × (0, T ), then q ≡ 0.

Thus, arguing as in [FPZ], we also see that

lim inf
‖qT ‖L2→∞

Jε(qT )

‖qT ‖L2

≥ ε

and, therefore, Jε achieves its minimum at a unique point q̂εT ∈ L2(Ω).
Let q̂ε be the solution of (18) associated to q̂

ε
T . Taking v = v̂ε in (42) with

v̂ε ∈ (sgn q̂ε)
(∫

O×(0,T )

|q̂ε|
)
1O(46)

and arguing as in [FPZ], we see that the associated solution ŷε satisfies

‖ŷε(·, T )‖L2 ≤ ε.(47)

It is not difficult to see that

‖v̂ε‖L∞(O×(0,T )) =

∫∫
O×(0,T )

|q̂ε| ≤ exp [C K (T, ‖a‖∞, ‖B‖∞)] ‖y0‖L2(48)

for all ε > 0. Indeed, the fact that

‖v̂ε‖L∞(O×(0,T )) =

∫∫
O×(0,T )

|q̂ε|
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CONTROLLABILITY OF PARABOLIC SYSTEMS 809

is implied by (46). On the other hand, since

Jε(q̂
ε
T ) ≤ Jε(0) = 0,

we see from (45) that

1

2

(∫∫
O×(0,T )

|q̂ε|
)2

≤ −
∫

Ω

q̂ε(x, 0)y0(x) dx ≤ ‖q̂ε(·, 0)‖L2‖y0‖L2 .

In view of (30), (48) holds.
Since v̂ε is uniformly bounded in L∞(O × (0, T )), at least for an appropriate

subsequence we must have

v̂ε → v̂ weakly-∗ in L∞(O × (0, T )),(49)

where v̂ ∈ L∞(O × (0, T )) satisfies (44). Accordingly,
ŷε(T )→ ŷ(T ) in L2(Ω),

where ŷ is the solution of (42) associated to v̂. Since we have (47) for all ε > 0, (43)
is satisfied. This ends the proof.

3.2. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1. First,
observe that we can assume in this theorem that y0 ∈W 2,p(Ω)∩H1

0 (Ω), with p > N .
Indeed, it suffices to set v = 0 for t ∈ [0, δ] and to work in the time interval [δ, T ],
looking at y(·, δ) as the initial state.

As we said above, a fixed point argument will be used. For convenience, it will
be assumed in a first step that g and G are continuous.

3.2.1. The case in which g and G are continuous. Let y0 be given in
W 2,p(Ω) ∩H1

0 (Ω) with p > N . We will assume that

g ∈ C0(R × R
N ), G ∈ C0(R × R

N )N ,(50)

and (6) is satisfied. It is then clear that, for each ε > 0, there exists Cε > 0 such that

|g(s, p)|2/3 + |G(s, p)|2 ≤ Cε + ε log(1 + |s|+ |p|) ∀(s, p) ∈ R × R
N .(51)

Let us set Z = C0([0, T ];W 1,∞(Ω)) and let R > 0 be a constant whose value
will be determined below. We will use the truncation functions TR : R �→ R and
TR : R

N �→ R
N , given as follows:

TR(s) =

{
s if |s| ≤ R,

R sgn (s) otherwise

and

TR(p) = (TR(pi))1≤i≤N ∀p ∈ R
N .

For each z ∈ Z, we will consider the corresponding linear systems
∂ty −∆y +G (TR(z),TR(∇z)) · ∇y + g (TR(z),TR(∇z)) y = v1O in Q,
y = 0 on Σ,
y(x, 0) = y0(x) in Ω.

(52)
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810 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

We are going to associate to z a family U(z) of L∞-controls which serve to drive the
solutions to zero. Observe that (52) is of the form (42) with{

a = az = g (TR(z),TR(∇z)) ∈ L∞(Q),

B = Bz = G (TR(z),TR(∇z)) ∈ L∞(Q)N .
(53)

Consequently, we can apply Theorem 3.1 to (52). In fact, we are going to apply this
result in an adequate (eventually smaller) time interval (0, Tz), where

Tz = min
{
T, ‖g (TR(z),TR(∇z)) ‖−2/3

∞ , ‖g (TR(z),TR(∇z)) ‖−1/3
∞

}
.(54)

This is a key point in our proof that will lead to appropriate estimates (this idea is
taken from [FZ2]).

From Theorem 3.1, we directly deduce the existence of a control v̂z ∈ L∞(O ×
(0, Tz)) such that the solution of (52) in Ω× (0, Tz) with v = v̂z satisfies

ŷz(x, Tz) = 0 in Ω

and, moreover,

‖v̂z‖L∞(O×(0,Tz)) ≤ exp [C K(Tz, ‖az‖∞, ‖Bz‖∞)] ‖y0‖L2 .

(K is given by (31) and az and Bz are given by (53).)
Let ṽz and ỹz be the extensions by zero of v̂z and ŷz to the whole cylinder

Q = Ω× (0, T ). It is clear that ỹz is the corresponding solution of (52) associated to
ṽz and

ỹz(x, T ) = 0 in Ω.(55)

From the definition of Tz, we see that

‖ṽz‖L∞(O×(0,T )) ≤ exp
[
C
(
1 + ‖az‖2/3

∞ + ‖Bz‖2
∞
)]

‖y0‖L2 ,(56)

where the positive constant C now depends on Ω, O, and T .
On the other hand, from (50) and Lemma 2.1, we obtain that

ŷz ∈ C0([0, Tz];W
1,∞(Ω))

and

‖ŷz‖C0([0,Tz ];W 1,∞) ≤M(Ω, Tz, ‖az‖∞, ‖Bz‖∞)
(‖y0‖W 2,p + ‖v̂z‖L∞(O×(0,Tz))

)
(M is given by (15)). Taking into account once again the definition of Tz, the estimate
(56), and the definition of ỹz, we find that ỹz ∈ Z and

‖ỹz‖Z ≤ exp
[
C
(
1 + ‖az‖2/3

∞ + ‖Bz‖2
∞
)]

‖y0‖W 2,p ,(57)

where (again) C = C(Ω,O, T ).
The estimates (56) and (57) can be written in the form

‖ṽz‖L∞(O×(0,T )) ≤ C1(Ω,O, T, z)‖y0‖L2(58)
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CONTROLLABILITY OF PARABOLIC SYSTEMS 811

and

‖ỹz‖Z ≤ C1(Ω,O, T, z)‖y0‖W 2,p ,(59)

where

C1(Ω,O, T, z) = exp
[
C
(
1 + ‖az‖2/3

∞ + ‖Bz‖2
∞
)]
.(60)

For any given v ∈ L∞(O × (0, T )), let yv ∈ Z be the solution of (52) in Q with
right-hand side v. (In order to simplify the notation, we omit the dependence on z.)
With this notation in mind, let us now set for each z ∈ Z

U(z) =
{
v ∈ L∞(O × (0, T )) : yv(T ) = 0, ‖v‖L∞(O×(0,T )) ≤ C1(Ω,O, T, z)‖y0‖L2

}
and

Λ(z) = {yv : v ∈ U(z), ‖yv‖Z ≤ C1(Ω,O, T, z)‖y0‖W 2,p} .(61)

In this way, we have been able to introduce a set-valued mapping on Z

z �→ Λ(z).

We will prove that this mapping possesses at least one fixed point y. We will also
prove that, for some R, every fixed point of Λ verifies

‖y‖Z ≤ R.(62)

Of course, this will imply the existence of a control v ∈ L∞(O× (0, T )) such that (1)
has a solution satisfying (3).

Let us see that Kakutani’s fixed point theorem can be applied to Λ. (For the
statement and proof of this result, see [A, Chapter 9, pp. 119–126].) First, from (58)
and (59), we deduce that Λ(z) is, for every z ∈ Z, a nonempty set. Moreover, it is
easy to check that Λ(z) is a uniformly bounded closed convex subset of Z. Owing to
the regularity hypothesis on y0 and Lemma 2.1, we have (12) (here β = p) and the
estimate

‖y‖L∞(0,T ;W 2,p) + ‖∂ty‖L∞(0,T ;Lp) ≤ C(Ω,O, T,R, ‖y0‖W 2,p)

(where C(Ω,O, T,R, ‖y0‖W 2,p) is independent of z) for any y ∈ Λ(z). Since p > N , we
can apply well-known compactness results and conclude that there exists a compact
set K ⊂ Z (which depends on R) such that

Λ(z) ⊂ K ∀z ∈ Z(63)

(for instance, see [S]).
Let us now prove that the mapping z �→ Λ(z) is upper hemicontinuous, i.e., that

the real-valued function

z ∈ Z �→ sup
y∈Λ(z)

〈µ, y〉

is upper semicontinuous for each bounded linear form µ ∈ Z ′. In other words, let us
see that

Bα,µ =

{
z ∈ Z : sup

y∈Λ(z)

〈µ, y〉 ≥ α

}
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812 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

is a closed set of Z for every α ∈ R and every µ ∈ Z ′. Thus, let {zn} be a sequence
in Bα,µ such that zn → z in Z. Our aim is to prove that z ∈ Bα,µ. In view of the
continuity hypothesis on g and G, we have

g(TR(zn),TR(∇zn))→ g(TR(z),TR(∇z)) in L∞(Q)

and

G(TR(zn),TR(∇zn))→ G(TR(z),TR(∇z)) in L∞(Q)N .

Since all sets Λ(zn) are compact and satisfy (63), we deduce that

α ≤ sup
y∈Λ(zn)

〈µ, y〉 = 〈µ, yn〉(64)

for some yn ∈ Λ(zn). From the definitions of Λ(zn) and U(zn), there must exist
vn ∈ L∞(O × (0, T )) such that

∂tyn −∆yn +G (TR(zn),TR(∇zn)) · ∇yn + g (TR(zn),TR(∇zn)) yn = vn1O

in Q. Furthermore,

‖vn‖L∞(O×(0,T )) ≤ C1(Ω,O, T, zn)‖y0‖L2

and

‖yn‖Z ≤ C1(Ω,O, T, zn)‖y0‖W 2,p ,

whence yn (resp., vn) is uniformly bounded in Z (resp., L∞(O × (0, T ))). Therefore,
we can write the following at least for a subsequence:

yn → ŷ strongly in Z

(recall that (63) is satisfied) and

vn → v̂ weakly-∗ in L∞(O × (0, T )).

Now, it is not difficult to check that
∂tŷ −∆ŷ +G (TR(z),TR(∇z)) · ∇ŷ + g (TR(z),TR(∇z)) ŷ = v̂1O in Q,
ŷ = 0 on Σ,
ŷ(x, 0) = y0(x), ŷ(x, T ) = 0 in Ω,

i.e., that v̂ ∈ U(z) and ŷ ∈ Λ(z). Consequently, we can take limits in (64) and deduce
that

α ≤ 〈µ, ŷ〉 ≤ sup
y∈Λ(z)

〈µ, y〉,

that is to say, z ∈ Bα,µ . This proves that z �→ Λ(z) is upper hemicontinuous.
As a consequence, for any fixed R > 0 Kakutani’s theorem can be applied, ensur-

ing the existence of a fixed point of Λ. As we said above, we will finish the proof by
showing that we can choose R > 0 in such a way that any fixed point of Λ satisfies
(62). It is just here where the assumptions (6) (in fact (51)) will be used.
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CONTROLLABILITY OF PARABOLIC SYSTEMS 813

Thus, let y be a fixed point of Λ associated to the control v ∈ U(y). Then (59),
(60), and (51) lead to the estimates

‖y‖Z ≤ exp
(
C
(
1 + ‖g(TR(y),TR(∇y))‖2/3

∞ + ‖G(TR(y),TR(∇y))‖2
∞
))

‖y0‖W 2,p

≤ exp (C (1 + Cε + ε log (1 + 2R))) ‖y0‖W 2,p

= exp (C (1 + Cε))(1 + 2R)
Cε‖y0‖W 2,p ,

where C = C(Ω,O, T ). Taking ε = 1/(2C), we find that
‖y‖Z ≤ C(1 + 2R)1/2‖y0‖W 2,p ,

whence (62) holds whenever R is large enough (depending on Ω, O, T , g, and G). We
have then proved Theorem 1.1 in the case of smooth data.

3.2.2. The general case. Let us now suppose that f is a locally Lipschitz-
continuous function satisfying assumption (5) (with f(0, 0) = 0) and (6). Let us in-
troduce a function ρ ∈ D(R × R

N ) such that ρ ≥ 0 in R × R
N , supp ρ ⊂ B(0, 1),

and ∫∫
R×RN

ρ(s, p) ds dp = 1.

We consider the functions ρn, gn, and Gn (n ≥ 1), with

ρn(s, p) = nN+1ρ(ns, np) ∀(s, p) ∈ R × R
N ,

gn = ρn ∗ g, Gn = ρn ∗G.
Then it is not difficult to check that the following properties of gn and Gn hold:

1. gn ∈ C0(R × R
N ) and Gn ∈ C0(R × R

N )N for all n ≥ 1.
2. If we put fn(s, p) = gn(s, p)s+Gn(s, p) · p for all (s, p) ∈ R × R

N , then

fn → f uniformly in the compact sets of R × R
N .

3. For any given M > 0, there exists C(M) > 0 such that

sup
|(s,p)|≤M

(|gn(s, p)|+ |Gn(s, p)|) ≤ C(M) ∀n ≥ 1.

4. The functions gn and Gn verify (6) uniformly in n, that is to say, for any
ε > 0, there exists M(ε) > 0 such that{

|gn(s, p)| ≤ ε log3/2(1 + |s|+ |p|),
|Gn(s, p)| ≤ ε log1/2(1 + |s|+ |p|)

(65)

whenever |(s, p)| ≥M(ε) for all n ≥ 1.
For every n, we can argue as in section 3.2.1 and find a control vn ∈ L∞(O×(0, T ))

such that the system
∂tyn −∆yn + fn(yn,∇yn) = vn1O in Q,

yn = 0 on Σ,

yn(x, 0) = y0(x) in Ω

(66)D
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814 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

possesses at least one solution yn ∈ Z satisfying

yn(x, T ) = 0 in Ω.

From the properties satisfied by gn and Gn, and thanks to the estimates obtained in
section 3.2.1, we deduce that

‖vn‖L∞(O×(0,T )) ≤ C and ‖yn‖Z ≤ C

for all n ≥ 1. In fact, in view of Lemma 2.1 we have yn ∈ K for all n, where K is a
fixed compact set in Z. Accordingly, we can assume that, at least for a subsequence,

vn → v weakly-∗ in L∞(O × (0, T ))

and

yn → y strongly in Z.

Hence, passing to the limit in (66), we find a control v ∈ L∞(O × (0, T )) such that
(1) possesses a solution y satisfying (3). This ends the proof of Theorem 1.1.

Remark 3.1. Analyzing the proof of Theorem 1.1, we deduce that the null con-
trollability result remains valid if we change (6) by the following assumptions:

lim sup
|(s,p)|→∞

|g(s, p)|
log3/2(1 + |s|+ |p|) ≤ l1 <∞, lim sup

|(s,p)|→∞

|G(s, p)|
log1/2(1 + |s|+ |p|) ≤ l2 <∞,

where l1 and l2 are positive and sufficiently small (depending only on Ω and O).
Remark 3.2. In Theorem 1.1, we can consider as well a more general nonlinear

term of the form f(x, t; s, p), with (x, t) ∈ Q and (s, p) ∈ R × R
N . The assumptions

on f have to be the following in this case:

1. f(x, t; 0, 0) = 0 for all (x, t) ∈ Q,
2. f(·; s, p) ∈ L∞(Q) for all (s, p) ∈ R × R

N ,
3. f(x, t; ·) is locally Lipschitz-continuous for (x, t) a.e. in Q, with Lipschitz

constants independent of (x, t) in the bounded sets of R × R
N ,

4. f(·; s, p) = g(·; s, p)s+G(·; s, p) · p for all (s, p) ∈ R × R
N , with

lim
|(s,p)|→∞

|g(x, t; s, p)|
log3/2(1 + |s|+ |p|) = 0, lim

|(s,p)|→∞
|G(x, t; s, p)|

log1/2(1 + |s|+ |p|) = 0

uniformly in (x, t) ∈ Q.

Remark 3.3. Adapting the arguments used in the proof of Theorem 1.1, we can
deduce a local null controllability result for (1) with a general nonlinear term f(s, p)
satisfying f(0, 0) = 0. To be precise, if f is given, there exists δ = δ(Ω,O, T, f) > 0
such that for every y0 ∈ W 2,p(Ω) ∩ H1

0 (Ω) (p > N) with ‖y0‖W 2,p ≤ δ, a control
v ∈ L∞(O × (0, T )) can be found such that the corresponding problem has a unique
solution y ∈ L∞(0, T ;W 1,∞(Ω)) which satisfies

y(x, T ) = 0 in Ω.
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CONTROLLABILITY OF PARABOLIC SYSTEMS 815

4. Proof of the approximate controllability result. In this section we will
prove Theorem 1.2. Let us fix T > 0, ε > 0, y0 ∈ W 1,∞(Ω) ∩ H1

0 (Ω), and yd ∈
W 2,p(Ω)∩H1

0 (Ω) with p > N (for instance). Obviously, it will be sufficient to consider
final data in W 2,p(Ω) ∩ H1

0 (Ω), since this space is dense in L
2(Ω). We will present

the proof in several steps and start with a result concerning the exact controllability
to the trajectories in C0([0, T ];W 1,∞(Ω)).

Lemma 4.1. Assume the hypotheses on f in Theorem 1.2 are satisfied. Let
y0 ∈W 1,∞(Ω)∩H1

0 (Ω) be given and let y∗ be a solution to (1) in C0([0, T ];W 1,∞(Ω))
corresponding to the data

y∗0 ∈W 1,∞(Ω) ∩H1
0 (Ω), v∗ ∈ L∞(O × (0, T )).

There exists a control v ∈ L∞(O × (0, T )) and a state y ∈ C0([0, T ];W 1,∞(Ω)) asso-
ciated to y0 and v such that

y(x, T ) = y∗(x, T ) in Ω.

Proof. Let us put y = y∗+w. We will look for a control u ∈ L∞(O× (0, T )) such
that the solution of

∂tw −∆w + F (x, t;w,∇w) = u1O in Q,

w = 0 on Σ,

w(0) = y0 − y∗0 in Ω

(67)

satisfies

w(x, T ) = 0 in Ω.

Here, F is given by

F (x, t; s, p) = f(y∗(x, t) + s,∇y∗(x, t) + p)− f(y∗(x, t),∇y∗(x, t))

for all (x, t) ∈ Q and (s, p) ∈ R×R
N . The proof of this lemma will be achieved if we

check that such a control u exists.
Notice that

F (x, t; s, p) = g̃(x, t; s, p)s+ G̃(x, t; s, p) · p,

where

g̃(x, t; s, p) =

∫ 1

0

∂f

∂s
(y∗(x, t) + λs,∇y∗(x, t) + λp) dλ

and

G̃i(x, t; s, p) =

∫ 1

0

∂f

∂pi
(y∗(x, t) + λs,∇y∗(x, t) + λp) dλ for 1 ≤ i ≤ N .

Thus, in view of (9) and the fact that y∗ ∈ C0([0, T ];W 1,∞(Ω)), it is clear that F
satisfies the assumptions of Remark 3.2. This is sufficient to ensure that u exists.
This completes the proof of this lemma.

Now, we argue as follows:
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816 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

• There exists δ0 > 0, depending only on Ω, yd, and f , such that the system
∂tw −∆w + f(w,∇w) = 0 in Ω× (0, δ0),
w = 0 on ∂Ω× (0, δ0),
w(x, 0) = yd(x) in Ω

(68)

has exactly one solution w ∈ C0([0, δ0];W
1,∞(Ω)) also satisfying

w(·, t) ∈W 2,p(Ω) ∩H1
0 (Ω) ∀t ∈ [0, δ0].(69)

Obviously, we can associate to ε a parameter δ1 ∈ (0, δ0] (small enough) such that
‖w(·, t)− yd‖L2 ≤ ε ∀t ∈ [0, δ1].(70)

In what follows, we fix δ1 verifying (70).
• There exists v1 ∈ L∞(O × (0, δ1)) such that the corresponding system

∂ty −∆y + f(y,∇y) = v11O in Ω× (0, δ1),
y = 0 on ∂Ω× (0, δ1),
y(x, 0) = y0(x) in Ω

(71)

possesses exactly one solution y1 ∈ C0([0, δ1];W
1,∞(Ω)), with

y1(x, δ1) = w(x, δ1) in Ω.

This is a consequence of Lemma 4.1.
• On the other hand, there exists ṽ ∈ L∞(O × (0, δ1)) such that the system

∂ty −∆y + f(y,∇y) = ṽ1O in Ω× (0, δ1),
y = 0 on ∂Ω× (0, δ1),
y(x, 0) = w(x, δ1) in Ω

(72)

possesses exactly one solution ỹ ∈ C0([0, δ1];W
1,∞(Ω)), with

ỹ(x, δ1) = w(x, δ1) in Ω.

This is again a consequence of Lemma 4.1.
• Assume that T = nδ1 + δ for some integer n ≥ 0 and some δ ∈ [0, δ1). Let us

put Ik = [kδ1, (k + 1)δ1) for 0 ≤ k ≤ n − 1 and In = [nδ1, T ]. We will construct the
control v as follows.

For t ∈ I0, we set v(x, t) = v1(x, t) a.e., where v1 is the control arising in (71).
Then, for 1 ≤ k ≤ n − 1 and t ∈ Ik, we set v(x, t) = ṽ(x, t − kδ1), where ṽ is the
control in (72).

If δ = 0, we have constructed in this way a control v ∈ L∞(O× (0, T )) such that
the associate state y satisfies

y(x, T ) = w(x, δ1) in Ω.(73)

In view of (70), (4) is satisfied.
If δ ∈ (0, δ1), then we complete the definition of v by setting v(x, t) = v̂(x, t−nδ1)

for all t ∈ In. Here, v̂ ∈ L∞(O × (0, δ)) is a control such that the system
∂ty −∆y + f(y,∇y) = v̂1O in Ω× (0, δ),
y = 0 on ∂Ω× (0, δ),
y(x, 0) = w(x, δ1) in Ω

(74)
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CONTROLLABILITY OF PARABOLIC SYSTEMS 817

possesses exactly one solution ŷ ∈ C0([0, δ];W 1,∞(Ω)) satisfying

ŷ(x, δ) = w(x, δ) in Ω.

(Once more, the existence of v̂ is implied by Lemma 4.1.) Now, the state y associated
to y0 and v satisfies

y(x, T ) = w(x, δ) in Ω.(75)

Again, taking (70) into account, we see that (4) is satisfied in this case.
This completes the proof of Theorem 1.2.

5. Sketch of the proofs of the boundary controllability results. We de-
vote this section to sketching briefly the proofs of Theorems 1.3 and 1.4. Both results
are implied by the results established in the case of internal controllability.

For instance, let us refer to the proof of Theorem 1.3. Let us assume, for simplicity,
that y0 ∈ W 2,p(Ω) ∩ V for some p > N (recall that V is given by (10)). We have
assumed that f : R×R

N �→ R is a locally Lipschitz-continuous function that satisfies
f(0, 0) = 0 and (6). Let D be a bounded open set with boundary ∂D of class C2

such that Ω ⊂ D and ∂Ω ∩D = γ. Let O be an open subset of D \Ω. There exists a
function ỹ0 ∈W 2,p(D) ∩H1

0 (D) such that ỹ0 = y0 in Ω and

‖ỹ0‖W 2,p(D) ≤ C ‖y0‖W 2,p(Ω),

where C is a positive constant depending only on Ω and D.
Let ṽ ∈ L∞(O × (0, T )) be a control, furnished by Theorem 1.1, such that

∂tỹ −∆ỹ + f(ỹ,∇ỹ) = ṽ1O in D × (0, T ),
ỹ = 0 on ∂D × (0, T ),
ỹ(x, 0) = ỹ0(x) in D

possesses exactly one solution ỹ ∈ C0([0, T ];W 1,∞(D)) with

ỹ(x, T ) = 0 in D.

Let v be the trace of ỹ on γ × (0, T ). Then v ∈ L∞(γ × (0, T )), and the restriction to
Ω× (0, T ) of ỹ solves the corresponding system (2). This proves Theorem 1.3.

In order to prove Theorem 1.4, it suffices to argue in a similar way.

Appendix. Proof of Lemma 2.1. The statement (12) and the inequality (13)
are proved in [LSU, Theorem 9.1, p. 342]. The inequality (14) is not explicitly proved
in [LSU], but it can be deduced (in several ways) from other results of this book. One
of the arguments is as follows.

From Theorem 16.3 in [LSU] (p. 412), we deduce the inequalities

‖S(t)ϕ‖Lγ ≤ Ct−
N
2 ( 1

r− 1
γ )‖ϕ‖Lr

and

‖S(t)ϕ‖W 1,γ ≤ Ct−
N
2 ( 1

r− 1
γ )− 1

2 ‖ϕ‖Lr ,

which hold for all t > 0 and r, γ ∈ [1,∞] with γ ≥ r. Here, S(t) is the semigroup
generated by the heat equation with Dirichlet boundary conditions. With these in-
equalities in mind, one can prove the following.
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818 DOUBOVA, FERNÁNDEZ-CARA, GONZÁLEZ-BURGOS, AND ZUAZUA

Lemma A.1. Let y be the solution of (11). If y ∈ L∞(0, T ;W 1,r(Ω)) with
r ≤ 2N , then

y ∈ L∞(0, T ;W 1,γ(Ω)), where γ =


(
1

r
− 1

2N

)−1

if r < 2N,

∞ if r = 2N

(76)

and {
‖y‖L∞(0,T ;W 1,γ) ≤ eC(1+T ) (‖y0‖W 2,p + ‖F‖q)

+ eC(1+T 1/2‖B‖2
∞+T 1/2‖a‖∞)‖y‖L∞(0,T ;W 1,r).

Proof. The solution y of (11) can be written in the form y(t) = z(t)− w(t), with

z(t) = S(t)y0 +

∫ t

0

S(t− s)F (s) ds

and

w(t) =

∫ t

0

S(t− s) [ay +B · ∇y] (s) ds.

Since y0 ∈ W 2,p(Ω) with p > N and F ∈ Lq(Q) with q > N + 2, it is not difficult to
see that z ∈ L∞(0, T ;W 1,∞(Ω)) and

‖z‖L∞(0,T ;W 1,∞) ≤ C‖y0‖W 2,p +
C

α(q)
Tα(q)‖F‖q ≤ eCq(1+T ) (‖y0‖W 2,p + ‖F‖q) ,

where

α(q) =
q − (N + 2)

2(q − 1) .

On the other hand, the usual Sobolev imbeddings give y ∈ L∞(0, T ;Lγ(Ω)) (γ is given
in (76)). Moreover, we can write the following for all t > 0:

‖w(·, t)‖W 1,γ≤ C

∫ t

0

(t− s)−1/2‖(ay)(·, s)‖Lγ ds

+ C

∫ t

0

(t− s)−1/4‖(B · ∇y)(·, s)‖Lr ds.

We can now apply Young’s inequality to obtain

‖w‖L∞(W 1,γ) ≤ C
(
T 1/2‖a‖∞ + T 1/4‖B‖∞

)
‖y‖L∞(0,T ;W 1,r).

This completes the proof of Lemma A.1.
We are now ready to prove (14). Since y0 ∈ H1

0 (Ω) and F ∈ L2(Q), the classical
energy estimates give

y ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)),

with

‖y‖L∞(0,T ;H1
0 ) + ‖y‖L2(0,T ;H2) ≤ eC(1+T+(T+T 1/2)‖a‖∞+T‖B‖2

∞) (‖y0‖W 2,p + ‖F‖q) .
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CONTROLLABILITY OF PARABOLIC SYSTEMS 819

We can now apply Lemma A.1 with r = 2 and obtain y ∈ L∞(0, T ;W 1,r1(Ω)), where

1

r1
=
1

2
− 1

2N

and { ‖y‖L∞(0,T ;W 1,r1 ) ≤ eC(1+T ) (‖y0‖W 2,p + ‖F‖q)
+ eC(1+T 1/2‖B‖2

∞+T 1/2‖a‖∞)‖y‖L∞(0,T ;H1
0 ).

Combining the last two inequalities, we obtain

‖y‖L∞(0,T ;W 1,r1 ) ≤ eC(1+T+(T+T 1/2)‖a‖∞+(T+T 1/2)‖B‖2
∞) (‖y0‖W 2,p + ‖F‖q) .

We can repeat this process for i = 2, . . . , N , with

ri =

(
1

2
− i

2N

)−1

for i ≤ N − 1 and rN =∞.

Obviously, this leads to (14).
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