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Chapter 1

Introduction

In recent years, social networks have become a vital part of the everyday
life of most people. In 2014, 73% of the Spanish population actively used
social networks, Facebook being the most used. Besides the important role
they play in the relations between people, social networks can be used as
a free showcase to advertise any product or service. Hence, companies use
them more every day as a mean to publicize their products. On the other
hand, social networks allow any company to extract data about how its cus-
tomers are, to study what they like, and thus improve sales. Therefore, the
analysis of social networks is currently extremely important, as much from
the sociological viewpoint, as economic and political. Being aware of its im-
portance, we have used in this work graph theory, seeing a social network as
a set of nodes and their relationships.

The work is structured in four more chapters. In Chapter 2 we define
some concepts that we need along the work. In addition, we study the short-
est paths problem between nodes using three different methods. In Chapter
3 we introduce some probabilistic models for social networks. These models
are the Erdös-Rényi-Gilbert model, the Exponential model and the Barabási-
Albert model, which are used to generate networks. In Chapter 4 we study
some centrality concepts for social networks like degree centrality or close-
ness centrality. These measures of centrality allow us to know the relative
importance of a node in a graph. Finally, in Chapter 5 we introduce some
concepts of association like k-clique or k-club, as well as integer programming
formulations to find the maximum according to these concepts in a graph.
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Chapter 2

Basic concepts

Definition 2.1 A graph is a pair G ≡ G(N,E) where N is a finite set whose
elements are called nodes and E is a subset of N × N whose elements are
called edges.

Definition 2.2 A network or valuated graph is a graph where each edge
(i, j) ∈ E has associated a weight cij ∈ R.

We are going to study the concept of graph, so for each edge (i, j) ∈ E
cij = 1.

1

2
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4

5

Figure 2.1: Graph T .

Definition 2.3 The adjacency matrix A of a graph G with n nodes is an
n× n matrix where:

aij =

{
1 if (i, j) ∈ E
0 otherwise

For instance, for the graph T given in Figure 2.1, we obtain the adjacency
matrix A:

5



A =


0 1 1 0 0
1 0 1 1 0
1 1 0 0 1
0 1 0 0 0
0 0 1 0 0


Different types of graph exits. A directed graph is a graph where each

edge is directed from one node to another. For example, Twitter is a di-
rected network, since you can follow another user which does not follow you.
In contrast, a graph where the edges are bidirectional is called undirected
graph. For example, Facebook is a undirected network, because if you are
friend to another user, the user is friend to you too.

While the terminology of network, nodes and edges is standard in Statis-
tics and Operations Research, in Social Sciences the corresponding terminol-
ogy is actors for nodes and ties for edges.

In what follows, we are going to consider G as an undirected graph with
a set of nodes N , a set of edges E, A its adjacency matrix and n = |N |.

Definition 2.4 A graph G is complete if for every pairs of nodes i, j ∈ N
one has (i, j) ∈ E.

Definition 2.5 A path in a graph is a sequence of edges which connects a
sequence of nodes.

Definition 2.6 A connected component of an undirected graph is a subgraph
in which any two nodes are connected by a path.

As an illustration, in Figure 2.2 one can see a graph with three connected
components.

Definition 2.7 The distance between two nodes i and j in a graph G “dG(i, j)”
is the length of a shortest path between them. This is also known as the
geodesic distance.

For example, the distance matrix of the graph T (Figure 2.1) is the fol-
lowing one:

DT =


0 1 1 2 2
1 0 1 1 2
1 1 0 2 1
2 1 2 0 3
2 2 1 3 0
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Figure 2.2: Graph formed by three connected components

Definition 2.8 The diameter of a graph G is the maximum distance between
any two nodes in the graph:

diam(G) = max
i,j∈N

dG(i, j)

For example, in graph T in Figure 2.1 one has diam(T ) = 2.

2.1 Shortest paths

We are going to study three methods to find the shortest path between
two nodes in the graph G, analyzed in the following subsections.

2.1.1 Linear program

Given two nodes s and t, our aim is to find the shortest path P between
them. The formulation considers originally directed graphs, so we define
E ′ = {(i, j) : (j, i) ∈ E}, and, for each (i, j) ∈ E∪E ′, we consider the binary
variables xij:

xij =

{
1 if (i, j) belongs to P
0 otherwise

(2.1)

Then the shortest path problem can be formulated as a linear program
as follows, [1]:
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minimize
∑

(i,j)∈E∪E′
xij

subject to
∑

(s,j)∈E∪E′
xsj −

∑
(j,s)∈E∪E′

xjs = 1

∑
(t,j)∈E∪E′

xtj −
∑

(j,t)∈E∪E′
xjt = −1

∑
(i,j)∈E∪E′

xij −
∑

(j,i)∈E∪E′
xji = 0 ∀i ∈ N : i 6= s, t

xij ∈ {0, 1} ∀(i, j) ∈ E ∪ E ′

(2.2)

Since the matrix of constraints is totally unimodular, i.e. a matrix for
which every square non-singular submatrix is a square integer matrix having
determinant +1 or 1 (see [2]), the integrality constraints can be replaced by
their continuous relaxations 0 ≤ xij ≤ 1 ∀(i, j) ∈ E ∪ E ′.

As an illustration, we are going to compute the shortest path between
nodes 3 and 9 in the graph S (Figure 2.3).

1
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10

Figure 2.3: Graph S.

This problem is written in AMPL, a modeling language for mathematical
optimization (see [3]), as shown in Table 2.1.
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param n;

param s;

param t;

set nodes:= 1..n;

set Adjacent within {n1 in nodes, n2 in nodes: n1<>n2};

var x{nodes, nodes}>=0,<=1;

minimize f: sum{(i,j) in Adjacent} x[i,j];

subject to r1:

sum{(s,j) in Adjacent} x[s,j]- sum{(j,s) in Adjacent} x[j,s]=1;

subject to r2:

sum{(t,j) in Adjacent} x[t,j]- sum{(j,t) in Adjacent} x[j,t]=-1;

subject to r3{i in nodes: i<>s and i<>t}:

sum{(i,j) in Adjacent} x[i,j] -sum{(j,i) in Adjacent} x[j,i]=0;

Table 2.1: Code of shortest path problem between nodes s and t.

The optimal solution for this problem provided by the solver Gurobi ([4])
is shown in Table 2.2.

2.1.2 Dijkstra Algorithm

This algorithm allows us to obtain the shortest path between a node s
and the other nodes in the graph. All edges in G must have nonnegative
weights cij (for us cij = 1 ∀i, j) and the graph must be connected.

We assign a label [dj, pj] for every node j, where dj is the known distance
between s and j at the moment and pj is the predecessor node of j in the
shortest path between s and j. These labels can be temporary or permanent.
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xij =

{
1 if (i, j) = (3, 1), (1, 4), (4, 5), (5, 6), (6, 8), (8, 9)
0 otherwise

1

2

3

4

5

6 7

8

9

10

Table 2.2: Result.

A node with a permanent label is an explored node.

The pseudocode of Dijkstra algorithm is shown in Table 2.3 (see [2]).

1. Initiation:
A. Assign the label [0,-] to s and mark it as an explored node.
B. Assign the label [∞,-] to all other nodes.

2. Update the labels:
A. Let m be the last explored node.
B. ∀(m, j) ∈ E with j unexplored:

if tj = dm + cmj < dj, assign the label [tj,m] to j.

3. Explore the nodes:
A. Find the unexplored node with less dj and mark it as an explored node.

4. Exit test:
A. If every node has been explored: END.
B. Otherwise: go to step 2.

Table 2.3: Dijkstra algorithm.

We apply the Dijkstra algorithm to the graph S (Figure 2.3) to obtain the
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shortest paths between the node 3 and all other nodes, see Table 2.4. We can
observe, for example, that the distance between nodes 3 and 9 is 6 and the
shortest path between them is P = {(3, 1), (1, 4), (4, 5), (5, 6), (6, 8), (8, 9)},
as we have just obtained with the linear program.

2.1.3 Floyd Algorithm

This algorithm allows us to obtain the shortest path between each pair
of nodes in G.

In each iteration k, we determine the matrices Dk = ((dkij)) and P k =
((pkij)) where:

• dkij: length of the shortest path between i and j through only the k first
nodes.

• pkij: predecessor node of j in the shortest path between i and j through
only the k first nodes.

Finally, D = Dn is the distance matrix of G, and P = P n is the matrix
with predecessor nodes in the shortest paths.

The pseudocode of the Floyd algorithm is shown in Table 2.5 (see [2]).
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1. Initiation:
A. ∀i, j = 1, .., n :

d0ij =


0, if i = j
cij, if (i, j) ∈ E
∞, otherwise

p0ij =

{
i, if (i, j) ∈ E
−, otherwise

B. k = 0

2. Main loop:

A. If dkij < 0 for any (i, j): STOP (there is a cycle with negative longitude.)

B. k = k + 1. If k > n, END.

C. ∀i, j = 1, .., n:
dkij = dk−1ik + dk−1kj and pkij = k if dk−1ik + dk−1kj < dk−1ij

dkij = dk−1ij and pkij = pk−1ij otherwise

Table 2.5: Floyd algorithm.

We apply this algorithm to the graph T (Figure 2.1), see Table 2.6. We
can observe that D5 is the distance matrix of T and, for example, the shortest
path between the nodes 4 and 5 is S = {(4, 2), (2, 3), (3, 5)}.
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t1 = 1 <∞ = d1

t2 = 2 <∞ = d2, t4 = 2 <∞ = d4 t4 = 3 > 2 = d4

t5 = 3 <∞ = d5 t6 = 4 <∞ = d6, t7 = 4 <∞ = d7

t7 = 5 > 4 = d7, t8 = 5 <∞ = d8 7 doesn’t have any unexplored adjacent node

t9 = 6 <∞ = d9, t10 = 6 <∞ = d10 9 doesn’t have any unexplored adjacent node

Table 2.4: Example of applying Dijkstra algorithm to the graph S in Figure 2.3.
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D0 =


0 1 1 ∞ ∞
1 0 1 1 ∞
1 1 0 ∞ 1
∞ 1 ∞ 0 ∞
∞ ∞ 1 ∞ 0

 P 0 =


− 1 1 − −
2 − 2 2 −
3 3 − − 3
− 4 − − −
− − 5 − −



D1 =


0 1 1 ∞ ∞
1 0 1 1 ∞
1 1 0 ∞ 1
∞ 1 ∞ 0 ∞
∞ ∞ 1 ∞ 0

 P 1 =


− 1 1 − −
2 − 2 2 −
3 3 − − 3
− 4 − − −
− − 5 − −



D2 =


0 1 1 2 ∞
1 0 1 1 ∞
1 1 0 2 1
2 1 2 0 ∞
∞ ∞ 1 ∞ 0

 P 2 =


− 1 1 2 −
2 − 2 2 −
3 3 − 2 3
2 4 2 − −
− − 5 − −



D3 =


0 1 1 2 2
1 0 1 1 2
1 1 0 2 1
2 1 2 0 3
2 2 1 3 0

 P 3 =


− 1 1 2 3
2 − 2 2 3
3 3 − 2 3
2 4 2 − 3
3 3 5 3 −



D4 =


0 1 1 2 2
1 0 1 1 2
1 1 0 2 1
2 1 2 0 3
2 2 1 3 0

 P 4 =


− 1 1 2 3
2 − 2 2 3
3 3 − 2 3
2 4 2 − 3
3 3 5 3 −



D5 =


0 1 1 2 2
1 0 1 1 2
1 1 0 2 1
2 1 2 0 3
2 2 1 3 0

 P 5 =


− 1 1 2 3
2 − 2 2 3
3 3 − 2 3
2 4 2 − 3
3 3 5 3 −


Table 2.6: Example of applying Floyd algorithm to the graph T in Figure 2.1.
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Chapter 3

Probabilistic models for social
networks

In this chapter we summarize important probabilistic models for social
networks. Probabilistic models allow us to make inferences about whether
certain network substructures are more commonly observed in the network
than might be expected by chance, or to understand a network evolution.

3.1 The Erdös-Rényi-Gilbert Random Graph

Model

Given a network G, the probability of an edge between each pair of nodes
equal to p, independently of the other edge. It is known as the network model
G(n, p), e.g., see [5] and [6].

From a probabilistic viewpoint, if A denotes the (random) adjacency
matrix associated with a network G = G(N, p) generated by Erdös-Rényi-
Gilbert model, then A has the probability function given by:

P (A = Ã|p) =
∏

i 6=j,i<j

pãij(1− p)1−ãij (3.1)

Property 3.1 The number of edges follows a binomial distribution with pa-
rameters

(
n
2

)
and p, Bi

((
n
2

)
, p
)
:

P (G(n, p) has e edges |p) =

((n
2

)
e

)
pe(1− p)(

n
2)−e e = 0, ..,

(
n

2

)
(3.2)

So the expected number of edges is p
(
n
2

)
.
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Property 3.2 Let G(N ; p) be a network following the Erdös-Rényi-Gilbert
model. For nodes i, j, i 6= j let Ei and Ej denote the degree of nodes i and
j, i.e. the number of edges connected to them. Then,

cov(Ei, Ej) = p(1− p)

ρ(Ei, Ej) =
1

n− 1

In particular, ρ(Ei, Ej) −→ 0 when n −→∞.

Proof:

Consider the Bernoulli variable Ikl as follows:

Ikl =

{
1 if akl = 1
0 otherwise

It follows that

Ei =
∑
l 6=i

Iil, Ej =
∑
l′ 6=j

Ijl′

and hence

var(Ei) =
∑
l 6=i

var(Iil) +
���

���
���

�:0
2
∑

l 6=i,l<k

cov(Iil, Iik) = (n− 1)p(1− p) = var(Ej)

cov(Ei, Ej) = cov(Iij+
∑
l 6=i,j

Iil, Iij+
∑
l′ 6=j,i

Ij,l′) = cov(Iij, Iij)+
��

���
���

�:0
cov(Iij,

∑
l′ 6=j,i

Ij,l′)+

+
��

���
���

�:0
cov(

∑
l 6=i,j

Iil, Iij) +

���
���

���
��:0

cov(
∑
l 6=i,j

Iil,
∑
l′ 6=j,i

Ij,l′) = var(Iij) = p(1− p)

ρ(Ei, Ej) =
p(p− 1)√

(n− 1)p(1− p)
√

(n− 1)p(1− p)
=

p(1− p)
(n− 1)p(1− p)

=
1

n− 1

�

Proposition 3.1 Let λ = pn,

• If λ < 1: a graph in G(n, p) will have no connected components of size
larger than O(log n), almost surely as n −→∞.
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• If λ = 1: a graph in G(n, p) will have a largest component whose size
is of O(n2/3), almost surely as n −→∞.

• If λ > 1: a graph in G(n, p) will have a unique “giant” component
containing a positive fraction of the nodes, almost surely as n −→ ∞.
No other component will contain more than O(log n) nodes, almost
surely as n −→∞.

For a proof, see [7].

There is a huge number of mathematical papers that study the Erdös-
Rényi-Gilbert model. But few of them are relevant for the actual statistical
analysis of networks because the model imposes that every node has approx-
imately the same number of neighbors and we can find few real networks
with such simple structure.
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n=20, p=0.1 n=20, p=0.5 n=20, p=1

Figure 3.1: Graphs generated by the binomial model of Erdös-Rényi-Gilbert.

Some instances of the binomial model of Erdös-Rényi-Gilbert can be seen
in Figure 3.1. These graphs have been generated with the library igraph

([22]) in R and using the function erdos.renyi.game.

3.2 Exponential Random Graph Models

An exponential random graph model is a parametric model of random
graph whose adjacency matrix A has the following probability function:

P (A = Ã) =

(
1

κ

)
exp

{∑
Y

ηY gY (Ã)

}
(3.3)

where:
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• The summation is over all configurations Y . A configuration is a set of
nodes and a subset of edges among them, such that, if a set of edges
represents a configuration in the model, then any subset of possible
edges is also a configuration.

• gY (Ã) is a statistic corresponding to configuration Y defined as gY (Ã) =∏
ãij∈Y ãij. Thus, gY (Ã) = 1 if the configuration Y is observed in Ã,

and is 0 otherwise.

• κ is a normalizing quantity.

• ηY is a parameter corresponding to configuration of type Y .

See more in [8] and [9].

The Markov random graphs are a particular sub-class of exponential ran-
dom graph models, introduced by Frank and Strauss (see [10]), in which
configurations consist of edges such that any pair of edges share a node. See
Figure 3.2.

edge(θ)

2-star(σ2) 3-star(σ3) 4-star(σ4) ...

triangle(τ)

Figure 3.2: Configurations and parameters for non-directed Markov random graphs

For example, in a Markov random graph, the probability of observing a
particular non-directed network Ã with edges, 2-stars, 3-stars and triangles
is given by the equation (3.4).
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P (A = Ã) =

(
1

κ

)
exp(θL(Ã) + σ2S2(Ã) + σ3S3(Ã) + τT (Ã)) (3.4)

where L(Ã) is the numbers of edges in Ã, S2(Ã) and S3(Ã) are the number
of 2-star and 3-star, respectively in the network Ã, and T (Ã) is the number
of triangles in Ã.

3.3 Barabási-Albert Model

The Barabási-Alber (BA) model is used for generating scale-free net-
works, i.e, networks where the probability that a node has k edges follows a
power law, see [11].

The Erdös-Rényi-Gilbert Model or Exponential models, which we have
already explained, lack two aspect that most real-world networks have. These
models assume that the network has a fixed numbers of nodes (n), in con-
trast with most real-world networks formed by the continuous addition of
new nodes to the network. On the other hand, these models assume that
the probability that two nodes are connected is random and uniform; on
the contrary, most real networks show preferential attachment. A new node
usually has higher probability to be connected to a node that already has a
larger number of connections.

The BA model incorporates these two aspects. The model is defined in
two steps:

1. The network starts with a small number (n0) of nodes. At every
timestep (t) we add a node with m (≤ n0) edges (connected to a node
that is already present in the network).

2. A new node (j) will be connected to a node i with a probability that
depends on the number of edges of i (ki):

P ((j, i) ∈ E) =
ki

Σj∈Nt−1kj

where Nt−1 is the set of nodes which are already present in the network.
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t=0 t=1
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t=2 t=3
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6

Table 3.1: Example of a Barabási-Albert graph

After T timesteps we obtain a random network with n = T + n0 nodes
and mT edges.

As an illustration, in Table 3.1 one can see a graph generated by the
Barabási-Albert model.
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Chapter 4

Centrality concepts

In the study of Social Networks, an important objective is to know who
are the most important or influential users in a network.
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20

Figure 4.1: Graph G

In Figure 4.1 it seems logical to think that the nodes 1, 4, 11, 15, 18 are
the most important ones in the network G because of their number of links.
The process of counting how many links each node in a network has leads
to the concept of degree centrality. But how can we know who is connected
to important nodes? Or what if the network is not neatly partitioned into
core and periphery like happens in Figure 4.1? In this chapter we introduce
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some measures of centrality in a network, which allow us to know the relative
importance of a node in a graph.

4.1 Centrality Measures

We are going to study different centrality measures of a graph G. See
more in [17].

Definition 4.1 The degree centrality of a node i is equal to the number of
edges connected to the node:

CDi
=

n∑
j=1

aij

We can standardize the measure to compare with other networks. To do
this, we divide by the number of possible edges a node can have, namely,
n− 1:

C∗Di
=

1

n− 1

n∑
j=1

aij

As an illustration, we are going to study the degree centrality of a Barabási-
Albert random graph S with 50 nodes, of a Erdös-Rényi-Gilbert random
graph T with 50 nodes and probability 0.5 and of a graph U usually found
in the literature. In Figure 4.2 and 4.3 the three so obtained graphs are
represented.

To calculate the degree centrality we can use the function degree of the
library igraph in R.

In Figure 4.4 the standardized degree centrality of each node in S is
shown. We see that there are two nodes (1 and 6) whose degree centrality
is clearly bigger than the remaining ones, and can be identified as the most
important ones in the graph. In Figure 4.5 (left) we depict the standardized
degree centrality of the nodes in T . It is seen that the degree centrality is
more or less homogeneous, and then this measure can not identify the most
relevant nodes, if any. The standardized degree centrality of the nodes in
the graph U is shown in Figure 4.5 (right). As in graph S happened, we can
observed that there are two nodes (7 and 9) whose degree centrality is bigger
than the all other ones, so we can identify the nodes 7 and 9 as the most
important ones in the graph U .
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Graph S Graph T

Figure 4.2: Barabási-Albert random graph S and Erdös-Rényi-Gilbert random
graph T
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Figure 4.3: Graph U

A complementary viewpoint is represented in Figure 4.6, which shows the
histograms of the standardized degree centrality of the graphs S (left) and
T (right), and in Figure 4.7 which shows the histograms of the standardized
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Figure 4.4: Representations of the degree centrality of the graph S
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Figure 4.5: Representations of the degree centrality of the graphs T (left) and U
(right)

degree centrality of the graph U . We can observe that the graph S has a
lot of nodes with low degree centrality and few of them with high degree
centrality. The degree centrality of the nodes of S follows a power law, as
we expected. On the contrary, the histogram of T (Figure 4.6 right) has a
gaussian like shape. Finally, in the histogram of U (Figure 4.7) we observe
that the majority of the nodes has low degree centrality.
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Figure 4.6: Histograms of the distribution of the degree centrality of S (left) and
T (right)
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Figure 4.7: Histogram of the distribution of the degree centrality of U

Definition 4.2 The closeness centrality measures the closeness of node i
relative to all other nodes in a graph:

CCi
=

[
n∑

j=1

d(i, j)

]−1

CCi
will reach its maximum value, namely, (n − 1)−1, if i is adjacent to
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all other nodes in the graph.

Closeness centrality can be standardized multiplying it by n− 1:

C∗Ci
= (n− 1)

[
n∑

j=1

d(i, j)

]−1
C∗Ci

is an index which ranges between 0 and 1. In this case, C∗Ci
= 1 if i

is adjacent to all other nodes in the graph. The inverse of the standardized
closeness centrality C∗Ci

is the average path length between i and all other
nodes.

We are going to study the closeness centrality in graphs S and T of Figure
4.2 and in graph U of Figure 4.3. To do this, we use the function closeness

of the library igraph in R. See the histograms of the distribution of the stan-
dardized closeness centrality of these graphs in Figure 4.8 and Figure 4.9.
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Figure 4.8: Histograms of closeness centrality of graphs S (right) and T (left)

We observe that the closeness centrality are bigger in all the nodes of the
graph T than in graphs S and U . So, for example, if we want to expand a
piece of information from a node to all other ones, it would be faster in graph
T than in graph S or U .
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Figure 4.9: Histogram of closeness centrality of graphs U

Definition 4.3 The eigenvector centrality of the nodes of a graph is defined
as the vector (x1, . . . , xn), solution of:

xi =
1

λ

n∑
j=1

aijxj

where λ is a constant value.

The problem in the previous definition can be rewritten in vector nota-
tion as follows:

Ax = λx

which is an eigenvector problem.

There will be many different eigenvalues λ for which an eigenvector so-
lution exists. However, a requirement in this contest is that all values of x
must be positive, and by the Perron-Frobenious theorem, [16], λ only can be
the greatest eigenvalue.

The value in eigenvector of a node is dependent of the value in eigenvector
centrality of its adjacent nodes. So, if a node is connected to many nodes
which are well connected, it has a high value in eigenvector centrality. In
Social Networks a node with high value in eigenvector centrality is an influ-
ential node.

27



We are going to study the eigenvector centrality of the graphs S and T
of Figure 4.2 and of the graph U of Figure 4.3.

In order to do that, we use the function evcent of the library igraph in
R and we obtain the eigenvector xU :

xU = [0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 1, 0.71, 1, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35]

Observe that the nodes 7 and 9 have the value 1 in the eigenvector cen-
trality. Moreover, the node 8 has a high value in the eigenvector centrality
though it is only linked with two nodes. This is due to the fact that those
two nodes are central nodes. Hence, the nodes 7, 8 and 9 are the influential
nodes in the graph.

In graph S (Figure 4.10) there is a node (node with colour red) with value
1 in the eigenvector centrality. The remaining ones have low value (less than
0.42) in the eigenvector centrality. Hence, the red node is the only important
node in S.

Figure 4.10: Graphs S

In graph T (Figure 4.2 right) all nodes have the eigenvector centrality in
the range [0.65, 1]. So we can not know who are the most important nodes
in the graph with this measure.
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Definition 4.4 The betweenness centrality of a node i of a graph is defined
as follows:

CBi
=

∑
j<k, j,k 6=i

gjik
gjk

where gjk is the number of shortest paths between j and k, and gjik is the
number of shortest paths between j and k that contain i.

Betweenness centrality is a centrality measure which quantifies the num-
ber of times that a node acts as a bridge in a shortest path between two
other nodes.

We are going to see an example. We study the betweenness centrality of
the node 4 of the graph W of Figure 4.11. See Table 4.1.

1

2

3

4

5

6

Figure 4.11: Graph W

j k shortest Paths
gj4k
gjk

1 2 {1, 2} 0
1 3 {1, 2, 3} 0
1 5 {1, 2, 5} 0
1 6 {1, 2, 3, 4, 6}, {1, 2, 5, 4, 6} 1
2 3 {2, 3} 0
2 5 {2, 5} 0
2 6 {2, 3, 4, 6}, {2, 5, 4, 6} 1
3 5 {3, 4, 5}, {3, 2, 5} 0.5
3 6 {3, 4, 6} 1
5 6 {5, 4, 6} 1

CB4 = 4.5

Table 4.1: Betweenness centrality of node 4 of graph W
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The betweenness centrality can be standardized by dividing through the
number of pairs of nodes not including i:

Cn−1
2 =

(n− 1)!

2!(n− 1− 2)!
=

(n− 1)(n− 2)

2

Hence, the standardized betweenness centrality has the following shape:

C∗Bi
=

CBi

Cn−1
2

=
2

(n− 1)(n− 2)

∑
j<k, j,k 6=i

gjik
gjk

For example, the node 4 of the graph W (Figure 4.11) has the following
standardized betweenness centrality:

C∗B4
=
CB4

C5
2

=
4.5

10
= 0.45

We can study the betweenness centrality of the nodes of a graph with the
function betweenness of the library igraph in R. We use this function to
study this measure of the graphs T , S and U (Figures 4.2 and 4.3).
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Figure 4.12: Representations of the betweenness centrality of the graphs T (left)
and U (right)

In Figure 4.12 (left) the standardized betweenness centrality of T is
shown. It is seen that the betweenness centrality is more or less homoge-
neous and moreover all nodes have low betweenness centrality. Hence, we
can not identify who is the most important node with this measure. We
depict the standardized betweenness centrality of graph U in Figure 4.12
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(right). We observe that all the nodes have betweenness centrality equal to
0 except nodes 7, 8 and 9 whose betweenness centrality is bigger than 0.54.
So, we can identify these nodes as the most relevant ones in U .

Figure 4.13: Representations of the betweenness centrality of the graph S

Figure 4.13 (right) shows the standardized betweenness centrality of the
graph S. We observe that the nodes 1, 2, 5 and 6 have betweenness centrality
bigger than the remaining ones, so these nodes can be identified as the most
important ones in S.
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Chapter 5

Association concepts

In the actual study of social networks there is a need for useful concepts
to represent closely knit groups. Many of these can be developed with the
help of the theory of graphs. A well-known concept is the clique: a group in
which all its members are in contact with each other or are friends.

In this chapter we will introduce four different cluster concepts of graphs:
k-cliques, k-clans, k-club and k-plex.

5.1 Cluster concepts

Consider an undirected graph G = G(N,E). Given a subset of nodes
S ⊆ N , G(S) denotes the subgraph induced by S on G, G(S) = (S, S×S∩E).

Definition 5.1 A clique of a graph G is a subset of nodes T such that for
all pairs of nodes u, v ∈ T : (u, v) ∈ E, i.e., its induced subgraph G(T ) is a
complete graph.

The problem of finding maximal cliques in a graph, i.e., find complete
subgraphs that are not contained in any other complete subgraph, is in gen-
eral a hard problem. To do this, it is usually used backtracking algorithms
that apply branch-and-bound techniques to cut off branches that can not
lead to a clique. The Bron-Kerbosch algorithm is an example [12].

Luce introduced the concept of “k-clique” (see [13]), given by the following
definition
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Definition 5.2 A k-clique L of a graph G is a maximal subgraph of G such
that for all pairs of nodes u, v of L: dG(u, v) ≤ k.

In other words, a k-clique L is a set of nodes in which any two nodes are
a distance of at most k from each other in G, and no other node in the graph
is of distance k or less from every other node in L. For example, in the graph
Z the subset of nodes C1 = {1, 2, 4, 5, 6} forms a 2-clique.

1 2

3

45

6

Figure 5.1: Graph Z

By definition, if two nodes u, v ∈ N belong to a k-clique L, then dG(u, v) ≤
k, however this does not imply that dG(L)(u, v) ≤ k. So the diameter of L
may be larger than k. For example, in the graph Z the subset of nodes
C2 = {1, 2, 3, 4, 5} forms a 2-clique, although the diameter of G(C2) is 3.

Hence, the concept of k-clique lacks the requirement of “tightness” in
the group of nodes corresponding of a k-clique, while this requirement is
essential to applications in Social Networks. Because of this, Alba introduced
the concept of a “sociometric clique” (see [14]), which was later renamed to
“k-clan” by Mokken.

Definition 5.3 A k-clique L is called k-clan if the diameter of the induced
subgraph G(L) is no more than k.

So for example C1 also forms a 2-clan.

In 1979, Mokken defined the concept of “k-club” (see [15]):

Definition 5.4 A maximal subset of nodes D ⊆ N is a k-club if the diameter
of the induced subgraph G(D) is at most k.

Hence for a k-club D of G the following clauses are true:

1. ∀u, v ∈ D: dG(D)(u, v) ≤ k
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2. Because of the maximality of D, ∀w ∈ G−D, ∃u ∈ D: dG(u,w) > k

The 2-clubs of the graph Z are D1 = {1, 2, 3, 4}, D2 = {2, 3, 4, 5} and
D3 = C1.

By definition a k-clan is a k-clique of diameter k. But how is a k-clique
related to a k-club? See Proposition 5.1 (proof in [15]).

Proposition 5.1 Every k-club N of a graph G is contained in some k-clique
L of G.

Let N(u) and degG(u) denote respectively the set of neighbors of a node
u ∈ N (N(u) = {v : (u, v) ∈ E}) and the number of neighbors of u in G.
Let L[u] denote the closed neighborhood of a node u, N [u] = {u} ∪N(u).

Definition 5.5 A subset of nodes S ⊆ N is a k-plex if degG(S)(v) =
| N(v) ∩ S |≥| S | −k, ∀v ∈ S, (see [20]).

For example the subset of nodes E2 = {2, 3, 4} forms a 1-plex.

Seidman and Foster proposed an equivalent characterization of k-plexes
(proof in [21]):

Proposition 5.2 S ⊆ N is a k-plex if and only if for any subset of k nodes,
{v1, .., vk} ⊂ S: S =

⋃k
i=1N [vi].

5.2 Integer programming formulations

This section presents integer programming (IP) formulations for the max-
imum k-clique, maximum k-club and maximum k-plex problems. In order
to do that, consider for every i ∈ N , the binary variable xi equal to 1 if and
only if i belongs to the solution.
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2-clique 2-clan

2-club 1-plex

Figure 5.2: Examples of clusters

5.2.1 Maximum k-clique problem

Consider the following formulation for the k-clique problem, [18]:

maximize
∑
i∈N

xi

subject to xi + xj ≤ 1 +
k

dG(i, j)
∀i, j ∈ V : i < j

xi ∈ {0, 1} ∀i ∈ V

(5.1)

The constraints expres the fact that if two actors have dG(i, j) > k, they
can not be simultaneously included in a k-clique.

We are going to see a example. We consider a set of twenty actors in
a social network and the relationship among themselves. It is represented
by the Erdös-Réngy-Gilbert random graph E with probability 0.5 which was
introduced in Section 2.1 (Figure 5.3).

The matrix of distances of the graph E, dE, has been calculated with the
program Grafos ([23]).
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Figure 5.3: Network E and its adjacency matrix which has been obtained with the
library igraph in R and using the function get.adjacency

dE =



0 2 2 1 1 1 1 1 2 1 2 2 1 2 2 2 1 2 2 2
2 0 1 1 2 2 1 1 1 2 2 1 2 2 2 2 1 2 2 2
2 1 0 1 2 2 2 1 2 1 1 2 1 1 1 2 2 1 1 1
1 1 1 0 1 1 2 1 1 2 2 1 2 1 1 2 2 2 1 2
1 2 2 1 0 2 1 2 1 1 2 2 1 2 1 1 1 2 2 2
1 2 2 1 2 0 2 1 2 1 2 2 1 1 2 2 2 1 2 1
1 1 2 2 1 2 0 2 2 1 1 2 2 1 2 1 2 2 1 2
1 1 1 1 2 1 2 0 2 2 2 1 2 1 2 1 2 2 1 1
2 1 2 1 1 2 2 2 0 1 2 2 1 1 2 2 2 1 2 1
1 2 1 2 1 1 1 2 1 0 1 2 2 2 1 1 1 2 1 1
2 2 1 2 2 2 1 2 2 1 0 3 1 2 2 2 2 2 2 2
2 1 2 1 2 2 2 1 2 2 3 0 2 1 2 1 1 1 2 1
1 2 1 2 1 1 2 2 1 2 1 2 0 1 2 1 2 1 2 2
2 2 1 1 2 1 1 1 1 2 2 1 1 0 2 1 2 1 1 2
2 2 1 1 1 2 2 2 2 1 2 2 2 2 0 1 2 2 1 1
2 2 2 2 1 2 1 1 2 1 2 1 1 1 1 0 2 1 1 1
1 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 0 2 2 2
2 2 1 2 2 1 2 2 1 2 2 1 1 1 2 1 2 0 1 1
2 2 1 1 2 2 1 1 2 1 2 2 2 1 1 1 2 1 0 2
2 2 1 2 2 1 2 1 1 1 2 1 2 2 1 1 2 2 2 0


This problem is written in AMPL, as shown in Table 5.1.
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param n;

param k;

param d{1..n,1..n};

var x{1..n} binary;

maximize f: sum{i in 1..n} x[i];

subject to r1{j in 1..n, i in 1..j-1}: x[i]+x[j]<=1+k/d[i,j];

Table 5.1: Code of maximum k-clique problem

The diameter is the largest element in the distance matrix dE, so E has di-
ameter 3. Hence we can search the maximum 1-clique, 2-clique and 3-clique.
The optimal solutions for these problems provided by the solver Gurobi are
given in Table 5.2.

k = 1

xi =

{
1 if i = 3, 4, 8, 14, 19
0 everywhere else

k = 2

xi =

{
0 if i = 12
1 everywhere else

k = 3

xi =

{
1 if i = 1, 2, 3, 4, 5, 6...
0 never

Table 5.2: Results

So, the maximum 1-clique of E is E(S) where S = {3, 4, 8, 14, 19}. In
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others words, E(S) is the maximum maximal subgraph of E in which every
two nodes are adjacent in E. See the Figure 5.4.

Figure 5.4: Maximum 1-clique of E

The subset V formed by all the nodes excluding number 12 forms the
maximum 2-clique, i.e., every two nodes of V either are adjacent in E or are
adjacent of a common node in E.

Logically E is the maximum 3-clique because its diameter is three.

We have observed that the nodes 11 and 12 are the only pair of nodes
whose distance between them is 3. Hence we study if the maximum 2-clique
problem has multiple solutions. For it, we impose the constraint r2 which
makes the node 12 belongs to the solution. See the code in Table 5.3.

The optimal solution for this problem provided by the solver Gurobi is
given in Table 5.4.

The induced subgraph E(W ) where W = N\{12} is a 2-clique and this
problem has the same objective value than the previous one. Then E(W ) is
also a maximum 2-clique.
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param n=20;

param k;

param d{1..n,1..n};

var x{1..n} binary;

maximize f: sum{i in 1..n} x[i];

subject to r1{j in 1..n, i in 1..j-1}: x[i]+x[j]<=1+k/d[i,j];

subject to r2: x[12]=1;

Table 5.3: Code of the maximum k-clique problem in which we impose that the
node 12 belongs to the solution

k = 2

xi =

{
0 if i = 11
1 everywhere else

Table 5.4: Optimal solution of the problem in Table 5.3

5.2.2 Maximum k-club problem

For any two nodes i, j ∈ N , let Ck
ij be the sets of all chains of length at

most k linking i and j. Denoted by Nt the nodes set of a chain t. Let yt be
an auxiliary binary variable associated with every chain t ∈

⋃
i,j∈N C

k
ij = C.

Then the maximum k-club problem can be formulated as an integer linear
program as follows, [19]:
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maximize
∑
i∈N

xi

subject to xi + xj ≤ 1 +
∑

t∈Ck
ij
yt ∀(i, j) /∈ E, Ck

ij 6= ∅

yt ≤ xr ∀t ∈ C, ∀r ∈ Nt

xi + xj ≤ 1 ∀(i, j) /∈ E, Ck
ij = ∅

xi ∈ {0, 1} ∀i ∈ N

yt ∈ {0, 1} ∀t ∈ C

(5.2)

The constraints ensure that if two nodes i and j are not linked by an edge
but are linked at least by a chain of length at most k, then both nodes can
belong to the solution if and only if yt = 1 for at least one chain t ∈ C. Also,
if yt = 1 then all nodes of the chain t belong to the solution. Finally, if two
nodes are not linked neither by an edge nor by a chain of length at most k,
can not simultaneously belong to the solution.

We are going to study the maximum k-club in the same graph E of the
previous subsection, see Figure 5.3.

Table 5.5 shows this problem which is written in AMPL.

The maximum 1-clique is a complete subgraph, so its diameter is 1. Then
the maximum 1-clique problem and the maximum 1-club problem are the
same. In addition, the diameter of E is 3, so the maximum 3-club is E.
Hence, we only study the maximum 2-club problem, which optimal solution
provided by the solver Gurobi is given in (5.3).

xi =

{
0 if i = 11
1 everywhere else

(5.3)

The induced subgraph E(W ) is also the maximum 2-club.
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param n;

param NC;

set nodes := 1..n;

set Pairs = {n1 in nodes, n2 in nodes: n1<n2};

set Existchain within {n1 in nodes, n2 in nodes: n1<>n2};

set Adjacent within {n1 in nodes, n2 in nodes: n1<>n2};

set C{Existchain};

set T := 1..NC;

set P{T};

var x{nodes} binary;

var y{T} binary;

maximize f: sum {i in nodes} x[i];

subject to r1 {(i,j) in Existchain diff Adjacent}:

sum {t in C[i,j]} y[t]>=x[i]+x[j]-1;

subject to r2 {t in T, r in P[t]}: y[t]<=x[r];

subject to r3 {(i,j) in Pairs diff Existchain diff Adjacent}:

x[i]+x[j]<=1;

Table 5.5: Code of maximum k-club problem

We are going to check if this problem has multiple solutions as hap-
pen with the 2-clique problem. For it, we impose the new constraint r4:
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x[11]=1 which makes the node 11 belongs to the solution. The solver Gurobi
gives us the following solution:

xi =

{
0 if i = 12, 17
1 everywhere else

(5.4)

Remark that the objective value is lower in this problem, so E(W ) is the
only optimal solution for the maximum 2-club problem.

5.2.3 Maximum k-plex problem

Let d̄i = |N \ N [i]| denote the degree of the vertex i in the complement
graph Ḡ = Ḡ(V, Ē). We can considerer the maximum k-plex problem as an
integer linear program as follows, [21]:

maximize
∑
i∈N

xi

subject to
∑

j∈N\N [i]

xj ≤ (k − 1)xi + d̄i(1− xi) ∀i ∈ V

xi ∈ {0, 1} ∀i ∈ V

(5.5)

Each constraint ensures that if a node is in a k-plex, then it has at most
k − 1 non-neighbors inside the k-plex.

The maximum 1-plex problem is the same than the maximum 1-clique
problem. Hence, we are going to study the maximum 2-plex and 3-plex of
the graph E.

The maximum k-plex problem is written in AMPL, as shown in Table 5.6.

The optimal solutions for the maximum 2-plex and 3-plex problems pro-
vided by Gurobi are given in Table 5.7.

Then the maximum 2-plex of E is the induced subgraph E(G) where
G = {4, 8, 12, 14, 16, 19}. In others words, G is the maximum subset of
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param n;

param k;

set nodes := 1..n;

set N{nodes};

param d{nodes};

var x{nodes} binary;

maximize f: sum{i in nodes} x[i];

subject to r1{i in nodes}:

sum{j in nodes diff N[i]} x[j] <= (k-1)*x[i]+d[i]*(1-x[i]);

Table 5.6: Code of the maximum k-plex problem

k = 2

xi =

{
1 if i = 4, 8, 12, 14, 16, 19
0 everywhere else

k = 3

xi =

{
1 if i = 3, 8, 12, 14, 16, 18, 19, 20
0 everywhere else

Table 5.7: Results

nodes which forms a induced subgraph where every node has at most 1 non-
neighbor.

E(H), where H = {3, 8, 12, 14, 16, 18, 19, 20}, is the maximum 3-plex of
E, i.e., H is the maximum subset of nodes where every node has at most 2
non-neighbors in E(H).
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