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Chapter 1

Introduction

Population Pharmacokinetic / Pharmacodymanic analysis using Nonlinear
Mixed Effects Modeling is an approach that has gained importance in phar-
macometrics. One of the principal purposes of this analysis, as we will see
later, is to keep the concentration of a drug high enough to produce a desir-
able response, but low enough to avoid toxicity. For this objective, studies
in population are made.

Nonlinear Mixed Effects Modeling is the primary tool employed on this
analysis, so the first objects that are introduced in this work are Nonlinear
Models.

This work is structured in two chapters apart from this introduction. As
mentioned before, Nonlinear Models are introduced in Chapter 2. Then,
with this element defined, and after we define Nonlinear Fixed and Random
Effects Models, Nonlinear Mixed Effects Models are presented.

After that, and also in Chapter 2, inference on those models is made. We
expose some methods of inference that can be made, as Methods Based on
Individuals Estimates or Methods Based on Approximations of the Likeli-
hood.

Then, in Chapter 3 we begin explaining what Pharmacokinetics and Phar-
macodynamics are. Once we have made that, some Pharmacokinetic and
Pharmacodynamic models are presented. Also, we make inference using [10]
in some of those models.
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Chapter 2

Nonlinear Mixed Effects
Models

2.1 Nonlinear Models

In order to explain what a nonlinear model is, we must remember the defi-
nition of linear model.

Let

• Y ∈ R be a variable of responses (called dependent variable),

• X ∈ Rp a vector of predictor variables (called independent variables or
covariates),

• θ ∈ Rr a vector of regression parameters,

• ε ∈ R a variable of random intra-individual errors.

A model

Y = f(X;θ) + ε,

is said to be linear if for any X, the function

θ 7→ f(X;θ)

is affine. In particular, such f is differentiable and its partial derivatives with
respect to any of the model parameters{

∂f

∂θk

}
k=1,··· ,p
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are independent of the other parameters.

Otherwise, a model
Y = f(X;θ) + ε

is nonlinear if any of the partial derivatives with respect to any of the model
parameters

∂f

∂θi

are dependent on any other model parameter θj (j 6= i) or if any of the
derivatives do not exist or are discontinuous.

Example 2.1.1 An example of nonlinear model is the Emax pharmacody-
namic model, see [2], [8] or [1].

It has a two dimensional parameter θ = (θ1, θ2) = (Emax, EC50) , where

• Emax is the maximal effect,

• EC50 is the concentration that produces 50% of the maximal effect.

Define:

• E as the observed effect,

• C as the concentration.

The Emax model is given by:

Y = E =
EmaxC

EC50 + C
= f(X;θ) + ε,

where C ≡ X.

The partial derivatives are given by

∂Y

∂θ1
=

∂E

∂Emax
=

C

EC50 + C

and
∂Y

∂θ2
=

∂E

∂EC50

=
−EmaxC

(EC50 + C)2
.

We note that both partial derivatives are dependent on the another parameter,
so this model is effectively a nonlinear model.
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Example 2.1.2 Another example of nonlinear model is

f(X;θ) =

{
θ0 + θ1X, X ≤ X0,
θ2 + θ3X, X > X0,

see [2].

We must note that in those models the regression parameters themselves
are not dependent on any other model parameter, but the estimates may be
dependent on the value of X0.

For those models, the derivative is not generally continuous at X = X0,
so they are nonlinear models.

Models that are transformed in predictor variables are not, however, non-
linear. To illustrate that, we use the following example.

Example 2.1.3 Let

f(X;θ) = θ0 + θ1
√
X1 + θ2sin(X2).

be a regression model. This model is not nonlinear because the partial deriva-
tives are not dependent on any other model parameter and the derivative is
not discontinuous (in fact, this is a linear model), see [2].

Now, we know how nonlinear models are, so we can advance and study
the next section, the Nonlinear Fixed Effects Models.

2.2 Nonlinear Fixed Effects Models

Before we explain what nonlinear fixed effects models are, we are going to
define what a fixed effect variable is.

A fixed effect variable is one where the researcher can choose the
level(s) of the variable to represent the precise contrast of interest. Alter-
natively, fixed effect variables are those variables whose levels in a study
represent an exhaustive set of all possible levels. Later, we will define those
fixed effects variables more mathematically, and they will be represented
as the (q × 1) vector β.
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Example 2.2.1 The doses of drug used in a study or the time points that
blood samples are measured represent fixed effects variables, see [2].

Example 2.2.2 Using both males and females in a study exhaust the possible
levels of this variable, thus making sex a fixed effect, see [2].

With fixed variables defined, we can now define nonlinear fixed effects
models as those that only contain fixed effects variables.

So, as we have already defined nonlinear fixed effects models, we can con-
tinue to define random and mixed effects models.

2.3 Nonlinear Random and Mixed Effects Mo-

dels

As we made before with fixed effects models, we will explain what random
effects variables are, in order to define nonlinear random effects models, and
then we will define what mixed effects models are.

Random effects variables are variables whose levels do not exhaust the
set of possible levels and each level is equally representative of other levels.
As we have made with fixed effects variables, we also explain later and more
mathematically random effects variables, which will be denoted as the
(k × 1) vector bi.

Example 2.3.1 The most commonly seen random effect variables in clin-
ical research are the subjects used in an experiment, since in most cases
researchers are not specifically interested in the particular set of subjects that
were used in a study.

Now we can define what nonlinear random and nonlinear mixed effects
models are.

Any nonlinear model that only contains random effects variables is a non-
linear random effects model.

Any nonlinear model that contains both fixed and random effects va-
riables is a nonlinear mixed effects model.
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In the remainder of this section, we describe the nonlinear mixed effects
model and situations for which it is an appropriate framework, see [4].

Nonlinear mixed effects models are used to embed the model describ-
ing individual trajectories in a statistical model. It formalizes knowledge and
assumptions about variation in outcomes and mechanisms within and among
individuals and provides a framework for inference based on repeated mea-
surement data from m individuals.

We must keep in mind that we are not interested in a descriptive model
which fits the data, but rather in a mechanistic model which has some bio-
logical meaning and which is a function of some physiological parameters.

In order to develop nonlinear mixed effects models, we can use a hier-
archical approach, as we will explain below. Before that, some notation is
introduced.

Let Yi,j denote the jth measurement of the response of the ith individ-
ual under condition ti,j, i ∈ {1, · · · ,m}, j ∈ {1, · · · , ni} (usually, the set
(ti,j)i=1,··· ,m;j=1,··· ,ni

is the set of time points), and possible additional condi-
tions ui (for example, ui = Di, where Di denotes the dose for individual ith

at time zero). We write for brevity X i,j = (ti,j,ui), but note dependence
on ti,j where appropriate. Assume that there may be a vector of charac-
teristics ai for each individual that do not change with time (for example:
age, weight,...). Letting Y i = (Yi,1, · · · , Yi,ni

)′ it is ordinarily assumed that
the triplets (Y i,ui,ai) are independent across i, reflecting the belief that
individuals are unrelated. Finally, let εi = (εi,1, · · · , εi,ni

) be the vector of
intra-individuals errors for individual i.

In this work, as we have mentioned above, nonlinear mixed effects models
will be written as a two-stage hierarchy, as follows.

2.3.1 The Two-Stage Hierarchy

Stage 1 - Individual-Level Model

Stage 1 consists of writing the model

Yi,j = f(X i,j;θi) + εi,j, j ∈ {1, 2, · · · , ni}, (2.1)
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where θi is the Rr vector of regression parameters.

In (2.1), f is a function governing within-individual behavior, depending
on an (r × 1) vector of parameters θi specific to individual i.

Example 2.3.2 For example, in Example 2.1.1, we had that (Emaxi , EC50i)
′ =

(θ1i, θ2i)
′ = θi.

The intra-individuals errors εi,j,

εi,j = Yi,j − f(X i,j;θi)

are assumed to satisfy
E[εi,j|ui,θi] = 0 ∀j.

We will say more about other properties of the εi,j shortly.

Stage 2 - Population Model

Stage 2 consists of writing

θi = d(ai,β, bi), i ∈ {1, 2, · · · ,m}; (2.2)

where d is an r-dimensional function describing relationship between θi and
ai in terms of

• β, which is an Rq fixed parameter (called “fixed effects”).

• bi, which is a Rk random parameter (called “random effects”), associ-
ated with individual i.

that characterize how elements of θi vary across individual due both to

• Systematic association with individual attributes ai.

• Unexplained variation in the population of individuals, represented by
bi.

In this work we will assume for each i ∈ {1, 2, · · · ,m} that the distribution
of the bi conditional on ai does not depend on ai, so:

• E[bi|ai] = E[bi] = 0.

• V ar[bi|ai] = V ar[bi] = G, where G is a covariance matrix that is the
same ∀i which characterizes the magnitude of unexplained variation in
the elements of θi and associations among them.
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• bi ∼ (0,G). A popular assumption is bi ∼ N (0,G).

(2.2) allows nonlinear specifications (in β and bi) for elements of θi.

However, a common special case of (2.2) is that of a linear relationship
between θi and fixed and random effects as in usual, empirical statistical
linear modeling, i.e.,

θi = Aiβ +Bibi (2.3)

where Ai is a design matrix depending on elements of ai and Bi is a design
matrix typically involving only zeroes and ones allowing some elements of θi
to have no associated random effect.

Completing the Nonlinear Mixed Model. Within-individual
variation

To complete the full nonlinear mixed effects model, a specification for
variation within individuals is required. In this work we discuss this feature
in some detail, focusing on phenomena taking place within the ith single in-
dividual. Our discussion focuses on model (2.1), but the same considerations
are relevant for linear modeling.

According to the individual model (2.1), one has that

E[Yi,j|ui,θi] = f(ti,j,ui;θi),

so that f represents what happens on average for the ith subject.

Each Yi,j observed is the sum of one realized profile and one set of mea-
surement errors at intermittent time points ti,j, formalized by writing (2.1)
as

Yi,j = f(ti,j,ui;θi) + εR;i,j + εM ;i,j, (2.4)

where εi,j has been partitioned into

• εR;i,j, the commonly named Realization Deviation Process (this devia-
tion is due to the particular realization observed)

• εM ;i,j, the Measurement Error Deviation Process (this deviation is due
to a possible measurement error)

at each time point ti,j.
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In (2.4), the actual realized response at time point ti,j, if it could be
observed without error, is thus

f(ti,j,ui;θi) + εR;i,j.

We may think of (2.4) as following from a within-subject stochastic process
of the form

Yi(t,ui) = f(t,ui;θi) + εR;i(t,ui) + εM ;i(t,ui) (2.5)

with
E[εR;i(t,ui)|ui,θi] = E[εM ;i(t,ui)|ui,θi] = 0

where

• εR;i(ti,j,ui) = εR;i,j

• εM ;i(ti,j,ui) = εM ;i,j

and hence
E[εR;i,j|ui,θi] = E[εM ;i,j|ui,θi] = 0.

Assumptions on εR,i(t,ui) and εM,i(t,ui) lead to a model for V ar[εi|ui,θi]
and hence for V ar[Yi|ui,θi]:

• Realization deviation process
It is natural to expect εR,i(t,ui) and εR,i(s,ui) at different close times
points t and s to be positively correlated, and realizations in time
points far apart bear little relation to the other. One possible way of
expressing this is as

corr[εR,i(t,ui), εR,i(s,ui)|ui,θi] = e(−ρ|t−s|), ρ ≥ 0.

We can also assume that variation of realizations are of similar magni-
tude over time and individuals, e.g.

V ar[εR,i(t,ui)|ui,θi] = σ2
R ≥ 0 (σ2

R constant ∀t)

or that variation depends on f(t,ui,θi), e.g.

V ar[εR,i(t,ui)|ui,θi] = σ2
R (f(t,ui,θi))

2δ

Letting

εR;i =

 εR;i,1
...

εR;i,ni

 ,
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under specific variance and autocorrelation functions, define

Ti(ui,θi, δ)

to be the (ni × ni) diagonal matrix with diagonal elements

V ar[εR;i,j|ui,θi]

depending on parameters δ, say, and

Γi(ρ)

the (ni × ni) matrix with (j, j′) elements

corr[εR;i,j, εR;i,j′|ui,θi]

depending on parameters ρ, then

V ar[εR;i|ui,θi] = T
1/2
i (ui,θi, δ)Γi(ρ)T

1/2
i (ui,θi, δ) (2.6)

is the covariance matrix ∈ Rni×ni for εR;i.

• Measurement error deviation process
As we know, all measuring devices commit haphazard errors, so we
can assume there is no correlation between εM,i(t,ui) and εM,i(s,ui), if
t 6= s:

corr[εM,i(t,ui), εM,i(s,ui)|ui,θi] = 0, t 6= s.

We can assume that the magnitude of errors is similar regardless of the
level, e.g.

V ar[εM,i(t,ui)|ui,θi] = σ2
M ≥ 0 (σ2

M constant ∀t)

or assume that the magnitude changes with the level, e.g

V ar[εM,i(t,ui)|ui,θi] = σ2
M (f(t,ui,θi))

2λ

Defining

εM ;i =

 εM ;i,1
...

εM ;i,ni

 ,

the covariance matrix of εM ;i would thus be diagonal with diagonal
elements

V ar[εM ;i,j|ui,θi];
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i.e.,

V ar[εM ;i|ui,θi] = Λi(ui,θi,λ), (2.7)

a diagonal matrix ∈ Rni×ni depending on a parameter λ. However,
(2.7) may also depend on θi.

For constant measurement error variance, Λi(ui,θi,λ) = σ2
MIni

and
λ = σ2

M .

A common assumption is that the realization and measurement error
processes in (2.5) are conditionally independent, which implies

V ar[Yi|ui,θi] = V ar[εR;i|ui,θi] + V ar[εM ;i|ui,θi]. (2.8)

If such independence were not thought to hold, V ar[Yi|ui,θi] would
also involve a conditional covariance term. Thus, combining the fore-
going considerations and adopting (2.8) as is customary, a general rep-
resentation of the components of within-subject variation is

V ar[Yi|ui,θi] =

= T
1/2
i (ui,θi, δ)Γi(ρ)T

1/2
i (ui,θi, δ) + Λi(ui,θi,λ) = (2.9)

= Ri(ui,θi, ξ),

where ξ = (δ′,ρ′,λ′)′, which are common to all individuals, fully de-
scribes the overall pattern of within-individual variation.

The representation (2.9) provides a framework for thinking about sources
that contribute to the overall pattern of within-individual variation. It
is common in practice to adopt models that are simplifications of (2.9).

In some contexts, measurement error may be taken to be the primary
source of variation about f , and it is a common approximation in phar-
macokinetics, see [6].

In fact, if
V ar[εR;i,j|ui,θi] << V ar[εM ;i,j|ui,θi],
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one might regard the first term in (2.9) as negligible. This leads to a
standard model in this application, where

Ri(ui,θi, ξ) = Λi(ui,θi,λ),

with Λi(ui,θi,λ) a diagonal matrix with diagonal elements σ2(f(ti,j,ui,θi))
2λ

for some λ = (σ2, λ)′; often λ = 1.

2.3.2 Summary

We are now in a position to summarize the basic nonlinear mixed effects
model. Let

f i(ui;θi) =

 f(X i,1;θi)
...

f(X i,ni
;θi)

 ,

and let zi = (u′i,a
′
i)
′ summarize all covariate information on subject i.

Then, we may write the model in (2.1) and (2.2) succinctly as

Stage 1:
E[Y i|zi, bi] = f i(ui;θi) = f i(zi;β, bi)

V ar[Y i|zi, bi] = Ri(ui,θi, ξ) = Ri(zi,β, bi, ξ) (2.10)

Stage 2:
θi = d(ai,β, bi), bi ∼ (0,G) (2.11)

In (2.10), dependence of f i and Ri on the covariates ai and fixed
and random effects through θi is emphasized. This model represents
individual behavior conditional on θi and hence on bi, the random
component in (2.11). In (2.11), we assume that the distribution of
bi|ai does not depend on ai, so that all bi have common distribution
with mean 0 and covariance matrix G.

Within-individual correlation:

The nonlinear model (2.10)-(2.11) implies a model for the marginal
mean and covariance matrix of Y i given all covariates zi; i.e. averaged
across population.
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Letting Fb(bi) denote the cumulative distribution function of bi, we
have

E[Y i|zi] =

∫
f i(zi;β, bi)dFb(bi)

V ar[Y i|zi] = E[Ri(zi,β, bi, ξ)|zi] + V ar[f i(zi,β, bi)|zi], (2.12)

where expectation and variance are with respect to the distribution of
bi. In (2.12), E[Y i|zi] characterizes the typical response profile among
individuals with covariates zi.

V ar[Y i|zi] involves two terms as we have seen in (2.12):

– E[Ri(zi,β, bi, ξ)|zi], which averages realization and measurement
variation that occur within individuals across individuals having
covariates zi

– V ar[f i(zi,β, bi)|zi], which describes how inherent trajectories vary
among individuals which have the same zi.

Note that E[Ri(zi,β, bi, ξ)|zi], is a diagonal matrix only if Γi(ρ) in
(2.9), reflecting correlation due to within-individual realizations, is
an identity matrix. However, V ar[f i(zi,β, bi)|zi], has non-zero off-
diagonal elements in general due to common dependence of all ele-
ments of f i on bi. Thus, correlation at the marginal level is always
expected due to variation among individuals, while there is correlation
from within-individual sources only if serial associations among intra-
individual realizations are nonnegligible. In general, then, both terms
contribute to the overall pattern of correlation among responses on the
same individual represented in V ar[Y i|zi].

In many applications, the effect of within-individual serial correlation
reflected in the first term of V ar[Y i|zi] is dominated by that from
among individual variation in V ar[f i(zi,β, bi)|zi]. This explains why
many published applications of nonlinear mixed models adopt simple,
diagonal models for Ri(ui,θi, ξ) that emphasize measurement error.

2.4 Inference in Nonlinear Mixed Effects Mo-

dels

In this section we will introduce the theory behind nonlinear mixed effects
models. Modeling and estimation of model parameters will be discussed, as
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the relationship between the covariate and the dependent variable is modeled.

2.4.1 Inferential Approaches

The main inferential objectives are:

• Determine an appropriate population model d(ai,β, bi) and inference
on elements of β as central interests.

• Inference on G and, in particular, on diagonal elements.

• Inference on θi and f(t0,ui,θi) at some specific time point t0, for i ∈
{1, 2, · · · ,m}.

The nonlinear mixed effects model (2.10)-(2.11) is a so called subject-
specific model. The distinction between subject-specific and population-averaged
(or marginal) models may not be important for linear mixed effects models,
but it is critical under nonlinearity. A population-averaged model assumes
that interest focuses on parameters that describe the marginal distribution of
Yi given covariates zi. From the discussion following (2.12), if E(Yi|zi) were
modeled directly as a function of zi and a parameter β, β would represent
the parameter corresponding to the typical response profile among individ-
uals with covariates zi. This is to be contrasted with the meaning of β in
(2.11) as the typical value of individual-specific parameters θi in the popu-
lation.

Consider first linear models. A linear subject-specific model with second
stage

θi = Aiβ + Bibi

as in (2.3), for design matrix Ai depending on ai, and first stage

E[Yi,j|ui,θi] = Uiθi,

where Ui is a design matrix depending on the ti,j and ui, leads to the linear
mixed effects model

E[Yi|zi,bi] = fi(zi,β,bi) = X̃iβ + Zibi

for
X̃i = UiAi
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and
Zi = UiBi

where X̃i thus depends on zi. From (2.12), this model implies that

E[Yi|zi] =

∫
(X̃iβ + Zibi)dFb(bi) = X̃iβ,

as E[bi] = 0. Thus, in a linear subject-specific model, β fully character-
izes both the typical value os θi and the typical response profile, so that
the interpretation is valid. Here, then, postulating the linear subject-specific
model is equivalent to postulating a population-averaged model of the form
E[Yi|zi] = X̃iβ directly, in that both approaches yield the same representa-
tion of the marginal mean and hence allow the same interpretation of β. Con-
sequently, the distinctions between subject-specific and population-averaged
approaches have not generally been of concern in the literature on linear
modeling.

For nonlinear models, however, this is not longer the case. For instance,
suppose that bi ∼ N (0,G), and consider a subject-specific model of the
form in (2.10) and (2.11) for some function f nonlinear in θi and hence bi.
Then, from (2.12), the implied marginal mean is

E[Yi|zi] =

∫
fi(zi,β,bi)p(bi; G)dbi, (2.13)

where p(bi; G) is theN (0,G) density. For nonlinear f , this integral is clearly
intractable and E[Yi|zi] is an expression that may not be available in a closed
form and depends on both β and G in general. As a result, if we start with a
nonlinear subject-specific model, the implied population-averaged marginal
mean model involves both the typical value of θi (β) and G. Accordingly,
β does not fully characterize the typical response profile and thus cannot
enjoy both interpretations. Conversely, if we were to take a population-
averaged approach and model the marginal mean directly as a function of
zi and a parameter β, β would indeed have the interpretation of describing
the typical response profile. But it seems unlikely that it could also have
the interpretation as the typical value of specific parameters θi in a subject-
specific model. Thus, for nonlinear models, the interpretation of β in subject-
specific and population-averaged models cannot be the same in general. The
implication is that the modeling approach must be carefully considered to
ensure that the interpretation of β coincides with the questions of scientific
interest.
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2.4.2 Inference

A number of inferential methods for the nonlinear mixed effects model are
now in common use, see [4] and [7]. We provide a brief overview that can be
seen below, beginning with Maximum Likelihood.

Maximum Likelihood

A natural starting point for inference is Maximum Likelihood. This is
only a starting point here because the analytical intractability of likelihood
inference has motivated many approaches on approximations.

The individual model (2.10) along with an assumption on the distribu-
tion of Y i given (zi, bi) yields a conditional density p(Yi|zi,bi;β, ξ), say;
the ubiquitous choice is the normal. Under the popular assumption that
Ri(zi,β,bi, ξ) is diagonal, the density may be written as the product of
m contributions p(Yi,j|zi,bi,β, ξ). Under this condition, the lognormal has
also been used. At Stage 2, (2.11), adopting independence of bi and ai, one
assumes a k-variate density p(bi,G) for bi. As with other mixed models,
normality is standard. With these specifications, the joint density of (Y i, bi)
given zi is

p(Y i,bi|zi;β, ξ,G) = p(Y i|zi,bi;β, ξ)p(bi; G) (2.14)

A likelihood for β, ξ, G may be based on the joint density of the observed
data Y 1, · · · ,Y m given zi,

m∏
i=1

∫
p(Y i,bi|zi;β, ξ,G)dbi =

m∏
i=1

∫
p(Y i|zi,bi;β, ξ)p(bi; G)dbi (2.15)

by independence across i. Nonlinearity implies that the m k-dimensional
integrations in (2.15) generally cannot be done in a closed form; thus, itera-
tive algorithms to maximize (2.15) in β, ξ, G require a way to handle these
integrals. Although numerical techniques for evaluation of an integral are
available, these can be computationally expensive when performed at each
internal iteration of the algorithm. Hence, many approaches to fitting (2.10)-
(2.11) are instead predicated on analytical approximations.

Methods Based On Individual Estimates

If the ni are sufficiently large, an intuitive approach is to summarize the
responses Y i for each i through individual-specific estimates θ̂i and then
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use these as the basis for inference on β and G. In particular, viewing the
conditional moments in (2.10) as functions of θi, i.e.,

E[Yi|ui,θi] = f(Xi,j,θi),

V ar[Yi|ui,θi] = Ri(ui,θi, ξ),

fit the model specified by these moments for each individual.

Usual large-sample theory implies that the individual estimators θ̂i are
asymptotically normal. Each individual is treated separately, so the theory
may be viewed as applying conditionally on θi for each i, yielding

θ̂i|ui,θi ∼ N (θi,Ci).

Because of the nonlinearity of f in θi, Ci depends on θi in general, so Ci is
replaced by Ĉi in practice, where θ̂i is substituted.

To see how this is exploited for inference on β and G, consider the linear
second-stage model (2.3); the same developments apply to any general d in
(2.11). The asymptotic result may be expressed alternatively as

θ∗i ≈ θi + ε∗i = Aiβ + Bibi + ε∗i ,

ε∗i |zi ∼ N (0, Ĉi), bi ∼ N (0,G) (2.16)

where Ĉi is treated as known for each i, so that the ε∗i do not depend on bi.
This is the form of a linear mixed effects model with known error covariance
matrix Ĉi, which suggest using standard techniques for fitting such models
to estimate β and G. Some authors propose use of the EM algorithm in
the case k = p and Bi = Ip. Alternatively, it is possible to use linear mixed
model software to fit (2.16).

EM Algorithm

The EM algorithm is a procedure to compute the maximum likelihood
estimates in the presence of missing or hidden data.

Each iteration of the EM algorithm consists of two processes:

1. the E-step, in which the missing data are estimated given the observed
data and current estimate of the model parameters. This is achieved
using the conditional expectation,
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2. the M-step, in which the likelihood function is maximized under the
assumption that the missing data are known. The estimate of the
missing data from the E-step are used instead of the actual missing
data.

Convergence is assured since the algorithm is guaranteed to increase the
likelihood at each iteration. For more details, see [3].

In the case treated in this work, the EM-algorithm can be specified as
follows, see [9]. At (k + 1)th iteration,

1. E-step: Update the estimates of θi, i = 1, 2, · · · ,m as

θ̂i,(k+1) = (Ĉ
−1
i + Ĝ

−1
(k))
−1(Ĉ

−1
i θ

∗
i + Ĝ

−1
(k)Aiβ̂(k)), i = 1, 2, · · · ,m.

2. M-step: Update the estimates of the population parameters as

β̂(k+1) =

(
m∑
i=1

A′iĜ
−1
(k)Ai

)−1 m∑
i=1

A′iĜ
−1
(k)θ̂i,(k+1),

Ĝ(k+1) = m−1
m∑
i=1

(θ̂i,(k+1) −Aiβ̂(k+1))(θ̂i,(k+1) −Aiβ̂(k+1))
′+

+m−1
m∑
i=1

(Ĉ
−1
i + Ĝ

−1
(k))
−1

Note that as starting values for the EM algorithm one can use the follow-
ing estimates:

•

β̂(0) =

(
m∑
i=1

A′iAi

)−1( m∑
i=1

A′iθ
∗
i

)
,

•

Ĝ(0) = (m− 1)−1
m∑
i=1

(θ∗i −Aiβ̂(0))(θ
∗
i − Aiβ̂(0))

′

This algorithm is iterated until the M-step converges.
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Methods Based On Approximation of the Likelihood

This last point is critical when the ni are not large. Although this provides
rich information for building population models d, there are insufficient data
to fit the pharmacokinetic model f to any one subject. Implementation
of (2.15) in principle imposes no requirements on the magnitude of the ni.
Thus, an attractive strategy is instead to approximate (2.15) in a way that
intractable integration is avoided. In particular, for each i, an approximation
to

p(Yi|zi;β, ξ,G) =

∫
p(Yi|zi,bi;β, ξ)p(bi; G)dbi

is obtained.

First Order Methods

An approach is motivated by letting R
1/2
i be the Cholesky decomposition

of Ri and writing (2.10)-(2.11) as

Yi = fi(zi,β,bi) + R
1/2
i (zi,β,bi, ξ)εi, εi|zi,bi ∼ (0, Ini

). (2.17)

As nonlinearity in bi causes the difficulty for integration in (2.15), it is natural
to consider a linear approximation. A Taylor series of (2.17) about bi = 0
to linear terms, disregarding the term involving biεi as small and letting

Zi(zi,β,b
∗) =

∂

∂bi
(fi(zi,β,bi)) |bi=b∗

leads to
Yi ≈ f(zi,β,0) + Zi(zi,β,0)bi + R

1/2
i (zi,β,0, ξ)εi (2.18)

E[Yi|zi] ≈ fi(zi,β,0),

V ar[Yi|zi] ≈ Zi(zi,β,0)GZ′i(zi,β,0) + Ri(zi,β,0, ξ). (2.19)

When p(Yi|zi,bi;β, ξ) in (2.15) is a normal density, (2.18) amounts to
approximating it by another normal density whose mean and covariance ma-
trix are linear in and free of bi, respectively. If p(bi; G) is also normal,
the integral is analytically calculable analogous to a linear mixed model and
yields a ni-variate normal density p(Yi|zi;β, ξ,G) for each i with mean and
covariance matrix (2.19).

This suggests the proposal to estimate β, ξ, G by jointly maximizing

m∏
i=1

p(Yi|zi;β, ξ,G),
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which is equivalent to maximum likelihood under the assumption the marginal
distribution Yi|zi is normal with moments (2.19). The advantage is that this
approximate likelihood is available in a closed form. Standard errors are ob-
tained from the information matrix assuming the approximation is exact. As
(2.19) defines an approximate marginal mean and covariance matrix for Yi

given zi, an alternative approach is to estimate β, ξ, G by solving general-
ized estimating equations.

An obvious drawback of all first order methods is that the approximation
may be poor, as they essentially replace

E[Yi|zi] =

∫
f(zi,β,bi)p(bi; G)

by
f(zi,β,0).

This suggest that more refined approximation would be desirable, like
First Order Conditional Methods.

First Order Conditional Methods

As p(Yi|zi,bi;β, ξ) and p(bi; G) are ordinarily taken as normal densi-
ties, a natural way to approximate integrals like those in (2.15) is to exploit
Laplace’s method, a standard technique to approximate an integral of the
form

∫
e−l(b)db that follows from Taylor series expansion of −l(b) about the

value b̂, say, maximizing l(b). The result is that p(Yi|zi;β, ξ,G) may be
approximated by a normal density with

E(Yi|zi) ≈ fi(zi,β, b̂i)− Zi(zi,β, b̂i)b̂i

V ar[Yi|zi] ≈ Zi(zi,β, b̂i)GZ′i(zi,β, b̂i) + Ri(zi,β, ξ) (2.20)

b̂i = GZ′i(zi,β, b̂i)Ri(zi,β, ξ)[Yi − fi(zi,β, b̂i)], (2.21)

where Zi is defined as before, and b̂i maximizes

l(bi) = [Yi − fi(zi,β,bi)]
′R−1i (zi,β, ξ)[Yi − fi(zi,β,bi)] + b′iGbi

in bi. In fact, b̂i maximizes in bi the posterior density for bi

p(bi|Yi, zi;β, ξ,G) =
p(Yi|zi,bi;β, ξ)p(bi; G)

p(Yi|zi;β, ξ,G)
. (2.22)

Equations (2.20) and (2.21) suggest an iterative scheme whose essential
steps are
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1. Given current estimates β̂, ξ̂, Ĝ and b̂i, say, update b̂i by substituting
these in the right hand side of (2.21)

2. Holding b̂i fixed, update estimation of β, ξ,G based on the moments
in (2.20)

It is well-documented by numerous authors that these first order con-
ditional approximations work extremely well in general, even when ni are
not large or the assumptions of normality that dictate the form of (2.22) on
which b̂i is based are violated. These features and the availability of sup-
ported software have made this approach probably the most popular way to
implement nonlinear mixed models in practice.

Some final remarks follow.

The methods in this section may be implemented for any ni. Although
they involve closed-form expressions for p(Yi|zi;β, ξ,G) and moments (2.19)
and (2.20), maximization or solution of likelihoods or estimating equations
can still be computationally challenging, and selection of suitable starting
values for the algorithms is essential. Results from first order methods may
also be used as starting values for a more refined “conditional” fit. A common
practical strategy is to first fit a simplified version of the model and use the
results to suggest starting values for the intended analysis. For instance, one
might take G to be a diagonal matrix, which can often speed convergence
of the algorithms; this implies the elements of θi are uncorrelated, which is
usually highly unrealistic.
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Chapter 3

Applications in
Pharmacokinetics and
Pharmacodynamics

The theory we have seen before is the basis of pharmacokinetics (PK) and
pharmacodynamics (PD) models, since they need of nonlinear mixed effects
models to be fitted.

In the following section, a brief introduction to pharmacokinetics and
pharmacodynamics is presented.

3.1 Pharmacokinetics and Pharmacodynam-

ics

When someone takes a drug, the body and the drug interact.

Intuitively speaking,

Pharmacokinetics (PK) is what the body does to the drug. Phar-
macokinetics studies how the drug moves through the body, the so-called
ADME processes (absorption, distribution and elimination (metabolism and
excretion) that govern this movement and how these processes vary across
subjects.

Pharmacodynamics (PD): is what the drug does to the body.
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Pharmacokinetics and pharmacodynamics studies are necessary to answer
the following questions:

• What is a good drug concentration?

• What is the therapeutic window? Is it wide or narrow? Is it the same
for everyone?

• What is the relationship between response and drug concentration?

A PK/PD study is based on collecting both concentrations and response
from each subject.

One of the purposes of why all this theory has been developed is that it
must be kept in mind that in the body in which the drug is applied, con-
centrations must be kept high enough to produce a desirable response, but
low enough to avoid toxicity, in a region called therapeutic window; so it
must be found the optimal dose to get that, by studying those models.
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Absorption
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Figure 3.1: Therapeutic Window
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Some basic assumptions and principles we must keep in mind are:

• There is an effect site where the drug will have its effect.

• Magnitudes of response and toxicity depend on drug concentration at
the effect site.

• The drug can not be placed directly at the effect site, since it must
move there.

• Concentrations at the effect site are determined by ADME processes.

• Concentrations must be kept inside the therapeutic window.

• Usually, concentrations cannot be measured at effect site directly, but
in blood, plasma, etc.

3.1.1 Pharmacokinetics

The broad goal of pharmacokinetics analysis is to understand and character-
ize intra-subject ADME processes of drug absorption, distribution, metabolism
and excretion governing achieved drug concentrations and how these pro-
cesses vary across subjects (inter-subjects variation).

In practice, two kinds of pharmacokinetics studies are made in humans:
Intensive and Population studies.

Pharmacokinetics studies in humans (Intensive studies).

They are characterized by the following features:

• Small number of subjects (usually healthy volunteers).

• Frequent samples over time, often following single dose.

• Usually in early stages of drug development.

• Useful for gaining initial information on typical pharmacokinetics be-
havior in humans and for identifying an appropriate pharmacokinetics
model.

• Preclinical pharmacokinetics studies in animals are generally intensive
studies.
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Pharmacokinetics studies in humans (Population studies).

They have the following features:

• Large number of subjects (both healthy and unhealthy volunteers).

• Often in later stages of drug development or after a drug is in routine
use.

• Sparse sampling over time and multiple dosing intervals.

• Extensive demographic and physiologic characteristics.

• Useful for understanding associations between patient characteristics
and pharmacokinetics behavior.

Example 3.1.1 An example of intensive pharmacokinetics studies is the
Theophylline study outlined below. Theophylline is a drug used in therapy
for respiratory diseases such a COPD and asthma, see [4].

In this study there were 12 subjects in which the same oral dose (mg/Kg)
was applied. Blood samples were collected to measure the Theophylline con-
centration (mg/L). These concentrations are presented in Figure 3.2.

In Figure 3.2, we can observe the following features:

• It is an intensive study, as we mentioned before: the number of subjects
is quite small (only twelve volunteers), and there are many samples in
a short period of time.

• All concentration-time profiles have similar shapes.

• Peak, rise and decay vary across subjects, attributable to inter-subject
variation underlying pharmacokinetics behavior.

In PK/PD many kinds of models can be obtained. To study those models,
we represent the body by a simple system of compartments, which is very
useful. Later in this work we will focus our study on one-compartment and
two-compartment models; whose description is given below.

28



0 5 10 15 20

0
2

4
6

8
10

12

Time(hours)

T
he

op
hy

lli
ne

 C
on

ce
nt

ra
tio

n 
(m

g/
L)

Figure 3.2: Theophylline Study
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• One compartment models: The drug is considered to be distributed
instantaneously into a unique compartment in the body. This compart-
ment is characterized by a distribution volume. The drug input into
this volume depends on the dosage regimen. The drug output from
this volume is characterized by an elimination constant rate ke. Sev-
eral dosage regimens can be considered here:

– Intravenous bolus injection.

– Intravenous infusion.

– Extravascular dose.

– · · ·

• Two compartment models: The drug is not considered to be dis-
tributed instantaneously into a unique compartment in the body. In-
stead, drug first goes to a central compartment and then it goes to
a peripheral compartment. After a time, there is an equilibrium of
distribution of the drug in the body.

One compartment model with first-order ab-
sorption and elimination.

Let A(t) and Aa(t) denote, respectively, the amount at time t in the com-
partment and at the absorption site.

In this model it is assumed that the absorption rate ka and elimination
rate ke are constants (ka > ke), with

ke =
Cl

V
,

where V is the volume of the compartment and Cl is the clearance.

Moreover, it is assumed that A, Aa satisfy the linear differential equations

dA(t)

dt
= kaAa(t)− keA(t), A(0) = 0 (3.1)

dAa(t)

dt
= −kaAa(t), Aa(0) = D

Under the initial value conditions
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A(0) = 0 (3.2)

Aa(0) = D,

where D is the dose.

It is easily seen that the Cauchy problem given by (3.1) under the initial
value (3.2) has as solution

A(t) =
kaD

ka − ke
(
e−ket − e−kat

)
(3.3)

Aa(t) = De−kat

So concentration at time point t in the compartment is finally given by

C(t) =
A(t)

V
=

kaD

V (ka − ke)
(
e−ket − e−kat

)
Individual pharmacokinetics behavior is characterized by the three-dimensional

pharmacokinetics parameter

θ =

 ka
V
Cl


Knowing the value of θ allows one to determine concentrations achieved

at any time point t under different doses, because the pharmacokinetics mo-
del assumes that pharmacokinetics processes are dose-independent. So it can
be used to develop dosing regimens.

Now it can be studied its therapeutic window. It must be calculated the
dose (D) which allows concentration to be bigger than a certain concentra-
tion, say Cm but lower than another concentration, CM .

First of all it must be calculated the global maxima of C(t). Then,
at the time point t∗ in which C(t) reaches its maximum is imposed to be
Cm ≤ C(t∗) ≤ CM .

After some simple calculations, it can be observed that such time point
t∗ is given by the expression

t∗ =

ln

(
ka
ke

)
ka − ke

.
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If it is desired to be C(t∗) ≤ CM , after some operations it is easily obtained
that it must be

D ≤ CMV (ka − ke)
ka(e−ket

∗ − e−kat∗)
Equivalently, if it is wanted to be C(t) ≥ Cm, it must be

D ≥ CmV (ka − ke)
ka(e−ket

∗ − e−kat∗)
So, in summary, in order to be concentration inside the therapeutic win-

dow, dose must be

D ∈
[

CmV (ka − ke)
ka(e−ket

∗ − e−kat∗)
,

CMV (ka − ke)
ka(e−ket

∗ − e−kat∗)

]
.

Example 3.1.2 Argatroban PK/PD study:

Note: Argatroban is an anticoagulant that is a small molecule direct throm-
bin inhibitor.

For the study described in [5], a sample of N = 37 subjects is used.
Different constant infusion rates (doses) of 1 to 5 µ/Kg/min of argatroban
are assigned. This infusion was administered by intravenous infusion for 4
hours (240 minutes). Blood samples for pharmacokinetics study were col-
lected at {30, 60, 90, 115, 160, 200, 240, 250, 260, 275, 295, 320} minutes. For
pharmacodynamics study additional samples at 5-9 points, measuring acti-
vated partial thromboplastin time (aPTT, the response), were collected.

The effect site of this example is blood.

Argatroban pharmacokinetic model:
Let the function (·)+ be defined by x+ = 0 if x ≤ 0 and x+ = x if

x > 0. Denoting by D, Cl, Tinf respectively the dose, clearance and duration
of the infusion, the Argatroban concentration (C(t)) over time at the effect
compartment is given by the equation

C(t) =
D

Cl

[
e−

Cl
V

(t−tinf )+ − e−
Cl
V
t
]
,

so in this model we have a two-dimensional parameter θ, namely,

θ =

(
Cl
V

)
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We must estimate typical values of θ and how they vary in the popula-
tion of subjects and understand the relationship between concentrations and
response.

Argatroban pharmacodynamic model:

Argatroban pharmacodynamics model follows the Emax model presented in
Example 2.1.1.

E(t) =
EmaxC(t)

EC50 + C(t)

The ultimate objective is to put pharmacokinetics and pharmacodynam-
ics together to characterize the therapeutic window and how it varies across
subjects and for develop dosing regimens targeting achieved concentrations
leading to therapeutic response.

3.2 Some Pharmacokinetic Models

In this section, we introduce some examples of pharmacokinetic models, see
[1]. Some of them are models that we have already presented, but we also
show other new models. We use the package PKfit in R, see [10], to simulate
data of all this set of models, and then we are going to do the reverse: given
some data, we try to fit the data into an specific model.

Later in this work, some pharmacodynamic models are shown, but not in
the same extension we present pharmacokinetic models.

The presentation of the pharmacokinetic models is organised as follows:

• First level: number of compartment

– One compartment

– Two compartments

• Second level: route of administration

– Intravenous (IV) bolus

– Infusion

– First order absorption

– Zero order absorption
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• Third level: elimination process

– Linear

– Michaelis-Menten

• Fourth level: existence of a lag time for first and zero order absorption
only

• Last level: administration profile

The equations presented here express the concentration C(t) in the cen-
tral compartment at a time t after a dose D given at time tD (t ≥ tD).

Note: For infusion, the duration of infusion is Tinf and D is the total
dose administrated.

Note: For models with 1 and 2 compartments (as the models presented in
this work), equations C(t) express concentration in the central compartment
at a time t after drug administration. PK/PD analysis, with intermediate
response models, can use concentration C(t) in the central compartment but
alternatively concentration Ce(t) in the effect compartment.
There is an additional parameter to estimate, ke0, the equilibrium rate con-
stant between central and effect compartment.
For each model, the equation for Ce(t) is given after the corresponding one
for C(t).

3.2.1 One compartment models

Parameters

• V = volume of distribution

• ke = elimination rate constant

• Cl = clearance of elimination

• Vm = maximum elimination rate (in amount per time unit)

• Km = Michaelis-Menten constant (in concentration unit)

• ka = absorption rate constant

• T lag = lag time
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• Tk0 = absorption duration for zero order absorption

Parameterisation.

There are two parameterisations for one compartment models, (V and
ke) or (V and Cl). The equations are given for the first parameterisation
(V ,ke). The equations for the second parameterisation (V ,Cl) are derived

using ke =
Cl

V
.

Example 3.2.1 IV bolus. Linear elimination.

C(t) =
D

V
e−ke(t−tD)

Ce(t) =
D

V

ke0
(ke0 − ke)

(e−ke(t−tD) − e−ke0(t−tD))

R simulation data.
Total subjects=6

D=300

ke=0.21
V=11.7

Time points: 0,0.1,0.2,0.3,0.4,0.6,0.8,1,2,4,6,8,12,14,16,18,24
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Figure 3.3: Simulation IV Bolus. Linear elimination.

Example 3.2.2 IV bolus. Michaelis-Menten elimination.

Initial conditions:


C(t) = 0 ∀t < tD
Ce(t) = 0 ∀t ≤ tD

C(tD) =
D

V

dC

dt
=

Vm
V
C

Km + C

dCe
dt

= ke0(C − Ce)
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R simulation data.
Total subjects=6

D=300

Km=4.84

V=11.7

Vm=2.17
Time points: 0,0.1,0.2,0.3,0.4,0.6,0.8,1,2,4,6,8,12,14,16,18,24
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Figure 3.4: Simulation IV Bolus. Michaelis-Menten elimination.

Example 3.2.3 IV infusion. Linear elimination.

C(t) =


D

Tinf

1

keV
(1− e−ke(t−tD)) if t− tD ≥ Tinf

D

Tinf

1

keV
(1− e−keTinf )e−ke(t−tD−Tinf ) else
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Ce(t) =


D

Tinf

1

keV (ke0 − ke)
[ke0(1− e−ke(t−tD))− ke(1− e−ke0(t−tD))] if t− tD ≤ Tinf

D

Tinf

1

keV (ke0 − ke)
[ke0(1− e−keTinf )e−ke(t−tD−Tinf )−

−ke(1− e−ke0Tinf )e−ke0(t−tD−Tinf )] else

R simulation data.

Total subjects: 6

Dose: 300

Tinf: 1

Ke: 0.12

V: 11.7

Time dose: 0,0.1,0.2,0.3,0.4,0.6,0.8,1,2,4,6,8,12,14,16,18,24,48,72
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Figure 3.5: Simulation IV Infusion. Linear elimination.

Example 3.2.4 IV infusion. Michaelis-Menten elimination.
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Initial condition: C(t) = 0 ∀t < tD
Ce(t) = 0 ∀t < tD

dC

dt
=

Vm
V
C

Km + C
+ input

dCe
dt

= ke0(C − Ce)

input(t) =


D

Tinf

1

V
if 0 ≤ t− tD ≤ Tinf

0 else

Example 3.2.5 First order absorption. Linear elimination. In
absence of a lag time.

C(t) =
D

V

ka
ka − ke

(e−ke(t−tD) − e−ka(t−tD))

Ce(t) =
Dkake0
V

(
e−ka(t−tD)

(ke − ka)(ke0 − ka)
+

e−ke(t−tD)

(ka − ke)(ke0 − ke)
+

e−ke0(t−tD)

(ka − ke0)(ke − ke0)
)

Example 3.2.6 First order absorption. Linear elimination. In
presence of a lag time.

C(t) =


0 if t− tD ≤ T lag

D

V

ka
ka − ke

(e−ke(t−tD−T lag) − e−ka(t−tD−T lag)) else

Ce(t) =



0 if t− tD ≤ T lag

Dkake0
V

[
e−ka(t−tD−T lag)

(ke − ka)(ke0 − ka)
+

e−ke(t−tD−T lag)

(ka − ke)(ke0 − ke)
+

+
e−ke0(t−tD−T lag)

(ka − ke0)(ke − ke0)

]
else

Example 3.2.7 First order absorption. Michaelis-Menten elimi-
nation. In absence of a lag time.
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Initial condition: C(t) = 0 for t < tD
Ce(t) = 0 for t < tD

dC

dt
= −

Vm
V
C

Km + C
+ input

dCe
dt

= ke0(C − Ce)

input(t) =
D

V
kae
−ka(t−tD)

Example 3.2.8 First order absorption. Michaelis-Menten elimi-
nation. In presence of a lag time.

Initial condition: C(t) = 0 for t < tD
Ce(t) = 0 for t < tD

dC

dt
= −

Vm
V
C

Km + C
+ input

dCe
dt

= ke0(C − Ce)

input(t) =

{
0 if t− tD < Tlag

D

V
kae
−ka(t−tD−T lag) else

Example 3.2.9 Zero order absorption. Linear elimination. In ab-
sence of a lag time.

C(t) =


D

Tk0

1

keV
[1− e−ke(t−tD)] if t− tD ≤ Tk0

D

Tk0

1

keV
[1− e−keTk0 ]e−ke(t−tD−Tk0) else

Ce(t) =



D

Tk0

1

keV (ke0 − ke)
[ke0(1− e−ke(t−tD))− ke(1− e−ke0(t−tD))] if t− tD ≤ Tk0

D

Tk0

1

keV (ke0 − ke)
[ke0(1− e−keTk0)e−ke(t−tD−Tk0)−

−ke(1− e−ke0Tk0)e−ke0(t−tD−Tk0))] else

40



Example 3.2.10 Zero order absorption. Linear elimination. In
presence of a lag time.

C(t) =



0 if t− tD ≤ T lag

D

Tk0

1

keV
(1− e−ke(t−tD−T lag)) if T lag < t− tD ≤ T lag + Tk0

D

Tk0

1

keV
(1− e−keTk0)e−ke(t−tD−T lag−Tk0) else

Ce(t) =



0 if t− tD ≤ T lag

D

Tk0

1

keV (ke0 − ke)
[ke0(1− e−ke(t−tD−T lag))−

−ke(1− e−ke0(t−tD−T lag))] if T lag < t− tD ≤ T lag + Tk0

D

Tk0

1

keV (ke0 − ke)
[ke0(1− e−keTk0)e−ke(t−tD−T lag−Tk0)−

−ke(1− e−ke0Tk0)e−ke0(t−tD−T lag−Tk0)] else

3.2.2 Two compartments models

Parameters

• V = V1 = volume of distribution of first compartment

• ke = elimination rate constant

• Cl = clearance of elimination

• Vm = maximum elimination rate (in amount per time unit)

• Km = Michaelis-Menten constant (in concentration unit)

• k12 = distribution rate constant from compartment 1 to comp. 2

• k21 = distribution rate constant from compartment 2 to comp. 1

• Q = inter-compartmental clearance

• V2 = volume of distribution of second compartment
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• ka = absorption rate constant

• α = first rate constant

• β = second rate constant

• A = first macro-constant

• B = second macro-constant

Parameterisation.

There are three parameterisations for two compartment models: (V, ke, k12
and k21), (Cl, V1, Q and V2) or (α, β,A and B) except for Michaelis-Menten
elimintion where the last parameterisation is not used. The second parame-
terisation terms are derived using:

• V1 = V

• Cl = keV1

• Q = k12V1

• V2 =
k12
k21

V1

• V1
V2

=
k21
k12

The equations are given for the third parameterisation with:

•

α =
k21ke
β

=

Q

V2

Cl

V1
β

•

β =


1

2

[
k12 + k21 + ke −

√
(k12 + k21 + ke)

2 − 4k21ke

]
1

2

Q
V1

+
Q

V2
+
Cl

V1
−

√(
Q

V1
+
Q

V2
+
Cl

V1

)2

− 4
Q

V2

Cl

V1


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In the following, C(t) = C1 represents the drug concentration in the
first compartment and C2 represents the drug concentration in the second
compartment.

Example 3.2.11 IV bolus. Linear elimination.

• A =
1

V

α− k21
α− β

=
1

V1

α− Q

V2
α− β

• B =
1

V

β − k21
β − α

=
1

V1

β − Q

V2
β − α

• Ae =
ke0A

ke0 − α

• Be =
ke0B

ke0 − β

C(t) = D(Ae−α(t−tD) +Be−β(t−tD))

Ce(t) = D(Aee−α(t−tD) +Bec−β(t−tD) − (Ae +Be)e−ke0(t−tD))

Example 3.2.12 IV infusion. Linear elimination.

• A =
1

V

α− k21
α− β

=
1

V1

α− Q

V2
α− β

• B =
1

V

β − k21
β − α

=
1

V1

β − Q

V2
β − α

• Ae =
ke0A

ke0 − α

• Be =
ke0B

ke0 − β
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C(t) =


D

Tinf

[
A

α
(1− e−α(t−tD)) +

B

β
(1− e−β(t−tD))

]
if t− tD ≤ Tinf

D

Tinf

[
A

α
(1− e−αTinf )e−α(t−tD−Tinf ) +

B

β
(1− e−βTinf )e−β(t−tD−Tinf )

]
else

Ce(t) =



D

Tinf

[
Ae

α
(1− e−α(t−tD)) +

Be

β
(1− e−β(t−tD))−

− Ae +Be

ke0
(1− e−ke0(t−tD))

]
if t− tD ≤ Tinf

D

Tinf

[
Ae

α
(1− e−αTinf )e−α(t−tD−Tinf ) +

Be

β
(1− e−βTinf )e−β(t−tD−Tinf )−

−A
e +Be

ke0
(1− e−ke0Tinf )e−ke0(t−tD−Tinf )

]
else

Example 3.2.13 First Order Absorption. Linear elimination. In
absence of a lag time.

• A =
ka
V

k21 − α
(ka − α)(β − α)

=
ka
V1

Q

V2
− α

(ka − α)(β − α)

• B =
ka
V

k21 − β
(ka − β)(α− β)

=
ka
V1

Q

V2
− β

(ka − β)(α− β)

• Ae =
ke0A

ke0 − α

• Be =
ke0B

ke0 − β

• Ce = −A
e(ka − α) +Be(ka − β)

ka − ke0

C(t) = D(Ae−α(t−tD) +Be−β(t−tD) − (A+B)e−ka(t−tD))

Ce(t) = D(Aee−α(t−tD)+Bee−β(t−tD)+Cee−ke0(t−tD)−(Ae+Be+Ce)e−ka(t−tD))
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3.3 Inference

Inference will focus on one compartment models. In particular, we will make
inference on IV bolus and IV infusion, both with Michaelis-Menten elimina-
tion. Inference on other kind of models can be made too with [10], even in
more-than-one compartment models.

Some models described before has been done using the package [10]. Now,
for inference, we use as initial values some values close to those given by the
package, and we will see if, after some iterations of the algorithm, R is capa-
ble of obtaining the true parameters that have been used.

IV bolus. Michaelis-Menten elimination

If we simulate with [10] 24 subject data with parameters

• D = 300.00

• Vm = 2.17

• Km = 4.84

• V = 11.70,

we obtain a table that begins like that:

Subject T ime Concentration
1 0 25.421

1 0.1 25.248

1 0.2 25.074

1 0.3 24.091

1 0.4 24.728
...

...
...

So we can consider it as data in which make inference in order to deter-
mine Vm, Km and V .

We can choose, for example, the initial values

• D = 300 (We consider the dose as known)

• Vm = 2
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• Km = 4

• V = 11,

and R give us as a result the following:

--- initial values for parameters ----

Parameter Initial

1 D 300

2 Vm 2

3 Km 5

4 V 11

--- wighting scheme: equal weight

--- model selection: a one-compartment, iv bolus pk model with

M-M elim.

<< PK parameter obtained from Nelder-Mead Simplex algorithm >>

Parameter Value

1 Vm 2.024

2 Km 4.834

3 V 11.779

As we see, we have get similar results as the original true values.

IV infusion. Michaelis-Menten elimination.

As before, if we simulate with [10] 24 subject data with parameters

• D = 300.00

• Tinf = 0.5

• Vm = 2.31

• Km = 4.74

• V = 11.70,

46



we obtain again a table that begins like that:

Subject T ime Concentration
1 0 0

1 0.1 5.016

1 0.2 9.964

1 0.3 14.885

1 0.4 19.791
...

...
...

So we can consider again the data above as data in which we can make
inference for determine Vm, Km and V .

We can choose as initial values

• D = 300 (We consider the dose as known)

• Tinf = 0.5 (We consider the infusion time as known too)

• Vm = 2

• Km = 4

• V = 11,

and R give us as a result the following:
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--- initial values for parameters ----

Parameter Initial

1 D 300

2 Tinf 0.5

3 Vm 2

4 Km 4

5 V 11

--- wighting scheme: equal weight

--- model selection: one-compartment, iv infusion PK model

with M-M elim.

<< PK parameter obtained from Nelder-Mead Simplex algorithm >>

Parameter Value

1 Vm 2.183

2 Km 4.792

3 V 11.670

As we see, we have get once more similar results as the original true
values.

3.4 Some Pharmacodynamic Models

Two different type of models are presented here:

• Inmediate response models

• Turnover models

3.4.1 Inmediate response models

For these type of models, the effect (denoted as E(t)) is expressed as:

E(t) = A(t) + S(t) (3.4)

where A(t) represents the model of drug action and S(t) corresponds to the
baseline/disease model. A(t) is a function of the concentration C(t) in the
central compartment or of the concentration Ce(t) in the effect compartment.

Parameters
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• Alin = constant associated to C(t)

• Aquad = constant associated to the square of C(t)

• Alog = constant associated to the logarithm of C(t)

• Emax = maximal agonistic response

• Imax = maximal antagonistic response

• EC50 = concentration to get half of the maximal response

• γ = sigmoidicity factor

• S0 = baseline value of the studied effect

• kprog = rate constant of disease progresion

Drug action models

• linear model
A(t) = AlinC(t)

• quadratic model

A(t) = AlinC(t) + AquadC(t)2

• logarithmic model
A(t) = Aloglog(C(t))

• Emax model

A(t) =
EmaxC(t)

C(t) + EC50

• sigmöıd Emax model

A(t) =
EmaxC(t)γ

C(t)γ + ECγ
50

• Imax model

A(t) = 1− ImaxC(t)

C(t) + EC50

• sigmöıd Imax model

A(t) = 1− ImaxC(t)γ

C(t)γ + ECγ
50
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Baseline/disease models

• null baseline
S(t) = 0

• constant baseline with no disease progression

S(t) = S0

• linear disease progression

S(t) = S0 + kprogt

• exponential disease increase

S(t) = S0e
−kprogt

• exponential disease decrease

S(t) = S0(1− e−kprogt)

Note: Only, for the Imax and sigmöıd Imax models A(t) is not added to
S(t) but S0 is multiplied by A(t) in the expression of S(t). For instance, for
Imax model with linear baseline we have

E(t) = S0 ∗ A(t) + kprogt.

3.4.2 Turnover response models

In these models, the drug is not acting on the effect E directly but rather on
Rin (input (synthesis) rate) or kout (output (elimination) rate constant).

Thus the system is described with differential equations, given
dE

dt
as a

function of Rin, kout and C(t), the drug concentration at time t.

The initial condition is: while C(t) = 0, E(t) =
Rin

kout
.

Parameters:

• Emax = maximal agonistic response

• Imax = maximal antagonistic response
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• EC50 = concentration to get half of the maximal response

• γ = sigmoidicity factor

• Rin = input (synthesis) rate

• kout = output (elimination) rate constant

Models with impact on the input (Rin)

• Emax model
dE

dt
= Rin

(
1 +

EmaxC

C + EC50

)
− koutE

• sigmöıd Emax model

dE

dt
= Rin

(
1 +

EmaxC
γ

Cγ + ECγ
50

)
− koutE

• Imax model
dE

dt
= Rin

(
1− ImaxC

C + EC50

)
− koutE

• sigmöıd Imax model

dE

dt
= Rin

(
1− ImaxC

γ

Cγ + ECγ
50

)
− koutE

• full Imax model

dE

dt
= Rin

(
1− C

C + EC50

)
− koutE

• sigmöıd full Imax model

dE

dt
= Rin

(
1− Cγ

Cγ + ECγ
50

)
− koutE
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Models with impact on the output (kout)

• Emax model
dE

dt
= Rin − kout

(
1 +

EmaxC

C + EC50

)
E

• sigmöıd Emax model

dE

dt
= Rin − kout

(
1 +

EmaxC
γ

Cγ + ECγ
50

)
E

• Imax model
dE

dt
= Rin − kout

(
1− ImaxC

C + EC50

)
E

• sigmöıd Imax model

dE

dt
= Rin − kout

(
1− ImaxC

γ

Cγ + ECγ
50

)
E

• full Imax model

dE

dt
= Rin − kout

(
1− C

C + EC50

)
E

• sigmöıd full Imax model

dE

dt
= Rin − kout

(
1− Cγ

Cγ + ECγ
50

)
E
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