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Abstract

In this work we present a mutilayer approach to the solution of non-stationnary
3D Navier-Stokes equations. We use piecewise smooth weak solutions. We approxi-
mate the velocity by a piecewise constant (in z) horizontal velocity and a linear (in
z) vertical velocity in each layer, possibly discontinuous across layer interfaces. The
multilayer approach is deduced by using the variational formulation and by consid-
ering a reduced family of test functions. The procedure naturally provides the mass
and momentum interfaces conditions. The mass and momentum conservation across
interfaces is formulated via normal flux jump conditions. The jump conditions associ-
ated to momentum conservation are formulated by means of an approximation of the
vertical derivative of the velocity that appears in the stress tensor. We approximate
the multilayer model for hydrostatic pressure, by using a PVM finite volume scheme
and we present some numerical tests that show the main advantages of the model:
it improves the approximation of the vertical velocity, provides good predictions for
viscous effects and simulates re-circulations behind solid obstacles.
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1 Introduction

Multilayer Saint-Venant (or shallow water) models are commonly used techniques to
study hydrodynamic flows with large friction, with significant water depth and/or with
important wind effects, among others (see for example [5], [8], [17]). In these cases, the
standard shallow water system is considered invalid since the horizontal velocity can
hardly be approximated by a vertically constant velocity in the whole domain.

The multilayer approach consists in subdividing, in the vertical direction, the do-
main into shallow layers in order to apply inside the classic hypothesis of Saint-Venant.
In the multilayer Saint-Venant system derived by Audusse et al. in [3] the layers are as-
sumed to be advected by the flow. Then, no mass exchange occurs between neighboring
layers making the model physically closer to non-miscible fluids simulation. That model
is also extended to 3D computations of free surface flows with friction and viscosity
effects by Audusse et al. in [6]. A different multilayer model with a hydrostatic frame-
work is proposed by Audusse et al. in [8]. Each layer is pre-set, described by its height
and by a vertically constant horizontal velocity. The main improvement is that mass
and momentum exchanges between the layers are allowed. In order to close the system,
the height of the layer is related to the total height of the fluid. Then, the unknowns of
the system are the total height of the fluid and a constant horizontal velocity at each
layer. The vertical velocity can be computed by postprocessing, taking into account
the incompressibility of the fluid. The model has been extended by Audusse et al. in
[7] to variable density flows, and by Sainte-Marie in [12] to non-hydrostatic flows.

In the present work, we derive a multilayer method from a variational formulation of
the unsteady incompressible free surface Navier-Stokes equations. The method that we
propose in this paper can be seen as a splitting technique, where first we approximate
the vertical variations of the solution of the full problem. It is obtained by approxi-
mating the solution in a vertical partition with a discontinuous profile. We consider an
approximation of the horizontal velocity and of the vertical velocity that respectively
are constant and linear in the vertical variable. Then, we deduce the model obtained
from the standard variational formulation of Navier-Stokes equations, by supposing
this discontinuous vertical profile of the solution for a reduced family of test functions.
Therefore, the solution of the deduced model is an approximation of the weak solution
of the full model, in the sense that it verifies the weak variational formulation of the
full model for a particular family of test functions (see [1] and [2]).

In fact, the multilayer method that we propose must not be considered as a model,
it is a numerical method. Where first we discretize the vertical variable by using a finite
element framework with discontinous P0 function tests. And in a second step we dis-
cretize the horizontal variable with the method that we prefer. Then, one question is if
the actual method “defined as a multilayer model” is more efficient than other numer-
ical techniques to treat with the solution of Navier-Stokes equations with hydrostatic
pressure and free surface. From a technical point of view note that the multilayer ap-
proach allows to reduce in one dimension the computational cells. Avoiding in this case
the problem to treat with the free surface with 3D meshes (or 2D vertical meshes). By
another way, mass conservation is ensured, by while if we discretize the Navier-Stokes
equations with free surface by some finite element 3D method then mass conservation
depend strongly on the way as the free surface movement is treated. It is difficult to
compare exactly the computational cost of different numerical techniques, for exam-
ple it depends on the efficiency of the coding process. But as the multilayer approach
enables to approximate free surface flows without an extra difficulty, it can be compu-
tationally less expensive than some other numerical techniques to approach the full 3D
model for free-surface flows. For instance, in [6] the authors remark that a comparable
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test using 6 layers (1452 nodes, 2620 triangles for the 2D mesh) takes a CPU time of
10 minutes for the multilayer and 33 minutes for the hydrostatic Navier-Stokes solver.

Even if we start with a general framework, we finally restrict ourselves to a hydro-
static pressure framework. The non-hydrostatic case will be issued in a forthcoming
paper. The model we derive allows also mass and momentum transference between the
neighboring layers as the one proposed in [8]. However, here the discontinuity of the
velocity and the pressure at the interfaces are related to the normal flux jump condi-
tions associated to mass and momentum conservation. The stress tensor that appears
in the momentum conservation jump conditions include the vertical derivative of the
velocity, which is conveniently approximated. Moreover, the vertical velocity is drawn
from the model and includes a linear vertical profile per layer.

The remainder of the paper is organized as follows. In Section 2, we present the
deduction of the multilayer model. We start by stating the interfaces mass and mo-
mentum conditions which come out from the weak formulation, next we detail the
procedure yielding the model for a hydrostatic pressure. In Section 4, we close the hy-
drostatic multilayer system and develop some computations to rewrite the model under
the structure of an hyperbolic system with conservative components, nonconservative
products and source terms. Then we present the finite volume procedure to resolve
the model. In Section 5, we present two numerical tests. Finally, the conclusions of the
paper are set in Section 6.

2 A multilayer approach

In this section we deduce a multilayer system of partial differential equations from the
Navier-Stokes equations.

The multilayer system that we propose in this work can be seen as a technique to
approximate the solution of the Navier-Stokes equations. It is obtained as the system
of partial differential equations that is verified by particular piecewise smooth weak
solutions. Concretely, first we consider a vertical partition of the domain and we suppose
that the solution can be approximated by a piecewise smooth function whose horizontal
velocity does not depend on z at each layer. The multilayer system is deduced as the
one verified by particular weak solutions in the following sense. We consider the system
obtained by using smooth vector test functions which have horizontal components
independent of the variable z and vertical components linear in z.

Let us consider the non-stationary free surface Navier-Stokes equations in a d-
dimensional space (d = 2, 3). For a given positive constant real number T and each
time t ∈]0, T ], we denote by ΩF (t), the fluid domain and by IF (t), its projection onto
the horizontal plane. For given constant dynamic viscosity µ ∈ R and gravity accele-
ration g ∈ R, the density ρ ∈ R, the pressure p ∈ R and the velocity ~u := (~u

H
, w)

′

∈ Rd

functions with ~u
H

∈ Rd−1 satisfy the conservative system:




∂tρ + ∇ · (ρ~u) = 0,

∂t(ρ~u) + ∇ · (ρ~u ⊗ ~u) − ∇ ·ΣT = ρ~g,
(1)

where ~g = (0,−g)
′

∈ Rd and the total stress tensor is ΣT = −pI + µ
(
∇~u + (∇~u)

′

)
.

The symbol I stands for the identity tensor. The generic space variable is (x, z) ∈ Rd
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such that the horizontal variable corresponds to x = (x1, ..., xd−1) ∈ Rd−1.
In this work we will consider a flow of an incompressible fluid with a homogeneous

mass density. That is, the density function ρ(t, x, z) is a constant real value ρ. Never-
theless, for the sake of clarity in the exposition we retain the density dependence in
the equations.

zB(x)

z

x

hα(x, t)

h1(x, t)

h(x,t)

z = z1/2

z = zα−1/2

z = zα+1/2

z = zN+1/2

hN(x, t)

Figure 1: Sketch of the multilayer division of the fluid domain.

In order to introduce a multilayer system, the fluid domain is divided along the
vertical direction into N ∈ N∗ pre-set layers of thickness hα(t, x) with N + 1 interfaces
Γα+ 1

2
(t) of equations z = zα+ 1

2
(t, x) for α = 0, 1, ..., N and x ∈ IF (t) (see Figure 1). We

assume that the interfaces Γα+ 1
2
(t) are smooth, concretely at least of class C1 in time

and space. We shall denote by zB = z 1
2

and zS = zN+ 1
2

the equations of the bottom and

the free surface interfaces ΓB(t) and ΓS(t), respectively. We have hα = zα+ 1
2
− zα− 1

2
and zα+ 1

2
= zB +

∑α
β=1 hβ for α = 1, ..., N . Then the height of the fluid is given by

h = zS − zB =
∑N

α=1 hα.
Actually we have ∂Ω(t) = ΓB(t) ∪ ΓS(t) ∪ Θ(t), where Θ(t) is the inflow/outflow

boundary which we assume here to be vertical. The fluid domain is split as ΩF (t) =

∪N
α=1 Ωα(t) with the setting

Ωα(t) =
{
(x, z); x ∈ IF (t) and zα− 1

2
< z < zα+ 1

2

}
,

∂Ωα(t) = Γα− 1
2
(t) ∪ Γα+ 1

2
(t) ∪ Θα(t), with

Θα(t) =
{
(x, z); x ∈ ∂IF (t) and zα− 1

2
< z < zα+ 1

2

}
.

(2)

Hence the inflow/outflow boundary is split as Θ(t) = ∪N
α=1 Θα(t).

Moreover, let us introduce the following notation:

(i) For two tensors a and b of sizes (n,m) and (n, p) respectively, we shall denote by
(a; b) the tensor of size (n,m + p) which is the concatenation of a and b in this
order.
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(ii) Let the differential operator ∇ = (∂x1 , ..., ∂xd−1
, ∂z), Then we set

∇ := (∂t; ∇) = (∂t, ∂x1 , ..., ∂xd−1
, ∂z) and ∇x := (∂x1 , ..., ∂xd−1

).

(iii) For α = 0, 1, ..., N and for a function f , we set

f−
α+ 1

2

:= (f|Ωα(t)
)|Γ

α+1
2

(t)
and f+

α+ 1
2

:= (f|Ωα+1(t)
)|Γ

α+1
2

(t)
.

When the function f is continuous, we will merely set

fα+ 1
2

:= f|Γ
α+1

2
(t)

.

(iv) We will denote by ~ηα+ 1
2

the space unit normal vector to the interface Γα(t)

outward to the layer Ωα(t) for a given time t for α = 0, ..., N . It is defined by

~ηα+1/2 =

(
∇xzα+ 1

2
,−1

)′

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2
. (3)

(v) We will denote by ~nT,α+ 1
2

the (space-time) unit normal vector to the interface

Γα(t) outward to the layer Ωα(t) for α = 0, ..., N ,

~nT,α+1/2 =

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)′

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2
+ (∂tzα− 1

2
)2

.

Remark 1 Adding the time variable as one more dimension, the corresponding do-
main ΩT is actually given by

ΩT =
{

(t, x, z); t ∈]0, T ] and (x, z) ∈ ΩF (t)
}

, with

∂ΩT = ΛT ∪ Λ1 ∪ Λ2, where

ΛT =
{
(t, x, z); t ∈]0, T ] and (x, z) ∈ ∂ΩF (t)

}
,

Λ1 =
{

(0, x, z); (x, z) ∈ ΩF (0)
}

,

Λ2 =
{

(T, x, z); (x, z) ∈ ΩF (T )
}

.

Since we integrate over ΩF (t), we retain here the boundary ΛT for the computations
even if it means cancelling the tests functions over the boundaries Λ1 and Λ2.

2.1 Weak solution with discontinuities

Let us recall the conditions to be verified by a piecewise smooth weak solution (~u, p, ρ)
of (1). More precisely, let us suppose that the velocity ~u, the pressure p and the
density ρ are smooth in each Ωα(t), but possibly discontinuous across the predetermined
hypersurfaces Γα+ 1

2
(t) for α = 1, ..., N − 1. Then the triplet (~u, p, ρ) is a weak solution

of (1) if the following conditions hold:

5



(i) (~u, p, ρ) is a standard weak solution of (1) in each layer Ωα(t).

(ii) (~u, p, ρ) satisfies the normal flux jump conditions at Γα+ 1
2
(t), for α = 0, . . . , N :

• For the mass conservation law,

[(ρ; ρ~u)]|Γ
α+1

2
(t)
· ~nT,α+1/2 = 0, (4)

• For the momentum conservation law,

[
(ρ~u; ρ~u ⊗ ~u −ΣT )

]
|Γ

α+1
2

(t)

· ~nT,α+1/2 = 0, (5)

where [(a; b)]|Γ
α+1

2
(t)

denotes the the jump of the pair (a; b) across Γα+ 1
2
(t),

[(a; b)]|Γ
α+1

2
(t)

=
(
(a; b)|Ωα+1(t)

− (a; b)|Ωα(t)

)
|Γ

α+1
2

(t)

In order to develop the multilayer model, we adapt the preceding conditions to
a particular class of pairs velocity-pressure: We assume the layers thicknesses small
enough to neglect the dependence of the horizontal velocities and the pressure on the
vertical variable inside each layer. Moreover, we assume that the vertical velocity is
piecewise linear in z, and possibly discontinuous. Concretely, we set

~u|Ωα(t)
:= ~uα := (~uH,α, wα)

′

, pα := p|Ωα(t)
,

where ~uH,α and wα respectively stand for the horizontal and vertical velocities on layer
α, and assume

∂z~uH,α = 0, ∂zpα = 0, ∂zwα = dα(t, x), (6)

for some smooth function dα(t, x). In addition, in the present work we shall consider
globally constant (and known) density.

There is no hope for such a particular triplet
(
(~uH,α, wα)

′

, pα

)
to be a solution of

the complete Navier-Stokes equations in the layer Ωα(t). Instead, we shall consider a
reduced weak formulation with particular test functions, that we describe in Section 3.

Concerning the jump conditions, those that come from the hyperbolic part of
Navier-Stokes equations may exactly be set for our approximated solution. However,
the elliptic part involves vertical derivatives that need a further approximation. We
proceed as follows:

2.1.1 Mass conservation jump conditions

Observe that
~u+

H,α− 1
2

(t, x) = ~u−
H,α+ 1

2

(t, x) = ~uH,α(t, x). (7)

Then ~u satisfies the mass conservation jump conditions if

Gα+ 1
2

:= G−
α+ 1

2

= G+
α+ 1

2

, (8)
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where 



G+
α+ 1

2

= ∂tzα+ 1
2

+ ~uH,α+1 · ∇xzα+ 1
2
− w+

α+ 1
2

,

G−
α+ 1

2

= ∂tzα+ 1
2

+ ~uH,α · ∇xzα+ 1
2
− w−

α+ 1
2

.

Observe that Gα+ 1
2

is the normal mass flux at the interface Γα+ 1
2
(t).

2.1.2 Momentum conservation jump conditions

Using (8) condition (5) can be written in terms of the normal mass flux. Indeed, (5)
can also be written as

[
Σ
]
|Γ

α+1
2

(t)

·
(
∇xzα+ 1

2
,−1

)
=
[
(ρ~u; ρ~u ⊗ ~u)

]
|Γ

α+1
2

(t)

·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
.

Also, by (8),
[
(ρ~u; ρ~u ⊗ ~u)

]
|Γ

α+1
2

(t)

·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= ρGα+ 1

2
[~u]|Γ

α+1
2

(t)
.

We deduce that condition (5) can be written as

[
Σ
]
|Γ

α+1
2

(t)

· ~ηα+ 1
2

=
ρGα+ 1

2√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

[~u]|Γ
α+1

2
(t)

. (9)

Remark 2 The momentum interfaces conditions (9) naturally points out that there is
no jump in the stress at the interface Γα+ 1

2
(t) when either the velocity is continuous

or there is no mass transference between the layers (i.e. Gα+ 1
2

= 0), that occurs when

Γα+ 1
2
(t) is a material surface.

As we consider a vertical discontinuous profile, to approximate the second order
derivatives in z, we use a mixed formulation (see for example [19]). We introduce an

additional auxiliary unknown ~Q that satisfies the equation

~Q − ∂z~u = 0, with ~Q = (~QH , Qv). (10)

And to approximate ~Q, solution of (10), we approximate ~u by ~̃u, a P1(z) interpolation

such that ~̃u|z= 1
2
(z

α−
1
2
+z

α+ 1
2
) = ~uα.

For α = 1, ..., N − 1, the total stress writes

Σ±
α+ 1

2

= −pα+ 1
2
I + µ D±

α+ 1
2

, (11)

where pα+ 1
2

is the kinematic pressure and D±
α+ 1

2

are approximations of D(~u) = ∇~u+

(∇~u)
′

at Γα+ 1
2
. By the jump condition D±

α+ 1
2

must verify

µ
(
D+

α+ 1
2

− D−
α+ 1

2

)
· ~ηα+ 1

2
=

Gα+ 1
2√

1 +
∣∣∣∇xzα+ 1

2

∣∣∣
2

[
~u
]

|Γ
α+1

2
(t)

, (12)
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and by consistency, D±
α+ 1

2

must verify

1

2

(
D+

α+ 1
2

+ D−
α+ 1

2

)
= D̃α+ 1

2
, (13)

where D̃α+ 1
2

is an approximation of D(~u)|Γ
α+ 1

2

. Concretely, we set

D̃α+ 1
2

=




DH




~u+
H,α+ 1

2

+ ~u−
H,α+ 1

2

2




(
∇x

(
w+

α+1
2

+w−

α+1
2

2

))′

+ ~QH,α+ 1
2

∇x

(
w+

α+1
2

+w−

α+1
2

2

)
+ (~QH,α+ 1

2
)′ 2Qv,α+ 1

2




,

(14)

where ~Qα+ 1
2

= ~Q(~̃u) at Γα+ 1
2
.

Finally, we can solve the system defined by (12) and the equation resulting to
multiply scalarly (13) by vector ~ηα+ 1

2
. This way, we obtain the expression of D±

α+ 1
2

,

that verify the jump condition and the consistency condition on the interface. We can
solve it easily and we obtain

µ D±
α+ 1

2

· ~ηα+ 1
2

= µD̃α+ 1
2
· ~ηα+ 1

2
±

1

2

Gα+ 1
2√

1 +
∣∣∣∇xzα+ 1

2

∣∣∣
2

[~u]|Γ
α+1

2
(t)

.
(15)

Let us denote by {~τ i,α+ 1
2
}i=1,2 an orthogonal basis of the tangent space to Γα+ 1

2
(t).

Let us consider the following decomposition of the stress tensor, for α = 1, ..., N − 1,

Σ±
T,α+ 1

2

· ~ηα+ 1
2

= −p̃±
α+ 1

2

~ηα+ 1
2

+
2∑

i=1

c±
i,α+ 1

2

~τ i,α+ 1
2
, (16)

where p̃±
α+ 1

2

is the normal projection, corresponding to the dynamic pressure whereas

c±
i,α+ 1

2

stands for the tangential projections at the interface Γα+ 1
2
(t). Remark that the

mass interface condition (8) implies

w+
α+ 1

2

− w−
α+ 1

2

= (~u+
H,α+ 1

2

− ~u−
H,α+ 1

2

) · ∇xzα+ 1
2
. (17)

Using (3), we have that
~ηα+ 1

2
· [~u]|Γ

α+1
2

(t)
= 0. (18)

That is, the velocity jump [~u]|Γ
α+1

2
(t)

is tangent to the interface Γα+ 1
2
(t). We assume

that (9) still is verified by the approximated stress tensor given by (9). Multilplying
scalarly (9) by ~ηα+ 1

2
, and using (18) we obtain

([
ΣT

]
|Γ

α+1
2

(t)

· ~ηα+ 1
2

)
· ~ηα+ 1

2
= 0.

8



Then, from (16) we obtain the usual continuity of the normal projection of the stress

tensor: p̃+
α+ 1

2

= p̃−
α+ 1

2

, that is,

p̃α+ 1
2

:= p̃+
α+ 1

2

= p̃−
α+ 1

2

,

the dynamic pressure at the interface Γα+ 1
2
(t). Moreover, from (15), by taking into

account that ~ηα+ 1
2

is orthogonal to [~u]|Γ
α+1

2
(t)

we deduce

p̃α+ 1
2

= pα+ 1
2

+

(
µD̃α+ 1

2
· ~ηα+ 1

2

)
· ~ηα+ 1

2
. (19)

Moreover, assuming that ~τ 1,α+ 1
2

is parallel to the velocity jump [~u]|Γ
α+1

2
(t)

and that

~τ 2,α+ 1
2

is orthogonal to it, we deduce

c±
1,α+ 1

2

=

(
µD̃α+ 1

2
· ~ηα+ 1

2

)
· ~τ 1,α+ 1

2
±

1

2

Gα+ 1
2√

1 +
∣∣∣∇xzα+ 1

2

∣∣∣
2

∣∣∣ [~u]|Γ
α+1

2
(t)

∣∣∣.

and

c±
2,α+ 1

2

=

(
µD̃α+ 1

2
· ~ηα+ 1

2

)
· ~τ 2,α+ 1

2
.

That is, the term Gα+ 1
2
[~u]|Γ

α+1
2

(t)
in (15) implies that there is a discontinuity in the

tangential projection of the stress tensor (Σ±
T,α+ 1

2

·~ηα+ 1
2
) in the direction of the velocity

jump (i.e. c−
1,α+ 1

2

6= c+
1,α+ 1

2

). However, the normal projection remains continuous.

2.2 Vertical velocity

Let us notice that, requiring the horizontal velocities to be independent of z, naturally
sets a vertically linear profile for the vertical velocity in each layer. More precisely, as
~uα is a classic solution of the equations (1) in Ωα(t), for z ∈]zα− 1

2
, zα+ 1

2
[, the vertical

integration of the incompressibility equation leads to the equality

wα(t, x, z) = w+
α− 1

2

(t, x) − (z − zα− 1
2
)∇x · ~uH,α(t, x), for α = 1, ..., N.

In addition, from the conditions (8) at the interfaces, we express the quantities

w+
α+ 1

2

= (~uH,α+1 − ~uH,α) · ∇xzα+ 1
2

+ w−
α+ 1

2

. (20)

Using the horizontal velocities drawn from the model, the vertical velocities in the
layers are computed using the following algorithm:

• The quantity w+
1
2

is determined, from the given mass transference G 1
2
, through

the condition (8) at the bottom by

w+
1
2

= ~uH,1 · ∇xzB + ∂tzB − G 1
2
.
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• Then, for α = 1, ..., N and z ∈]zα− 1
2
, zα+ 1

2
[, we set





wα(t, x, z) = w+
α− 1

2

(t, x) − (z − zα− 1
2
)∇x · ~uH,α(t, x),

w+
α+ 1

2

= (~uH,α+1 − ~uH,α) · ∇xzα+ 1
2

+ w−
α+ 1

2

.
(21)

where
w−

α+ 1
2

= wα|Γα+1/2(t)
= w+

α− 1
2

− hα∇x · ~uH,α.

Then, the velocity vector ~u is a piecewise smooth function, where ~u(t, x, z)|Ωα(t) =
~uα(t, x, z) for α = 1, ..., N with

~uα(t, x, z) =

(
~uH,α(t, x), w+

α− 1
2

(t, x) − (z − zα− 1
2
)∇x · ~uH,α(t, x)

)′

, (22)

where w+
α− 1

2

(t, x) is computed using (21). Then, it is noteworthy that the layers depths,

the horizontal velocities and the pressure are the only unknowns of the system.
Moreover, observe that condition (20) in general cannot be verified if the vertical

velocity is continuous across the layers interfaces.

3 A particular weak solution with hydrostatic

pressure

In this Section we finish the construtcion of the model under the hypothesis of hydro-
static pressure. This means that

pα(t, x, z) = pα+ 1
2
(t, x) + ρg(zα+ 1

2
− z), (23)

with

pα+ 1
2
(t, x) = pS(t, x) + ρg

N∑

β=α+1

hβ(t, x). (24)

Here, the component pα+ 1
2

is the kinematic pressure at Γα+ 1
2
(t), that appears in (19),

and pS denotes the free surface pressure. Then, the unknowns of the systems are the
layer depths and the horizontal velocities.

As ~uα is a weak solution of the equations (1) in Ωα(t), let us begin by considering the
weak formulation of (1) in Ωα(t) for α = 1, ..., N . Assuming ~uα ∈ L2(0, T ;H1(Ωα(t))3),
∂t~uα ∈ L2(0, T ;L2(Ωα(t))3) and pα ∈ L2(0, T ;L2(Ωα(t))), a weak solution of Navier-
Stokes equations in Ωα(t) should verify

10







0 =

∫

Ωα(t)
(∇ · ~uα)ϕdΩ

∫

Ωα(t)
ρ~g · ~v dΩ =

∫

Ωα(t)
ρ∂t~uα · ~v dΩ +

∫

Ωα(t)
ρ
(
~uα · ∇~uα

)
· ~v dΩ

+

∫

Ωα(t)
µ
(
∇~uα + (∇~uα)

′

)
: ∇~v dΩ −

∫

Ωα(t)
pα ∇ · ~v dΩ

+

∫

Γ
α+ 1

2
(t)

((
Σ−

T,α+ 1
2

+ pα+ 1
2
I

)
· ~ηα+ 1

2

)
· ~v dΓ

−

∫

Γ
α−

1
2
(t)

((
Σ+

T,α− 1
2

+ pα− 1
2
I

)
· ~ηα− 1

2

)
· ~v dΓ,

(25)

for all ϕ ∈ L2(Ωα(t)) and for all ~v ∈ H1(Ωα(t))3.
We consider velocity-pressure pairs with the structure given by (6), that satisfy the

previous system with particular weak solutions that verify (25) for test functions such
that ∂zϕ = 0 and

~v(t, x, z) =
(
~vH(t, x), (z − zB)V (t, x)

)′

. (26)

where ~vH and V (t, x) are smooth functions that do no depend on z.

� Mass conservation.
We choose a scalar test function ϕ = φ(t, x) independent of z. Then, in general for a
weak solution ~u the mass conservation equation yields for all α = 1, ..., N ,

0 =

∫

Ωα(t)
(∇ · ~u)ϕdΩ

=

∫

IF (t)
φ(t, x)

{∫ z
α+ 1

2

z
α−

1
2

(
∇x · ~uH(t, x, z) + ∂zw(t, x, z)

)
dz

}
dx

=

∫

IF (t)
φ(t, x)

{
∇x ·

∫ z
α+ 1

2

z
α−

1
2

~uH(t, x, z) dz − ~u−
H,α+ 1

2

· ∇xzα+ 1
2

+ ~u+
H,α− 1

2

· ∇xzα− 1
2

+ w−
α+ 1

2

− w+
α− 1

2

}
dx.
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Moreover, noticing that ∂thα = ∂tzα+ 1
2
− ∂tzα− 1

2
, we obtain the equation

0 =

∫

IF (t)
φ(t, x)

{
∂thα + ∇x ·

(
hα ~uH,α

)
− ∂tzα+ 1

2

+ ∂tzα− 1
2
− ~uH,α · ∇xzα+ 1

2

+ ~uH,α · ∇xzα− 1
2

+ w−
α+ 1

2

− w+
α− 1

2

}
dx,

(27)

for all φ(t, .) ∈ L2(IF (t)).
Applying the equation (27) to ~u, and taking into account (8), we obtain the mass

conservation laws

∂thα + ∇x · (hα~uH,α) = Gα+ 1
2
− Gα− 1

2
, α = 1, ..., N. (28)

The quantity GN+ 1
2

corresponds to the mass exchange at the free surface. It should

be provided as data. This may corresponds, for instance, to rain effects. Otherwise it
can be set to zero. Also, the quantity G 1

2
which represents the mass exchange at the

bottom may not be null if the bottom is penetrable. It should also be provided as data.

� Momentum conservation.
We consider tests functions ~v ∈ H1(Ωα) verifying (26). We can develop the weak
formulation (25) taking into account this structure of ~v through some straightforward
calculations. In these computations, we perform an integration with respect to the
variable z and we identify each of the two components of the vector test functions.
However, the hydrostatic pressure framework allows to drop equations that correspond
to the vertical component. That is equivalent to identify the weak formulation for
function tests of the form (~vH , 0)′, with ~vH = ~vH(t, x) independent of z. Then, in
general for a weak solution ~u the horizontal momentum conservation equation yields,
for all α = 1, ..., N ,

0 =

∫

IF (t)
ρ~vH ·

{∫ z
α+ 1

2

z
α−

1
2

(
∂t~uH,α + ~uH,α · ∇x~uH,α − µ∇x ·

(
∇x~uH,α + (∇x~uH,α)

′)

+∇xpα(t, x, z)

)
dz

+

(√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2
)

(Σ−
T,α+ 1

2

+ pα+ 1
2
I) · ~ηα+ 1

2

−

(√
1 +

∣∣∣∇xzα− 1
2

∣∣∣
2
)

(Σ+
T,α− 1

2

+ pα− 1
2
I) · ~ηα− 1

2

}
dx

(29)

Applying the equation (29) to ~u, and taking into account (15), we obtain the
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horizontal momentum conservation laws, for α = 1, ..., N ,

0 = ρhα∂t~uH,α + ρhα(~uH,α · ∇x~uH,α)

− ∇x ·

(
µ hα

(
∇x~uH,α + (∇x~uH,α)

′
))

+ µ
(

~Kα+ 1
2
− ~Kα− 1

2

)

+
1

2
ρGα+ 1

2
(~uH,α+1 − ~uH,α) +

1

2
ρGα− 1

2
(~uH,α − ~uH,α−1)

+ ρghα∇xzα− 1
2

+ ρg




N∑

β=α+1

hβ


∇x(zα− 1

2
− zα+ 1

2
)

+ ρg∇x


hα

N∑

β=α+1

hβ


 + ρg∇x

(
h2

α

2

)

+ pS∇x(zα− 1
2
− zα+ 1

2
) + ∇x (hαpS) ,

(30)

where the interface transference term ~Kα+ 1
2

comes from the decomposition of the stress

tensor (15) at interface Γα+ 1
2

(see Subsection 2.1.2). We have,

~Kα+ 1
2

=

(√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2
)

[D̃α+ 1
2
· ~ηα+ 1

2
]H ,

being [ · ]H the horizontal components of the vector. Then,

~Kα+ 1
2

= DH




~u+
H,α+ 1

2

+ ~u−
H,α+ 1

2

2


 · ∇xzα+ 1

2
−


∇x




w+
α+ 1

2

+ w−
α+ 1

2

2






′

− ~QH,α+ 1
2
.

(31)
Rearranging the terms in (30), using (28) to get most of them in conservative form,

enables us to rewrite in each layer Ωα(t) for α = 1, ..., N

ρ∂t (hα~uH,α) + ρ∇x · (hα~uH,α ⊗ ~uH,α) − ∇x ·

(
µ hα

(
∇x~uH,α + (∇x~uH,α)

′
))

=
1

2
ρGα+ 1

2
(~uH,α+1 + ~uH,α) −

1

2
ρGα− 1

2
(~uH,α + ~uH,α−1)

− µ
(

~Kα+ 1
2
− ~Kα− 1

2

)
− ρghα∇x (zB + h) − hα∇xpS .

(32)

3.1 Final system of equations and the associated energy

We introduce the kinematic viscosities ν = µ
ρ and summarize here the final multilayer

system, for α = 1, ..., N ,
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∂thα + ∇x · (hα~uH,α) = Gα+ 1
2
− Gα− 1

2
,

∂t (hα~uH,α) + ∇x · (hα~uH,α ⊗ ~uH,α)

− ∇x ·

(
ν hα

(
∇x~uH,α + (∇x~uH,α)

′
))

=
1

2
Gα+ 1

2
(~uH,α+1 + ~uH,α) −

1

2
Gα− 1

2
(~uH,α + ~uH,α−1)

− ν
(

~Kα+ 1
2
− ~Kα− 1

2

)
− ghα∇x (zB + h) −

1

ρ
hα∇xpS.

(33)

with ~Kα+ 1
2

defined by (31).

Remark 3 Some relevant features of our model are the following:

• Vertical velocity: The vertical velocity plays a relevant role in our model, as it
appears in the expression of the stress tensor. This is crucial to accurately model
the normal momentum flux between layers.

• Momentum transference: We obtain that the momentum transference term can be
written as

~uH,α+ 1
2
Gα+1/2, with ~uH,α+ 1

2
=

~uH,α+1 + ~uH,α

2
.

In [8] an upwind definition of ~uH,α+ 1
2

in terms of the sign of Gα+1/2 is proposed,

~uH,α+ 1
2

=
~uH,α+1 + ~uH,α

2
−

1

2
sign(Gα+1/2)(~uH,α+1 − ~uH,α). (34)

Note that if we use this definition then

~uH,α+ 1
2
Gα+ 1

2
− ~uH,α− 1

2
Gα− 1

2
=

~uH,α+1 + ~uH,α

2
Gα+1/2 −

~uH,α + ~uH,α−1

2
Gα−1/2

−

( |Gα+ 1
2
|

2
(~uH,α+1 − ~uH,α) −

|Gα− 1
2
|

2
(~uH,α − ~uH,α−1)

)
.

Consequently, using the upwind velocity (34), yields an approximate solution
of the model defined by the hydrostatic Navier-Stokes equations plus the term
∂z(hα |G|∂z~uH), where G|z

α+ 1
2

= Gα+ 1
2
. It can be seen as a numerical viscosity

term.

To end this section, let us now derive the energy equation of the model.

Proposition 1 (Energy inequality)
For the multilayer system (33), we denote by

14



Eα :=
hα |~uH,α|

2

2
+ ghα

(
zB +

h

2

)
+

1

ρ
hαpS , (35)

the energy in the layer Ωα(t), for α = 1, ..., N . Then the model verifies the following
dissipative energy inequality,

∂t

N∑

α=1

Eα + ∇x ·

(
N∑

α=1

~uH,α

(
Eα + ghα

h

2

))

≤ −
N∑

α=1

ν hα

(
|∇x~uH,α|

2 + |∇x · ~uH,α|
2
)

+
h

ρ
∂t

(
pS + ρgzB

)
−

1

ρ

(
pS + ρg(zB + h) +

1

2
ρ |~uH,1|

2
)

G 1
2

− ν ~KN+ 1
2
· ~uH,N + ν ~K 1

2
· ~uH,1.

(36)

Proof: For α = 1, ..., N , inserting the first equation of the system (33) in the second
one, we obtain the equation

hα

(
∂t~uH,α + ~uH,α · ∇x~uH,α + ∇x

(
g(zB + h) +

1

ρ
pS

))

− ∇x ·

(
ναhα

(
∇x~uH,α + (∇x~uH,α)

′
))

=
1

2
Gα+ 1

2
(~uH,α+1 − ~uH,α) +

1

2
Gα− 1

2
(~uH,α − ~uH,α−1)

− ν
(

~Kα+ 1
2
− ~Kα− 1

2

)
.

(37)

Then we apply to the equation (37), a scalar product by ~uH,α and we multiply the first
equation of (33) by the quantity

|~uH,α|
2

2
+ g (zB + h) +

1

ρ
pS,

and next we sum their results. That leads to the equation
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∂t

{
hα

(
|~uH,α|

2

2
+ g

(
zB +

h

2

)
+

1

ρ
pS

)}
− ghα∂t (zB) + 1

2g (h∂thα − hα∂th) −
1

ρ
hα∂tpS

+ ∇x ·

{
hα

(
|~uH,α|

2

2
+ g (zB + h) +

1

ρ
pS

)
~uH,α

}

− ~uH,α ·

(
∇x ·

(
ναhα

(
∇x~uH,α + (∇x~uH,α)

′
))
)

=

(
g (zB + h) +

1

ρ
pS +

1

2
~uH,α+1 · ~uH,α

)
Gα+ 1

2

−

(
g (zB + h) +

1

ρ
pS +

1

2
~uH,α · ~uH,α−1

)
Gα− 1

2
− ν

(
~Kα+ 1

2
− ~Kα− 1

2

)
· ~uH,α.

We deduce the following energy equality per layer

∂tEα + ∇x ·

[
~uH,α

(
Eα + ghα

h

2

)]
+

1

2
g
(
h∂thα − hα∂th

)

− ~uH,α ·

(
∇x ·

(
ν hα

(
∇x~uH,α + (∇x~uH,α)

′
))
)

=

(
g (zB + h) +

1

ρ
pS +

1

2
~uH,α+1 · ~uH,α

)
Gα+ 1

2

−

(
g (zB + h) +

1

ρ
pS +

1

2
~uH,α · ~uH,α−1

)
Gα− 1

2

− ν
(

~Kα+ 1
2
− ~Kα− 1

2

)
· ~uH,α +

hα

ρ
∂t

(
pS + ρgzB

)
.

(38)

Taking into account that
∑N

α=1 hα = h, a sum of (38) from α = 1 to α = N completes
the proof. �

4 Numerical approximation

The beginning of this section is devoted to the closure of the model. We restrict our-
selves to a 2D flow (d = 2) and we re-write the model under the structure of an hy-
perbolic system with conservative components, nonconservative products and source
terms. To that end, we set the following hypothesis on the heights of the layers for the
sequel.
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Assumption 1 We consider layers having thickness proportional to the total height.
That is for α = 1, . . . , N, hα = lα h with lα a positive constant. Hence we have

N∑

α=1

lα = 1. (39)

Since the horizontal domain is actually a line here, in the sequel, we shall denote the
horizontal velocities ~uH,α merely by uα. From Assumption 1, summing the equations
(28) up to α = 1, ..., N , yields

Gα+ 1
2
− G 1

2
=

α∑

β=1

(∂thβ + ∂x(hβuβ))

and for the particular value α = N , since GN+ 1
2

= 0, we get the global continuity

equation

∂th + ∂x

(
h

N∑

β=1

lβuβ

)
= − G 1

2
. (40)

Next, from this global continuity equation, we notice that

Gα+ 1
2

= G 1
2

+

α∑

β=1

lβ
(
∂th + ∂x(huβ)

)

= G 1
2

+
α∑

β=1

lβ

(
∂x (huβ) −

N∑

γ=1

∂x (lγhuγ) − G 1
2

)
.

Therefore we can set

Gα+ 1
2

= (1 − Lα) G 1
2

+

N∑

γ=1

ξα,γ∂x(huγ), α = 1, . . . , N, (41)

where for α, γ ∈ {1, . . . , N}, we define Lα := l1 + · · · + lα and

ξα,γ :=

α∑

β=1

(δβγ − lβ)lγ =





(
1 − (l1 + · · · + lα)

)
lγ if γ ≤ α,

−(l1 + · · · + lα)lγ otherwise,

where δβγ is the standard Kronecker symbol. Thus, we explicitly obtain the mass trans-
ference across interfaces in terms of the velocites in the layers.

Remark 4 In light of (39) we have ξN,γ = 0 for all γ = 1, . . . , N . In addition, setting
ξ0,γ = 0 for all γ = 1, . . . , N , we notice that ξα,γ = ξα−1,γ + (δαγ − lα)lγ for all
α, γ = 1, . . . , N .
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Now, using Assumption 1 and the expressions (41), the equations (32) are rewritten as

lα∂t (huα) + lα∂x

(
hu2

α

)
− lα∂x (2ν h∂xuα)

+ lα∂x

[
h

(
1

ρ
pS + g

h

2

)]
− lα

1

ρ
pS∂xh

+

N∑

γ=1

1

2
[(uα + uα−1) ξα−1,γ − (uα+1 + uα) ξα,γ ] ∂x(huγ)

= − lαg h∂xzB − ν
(

~Kα+ 1
2
− ~Kα− 1

2

)

−
1

2
[(uα + uα−1) (1 − Lα−1) − (uα+1 + uα) (1 − Lα)] G 1

2
,

(42)

for α = 1, ..., N , where we set L0 = 0 and




~Kα+ 1
2

= 2 ∂xuα+ 1
2
∂xzα+ 1

2
− ∂xwα+ 1

2
− ~QH,α+ 1

2
,

uα+ 1
2

:=
u+

α+ 1
2

+ u−
α+ 1

2

2
and wα+ 1

2
:=

w+
α+ 1

2

+ w−
α+ 1

2

2
.

We introduce the variables qα = huα which denote the horizontal discharges in the
layers Ωα(t), for α = 1, ..., N . Therefore, from (40) and (42), we obtain the following
system:





∂th + ∂x

(
h

N∑

β=1

lβuβ

)
= − G 1

2
,

∂tqα + ∂x

(
q2
α

h
+ g

h2

2
+

1

ρ
pSh − 2 ν

(
∂xqα −

qα

h
∂xh

))
−

1

ρ
pS∂xh

+

N∑

γ=1

1

2hlα

(
(qα + qα−1) ξα−1,γ − (qα+1 + qα) ξα,γ

)
∂xqγ

= − g h∂xzB −
ν

lα

(
~Kα+ 1

2
− ~Kα− 1

2

)

−
1

2hlα

(
(qα + qα−1) (1 − Lα−1) − (qα+1 + qα) (1 − Lα)

)
G 1

2
.

(43)

Remark 5 From the definition,
(

~Kα+ 1
2
− ~Kα− 1

2

)
=

2 ∂xuα+ 1
2
∂xzα+ 1

2
− 2 ∂xuα− 1

2
∂xzα− 1

2
− ∂x(wα+ 1

2
− wα− 1

2
) −

(
QH,α+ 1

2
− QH,α− 1

2

)
.
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From the computation of the vertical velocity,

wα+ 1
2
− wα− 1

2
=

1

2
(w+

α+ 1
2

+ w−
α+ 1

2

− w+
α− 1

2

− w−
α− 1

2

)

=
1

2

(
2w−

α+ 1
2

+ (uα+1 − uα)∂xzα+ 1
2
− 2w+

α− 1
2

+ (uα − uα−1)∂xzα− 1
2

)

=
1

2

(
(uα+1 − uα)∂xzα+ 1

2
+ (uα − uα−1)∂xzα− 1

2
− 2hα∂xuα

)
.

Noticing that zα+ 1
2

= zB + Lα h, we get

(
~Kα+ 1

2
− ~Kα− 1

2

)
= ∂x(uα+1 + uα) ∂x(zB + Lα h) − ∂x(uα + uα−1) ∂x(zB + Lα−1 h) + ∂x(hα∂xuα)

−
1

2
∂x

(
(uα+1 − uα) ∂x(zB + Lα h)

)
−

1

2
∂x

(
(uα − uα−1) ∂x(zB + Lα−1 h)

)

−
(
QH,α+ 1

2
− QH,α− 1

2

)
.

(44)
However, we may develop the expression (44) to obtain

(
~Kα+ 1

2
− ~Kα− 1

2

)
= ∂2

x(hαuα) −
1

2
(uα+1 − uα−1) ∂2

xzB −
1

2
(Lαuα+1 + lαuα − Lα−1uα−1) ∂2

xh

+
1

2
∂x(uα+1 − uα−1) ∂xzB +

1

2
∂x(Lαuα+1 + lαuα − Lα−1uα−1) ∂xh

−
(
QH,α+ 1

2
− QH,α− 1

2

)
.

(45)
and we can set

QH,α+ 1
2

= 2
uα+1 − uα

hαlα + hα+1lα+1
.

�

The system (43) can be written in the more compact form

∂tw + ∂xF (w) + B(w)∂xw = S(w)∂xH + E(w), (46)

where w = (h, q1, q2, ..., qN )
′

∈ RN+1 is the unknown vector, F : RN+1 → RN+1 is a
regular vector function, B : RN+1 → MN+1(R) is a matrix function, where Mn(R) is
the space of real n×n matrices (n ∈ N∗), S,E : RN+1 → RN+1 are vectorial functions,
and H : RN+1 → R is a real scalar function. The form (46) constitutes a classic simpli-
fied model type for multiphase or multilayer flows in the literature. Hereafter, we exhibit
the algebraic expressions of the terms H, F (w) = (F α(w))α=0,1,...,N , S(w), E(w)
and B(w) = (Bα,β(w))α,β=0,1,...,N involved in (46): H = zB,
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F α(w) =





N∑

β=1

lβqβ if α = 0

q2
α

h
+ g

h2

2
− 2 ν

(
∂xqα −

qα

h
∂xh

)
+

1

ρ
pSh if α = 1, ..., N,

Sα(w) =





0 if α = 0

− gh if α = 1, ..., N,

Eα(w) =





− G 1
2

if α = 0

−
1

2hlα

(
(qα + qα−1) (1 − Lα−1) − (qα+1 + qα) (1 − Lα)

)
G 1

2

−
ν
(

~Kα+ 1
2
− ~Kα− 1

2

)

lα
if α = 1, ..., N

and

Bα,β(w) =





0 if (α, β) ∈ {0} × {0, 1, ..., N}

−
1

ρ
pS if (α, β) ∈ {1, ..., N} × {0}

1

2hlα

(
(qα + qα−1) ξα−1,β − (qα+1 + qα) ξα,β

)
if α, β = 1, ..., N

The equation (46) can be reformulated as

∂tw + A(w)∂xw = S(w)∂xH + E(w),

where A(w) = B(w) + J(w) with J(w) =
∂F (w)

∂w
the Jacobian matrix of F . The

matrix J(w) = (Jα,β(w))α,β=0,1,...,N ∈ M(N+1)(R) is given by

Jα,β(w) =





0 if (α, β) = (0, 0)

lβ if (α, β) ∈ {0} × {1, ..., N}

−
q2
α

h2
− 2 ν

qα

h2
∂xh + gh +

1

ρ
pS if (α, β) ∈ {1, ..., N} × {0}

2

h

(
qα + ν ∂xh

)
δαβ if α, β = 1, ..., N.
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The numerical approximation of this model is based on a standard finite volume method
combined with a two-step splitting procedure. The splitting consists in ruling out,
from the first step, the contribution of the source term E(w) in (46). The procedure
is detailed hereafter. In the first step, we subdivide the horizontal spatial domain
into standard computational cells Ii = [xi−1/2, xi+1/2], and then apply a finite volume
scheme for (46), where we exclude the contributions of the source term in E(w) by
subtracting it from the right-hand side. The resulting system has the form

W t + A
(
W
)
· W x = 0, (47)

where W is the concatenated vector W := (w,H)t ∈ Ω ⊂ RN+1. Solutions of (47) may
develop discontinuities and, due to the non-divergence form of the equations, the notion
of weak solution in the sense of distributions cannot be used. The theory introduced
by Dal Maso, LeFloch, and Murat [11] is followed here to define weak solutions. This
theory allows one to define the nonconservative product A(W ) · W x as a bounded
measure provided a family of Lipschitz continuous paths Ψ : [0, 1] × Ω × Ω → Ω is
prescribed, which must satisfy certain natural regularity conditions, in particular

Ψ
(
0;W L,W R

)
= W L, Ψ

(
1;W L,W R

)
= W R,

and

Ψ
(
s;W ,W

)
= W for all s ∈ [0, 1].

For example, a family of straight segments can be considered:

Ψ
(
s;W L,W R

)
= W L + s

(
W R − W L

)
, s ∈ [0, 1].

We consider here path-conservative numerical schemes in the sense defined by Parés in
[15]. Applied to the system (46), the scheme is of the form

w
n+1/2
i = wn

i −
∆t

∆x

(
Fn

i+1/2 −Fn
i−1/2 +

1

2

(
Bn

i+1/2 + Bn
i−1/2

))
, (48)

where the expressions Fn
i+1/2 and Bn

i+1/2 are defined as follows:

Fn
i+1/2 := 1

2

(
F (wn

i ) + F (wn
i+1)

)

− 1
2Qn

i+1/2

(
wn

i+1 − wn
i − Λn

i+1/2S
n
i+1/2

(
Hn

i+1 − Hn
i

))
,

Bn
i+1/2 = Bn

i+1/2

(
wn

i+1 − wn
i

)
− Sn

i+1/2

(
Hn

i+1 − Hn
i

)
. (49)

We recall that (cf. [16, 18]) if Ψ denotes a family of Lipschitz continuous paths used
to design the path-conservative scheme (48), for a given matrix C, we denote by CΨ

its Roe linearization and set

Cn
i+1/2 = CΨ

(
W n

i+1,W
n
i

)
.

The matrix Λ(w) represents an approximation of the inverse of
A(w) = J(w) + B(w), where J(w) is the Jacobian matrix of the flux vector F (w)
(see above). In addition, Qn

i+1/2 is the numerical viscosity matrix whose definition
identifies the particular finite volume method used. For example, the Roe method is
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defined by Qi+1/2 = |Ai+1/2|, where Ai+1/2 is the Roe matrix defined in the sense of
Toumi (see [16, 18]). An interesting alternative to Roe method for system with a great
number of unknowns are PVM (“polynomial viscosity matrix”) methods (see [9]). At
this step, we obtain from (48) the intermediate solution

w
n+1/2
i =

(
h

n+1/2
i , q

n+1/2
i

)t
,

where

q
n+1/2
i =

(
(q1)

n+1/2
i , . . . , (qN )

n+1/2
i

)t
.

Next, in the second step, we complete the numerical procedure by including the con-
tribution of the source term expressed by the matrix E(w) in the right-hand side of
(46). More precisely, we merely resolve the following implicit update:

wn+1
i = w

n+1/2
i + ∆t E

(
wn+1

i

)
. (50)

Remark 6 We recall that the source terms matrix E(w) represents the contributions
of the frictions at the interfaces together with the mass flux exchange at the bottom
interface. Hence if we assume a non penetrable bottom layer and neglect those fric-
tions, the source terms matrix E(w) vanishes and then the splitting process is no more
necessary. Therefore we actually meet, in this case,

wn+1
i = w

n+1/2
i .

5 Numerical tests

We present in this section some simulations with the model designed in the previous
section. We start by a variation of a standard test simulating different stationary flow
regimes and next, we compare the model with a finite element Navier-Stokes model,
computed with the FreeFem++ library [14]. In both tests the objective is to analyze
the accuracy of the computation of the vertical velocity. We also test the ability of our
model to reproduce re-circulations of the flow past an obstacle.

5.1 Test 1: A variant of a classic test

In this test we set as initial condition water solution at rest over a bump. Then, we
impose a boundary condition until it reaches a stationary solution. For the shallow
water equations it is a classic test, by imposing a constant inflow (see [4, 8, 10, 13]).
The multilayer approach allows us to introduce a variation of this test, by considering
a constant in time inflow with a linear vertical profile. Moreover, this approach allows
us to observe the influence of the vertical viscosity effects in the solution. With this
aim first we neglect the viscosity effects, i.e. ν = 0, and secondly we set ν = 10−3.

Actually we consider a channel of horizontal length L = 20 m, which we discretize
with n = 400 cells in the horizontal direction. The vertical direction is discretized using
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N = 10 horizontal layers with a CFL number equal to 0.8 and we neglect frictions at
the free surface and the bottom. The bottom elevation is given by

zB(x) = max
(
0, 0.2 − 0.05(x − 10)2

)
.

The initial conditions are given by

h(t = 0) = 0.33 − zB and q(t = 0) = 0,

The boundary conditions are

∂xh = 0; qα = 0.36
m (α − 1); inflow (x = 0)

h = 0.33; ∂xqα = 0; outflow (x = L)

In Figure 2 we present the solution at t = 15, 20 and 150 s, for the free surface and
the velocity vectors when ν = 0. Moreover, we compare the maximum of the absolute
value of the vertical component of the velocity when it is computed via the algorithm
proposed in this paper and via a simple post-processing of the incompressibility condi-
tion (i.e. to consider (21) with w−

α+ 1
2

= w+
α− 1

2

). We observe that some small differences

appear between both approximations near the bump for t = 150 s. In the pictures the
head of the vectors are proportional to its norm.

In Figure 4 we compare the evolution of the free surface and the velocity vectors
at t = 15, 20 and 150 s when ν = 10−3. First we observe a large influence on the
discontinuity that appears in the free surface for ν = 0. Second, we observe that for
ν = 10−3 the multilayer approach allows to recover a small recirculation of the fluid at
the right of the bump (see Figure 3).

Figures 4(a), 4(c) and 4(e) correspond to the velocity vectors obtained with the
algorithm proposed in this paper. Figures 4(b), 4(d) and 4(f) correspond to the veloc-
ity vectors whose vertical component is obtained by a simple post-processing of the
incompressibility condition. We observe that the direction and length of the velocity
vectors near the bump depend on the algorithm to compute the vertical velocity. Let
us remark that the horizontal component of the velocity vectors in both cases are the
same, so the differences appear in their vertical component. It can be observed for
example when we compare the zoom corresponding to figures 4(e) and 4(f).

In Figure 5 we compare the maximum absolute value of the vertical component of
the velocity computed with both algorithms. In Figure 5(d) we present the maximum
absolute value of the difference between these two approximations of the vertical ve-
locity component. We observe that for this test near the bump there exist significant
differences between them.

5.2 Test 2: Comparison with Navier-Stokes

The main objective of this test is to compare the vertical velocity computed by a post-
processing of the incompressibility condition with the one obtained using the algorithm
we propose. We consider a simple test to compare both type of approximations of the
vertical velocity with the one obtained by a standard finite element solution of the
Navier-Stokes equations. First, we consider the evolution of the multilayer model until a
stationary solution. Then, we set the stationary domain to compute the corresponding
stationary solution as an approximation of the full N-S equation. We compute this
stationary solution with a Taylor-Hood P2−P1 finite element formulation implemented
in the FreeFem++ library [14].
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(a) Model. t = 15 s.
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(b) Comp. max(|w|) t = 15 s.
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(c) Model. t = 20 s.
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(d) Comp. max(|w|) t = 20 s.
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(e) Model. t = 150 s.
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(f) Comp. max(|w|) t = 150 s.

Figure 2: Test 1. Left: Free surface evolution and velocity vectors for ν = 0. Right: Com-
parison of max(|w|), when computed with the model and by a post-processing of the incom-
pressibility condition. 24
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(b) ν = 10−3, t = 150 s.

Figure 3: Test 1. Zoom at the right of the bump, t = 150 s. Left: Velocity vectors for ν = 0.
Right: Velocity vectors for ν = 10−3

We consider a channel of horizontal length L = 3 m, which we discretize with
n = 200 cells in the horizontal direction in the multilayer model. The vertical direction
is discretized using N = 10, N = 20 and N = 30 layers with a CFL number equal
to 0.8. We test various kinematic viscosity coefficients and we present here results for
ν = 5.10−4, 10−3 m2 · s−1. In the multilayer model, as the Navier-Stokes equations,
frictions are only induced by the viscous term as depicted in Section 2. Actually, the
viscous term of the model involves a vertical variation of the velocity at the interfaces.
Here, we neglect frictions at the free surface and at the bottom.

The bottom elevation is defined by

zB(x) =





0 if x ≤ 1,

0.5 (x − 1) if 1 ≤ x ≤ 2,

0.5 if x ≥ 2.

As boundary conditions, we consider open vertical boundaries and we impose, at the
left, a fixed horizontal velocity which is linear in the z direction.

q(0, t) = q̄
2 z

h(0, t)
.

We have simulated several values of the mean inflow q̄ with initial conditions given by

h(t = 0) = 1m − zB and q(t = 0) = 0m2 · s−1.

The fluid domain (in figure 6(a)) resulting at the stationary state of the multilayer
system stands for the domain data of the FreeFem++ Navier-Stokes (NS-ff++) simu-
lation. Since the horizontal velocity of the model is constant per layer, we compare the
values with the FreeFem++ horizontal velocity first, evaluated at the middle point of
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Figure 4: Test 1. Free surface evolution and velocity vectors for ν = 10−3. Left: Model, Right:
velocity vectors corresponding to a vertical velocity computed via a simple post-processing
of the incompressibility condition.
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(a) Comp. max(|w|) t = 15 s.
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(b) Comp. max(|w|) t = 20 s.
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(c) Comp. max(|w|) t = 150 s.
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Figure 5: Test 1: Maximum and minimum values of w. Comparison between the values
obtained with the proposed model and a simple post-processing of the incompressibility
equation.
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(a) Fluid domain (b) Velocity vector

Figure 6: Fluid domain and velocity vector at the stationary regime for a viscosity ν =
5.10−4 m2 · s−1 and a mean inflow q̄ = 1 m2 · s−1. The viscous term is considered at the
bottom.
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(a) x = 0.495 m
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(b) x = 1.26 m
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(c) x = 1.74 m
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(d) x = 2.475 m

Figure 7: Comparing NS-ff++ simulation pressure with theoretical hydrostatic pressure for
viscosity ν = 10−3 m2 · s−1 and mean inflow q̄ = 0.5 m2 · s−1.
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the layer and next, averaged in the layer. The vertical velocity of the model is com-
pared with the vertical velocity of the FreeFem++ Navier-Stokes and the standard
vertical velocity computed with a postprocessing technique using the divergence-free
condition and the kinematic condition at the bottom (see [8]). We make these com-
parisons at some selected positions x along the channel. We pick out positions along
the slope and we present here the results for two x = 1.26 and x = 1.74m (See Figure
6(a)). First we have checked and established that FreeFem++ simulations are in a hy-
drostatic framework by comparing the pressure value with the theoretical expression
p(x, z) = p(x, zB + h) + ρg(zB + h − z). In Figure 7, we show an example of results
for the pressure at four positions x = 0.495, 1.26, 1.74, 2.475m. Actually we plot the
pressure curves together with their pointwise difference. We can conclude that for this
test we have a hydrostatic pressure, that allow us to compare the numerical results cor-
responding to the approximation of the full N-S equations by finite element methods
and the multilayer aproaches.

We may observe (figures 8 - 12) a quite satisfactory approximation of the full
Navier-Stokes solution by the model proposed in this work. For small values of z the
differences can correspond to the form in which boundary conditions are imposed in
the Freefem++ finite element code for Navier-Stokes and the Finite Volume one for
the multilayer model. Especially, we notice that the vertical velocity drawn from the
model is more accurate than the one obtained by the usual post-processing technique.
Let us recall that the vertical velocity from the model is piecewise linear in z per layer.
That explains the features we see on the pictures where we notice decreasing jumps at
the interfaces as the number of layers increases. Actually, in the pictures of the vertical
velocities, we plot the values of the post-processing at the middle altitude of each layer
while for the model, we plot the full range of values together with an emphasizing of
the values at the layer’s middle altitude.

Let us comment the numerical results obtained with viscosity ν = 5.10−4 m2 · s−1

and mean inflow q̄ = 0.5m2 ·s−1. In Figure 8 we compare the numerical results obtained
for the horizontal velocities at x = 1.26 and x = 1.74 m. In Figure 9 the numerical
results for the vertical velocity are presented.

If we compare the multilayer models for N = 10, N = 20 and N = 30 (Figure 8 for
the horizontal velocities and Figure 9 for the vertical velocity) we can observe some
differences between the numerical results corresponding to N = 10 and N = 20. There
is a smaller difference when we compare the numerical results corresponding to N = 20
and N = 30. Let us remark that to increase the number of layer is equivalent to do a
mesh refinement in vertical. Then, is satisfactory to obtain a number of layers N from
which the solution is nearly refinement-independent. So, with the purpose of brevity
in the exposition we will only comment the numerical results corresponding to N = 20
in the forthcoming cases.

The first conclusion is that the horizontal velocities are rather accurate (see Figure
8). For the vertical velocity (Figure 9) we observe that the numerical results obtained
with the algorithm that we propose in this work have also a good agreement with the
ones obtained using the finite element solution of the full model. However, the vertical
velocity obtained by a simple post-processing of the incompressibility condition is far
from the finite element one.

In figures 9(a) and 9(b) we point out the position of the jumps in the vertical profile
of our multilayer model. Note that if we neglect the discontinuity in these interfaces
then we obtain the same vertical profile as with the post-processing approach. So we
remark the necessity to compute this jump in the profile of the vertical profile by the
normal flux jump condition.

We obtain a similar conclusion when we consider some other values of ν and q̄. In
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Figure 10 we show the horizontal and vertical velocity profiles at x = 1.26and x = 1.74
for ν = 5.10−4 m2 · s−1 and q̄ = 1m2 · s−1. Figure 11 corresponds to ν = 10−3 m2 · s−1,
q̄ = 0.5m2 · s−1. Figure 12 corresponds to ν = 10−3 m2 · s−1, q̄ = 1m2 · s−1.
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(a) N = 10, x = 1.26
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(b) N = 10, x = 1.74
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(c) N = 20, x = 1.26
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(d) N = 20, x = 1.74

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2
Horizontal velocities (at x = 1.26)

Altitude points z
i

V
el

oc
ity

 v
al

ue
 u

 

 

NS−ff++−ptwise
NS−ff++−mean
Model

(e) N = 30, x = 1.26
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(f) N = 30, x = 1.74

Figure 8: Horizontal velocities at the positions x = 1.26 m and x = 1.74 m with viscosity
ν = 5.10−4 m2 · s−1 and mean inflow q̄ = 0.5 m2 · s−1.
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(a) N = 10, x = 1.26
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(b) N = 10, x = 1.74
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(c) N = 20, x = 1.26
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(d) N = 20, x = 1.74
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(e) Comp. N = 20 and N = 30, x = 1.26
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Figure 9: Vertical velocities at the positions x = 1.26 m and x = 1.74 m with viscosity
ν = 5.10−4 m2 · s−1 and mean inflow q̄ = 0.5 m2 · s−1.
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(b) Horizontal Vel. x = 1.74
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Figure 10: Horizontal and Vertical velocities at the positions x = 1.26 and x = 1.74 with
viscosity ν = 5.10−4 m2 · s−1 and mean inflow q̄ = 1 m2 · s−1. (N = 20).
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(b) Horizontal Vel. x = 1.74
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(c) Vertical Vel. x = 1.26
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(d) Vertical Vel. x = 1.74

Figure 11: Horizontal and Vertical velocities at the positions x = 1.26 and x = 1.74 with
viscosity ν = 10−3 m2 · s−1 and mean inflow q̄ = 0.5 m2 · s−1. (N = 20).
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(b) Horizontal Vel. x = 1.74
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Figure 12: Horizontal and Vertical velocities at the positions x = 1.26 and x = 1.74 with
viscosity ν = 10−3 m2 · s−1 and mean inflow q̄ = 1 m2 · s−1. (N = 20).

6 Conclusion

In this work, we derive a multilayer system considering hydrostatic pressure. The gov-
erning equations of the system are similar to the one exhibited and analyzed in [8],
assuming hydrostatic pressure too and using therein an asymptotic development tech-
nique. However the source terms, namely the momentum transmission through the
artificial interfaces, and the vertical velocities are handled in a quite different way.
Also the leading velocities at those interfaces are taken into account in different ways.
Actually, we use here a particular approximation of the weak formulation of Navier-
Stokes equations. This approximation consists in piecewise constant horizontal velocity
and piecewise linear vertical velocity in the vertical direction. Moreover, from the nor-
mal flux jump conditions, involved by the weak formulation, we clarify the normal and
tangential components of the stress at the interfaces. In the numerical test section we
have shown that it can exist a large difference between the vertical component of the
velocity when it is approximated by a simple post-procesing of the incompressibility
condition or with the algorithm proposed in this paper. Finally, in the numerical test
section we have shown, for a simple test, that the multilayer model produces accurate
results in comparison with the approximation computed by a standard finite element
method applied to the full NS equations.
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