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Abstract. Remote sensing based on imagery has traditionally been the
main tool used to extract land uses and land cover (LULC) maps. How-
ever, more powerful tools are needed in order to fulfill organizations re-
quirements. Thus, this work explores the joint use of orthophotography
and LIDAR with the application of intelligent techniques for rapid and
efficient LULC map generation. In particular, five types of LULC have
been studied for a northern area in Spain, extracting 63 features. Subse-
quently, a comparison of two well-known supervised learning algorithms
is performed, showing that C4.5 substantially outperforms a classical
remote sensing classifier (PCA combined with Naive Bayes). This fact
has also been tested by means of the non-parametric Wilcoxon statisti-
cal test. Finally, the C4.5 is applied to construct a model which, with a
resolution of 1 m?, obtained precisions between 81% and 93%.
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1 Introduction

Remote sensing has been a very important tool to study the natural environment
for long. It has been applied to lots of different tasks such as species control
[1] or landscape control [2]. These techniques are of the utmost importance to
reduce costs since they increase the products development speed, helping thus the
experts to make decisions. Due to the remote sensing relevance, many researchers
have invested much time to find how to develop new algorithms to improve the
quality of the results.

One of the most important products in remote sensing is land use and land
cover maps (LULC). They are used to develop policies in order to protect spe-
cially interesting areas from both environmental and economic points of view.
The automatic generation is a very desirable feature since they are generated
for covering large zones. To efficiently solve this problem, supervised learning
is usually applied from a small quantity of data previously classified by human
experts [3]. Hence, multispectral images, hyperspectral images and orthophotog-
raphy have been widely used in many applications although they have their own

%Garcfa—Pedrajas et al. (Eds.): IEA/AIE 2010, Part I, LNAI 6096, pp. 378 2010.



Using Remote Data Mining on LIDAR and Imagery Fusion Data 379

limitations, e.g., the most useful information is usually on the visible spectrum
band which is easily affected by shadows. The apparition of new sensors has
caused that a new research line appears, which tries to overcome imagery prob-
lems fusing them with new technologies. LIDAR (LIght Detection And Ranging)
is one of these new sensors. It is an optical technology that measures properties
of scattered light in the near infrared to find range and/or other information
of a distant target. The method to determine distance to an object or surface
is to use laser pulses. The range to an object is determined by measuring the
time delay between transmission of a pulse and detection of the reflected signal.
In this way, LIDAR is able to extract the heights of objects and its fusion with
imagery boosts any remote sensing technique so that it has been exploited with
several purposes [], [5].

Fusion among sensors increases data size. In this context, intelligent tech-
niques are a must if an automatical process is required and particulary, remote
data mining is a very suitable tool to deal with problems associated to big size
data. With this in mind, some authors have started to use intelligent techniques
like artificial neuronal networks (ANN) [6] or support vector machines(SVM) [7].
But the most used method is still based on classical statistics methods and con-
cretely, the traditional principal component analysis (PCA) and the application
of maximum likelihood principle [g], i.e., a Naive Bayes classifier.

In this work, a supervised method to obtain LULC automatically is shown and
a comparison between two techniques for supervised learning in remote sensing
is established with two purposes:

— Show the quality of models when intelligent techniques are applied on LIDAR
and imagery fusion data.

— Show the importance of using well-known machine learning algorithms in the
remote sensing context that outperforms most classical statistics procedures.

The rest of the paper is organized as follows. Section 2 provides an exhaustive
description of the data used in this work. Section 3 describes the methodology
used, highlighting the feature selection and model extraction processes. The
results achieved are shown in Section 4 and, finally, Section 5 is devoted to
summary the conclusions and to discuss future lines of work.

2 Data Description

The study area is located in the north of Galicia (Spain) as depicted in Figure[ll
It is basically composed by a small residential zone and a forest zone, whose
dominant species is Fucalyptus Globulus. In geomorphologic terms, in spite of
the altitudes varying between 230 and 370 meters, the relief of the zone is quite
accentuated.

The LIDAR data were acquired in November 2004 with Optech’s ALTM 2033
from a flight altitude of 1500 meters. The LIDAR sensor works with a laser
wavelength of 1064 nm and the beam divergence was set to 0.3 mrad. The
pulsing frequency was 33 kHz, the scan frequency 50 Hz, and the scan angle
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Fig. 1. Study area location and digital elevation model (DEM) used in this work

10 degrees. The first and last return pulses were registered. The complete study
area was flown in 18 strips and each strip was flown three times, which gave an
average measuring density of about four points per square meter.

A digital elevation model (DEM) was extracted from the LIDAR data using an
adaptative morphologic filter method [9] to rectify object heights. The resulted
DEM is illustrated in Figure [l Moreover, a previous orthophoto is used to
extract features from the visible spectrum band. It was taken with a resolution
of 0.5 meters of the same zone and with similar atmospheric conditions to the
moment of LIDAR acquisition flight.

Leaning on the orthophoto and with the help of previous knowledge about
the study zone, a training base formed by 5570 pixels was selected (5% out of
total, approximately) and classified into 5 different classes: road, farming land or
bare earth, middle vegetation, high vegetation and buildings. In addition, in the
same previous study, 317 specially interesting pixels were selected and classified
to make up a hold-out test base according to the traditional testing in remote
sensing.

3 Methodology

In order to classify LULC, a general method based on remote data mining tech-
niques is applied. First, a raster matrix is built with a resolution of 1 meter.
Every raster cell represents a squared meter pixel of the study area which con-
tains several different measures extracted from LIDAR data (based on signal
intensity, distribution and height) and images (visible spectrum bands). Then, a
feature selection phase reduces the total number of features to build a supervised
learning model. Later, an intelligent technique is used to generate a model. In
this work, two different classifiers are used to make a comparison: a C4.5 decision
tree [10] and a classical principal components analysis (PCA) combined with a
Naive Bayes classifier which uses the maximum likelihood principle, whose com-
bination was first used in [II]. An overall view of the whole classification process
will be described in detail in the following subsections.
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3.1 Feature Selection

All generated pixels have 63 different features based on LIDAR data and visible
spectrum bands, which are in the geographical zone limited by the pixel itself.
These features can be classified as intrapixel or interpixel. The intrapixel features
are those which are calculated with data found within a pixel, whilst the inter-
pixel features are those which are characterized as defining a relation between
each pixel and its eight adjacent neighbors. With these features, characterization
of the terrain is attempted, formalizing the visual differences or morphologies of
the different classes. Most of them have been extracted from literature [I12] and
classical remote sensing applications. However, some are original of this work
like SNDVI and EMP.

The Normalized Difference Vegetation Index (NDVI) is a simple numerical
indicator that can be used to analyze remote sensing measurements and assesses
whether the target being observed contains live green vegetation or not. In Equa-
tion [IL NDVT is calculated from the red band value (R) and the near infrared
band value (NIR) which is not in the visible spectrum.

NIR-R
NDVI_NIR+R ()
In this work, a new attribute SNDVI (Simulated NDVI) has been generated
using the intensity (I) from LIDAR as near-infrared value which approximates
the real NDVI value, which cannot be calculated since no NIR information is
available in LIDAR data. This parameter is calculated as follows:
I-R
SNDVI = I+ R (2)
LIDAR point density is another important characteristic to be analyzed. EMP
feature counts the number of empty pixels that surrounds the current pixel in
a eight-adjacent neighborhood. It helps to detect water areas because most of
laser energy does not reflect on water and responses from flooded zones are not
registered by the sensor.

Features from pixels in the training set are submitted to a process of selection.
In this case, a correlation based feature subset selection (CFS) has been applied.
CFS evaluates the worth of a subset of attributes by considering the individual
predictive ability of each feature along with the degree of redundancy among
them. Subsets of features that are highly correlated with the class while having
low intercorrelation are preferred. The 21 final selected predictor variables after
CFS execution are listed in Table Il

3.2 Model Extraction

The next phase consists in executing the classification algorithms. Two kinds of
approaches are proposed to extract the model: the C4.5 algorithm [I0] and a
combination between a PCA and a Naive Bayes classifier [11]. The two models
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Table 1. Twenty-one candidate predictor variables after the feature selection phase

Variable Description Type
SNDVIMIN Simulated NDVI minimum Intrapixel
SNDVIMEAN Simulated NDVI mean Intrapixel
SNDVISTDV  Simulated NDVI standard deviation  Intrapixel
IMIN Intensity minimum Intrapixel
IMAX Intensity maximum Intrapixel
IMEAN Intensity mean Intrapixel
HMIN Height minimum Intrapixel
HMAX Height maximum Intrapixel
HMEAN Height mean Intrapixel
HSTD Height standard deviation Intrapixel
HCV Height coefficient of variation Intrapixel
PEC Penetration coefficient Intrapixel
PCT31 Percentage third return out of first return Intrapixel
IRVAR Intensity red band variance Intrapixel
IRMEAN Intensity red band mean Intrapixel
IGVAR Intensity green band variance Intrapixel
IGMEAN Intensity green band mean Intrapixel
IGSKE Intensity green band skewness Intrapixel
IGKURT Intensity green band kurtosis Intrapixel
SLP Slope Interpixel
EMP Empty LIDAR surrounding pixels Interpixel

are extracted by means of the data mining environment WEKA [I3]. For the
C4.5 execution, the J48 implementation from Weka is selected. In both cases,
the method is executed with the parameters set as default by WEKA.

Although both methods have similar computational costs, there are significant
differences when each one expresses the model. On the one hand, decision trees
are more intuitive for non-experts users and for this reason has been widely
used in many different industrial and engineer applications and even in remote
sensing. On the other hand, when the training set is more complex, generated
trees are more difficult to read because branches and nodes are increased in
number whilst a PCA and Naive Bayes approach maintains a more constant
number of attributes and levels.

Bearing in mind, an analysis of functional aspects such as the precision on
the results is necessary to know which one is more suitable for this study zone.

4 Results

In order to evaluate how much improvement can be achieved with each intelli-
gent technique application, two different kinds of testing were carried out. First,
a cross-validation on training data. Second, a hold-out testing on specially in-
teresting pixels which is the common testing in classical remote sensing. The
training base and the test set were extracted as referred in Section 2
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4.1 Comparison of Methods

After the execution of the 10-fold cross-validation tests, it can be stated that the
C4.5 decision tree obtains better results. In Tables Pland Bl the total and partial
precisions as well as the kappa index of agreement (KIA) obtained for the two
techniques on the 5570 training pixels are shown. The two techniques obtain
high accuracy, but the application of the decision tree produces an improvement
of almost fifteen percentile points. Furthermore, the potential of decision trees
to indicate which features in the original set are more interesting —which allows
a new automatic selection of attributes— must be highlighted.

It is well-known that just a cross-validation result or a hold-out test and
a rank method among techniques is not enough to confirm than a technique
is better than another or viceversa, even when many authors have used this
technique in their studies. For this reason, to evaluate the statistical significance
of the measured differences in algorithm ranks, a procedure suggested in several
works [I4] for robustly comparing classifiers across multiple datasets is used. In
this work, there is only one dataset because LIDAR data has high costs to be

Table 2. Cross-validation summary of the tests on C4.5 and confusion matrix

User class \ Roads Farming Middle High  Buildings

C4.5 lands vegetation vegetation
Roads 219 13 13 2 0
Farming lands 9 2111 81 8 0
Middle vegetation 10 80 1389 s 14
High Vegetation 6 8 61 1130 3
Buildings 1 0 13 10 312
Producer’s accuracy 0.898 0.954 0.892 0.921 0.948
User’s accuracy  0.887  0.956 0.885 0.935 0.929
Total accuracy 0.927
KIA 0.897

Table 3. Cross-validation summary of the tests on PCA 4 Naive Bayes and confusion
matrix

User class \ Roads Farming Middle High  Buildings

PCA + NV lands vegetation vegetation
Roads 212 13 10 1 11
Farming lands 4 2073 107 25 0
Middle vegetation 10 639 696 169 56
High Vegetation 2 7 144 1034 21
Buildings 23 0 8 14 291
Producer’s accuracy 0.845 0.759 0.721 0.832 0.768
User’s accuracy  0.858 0.938 0.443 0.856 0.866

Total accuracy  0.773
KIA 0.677
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obtained. So, the training set is randomly split in five subsets. Then, a 10-fold
cross-validation is made for every subset. At the end, there are 50 measures for
every algorithm and then, the procedure is carried out. Hence, it is possible to
use average ranks that provide a fair comparison of the algorithms analyzing the
50 measures, revealing that, on average, C4.5 ranks first. Given the measured
average ranks, it is possible to apply a Wilcoxon test to check whether the ranks
are significantly different to consider them different populations or not (which
is the expected under the null hypothesis). Leaning on a statistical package
(MATLAB), p value for the Wilcoxon test has resulted on a value of 6.7266e — 18
so the null hypothesis is rejected having found that the ranks are significantly
different (at o = 0.09).

4.2 Model Precision

Once the model developed by C4.5 is extracted, it is applied to every pixel.
Then, a new empirical test is done. In this way, a checking process on the test
set (317 specially interesting pixels) is carried out and classes which they pertain
are evaluated. In Tables [ and [ it is possible to observe the results of the test
through the confusion matrix, producer and user’s accuracies, and the kappa
estimator.

Table 4. Hold-out summary on C4.5 and confusion matrix

User class \ Roads Farming Middle High  Buildings

C4.5 lands vegetation vegetation
Roads 14 1 0 0 0
Farming lands 2 106 9 0 0
Middle vegetation 3 5 56 15 0
High Vegetation 1 0 10 65 8
Buildings 1 0 3 1 17
Producer’s accuracy 0.667 0.946 0.718 0.802 0.68

User’s accuracy 0.9333 0.906 0.709 0.774 0.773
Total accuracy 0.814
KIA 0.7457

Since the pixels in the test set had been selected for the special difficulty
shown to be classified, both methods decrease their global precision. Anyway,
C4.5 improves the results by PCA and Naive Bayes in almost 8% which is still
a remarkable difference. Moreover, some classes decrease their accuracy dramat-
ically when using PCA and Naive Bayes approach which is inadmissible when
dealing with so few classes.

In Figure[2 the resulted global classification next to the training base and the
initial input data (orthophoto and LIDAR intensity image) for a C4.5 decision
tree model are shown. As it can be appreciated, the LULC map accuracy is very
high and its automatic generation is much faster than a manual creation by an
expert.
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Table 5. Hold out summary on PCA + Naive Bayes and confusion matrix

User class \ Roads Farming Middle High  Buildings

PCA + NV lands vegetation vegetation
Roads 14 1 0 0 0
Farming lands 1 101 13 2 0
Middle vegetation 1 24 29 24 1
High Vegetation 0 1 7 74 2
Buildings 4 0 0 3 15

Producer’s accuracy 0.7 0.795 0.591 0.718 0.833
User’s accuracy  0.933  0.863 0.367 0.881 0.682
Total accuracy  0.735

KIA 0.632

Fig. 2. From up to down and left to right: original orthophoto, training set, LIDAR
intensity image and final result. Classes are colored as: urban areas in red, roads in
dark grey, farming lands or naked earth in yellow, medium vegetation in light green
and high vegetation in dark green.

5 Conclusions and Future Work

An approach based on LIDAR and imagery fusion data as well as the application
of intelligent techniques have been tested to classify land coverage of a typical
area of the north of Spain in this work. The objective was to evaluate data fusion
capabilities and to establish a comparison between two different techniques to
classify the fusion data: a classical statistics principal components analysis and
a Naive Bayes classifier (based on the maximum likelihood principle) and C4.5,
which is a well-known machine learning decision tree generator.
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The developed method is based on a pixel-oriented focus which classifies raw
data in five different classes. In this way, a series of features were calculated from
fusion data (some of them are original in this work), which are associated with
each pixel. Thereafter, an attribute selection method was applied to reduce the
set of variables to consider. Lastly, the selected classifier extracted a model.

A thorough study was performed to select which algorithm was the best be-
tween the two possible ones. The tests carried out selected the algorithm C4.5,
which generated a decision tree, as the model with the best fit. The results be-
tween 82% and 93% of accuracy depending on the kind of test applied showed
that C4.5 outperforms its rival in between eight and fifteen percentile points.
They also have demonstrated that different types of terrain can be characterized
using intelligent techniques in a multi-staged process using LIDAR and image
data and, moreover, robust and well-known machine learning algorithms are
perfectly suitable to improve classification results in remote sensing data better
than more classical methods in our study zone conditions.

In relation to future works, two problems arise. The first problem is the im-
provement of the classification method itself, as some problems have already been
detected. This can be solved using several techniques joined in ensembles. The
second one is related to dependence of results on training set. Some authors have
detected problems when a classifier is not trained by well-balance or real data
and its effects on the test phase. In addition, outliers (salt and pepper noise) are
a great problem due to the imprecise training set definition or intrinsic problems
on data, e.g., variability of LIDAR intensity depending on the number of returns
per pulse. These problems are much more common than it would be desirable.
There are two possible ways to explore in order to solve this problem. On the
one hand, the easier option is to introduce an instance selection phase. On the
other hand, migrating from a supervised learning to a semi-supervised learning
can be another more interesting option in which the system helped by evolu-
tive computation would extract its own training data just taking the number of
classes from the user.
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