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Abstract—A new approach is presented in this work with the
aim of predicting time series behaviors. A previous labeling of
the samples is obtained utilizing clustering techniques and the
forecasting is applied using the information provided by the
clustering. Thus, the whole data set is discretized with the labels
assigned to each data point and the main novelty is that only
these labels are used to predict the future behavior of the time
series, avoiding using the real values of the time series until the
process ends. The results returned by the algorithm, however, are
not labels but the nominal value of the point that is required to be
predicted. The algorithm based on labeled (LBF) has been tested
in several energy-related time series and a notable improvement
in the prediction has been achieved.

I. INTRODUCTION

Time series analysis is often associated with the discovery

and use of patterns –such as periodicity, seasonality or cycles–

and prediction of future values, specifically termed forecasting
in the time series context.

Therefore one may wonder what are the differences between

traditional time series analysis and data mining on time series.

One key difference is the large number of series involved in

time series data mining. Due to the sheer amount of data

involved, a highly automated modeling approach becomes

indispensable in such applications. As shown in Box and

Jenkins [2] and a vast volume of time series literature, tra-

ditional time series analysis and modeling tend to be based

on non-automatic and trial-and-error approaches. When a

large number of time series are involved, development of

time series models using a non-automatic approach becomes

impractical. In addition to automatic model building, discovery

of knowledge associated with events known or unknown a

priori can provide valuable information toward the success of

a business operation.

In this paper, real-life cases are addressed in order to show

the need for and the benefits of data mining on time series.

The recent deregulation in electricity markets has turned this

sector into a free competence scenario in which producers,

investors, traders or qualified buyers can participate. Thus,

the price of the electricity is determined on the basis of this

buying/selling system. As a consequence, a will of obtaining

optimized bidding strategies has arisen in the electricity-

producer companies [22], needing both insight into future

electricity prices and assessment of the risk of trusting in

predicted prices.

The uncertainty of the evolution of the electricity prices is

a widely studied topic. However, forecasting electricity prices

is a specially difficult task because unlike demand time series,

prices time series present nonconstant mean and variance and

significant outliers. In that way, forecasting techniques are

acquiring significant importance. Actually, several forecasting

techniques have already been used to predict miscellaneous

electricity time series.

Indeed, Conejo et al. [5] used the wavelet transform and

ARIMA models [2] to predict the day-ahead electricity price.

The authors decompose the available historical price series

in four constitutive series by using the wavelet transform

[12]. Then, specific ARIMA models are applied to three of

these series (the fourth one is the main component of the

transform) and the results are anti-transformed, providing the

final forecasting. In [11] two new mixed models were proposed

to obtain the forecasts of the prices in two different prediction

horizons. The first one, forecasts electricity prices for each of

the 24 hours of the next day using ARIMA models. They used

the model estimated for one hour with the whole previous

weeks to make a prediction. The second model computes

the predictions for either working days or weekends using

Bayesian Information Criteria.

Equally noticeable was the approach proposed by García et

al. [10] in which a forecasting technique based on a GARCH

model [8] was presented. Hence, this paper focuses on day-

ahead forecast of electricity prices with high volatility periods.

First, they apply a logarithmic transformation in order to

smooth the volatility effect. Secondly, the observation of the

autocorrelation helped the authors to make the selection of a

specific model that deals with the seasonality of the data and

the time-varying nature of volatility.

Recently, a mixing of Artificial Neural Networks [18] and

Fuzzy Logic [14] was proposed in [1]. With reference to

the neural network presented, it had an inter-layer and a

feed-forward architecture consisting of three layers, where the

hidden nodes of the proposed Fuzzy Neural Network perform

the fuzzification process. Another neural network approach can

be found in [3] where multiple combinations were evaluated.

These combinations included networks with different number

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.129

453

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.129

453



of hidden layers, different number of units in each layer and

different types of transfer functions.

An adaptive non-parametric regression approach was han-

dled in [25]. The multivariate adaptive regression splines

technique [9] is basically an adaptive piece-wise regression

approach. This method had already been used in other predic-

tives and data mining applications. However, it is in this work

where this technique has been firstly and successfully used for

electricity market price forecasting purposes.

A modification of the Nearest Neighbors methodology [7]

is proposed in [23]. To be precise, the approach weights the

nearest neighbors so that the forecasting is improved.

The occurrence of spike prices (price that is significantly

higher than its expected value) is an usual peculiarity as-

sociated to price time series. With the aim of dealing with

this feature, the authors in [26] proposed a data mining

framework based on both support-vector machines [6] (SVM)

and probability classifier.

Li et al. proposed a forecasting system immersed in a grid

environment in [15]. In this paper, a fuzzy inference system,

adopted due to its transparency and interpretability, and time

series methods are proposed for day-ahead electricity price

forecasting.

Despite the variety of data mining techniques used in order

to perform the prediction of the prices, none of them are based

only on the labels generated by using clustering techniques.

The novel and main contribution of this paper is, therefore, a

new algorithm that only uses these labels to predict the future

behavior of a time series, avoiding using the real values of

the time series until the process ends. Hence, this work tackle

the problem in a framework based on non-supervised learning,

which will enhance the prices prediction accuracy, providing

a new procedure to perform forecasts. Moreover, all the data

sets analyzed are available on-line in order to facilitate the

comparison of the results obtained.

The rest of the paper is organized as follows. Section 2

introduces the proposed methodology and the LBF algorithm

is presented, providing a method to apply in time series of

any nature. Section 3 shows the results obtained by the LBF

approach in electric energy markets of Spain, Australia and

New York for the whole year 2006, giving a measure of

the quality of them. In Section IV comparisons between the

proposed method and other techniques are shown. Finally,

Section V expounds the conclusions achieved and gives clues

for future works.

II. THE PROPOSED METHODOLOGY

The proposed methodology is divided in two phases clearly

differentiated. In a first step, a clustering technique is per-

formed and, secondly, the phase of forecasting is applied

using the information provided by this clustering. The LBF

forecasting algorithm is focused on predicting samples framed

in a time series, either one-dimensional or multi-dimensional,

previously labeled with clustering techniques. By using this

strategy, two advantages are enjoyed. From one side, it re-

duces the dimensionality of the data with the resulting time

processing decrease. As soon as the clustering is applied, the

algorithm only processes the number of cluster –the label–

assigned to the samples, ignoring if they had more than one

feature. On the other hand, the complexity of the algorithm

is drastically reduced insofar as the computation process is

directly proportional to the dimensionality of the data.

The LBF method allows predicting more than one sam-

ple because it is implemented with a close loop that feeds

the sample-ahead prediction back in the data set, in order

to predict the following sample. This feature is especially

useful when the horizon of prediction has to cover various

samples. Figure 1 shows the basic idea behind the proposed

methodology.

A. Data normalization

The first task to be completed is the normalization of the

data. It can be assumed that the prices increase all along the

year following a tendency in accordance with the intra-annual

inflation. That is, the original trend is suppressed from the

initial data; otherwise it could muddle up the results. The

transformation applied is:

pj ← pj

1
N

∑N
i=1 pj

(1)

where pj is the price of the j − th hour of the day and N the

number of samples considered per day. In this case, N = 24
since each sample represents one hour of the day.

B. Clustering technique

At this point the data has already been conveniently pre-

processed and cleared. Clustering techniques are, now, going

to be applied to label time series.

Given the data base of hourly prices the clustering problem

consists of identifying K groups or clusters such that the prices

curves of the days belonging to a cluster are similar between

them and disimilar to the prices curves of the days belonging

to other clusters, according to a distance measure.

As a consequence, the dimensionality of the data base is

drastically reduced from its initial 24 features (equivalent to

the 24 hours of the day) to only one dimension (the label of

the cluster which the day belongs). This effect can be observed

in Figure 2.

To achieved this challenge, two questions have to be an-

swered: which clustering technique has to be chosen? and, if

it is appropriate, how many clusters has to be created?

These two topics has widely been discussed in the literature

[24]. Nevertheless, it seems that there is not an unique answer

because it depends on many subtle factors.

Hard or fuzzy clustering are the two main branches of non-

supervised classification techniques that can be used. Once the

data are prepared, a clustering technique is applied in order

to label each daily electricity price curve. The discussion of

choosing one technique or another can be found in [17], in

which the well-known K-means algorithm was the optimum

method to classify this kind of data set.
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Fig. 1. Illustration of the proposed methodology. The prediction stage is further detailed.

Fig. 2. Assigning one label for each day.

However, the K-means algorithm requires that the user

provides the number of clusters to be created. For this reason,

the silhouette function [13] was used to decide in how many

groups the original data set has to be split. The silhouette
function provides a measure of the quality of the separation

between the clusters obtained by using the K-means algorithm.

In an object i belonging to the cluster Ck, the average

dissimilarity of i to all other objects of Ck is denoted by

ck(i). Analogously, in cluster Cm, the average dissimilarity of

i to all objects of Cm is called dis(i, Cm). After computing

dis(i, Cm) for all clusters Cm �= Ck, the smallest one is

selected as follows,

cm(i) = min{dis(i, Cm)},∀m such that Cm �= Ck. (2)

This value represents the dissimilarity of the object i to its

neighbor cluster. Thus, the silhouette values, silh(i) are given

by the following equation:

silh(i) =
ck(i) − cm(i)

max{ck(i), cm(i)} (3)

The silh(i) can vary between −1 and +1, where +1
denotes clear cluster separation and −1 marks points with

questionable cluster assignment. If cluster Ck is a singleton,

then silh(i) is not defined and the most neutral choice is

to set silh(i) = 0. The objective function is the average of

silh(i) over the number of objects to be classified, and the

best clustering is reached when the above mentioned function

is maximized.
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Fig. 3. LBF algorithm.

C. The LBF algorithm
Given the hourly prices recorded in the past, up to day d,

the forecasting problem aims at predicting the 24 hourly prices

corresponding to day d+1.
Let Pi ∈ R24 be a vector composed of the 24 hourly energy

prices corresponding to a certain day i

Pi = [p1, p2, . . . , p24] . (4)

Let Li be the label of the prices of the day i obtained

as a previous step to the forecasting by using a clustering

technique. Let Si
W the subsequence of labels of the prices of

the W consecutive days, from day i backward, as follows,

Si
W = [Li−W+1, Li−W+2, . . . , Li−1, Li] (5)

where the length of the window, W , is a parameter to be

determined.
The LBF algorithm first searches the subsequences of labels

which are exactly equals to Sd
W in the data base, providing

the equal subsequences set, ES, defined by this equation,

ES =
{

set of indexes j such that Sj
W = Sd

W

}
(6)

In case of not finding any subsequence in data base equal to

Sd
W , the procedure searches the subsequences of labels which

are exactly equals to Sd
W−1. That is, the length of the window

composed of the subsequence of labels is decreased.
According to the LBF approach, the 24 hourly prices of

day d + 1 are predicted by averaged the prices of the days

succeeding those in ES. That is,

Pd+1 =
1

size(ES)
·

∑
j∈ES

Pj+1 (7)

where size(ES) is the number of elements belonging to the

set ES. Afterwards, LBF algorithm outputs need to be de-

normalized to generate the desired forecasted values.

This procedure is detailed in Figure 3.

In case of a long-term prediction, in which more than one

forecasted sample is required, the following tasks have to be

carried out. First of all, the real values of the predicted sample

are linked to the whole data set. Second, the clustering process

is repeated with the enlarged data set and, finally, the window

size is re-calculated and the prediction step is performed (to

see Figure 1).

D. Selecting the size of the window

The previous clustering generates a sequence of labels

associated to every day. Now, a subsequence of labels is

taken into consideration for further steps; concretely, if the

day d + 1 has to be predicted, the sequence of labels Sd
W =

[Ld−W+1, Ld−W+2, . . . , Ld−1, Ld] is extracted from the data

set and it is used as a pattern of search, where W is the length

of this subsequence or window.

This stage is, perhaps, the most critical of the whole process

insofar as a wrong value for W may affect deeply in the rest of

the forecasting. The selection of W depends on the case under

study but it can be systematically tuned. Thus, it is compulsory

to perform a training phase to find an adequate value for W
before applying the LBF approach. This step is illustrated in

Figure 4.
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Fig. 4. Optimal window length.

The optimal number of labels contained in the window that

will be used as a pattern of search to find all equal subse-

quences of labels in data base (parameter W ) is determined

minimizing the forecasting error when the LBF method is

applied to the training set.

Mathematically, this means to find the value of W that

minimizes the following function,∑
d∈TS

|P̂d+1 − Pd+1| (8)

where P̂d+1 are forecasted prices for day d + 1, according

to the LBF method, Pd+1 are actual recorded prices and TS
refers to the training set. Notice that, according to (7), Pd+1

is an implicit function of the discrete variable W . Hence, the

application of standard mathematical programming methods

is not possible when searching for W . In practice, W is

assigned successive integer numbers (W = 2, 3, . . .) until a

local minimum is found.

III. RESULTS

The first goal to be fulfilled is to find those time series

whose prediction have relevance. This work is focused on

predicting electricity price time series including clustering

techniques as a previous task. In order to prove that the

algorithm works properly over any kind of data set, several

public electricity prices time series have been considered. To

be precise, the methodology described above has been applied

to the electricity prices of Spanish [19], Australian [16] and

New York [20] markets.

This section is structured as follows. First, the LBF has to

be trained in order to produce accurate predictions and, for

this reason, the election of both W and K is discussed here.

Second, the accuracy of the predictions has to be somehow

validated. Thus, some quality parameters are presented. Third,

the prediction of the year 2006 is provided.

A. Training the LBF

In this subsection the number of clusters to be generated,

K, as well as the length of the window, W , that has to be

searched all along the time series, is presented. This step has

to be repeated every time the kind of the time series changes.

First of all, the number of clusters K has to be chosen

and, for this purpose, a subsequence of twelve months is

considered. From all these twelve months, eleven are used

for training the algorithm and the 12-th is utilized in order to

TABLE I
PERIODS USED TO CALCULATE PARAMETERS K AND W .

Market Training period Evaluated on

Spanish Market Dec 2001 - Oct 2002 Nov 2002
Australian Market May 2002 - Mar 2003 Apr 2003
New York Market Feb 2004 - Dec 2004 Jan 2005
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Fig. 5. The mean value of silhouette when varying K for the three markets.

make predictions. Table I summarizes the periods used in the

three time series analyzed.

According to the methodology proposed in [17], the silhou-

ette function is applied to these three time series. Figure 5

shows the variation of the mean silhouette value with relation

to the number of clusters, K. When the curves reach their

higher values, it can be stated that the corresponding K value

(X axis) is the one that generates the best clusters possible,

that is, the intra-cluster distance is minimized and the inter-

cluster is maximized. As it can be appreciated, the number of

clusters selected were K = 4, K = 3 and K = 5 for the

Spanish, Australian and New York markets, respectively. The

Figures 6, 7 and 8 illustrate the silhouette curves obtained

when the Spanish, Australian and New York Markets are

evaluated respectively with the above mentioned values of K.

As the number of clusters is already decided, the next step

consists in selecting the optimal length of the window W .
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C
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Fig. 6. Silhouette function when K = 4 in the Spanish Market.
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Fig. 7. Silhouette function when K = 3 in the Australian Market.
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Fig. 8. Silhouette function when K = 5 in the New York Market.

Thus, this step is focused on finding the W that obtains the

minimum prediction error.

Therefore, it is required to evaluate the performance of

the LBF algorithm when W varies. Table II shows how the

prediction error varies in accordance with the number samples

considered in the window. A 100% error means that such a

long sequence was not found when K clusters were considered

in the training set. Finally, the W that allows a lower prediction

error is the value chosen for further forecasting on real data.

From the observation of the Table II, it can be concluded that

the lengths of the windows that have to be used are W = 5,

W = 6 and W = 3 for the Spanish, Australian and New

York electricity markets respectively. The results of training

the LBF are summarized on Table III.

TABLE III
NUMBER OF CLUSTERS K AND LENGTH OF THE WINDOW W

PARAMETERS FOR THE THREE ELECTRICITY PRICE TIME SERIES.

Electricity Price Market K W

Spanish 4 5
Australian 3 6
New York 5 3

B. Parameters of quality.

To evaluate the accuracy of the LBF approach in forecasting

time series different criteria could be used. However, the most

relevant parameters which have to be taken into consideration

are:

• Mean relative error to p̄ (MRE).

MRE = 100 · 1
N

N∑
h=1

| p̂h − ph |
p̄

(9)

where

p̄ =
1
N

N∑
h=1

ph (10)

p̂h and ph are the predicted and current electricity prices

at hour h respectively, p̄ is the mean price for the period

of interest (a day or a week in this work) and N is the

number of predicted hours. Note that, the mean price is

used in the denominator of (9) to avoid the effect of prices

close to zero.

• Mean squared error (MSE)

MSE =
1
N

N∑
h=1

(p̂h − ph)2 (11)

• Standard deviation of relative error (σMRE).

σMRE =

√√√√ 1
N

N∑
h=1

(eh − ē)2 (12)

where

eh =
p̂h − ph

p̄
(13)

and

ē =
1
N

N∑
h=1

eh (14)

C. Results of forecasting year 2006

In this subsection the results obtained when the LBF algo-

rithm was applied into the three different markets is provided.

Precisely, Tables IV, V and VI show the MRE, MSE and

σMRE produced in the Spanish, Australian and New York

markets when the year 2006 was taken into consideration.

Figure 9 illustrates the best prediction curve obtained for

the Spanish market in the year 2006 in cents of Euro per

KWHr (cE/KWHr). It took place for 23rd June and its MRE

was 3.10%. On the contrary, Figure 10 references the worst

prediction. It took place the 8th May and its MRE was 9.39%.

It is important to remark that the Australian market shows

their information structured in different areas. Thus the Na-

tional Electricity Market in Australia is comprised of five

jurisdictions: Queensland, New South Wales, Victoria, Tasma-

nia and South Australia. The results in Table V refers to the

Queensland Market.

Figure 11 illustrates the best prediction curve obtained

for the Australian market in the year 2006 in dolars per

MWHr ($/MWHr). It took place for 12th May and its MRE
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TABLE II
PREDICTION ERROR PERFORMED BY THE LBF ALGORITHM ON THE TEST SETS.

Electricity Price Market W=1 W=2 W=3 W=4 W=5 W=6 W=7 W=8 W=9 W=10

Spanish Market (K = 4) 10.32% 8.44% 8.21% 4.39% 2.23% 2.89% 100% 100% 100% 100%
Australian Market (K = 3) 9.58% 7.91% 6.26% 6.17% 7.33% 5.81% 6.04% 9.12% 100% 100%
New York Market (K = 5) 7.09% 5.98% 3.27% 6.98% 4.45% 13.20% 10.31% 100% 100% 100%

TABLE IV
PREDICTION ACCURACY OF THE LBF ALGORITHM FOR THE YEAR 2006

IN THE SPANISH ELECTRICITY MARKET.

Month MRE MSE σMRE

January 7.26% 0.34 0.25
February 4.93% 0.45 0.19
March 5.88% 0.33 0.22
April 3.62% 0.37 0.18
May 8.11% 0.45 0.21
June 3.76% 0.21 0.24
July 4.30% 0.35 0.23

August 5.37% 0.37 0.34
September 6.41% 0.37 0.31
October 7.89% 0.41 0.29

November 8.30% 0.46 0.40
December 8.02% 0.43 0.36

Average 6.15% 0.38 0.27

TABLE V
PREDICTION ACCURACY OF THE LBF ALGORITHM FOR THE YEAR 2006

IN THE AUSTRALIA’S NATIONAL ELECTRICITY MARKET.

Month MRE MSE σMRE

January 5.58% 2.31 1.34
February 8.59% 6.42 3.24
March 7.84% 5.87 2.98
April 9.92% 6.27 3.90
May 12.85% 9.12 4.03
June 22.04% 24.54 12.34
July 17.11% 22.76 10.58

August 11.71% 8.34 5.08
September 8.23% 6.23 2.45
October 7.66% 5.01 2.89

November 6.76% 4.81 1.94
December 6.42% 3.82 2.01

Average 10.39% 8.79 4.40

was 3.66%. On the contrary, Figure 12 references the worst

prediction. It took place the 20th July and its MRE was

65.60%.

Figure 13 illustrates the best prediction curve obtained for

the New York market in the year 2006 in dolars per MWHr

($/MWHr). It took place for 8th July and its MRE was 2.76%.

On the contrary, Figure 14 references the worst prediction. It

took place the 12th May and its MRE was 8.89%.

IV. COMPARING THE LBF PERFORMANCE WITH OTHER

TECHNIQUES

A comparison between the results obtained with the LBF

method and many other approaches is provided in this section,

demonstrating that LBF approach improves all existing tech-

niques used in this area. Thus, in order to validate somehow

the accuracy of the proposed algorithm, it has been applied

to specific periods of time in which others authors evaluated

their own approaches.

TABLE VI
PREDICTION ACCURACY OF THE LBF ALGORITHM FOR THE YEAR 2006

IN THE NEW YORK INDEPENDENT SYSTEM OPERATOR.

Month MRE MSE σMRE

January 4.45% 5.01 4.32
February 5.53% 4.56 2.34
March 6.30% 9.04 6.42
April 4.94% 6.78 2.18
May 7.59% 12.26 4.56
June 3.34% 5.67 3.72
July 3.93% 5.89 2.86

August 5.37% 4.74 3.56
September 6.24% 8.17 3.04
October 7.43% 9.98 5.53

November 5.19% 8.34 4.44
December 6.04% 7.30 3.98

Average 5.53% 7.31 3.91
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Fig. 9. Best prediction reached for the Spanish electricity prices market.

The Spanish electricity price market has been widely ana-

lyzed. Many authors have proved their own novel approaches

in the year 2002 and, as a consequence, the literature offers

multiples results in this year. The LBF algorithm is compared

with the four most recently approaches published: ARIMA

[5], Neural Networks [3], Mixed Models [11] and Weighted

Nearest Neighbors [23]. Finally, it is also compared with the

Naïve Bayes classifier [21]. As it can be appreciated in Table

VII, the proposed method has improved all the MRE rates.

The authors in [11] also forecasted a week of the year 2000.

The comparative MRE rates are shown in Table VIII.

The prices in the Australia’s National Electricity Market
have also been predicted in [26]. It is remarkable that this

market presents an especial behavior since many spot prices

are observed. Despite the authors in [26] have developed

techniques based on support-vector machines in order to deal

with this particular days, the LBF algorithm does not make

any assumption about the nature of the days to be predicted,
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TABLE VII
COMPARISON OF THE MRE PROVIDED BY LBF, ARIMA, NEURAL NETWORKS, NAÏVE, WNN AND MIXED MODELS.

Week Naïve Neural Networks ARIMA Mixed Models WNN LBF
18th–24th Feb 2002 7.68% 5.23% 6.32% 6.15% 6.01% 5.98%

20th–26th May 2002 7.27% 6.36% 6.36% 4.46% 5.99% 4.51%

19th–25th Aug 2002 27.30% 11.40% 13.39% 14.90% 11.23% 9.11%

18th–24th Nov 2002 19.98% 13.65% 13.78% 11.68% 11.59% 10.07%

Average 15.56% 9.16% 9.96% 9.30% 8.71% 7.42%
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Fig. 10. Worst prediction reached for the Spanish electricity prices market.
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Fig. 11. Best prediction reached for the Australian electricity prices market.

insofar it uses unsupervised learning and, consequently, no a

priori information is known about data.

The MRE supplied in Table IX are about, precisely, these

days with spike prices in the year 2004.

As for the New York electricity price time series, the

TABLE VIII
MRE FOR AUGUST 25th–31st 2000 IN THE SPANISH MARKET.

Day ARIMA Mixed Models LBF
Day 1 4.30% 4.80% 3.74%
Day 2 7.99% 7.30% 6.91%
Day 3 4.57% 5.40% 3.45%
Day 4 10.81% 4.60% 5.21%
Day 5 6.12% 5.10% 4.48%
Day 6 17.34% 14.90% 9.63%
Day 7 6.05% 7.20% 4.81%

Average 8.17% 7.04% 5.46%

0

1000

2000

3000

4000

5000

6000

1 3 5 7 9 11 13 15 17 19 21 23 

Hour

P
ric

e 
in

 $
/M

W
H

r

Real price Forecasting

Fig. 12. Worst prediction reached for the Australian electricity prices market.
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Fig. 13. Best prediction reached for the New York electricity prices market.

authors in [4] compared some forecasting algorithms with their

own approach. They applied manifold-based dimensionality

reduction to electricity price curve modeling. Hence, they

demonstrated that it exists a low-dimensional manifold rep-

resentation for the day-ahead price curve in the New York

electricity market.

The results in Table X stand for the MRE of one week-ahead

TABLE IX
MRE FOR SOME DAYS IN JUNE 2004 IN THE AUSTRALIAN MARKET.

Day (2004) ARIMA SVM LBF
5th June 32.31% 18.09% 16.72%

17th June 29.09% 13.31% 8.31%

20th June 33.73% 17.11% 14.23%
21st June 24.18% 19.20% 18.93%

Average 29.82% 16.93% 14.55%
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Fig. 14. Worst prediction reached for the New York electricity prices market.

TABLE X
PREDICTION ACCURACY OF THE LBF FOR THE YEAR 2005 IN THE NEW

YORK INDEPENDENT SYSTEM OPERATOR.

Month Naïve ARIMA STR LBF
Feb 2005 15.84% 8.14% 7.37% 6.99%
Mar 2005 10.06% 5.58% 5.45% 6.02%
Apr 2005 12.39% 6.11% 6.58% 6.12%
May 2005 5.83% 7.28% 6.06% 4.83%
Jun 2005 31.78% 9.67% 9.72% 5.37%
Jul 2005 17.49% 7.48% 7.61% 8.04%
Aug 2005 13.02% 5.98% 5.43% 3.51%
Sep 2005 14.67% 7.19% 7.48% 6.91%
Oct 2005 9.68% 6.37% 6.38% 5.68%
Nov 2005 18.74% 5.87% 6.10% 6.03%
Dec 2005 27.86% 8.52% 8.79% 7.01%
Jan 2006 15.42% 10.50% 8.25% 6.85%

Average 16.07% 7.39% 7.10% 6.11%

electricity price forecasting for each second week of the year

2005. The STR column corresponds to the results obtained by

the structural model proposed in [4].

V. CONCLUSIONS

In this paper, a new forecasting algorithm has been proposed

to predict real-world time series. As previous step to the

prediction, a clustering technique to label 24-dimensional time

series samples has been used and the main novelty lies on the

using of only the labels obtained by the clustering to forecast

the future behavior of the time series, avoiding using the real

values of the time series until the process ends. The algorithm

has been successfully applied in electricity prices time series

of Spanish, Australian and New York markets, improving the

results of the existing techniques nowadays.

Future work is focussed in tuning the model with a dy-

namical length of the window and in the relaxation of the

set ES searching subsequences similar in a percentage as an

alternative to exactly equal subsequences.
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