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ABSTRACT

The uniqueness of weak solutions of the primitive equations with Dirich-
let boundary conditions at the bottom is an open problem even in the two
dimensional case. The aim of this paper is to prove the uniqueness of weak
solutions when we replace the Dirichlet boundary condition at the bottom by
a friction condition. With this bottom boundary condition at the bottom, we
establish an additional regularity for the vertical derivative of the horizontal
velocity which allows us to conclude.

Keywords. Navier-type boundary conditions, primitive equations, unique-
ness.
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1 Introduction

This paper is devoted to the proof of the uniqueness of weak solutions of
the primitive equations in two space dimensions, with a traction by wind
at the surface and the friction condition at the bottom derived in [2]. The
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three dimensional version of these anisotropic equations is widely used in
geophysics and the primitive equations have been extensively studied from
the mathematical point of view starting the works by J.-L. Lions, R. Temam
and S. Wang, see for instance [8] and [9]. The interested reader is referred
for example to [1], [3], [6] and [13].

The equations are obtained from the anisotropic Navier-Stokes equations
by an asymptotic analysis as the aspect ratio 6 = depth/width of the domain
goes to 0. This asymptotic analysis has been recently done in [2] with an
anisotropic Navier-type condition at the bottom and a traction condition
by wind at the surface. A Navier-type boundary condition for the primitive
equations has been obtained. We will use this boundary condition to establish
the uniqueness in space dimension two.

With an homogeneous Dirichlet boundary condition at the bottom, the
existence of a weak solution has been obtained in [8], by means of a Galerkin
approximation, for three dimensional domains without beaches. In [5], a
“weak/strong” uniqueness result with this kind of boundary conditions is
proved. This result is in the same spirit as the result for the three dimensional
Navier-Stokes equations, see [11], where a “weak/strong” uniqueness result is
given, see also [12]. For results concerning the incompressible Navier-Stokes
equations, we refer the interested reader to [10].

The uniqueness of weak solutions of the Navier-Stokes equations in space
dimension two is well known, see [7]. On the contrary, the question of unique-
ness of weak solutions of the primitive equations is still an open problem,
even in two dimensional domains, see [6] for the question in a coupled sys-
tem. The reader interested in a review on energy equality and uniqueness
questions related to Navier-Stokes is referred to [4] page 22 and the references
cited therein.

Here we consider the non standard boundary condition at the bottom for
the two dimensional primitive equations established in [2]. This boundary
condition corresponds to a vorticity-velocity condition. By this way we are
able to give, to the best of our knowledge, the first uniqueness result for
“weak” solutions of primitive equations in two space dimensions assuming
that the initial data are regular with respect the vertical variations.

The paper is organized as follows: In Section 2 we recall the primitive
equations in two space dimensions and the Navier-type boundary condi-
tion obtained in [2]. In Section 3, we give some definitions, hypothesis and
anisotropic inequalities that we will use frequently in the sequel. The weak
formulation related to the system, a weak existence theorem established in
2] and the main results are given in Section 4. In Section 5, we give an
outline of the proof of the main Theorem. Section 6 is devoted to the regu-



larity of the pressure and finally, in Section 7, we establish the existence of
a weak-vorticity solution which implies the uniqueness result.

2 Primitive equations and boundary condi-
tions

Let us consider the domain € of IR%:
Q={(x,2) :x €s,—h(x) <z <0},

where the horizontal section s is an open interval and A is a non negative
continuous function on 5 vanishing on 0s. The boundary of 2 is 002 =
T, UL, UOL, where the bottom ', the surface I'; and the shore OI'; are
defined by:

Ly ={(z,—h(z)):xe€s}, Ty={(z,0):zes}, Ts={(z,0):z¢€ ds}.

Note that the domain under consideration has a vanishing depth on 0s;
the case of non vanishing depth can be treated as well.

We consider a fluid governed by the following primitive equations with
traction by the wind at the surface and Navier-type condition at the bottom.
More precisely we assume that the velocity of the fluid v = (v, w) and the
pressure p satisfy the following primitive equations

O + v0,v + wO,v — 102 — 1, 0%V + Opp = 0,

0
d.p =0, UJ(t,l', Z) = / a’L‘U(ta:Ea 6) dg, (1)
(v) =0 on s,

where we denote

D)= [ w2

—h(z)

The boundary and initial conditions are:

VvazU|Fs - a|”air|(vair - U|Fs)7
V’uaz'U|Fb - ﬁ(w)vh‘ba (2)

U|t:0 = Vo

where v, is the horizontal velocity of the wind at the surface of the ocean
and vy is the initial horizontal velocity. We consider an anisotropic viscosity



(vh, ), @ € R is a positive constant and g = §(x) is a positive function
defined on s.

We give here some comments on the condition (v) = 0 on s. It comes from
the divergence free condition, the normal velocity condition at the boundary

and the no flux condition on the shore usually used and given respectively
by

0, + 0,w = 0 in , (v,w) - n =0 on 09, (v) =0 on Js.

Indeed, by integration with respect to z and using that w = 0 on Iy, the
divergence free condition gives

0

w(t,z, z) :/ Oyu(t, x, &) dE.

With the condition (v,w)-n = 0 on [y, this implies
0x(v) =0 in s.

Using now the no flux condition (v) = 0 on ds, we obtain (v) = 0 in s. Let
us remark that we recover the condition (v, w) - n = 0 on 09 from the second
and third equations on (1) since the surface of the domain corresponds to
z=0.

3 Functional spaces and anisotropic inequal-
ities

This section is devoted to the functional setting of the primitive equations
(1), (2). We introduce the following space:

VZ{@EC?(Q):(@inns},

where C2°(€2) is the space of all smooth (C*) functions on Q2 that vanish in
a neighbourghood of O';. Then the space H (resp. V') is the closure of V in
L*(Q) (resp. H'(Q2)). We can easily check that

H:{QOELQ(Q): (gp)z()ins}, V:{gOEHl(Q): <g0>:01n3}.

Throughout the paper, we will assume:

h
h € H*(S) N Hy(S) such that |A'| > 0 on 9s, i > cdist(z,0s), (3)

B € Hy(s), var € WH(0,T; Hy(s)), (4)

and
v € H, 0,vy € L*(). (5)



Remark. The assumptions on [ and v,;, are not optimal. It is possible to
assume, for instance, 3/h € L?(s) instead of 3 € Hj(s). This gives better
assumptions, for example, in the presence of sidewalls. An exterior force may
be added without major modifications in the proofs.

Remark. In the case of the presence of side-walls, we may assume that
h € H?(s) and define the lateral boundary I'; = {(z,2) : x € 0s and —h(z) <
z < 0}. We choose an homogeneous Dirichlet boundary condition for v on
this boundary. The space C°(9) should be replaced by the space of smooth
functions on (2 vanishing in a neighbourghood of OI'y U I'; and hence V is
given by V.= {p € H(Q): (p) =01ins, p =0on I';}. In the sequel, we
consider the case without sidewalls since the case with sidewalls is easier.

Let us now recall some anisotropic inequalities, proved in [5], that we will
use in this work.

Definition 1. For p,q € [1,+o0|, we say that a function u belongs to
LELY(S2) if:

u(z,-) € LY(—=h(x),0) and ||u(z,-)||re-nw@)0 € L'(s),

and its norm is given by

||U||L£Lg E HHU(I? ')||L‘1(—h($),0) Lp(s) ’

For simplicity, we will denote L? L? instead of LPLI(£2).

Lemma 2. Forv € H'(Q), we have v € LL2NL2L, and the inequalities:

Tz 7

1/2 1/2
vl zeor2 < CHU“L/‘Z(Q)“UHH/l(Q)

and
lellzzne < ellellisio o)
where ¢ a positive constant depending only on €2. In the first inequality,
||| i) can be replaced by [|0yv||r2w) if vlr, = 0, and in the second one
||| 1) can be replaced by ||0.v||12(q) if v|p, = 0 (or v|p, =0).
Moreover, for all (v,w) such that ;v € L*(Q) and w = [° dpv, we have

lwllizree < hifacllOuvllzzo),

where hyax = maxh. O
S



4 Definitions and the main results

The weak formulation of the primitive equations is given by

Definition 3. (Weak solution) We say that v is a weak solution of (1)—(2)
in (0,T) if:
ve L®0,T; H)N L*(0,T;V),

satisfies the variational formulation: Yo € C*([0,T]; V) with o(T) =0,
T T
- /0 /Q (87590 + Uamgp + wazgo) U+ /0 /Q (Vhamvamgp + Vvazvaz(p)
T Vhoo o T
[ [ (14 2 @) vl + [ [ alowdvlele,  (©)
T T /
| = /QUOGO(O) +/0 /Sa|vair|vair<,0|rs +Vh/0 /SU|Fbax[90|F,,h ()],

with w = fzo 0,v and v satisfies the following enerqy inequality
(1 2 ! 2 ! 2
SO+ [ 10:0(5) Eaoy + v [ 10:0(5) 2o
t 1 rt
+ [ @45 [ aleallelr, 2 (7)
0 Js 2 Jo Js

1 9 1 rt 3
\ < Slvolley +5 [ [ oo

with ~(z) = B(x) (1 + —|h’(x)|2> - 24(w). 0

From (7), in order to ensure that the system is dissipative, we assume the
additional relation between h, (3, v, and v,

+(x) = (1 n @h'(mf) 3w) — 20"(@) > 0. (8).

()

Let us now recall an existence result of a global weak solution established
in [2].

Theorem 4. Let (3)(4) and (8) be satisfied and vy € H. There exists a
weak solution v € L*(0,T; V)N L*(0,T; H) of (1)—(2). O

This Theorem is proved by an asymptotic analysis on the anisotropic

Navier-Stokes equations with anisotropic Navier boundary condition on the
bottom, cf. [2]. Let us remark that in fact the hypothesis g € L*®, vy € H

6



and v, € L*(0,T; L3(2)) is sufficient to ensure an existence result. Given a
weak solution v, De Rham’s theorem gives the existence of a pressure p (as
a Lagrange multiplier) such that (v, w,p) solves the primitive equations (1)
in the distribution sense (cf. [2]).

Moreover, one has:

( T T
—/ /(8tg0+vaxg0+w8zg0)v+/ /(Vhaxvaxgo—l—uvazv@go)
0 Jo 0 Jo
T Un .
[ [B@) (14 2 @) vl
T
+ [ [ aleairl (v, = vair) el
T T
| = [ooe@ v [ [ oo el + [ [ 99+ (o0,
for all ¢ € C*([0,T];C>(2)), such that ¢(T) = 0, and for all ¢ regular

enough satisfying (¢, ) - nag = 0.
Let us now give the definition of a weak-vorticity solution.

Definition 5. (Weak-vorticity solution) We say that v is a weak-vorticity
solution of (1)—(2) in (0,T) if it is a weak solution and it satisfies the addi-
tional regularity:

0. € L®(0,T; L2(Q)) N L*(0, T; HY(R)).

This additional regularity implies that v satisfies the boundary conditions at
the bottom and at the surface in the trace sense. O

Remark. Note that 0, may be seen as the vorticity associated to the velocity
in the primitive equations. This is the reason why use the name weak-
vorticity solution. Indeed, if we consider uys = (vys, wys) the weak solution
of the two dimensional Navier-Stokes equations, the vorticity is given by
wys = 0,ung — Oz wyg. But, since the primitive equations are obtained from
Navier-Stokes equations by an asymptotic analysis as 6 — 0 assuming = ~ 1,
z~ 0, vys ~ 1 and wyg ~ d. Then, we have that 0,vnyg — Opwng = 0,v. O

The goal of the paper is to prove the following result

Theorem 6. Let (3)—(5) and (8) be satisfied. Any weak solution of primitive
equations (1)—(2) is a weak-vorticity solution. O

A consequence of this Theorem is the following uniqueness result of weak
solutions with more regular initial data.



Theorem 7. Let (3)—(5) and (8) be satisfied. There exists a unique weak
solution of the primitive equations (1)—(2). Moreover this solution is a weak-
vorticity solution. O

The existence result of weak solutions has been established in [2]. In
order to prove the uniqueness of such weak solution, we use Theorem 6 and
derive the energy estimates for the difference between any two solutions with

the same initial data. We control the nonlinear terms with the regularity
0,v € L*(0,T, L*(©2)) coming from Theorem 6.

5 QOutline of the proof of Theorem 6

In order to prove Theorem 6, we establish the equation satisfied by 0,v
where v is a weak solution of (1)-(2). Let n € C'([0,T]; C*°(€2)) such that
n = 0 on a neighbourhood of dQr where Qr = (0,7) x Q. We choose
¢ = 0,n as a test function in the variational formulation of Definition 3.
Since ¢ € C'([0,T]; V), this gives :

T
/ / —0mo,v — v0n0,v — wd,N0,v — Vhazvain + 1/1,821)8377 =0
0 Ja

This implies that 0,v satisfies in D'((0,7) x Q):
0,(0,v) + 0, (v0,v) + 0, (wd,v) — v, 02 (0,v) — 1,02(0,v) = 0.

Therefore 0,v is solution of a parabolic equation and thus we hope to
prove the weak regularity

d,v € L*(0,T; H' () N L>(0,T; L*(Q)).

Since 0,v satifies a non homogeneous Dirichlet boundary condition on the
boundary, see (2), we have to choose an appropriate lifting in order to be
able to obtain some energy estimates. Let us consider the function

= 1,0,v — ¢z, 2)v — e
where v is a weak solution of (1)—(2),

z

h(x)

olt,) == (14 15 ) s (652)] - 35500

h(x)
and
e(t; z,2) = a|vgir (t; ) |Vair (t; x) <1 + ﬁ) :
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Since (¢v)|r, = —a|vgir|v, (¢v)|r, = Bv, €|r, = a|v4ir|veir and e|r, = 0, we
get that ¢ is solution of the following linear problem:

Oup + v0p) + Wb — 102 — 1,02 = G in (0,T) x €,
=0 on (0,T) x 09, (10)
7/)|t:0 = Vvaz'U[] - (¢U)|t:0 + 6|t:0 in Q

where

G = —v0;¢ + 2v,0, 00, v + Vhaid)v + 21,0,00,v
— 00, PV — WO, v — Ope + vp0%e — vOze — wd,e + PO,p.

Then the proof of Theorem 6 is divided in two parts. In the first part, we
prove that there exists a weak solution 1 of (10) that means

Y € L®(0,T; L*(Q)) N L*(0,T; HY()).
In the second part, we prove that if we define ¥ such that
v,0,0 =1 + pv +e, () =0

then

S
I
S

This implies
0,v=1v+o¢v+e.
Using now the weak regularity of v, ¢ and Hypothesis (3)-(5), any weak

solution corresponding to the initial data v, satisfying (5) is a weak-vorticity
solution that means

d,v € L*(0,T; L*(Q)) N L*(0,T; H*(2)).

For the second part, we need to prove some regularity of the pressure p
since the term ¢d,p appears in the right-hand side of (10). This is the goal
of the following section.

6 Regularity of the pressure

At first, let us remark that we can identify the pressure p as a distribution on
s since p does not depend on the vertical coordinate. Indeed, let us choose
¢ € D(s) and let us define hp;, the minimum of h on the support of ¢. It



suffices to define ¢ € D(—hmin, 0) with fghm;n © =1 and to choose ¢ as test
function in D(Q2). It suffices to write

(D, D)D), D(s) = (D> PV)D(0) D () -
Let us now prove the following result

Theorem 8. Let (3)—(5) be satisfied. If (v,p) is a weak solution of (1)—(2),
we get

Vhoyp € L*(0,T; H™(s)). O

Remark. The regularity vhd,p € L*(0,T; H '(s)) means that the map from
L*(0,T; H}(s)) into IR defined by:

T
P /0 / p0:(Vhep)
S
is linear and continuous. O

Let us give here a lemma, proved using Hardy’s inequality, which allows
us to choose ¢/v/h as test function in the mixte formulation (8) to prove
Theorem 8.

Lemma 9. Let (3) be satisfied. Let o € H{(s), then ¢ defined by $ = o/Vh
and considered as a function of x and z belongs to H' (). O

Proof. We have
e, 1,00

L —

Therefore, using Hypothesis (3), we deduce

a:l:Q5 = a:v(

2 2
“ax(\/ﬁ)“LZ(Q) < [194llz2s + €l h'/2 dist(z, 0s) Iz

< |0z r2s) + C

v =
dist(zx, 0s)

and we conclude using Hardy’s inequality. 0O
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Proof of Theorem 8. Let us consider the mixte formulation (9). Let us
choose $ = /v/h as test function with ¢ € C3([0,T];C5°(S)). Using that
(v) = 0 and that 0, = 0, we get

//pa \/_tp // ( >U+l/h//8va<\/ﬁ>
+ [ 8@ (14 2@ P) o 2=+ [ [ ol Oy = var)
[ eanletn ™)

We conclude checking that all the terms on the right-hand side define linear
continuous forms with respect to ¢ € L*(0,T; Hy(s)) using (3)-(5) and the
fact that v is a weak solution.

The first two terms are treaten by using that v, 9,0 € L?(0,T; L*(2)).
The third and the fourth terms are treaten by using that 5/h and v, /h be-
long to L*(s) (using Hardy’s inequality) and that v|r, and v|p, € L*(0,T; L*(s)).

For the last term, using the weak regularity of v and the inequality, (cf.

20),

[y |12y < ellvllarne)

we get v|p, € L2(0,T; HY?(s)), then it suffices to prove that we have 9, (¢h'/V/'h) €
L2(0,T; H~'/?(s)). We conclude since we have

b/
| fllgm

using Hardy’s inequality. O

oh/

Cll\f

r1@) < Cllellaas)

7 Existence of weak-vorticity solution

In this section, we prove the existence of a weak solution ¢ of (10) and we
prove the identification between v and v where v is defined Section 5.

) Existence of a weak solution ¢ of (10). This existence result follows from
a classical Galerkin method. We just prove the relevant a priori estimates.

11



Let us take (at least formally) v as a test function in (10), we obtain:

SOy + 0Oy + 1000 B
=~ [[awve -+ 20 [ (0:6)(@e0)0 + va [ (@20)0v
+20, [ (0.6)@.000d2 = [ (00000 = [ w(@.0)ow )
— (@) — v [ (0:0)(0:0) = | v(Dse)i — [ w(dee)v

— [poutov) = Zl

We bound each terms in the right hand-side by a(t) + b(t)[|[¢[|72q) +
Vh||8$1/)||%2(9)/20 with a, b € L'(0,T) using the anisotropic estimates in
Lemma 2 and Hardy’s inequality on s. Let us prove this kind of estimates on
three terms for the reader’s convenience. The remaining terms are bounded
in the same way.

The first term is bounded as follows

| [ a vl < cllorfvu
Up,
< el|Oywairll 225y 01720y + 2—0”3:1:%/)”%2(9)
Concerning the fourth term, we write
Vair ﬁ
|/ 0:90,v¢| < C(|| ez 220 + ||—||L3L§o)||azU||L2||%/)||L°<> L2

Q h h

< ([[vair lmycs) + 1813 ) 10:0ll 2o 1615y 19200

< ]|0:0[17 2y + € ([[Vairl 325y + 181525 19 2y +

The ninth term is controlled by

Q

2 [|9]| noe 12

2—0”3:1:7/)”%2(9)

hl |Uair |Uair

| v0uet] < e(10n (i lvair) 12 2+ T2 1 10
1 2 1 2
< ell 5ty 10a el ot 19|20 i 31
Vp
< C||U||L2(Q) + ||Uair||Hg(Q)||¢||%2(Q) + 2—0“390@/)”%2(9)

Let us now control the term coming from the pressure. One has

f,pocton) = (VRop 2= [ o0disyenyes

< ||¢Eamps||gfl<s>||am(ﬁ / 60)llza(s)

12



Taking into account that ¢|p, = 0, we get

(7= [, o0z < 7= [ 0u(69) o i [ gblli. (12

Thus using the expression of ¢, the fact that ¢ € L*(0,T; Hi(2)) and the
hypothesis on 3, v, and h, we get, by the use of Hardy’s inequality:

Vh
/Qpax<¢%/)> < C(Hvair||§{é(s)+||6||?{é(s))||\/ﬁaxps||%l—1(s)+2_0||a:v77/)||%2(9)+||77/)”%2(9)

Remark that, in order to prove the previous estimate, we have used the
anisotropic estimate L°L? on . Indeed, for example, the second term in
(12) is controlled as follows

[ owr <2 [([ o2 vl +2 [(f 220 gl

Thus

[ vy <o [ 1Lz, [0 O o [\ ey, [ 2

which implies, using L®°L? estimate on ),

0 p
S 5500 < Cllvarlin + 181y e 10l

In conclusion, we obtain from (11):

%Ilw( )Z2@) + vallOs ()] 72() + voll0: (1) 72) < alt) + b(1)[[¥ 72 (0),
with a, b € L'(0,T). The Gronwall Inequality gives the a priori estimates.
IT) Identification of v and v. Let us introduce a = 1) + ¢v + e and define

v e L*(0,T; Hy(Q)) N L>(0,T; L*(2))

such that
1,0, =a, (0)=0.

We choose for example

v(x,2) = ——/ a(z,s)ds + 1/1U h,(lx) (/_Oh(x) (/zo a(a:,s)ds) dz> :

13



Remark that @ satisfies the boundary conditions 1,0, = a|vg| (Ve — v) on
[’y and v,0,0 = fv on T, and that ©(0) = vy. If we prove that ¥ = v then we
will have

v,0,v =1+ pv+e

and therefore using the weak regularity of ¢, v and Hypothesis (3)—(5), we
get
O.v € L*(0,T; Hy(2)) N L>®(0,T; L*()).

This gives Theorem 6.
0

At first we establish the equation satisfied by . Let us choose / n(x,s)ds

as test functions in the variationnal formulation satisfied by 1) with (n)=0
and n € D(2). We have

/Qata(/zo xsds)z /a (0,5 (/ xsds)z /3,51)77

/Q [0:(va) + 0,(wa)] (/0 n(z, s)ds)

:_/ (/ (va +8(wa)](x,s)ds)n

= VU/Q</Z 0, (v 0,0) (z, s)ds) +yv/w8m7
Moreover

z/h/aaa (/ X s)ds)-uvyh/a 0,0) (/ Oz, s)ds>

= z/vyh/ 0,0 0z1.
Q

Using that 0 = (0,7), we get

1/1,/98ZCL82</Z0 xsds):—y/a (0,7)n
:yv/ﬂazaazn

Let us now use the expressions above. Dividing them by v,, we obtain,
using De Rham’s Theorem, that there exists p;s such that (7, ps) satisfies:

0 + v 0,0 + w 0,7 — V020 — 1,0°0 + 0,
0
= 00,0+ / 0y (v0,0) (z, s)ds (13)
(B) = 0.
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Using now the boundary conditions satisfied by v, we obtain that v sat-
isfies the following variational formulation: Vn € C'([0,T]; V)

( ¢ 0
(0,0, 1) +/0 /Q {— (/ Oy (v 0,0) (, S)dS) n+ wazvn}
t t
+/0 /thaxv 0.1 + 1,0,0 0,n —i—/o /Sa|v,m| (v|r, — Vair) ML, (14)

[ 3@ (1 2@ ) el = [ [ ol ol @)

Let us now prove that ¥ = v. We know that v satisfies the following
variational formulation: Yo € C1([0,T7]; V)

0(t) O~ [ [ @up+ 0.0+ wdip)o
+ /Ot/n (VL0000 + 1, 0,00, ) + /Ot/a|vm-r|(v r. = Yair)@lr,
t ) ; (15)
+/0 /SB(I) (1 + V—i|h'(I)|2> vlr,elr,
| = [ wp0) 4 | t | elrdeliele (@)

All the calculations made below could be justified by using mollifiers in
time and passing to the limit.

If we take ¥ as test function in (15), taking into account that we have
v,0,0 = a € L*®(0,T; L*(Q2)) N L*(0,T; H'(2)), we obtain the equality:

t
(17(1?),1;(1?))9—/ / (845 + v 0,0 + wd,5) v
0 JQ
t
—1—/ / (Vh0pv 0y 0 + 1,0, 0,7)
o " t (16)
+ [ [ 8@ (1+ 20 @F) vl + [ [ ol @l = va) .
t
:/Q|U0|2da:+yh/0 /Svm 0, [6|r, ' (x)]

15



Secondly, multiplying (13) by v, we get:

t t

/()<3tU,U>Q+/() /Q{vamv+wazv}v
t t

+/0 /Q(Vhamﬂ 3IU+1/1,8217 aZ,U) +/0 /a|'Uair| (U
t Un .

+/0 /Sﬁ(x) <1+V—U|h(:r)|2) ], | an

¢ ! ~
= l/h/o <a:v [U|th (517)] ’U|Fb>H—1/2(S)><H1/2(s)

+/0t/9{uaxf;+ (/Zoax(vazf;) (x,s)ds)}v.

t

Adding (16) to (17), the terms / (040, v)ods and / (00,0 + w0,V) vdQds
0 Q

vanish, we get: a.e. t € (0,7)

r, — Uair) vir,

((#) v(t)>9+2/t/ (hDy By + 1,0, D,0)
Y 0 Q T T vz z
t v , _
5@ (14 2@ ) ol (ol + 1)
t
+ [ [ alvairl (v, = vair) (0 + DI, = ool (e

+ vy, /Ot/sv|pb17|pbh"($) + /Ut/Q {v@mﬂ + /ZU 0z (v0,0) (x, s)ds} v.

Then, if we multiply (13) by o and integrate in (0,7") x Q, we obtain the
energy equality:

(18)

1, . t - -
5”“@”%2(9) +/0 (VhHa’L‘UH%Q(Q) + Vv||3zv||%2(9))
¢ Vh .,y 2 ~
[ 8@ (14 2w @) E) vl
0 Js Vy
t ~ 1 )
+ [ alvarl (vlr, = vair) 2l = 5 100l
0 Js 2

ﬁ t ~ 9 t { B 0 B }~
5 /Slvlrbl h (x)+/0/ﬂ vaxv+/z 8, (v0,0) (x,s)ds ¢ 0.

(19)
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Finally, if we take v as a test function in (15), we get the energy inequality:
1 2 t 2 2
S @I 0 +—/C (val10z0%2 ) + voll0:0][Z2(y)
t Vb yi2 2
+ [ 8@ (1+ 20 @E) ol
t 1 9 vy [t 210
+/0 /sa|v,m| (v r, < §||U0||L2(Q) T ; /S|U|Fb| h'(x).

(20)
Then, doing (19)+(20)-(18), we get: a.e. t € (0,T),

I's — 'Uair) v

1 -
S0 (8) = F()I[ze(ey

t
[ (hl10: 0= 9) (o) + 1010 (0 = ) (5) [Faey) < T+ 7
(21)
with

[:/Ot/g{vax@—i-/zoax(vaz@) (:L’,S)ds}(ﬂ—v)

v [t ~ 211
g="1 / B, 2R ().
[ ol e, P )

This inequality will give v = v using Gronwall’s Lemma. We just have to
estimate the right-hand side of (21). The last term is bounded as follows

and

t
J<c /0 v = 3|20y IV (v — )| 122 (22)

Let us now look at the first term /. We will strongly use the fact that (v) =0
and (v) = 0. For example, using this properties, we have

/Q (/20 0y (00,0) (z, S)ds> (0—v)= —/Qf;axg(@ — ).
Thus:
I—_ /Ot/Q {(v —7) 0,0 + /20 9 (v — ) 0,7) (, S)ds} (v — 7).

Using that
0.((v—0)0,0) — 0,((v — 0)0,0) = 0,(v — 0)0,0 — 0 (v — 0)0,7,

we obtain
[ 0ulto = 90.5) = (v =~ )0,)(2,0) = (v~ D)2,) (2
+ /zo 9, (v — )0, — /20 9, (v — )0,
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Therefore, we get

//(/ 10:0 0 “_ﬂ)_awﬁaz(v—@)](%S)dS) (v — 7).

Integrating by parts with respect to z, this gives:

I:/Ot/Q{azfiax(v—f;)—8x1782(v—17)}(/}j%v—@)(x,s)ds) L +D

(23)
Let us remark that
t 0
< [ 10 nzll0n (0 = Dllll | (0 = )@, 5)dsll iz
<c/n@mw2n@n”2nmw—wmmnnu—wmg
< 2 [ 1000~ D)2y + COn) [ 10-32@ll0:0 oy llo — 3o
2

Splitting /5 in two terms, we get:

_ t o t B - ( 0 . ) B

/0 /anv lv—1| dQ—i—/O /an (0.0) (v—0) /Z (v—2)(z,s)ds | dQ = A+B
(25)

Now we can bound A and B as follows:

t
A< [ .ol@le - 3l
t
< [ 10sllzz@llo = dllm@llo = 7llz2e)

min{yhal/} ¢ ~ t B _
< T”/ﬂ ||v — v||§p(m +O(Vh,l/v)/0 ||am”||%2(n)||v _“”%2(9)

(26)
and

t 0
B < [110:(0.0) lzollo = lazrzll | (v = ) (@ 9)dsl iz
< 0 [0, 0.) izl — o1 2gyllo — ol fe

min{vy, v, } 4 -
< B P 33y + Clon) [ 10, @.0) [y lle — 930
1)

18



Therefore, using (21)—(27), we get:
¢
lv(t) = o) 720y + / (vall0s (v = ) (5) 1720y + 10102 (v = ) (5)[172())
0

t
< C [ (141000 @15l @) + 10:5 a0y + 195 0:9) 11500y} v = Pl
(28)
Then, using the regularity of 0,0, the initial data satisfied by v and ¥ and
using the Gronwall inequality, we conclude that v = v. The proof of Therem
6 is then complete using Parts I) and II). O
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