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UNIVERSIDAD DE SEVILLA

Abstract
Escuela Técnica Superior de Ingeniería Informática

Departamento de Arquitectura y Tecnología de Computadores

Doctor of Philosophy

Study and evaluation of intensive distributed computing platforms on external
systems for embedded systems

by Javier J. Salmerón García

Nowadays, the capabilities of current embedded systems are constantly increas-
ing, having a wide range of applications. However, there are a plethora of intensive
computing tasks that, because of their hardware limitations, are unable to perform suc-
cessfully. Moreover, there are innumerable tasks with strict deadlines to meet (e.g. Real
Time Systems). Because of that, the use of external platforms with sufficient comput-
ing power is becoming widespread, especially thanks to the advent of Cloud Comput-
ing in recent years. Its use for knowledge sharing and information storage has been
demonstrated innumerable times in the literature. However, its core properties, such
as dynamic scalability, energy efficiency, infinite resources... amongst others, also make
it the perfect candidate for computation off-loading. In this sense, this thesis demon-
strates this fact in applying Cloud Computing in the area of Robotics (Cloud Robotics).
This is done by building a 3D Point Cloud Extraction Platform, where robots can of-
fload the complex stereo vision task of obtaining a 3D Point Cloud (3DPC) from Stereo
Frames. In addition to this, the platform was applied to a typical robotics application:
a Navigation Assistant. Using this case, the core challenges of computation offloading
were thoroughly analyzed: the role of communication technologies (with special focus
on 802.11ac), the role of offloading models, how to overcome the problem of commu-
nication delays by using predictive time corrections, until what extent offloading is a
better choice compared to processing on board... etc. Furthermore, real navigation
tests were performed, showing that better navigation results are obtained when using
computation offloading. This experience was a starting point for the final research of
this thesis: an extension of Amdahl’s Law for Cloud Computing. This will provide a
better understanding of Computation Offloading’s inherent factors, especially focused
on time and energy speedups. In addition to this, it helps to make some predictions
regarding the future of Cloud Computing and computation offloading.
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Chapter 1

Introduction

Traditionally, every information processing task was done by independent machines
or centralized systems. In the case of embedded systems, such as mobile robots, this
was true as well. However, while this approach worked well at the beginning, there
was a moment where more and more computing intensive tasks were expected to be
done by these systems. As a consequence, the hardware limitations eventually arised,
and hence innumerable issues had to be addressed: meeting of deadlines, energy con-
sumption, battery duration, amongst others.

Having identified the issues, two choices were possible:

• Upgrade the hardware: if the system’s current hardware is unable to do the task,
a reasonable option would be upgrading it by buying more powerful hardware.
Nevertheless, when it comes to embedded systems, the upgrading process is not
that straightforward as with traditional personal computers (PCs). To make mat-
ters worse, sometimes it is simply impossible to upgrade the embedded hard-
ware.Therefore, the only choice is to dispose the whole embedded system and
buy a new one, with all the capital expenditure involved.

• Put limits to the computation the system can perform: in other words, this implies
narrowing the variety of doable tasks. If we use the context of computer vision as
an example, if a robot cannot process high resolution images, then the resolution
would have to be reduced. As a consequence, this can have a direct impact in the
quality of the developed application.

A main question arises from this: couldn’t there be a third, middle-of-the-road al-
ternative where capabilities are upgraded without dramatic capital expenses? This is
extremely important as there are a plethora of complex applications that could be de-
veloped exploiting the most from existing (even legacy) resources (and thus saving
money and energy): robot navigation, scientific tasks, video surveillance, stereo vision,
AI... etc.

Because of that, this thesis aims to respond this question using one of current top
trending technologies: Cloud Computing.

The definition of Cloud Computing has yet to be properly established, but the main
concept was already stated by John McCarthy in 1961[1]:

If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility just as
the telephone system is a public utility....The computer utility could become
the basis of a new and important industry

In this sense, a platform known as the Cloud emerged in order to satisfy this de-
mand. The two commonest properties are the following:
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4 Chapter 1. Introduction

FIGURE 1.1: Concept of computation offloading

• On-demand virtual resource provision: The cloud is able to provide both com-
puting and storage resources. This is normally done in the form of virtual ma-
chines. Should an user require computing power to perform a certain task, then it
would only have to spin up as much virtual instances as required to complete it.
Most commercial cloud platforms (for example, Amazon EC2, Windows Azure,
Google App Engine, etc.) use a pay-as-you-go approach. However, undoubtedly
this will be much cheaper than all the capital expenditure required for a cluster,
not to mention all the maintenance costs.

• Dynamic scalability: This property relates to the ability of the Cloud to dinami-
cally adapt to the user needs. A clear example is that of a web service. If, sud-
denly, the number of requests dramatically increase, the service might not be able
to process them in a reasonable time. In order to address this, the Cloud could
increase the number of virtual resources devoted to this task. Moreover, if the
number of requests decreases, then the cloud could reduce the amount of virtual
resources. Once again, this relates to the "utility" concept behind Cloud Comput-
ing. However, this forces the developer to rethink their software architectures so
the dynamically scalable property can be exploited.

Therefore, a third solution to overcome the aforementioned issues for embedded
systems would be the following:

• Move the computation to the Cloud: The system would send the information
to this external platform. The information would be processed and the results
would be sent back. This way, the only computation upgrade the embedded
system would need is a proper network connection (see figure 1.1).

In this thesis, in order to show the viability of this third choice, Cloud Computing is
applied to robotic tasks. The research area is known as as Cloud Robotics (first coined
by James Kuffner in 2010) [2]. This term refers to the use the both storage and com-
puting power of the cloud for the successful accomplishment of robotic tasks. In this
sense, there are several items of interest in this area[3]:

The first one is that of Computation Offloading. The idea is to free the robot from
heavy computations and have an external platform (the Cloud in this case) do them
and get the results back. This would solve the two aforementioned issues, as it al-
lows the robots to perform more complex tasks, overcoming its hardware limitations
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FIGURE 1.2: Diagram of the 3DPC Extraction Platform

(which is difficult to upgrade). Furthermore, offloading CPU-intensive tasks implies
less power consumption in the robot. Following this idea, it will possible for engi-
neers to build cheaper (extremely powerful hardware would not be required) and more
energy-efficient robots. However, this does not come without inherent trade-offs and
bottlenecks, namely the communication technology and software related issues.

A second item is that of Information Storage and Sharing. As stated before, the
cloud offers storage resources, hence it is possible for the robots to store and retrieve
data like maps, object information, pictures, amongst others. Furthermore, the use of
a centralized platform like the Cloud allows the robots to build a common source of
knowledge, and just like before, extending its capabilities. For instance, if a robot does
not know how to handle a certain object, then it can query the Cloud for information.
This concept has been defined as "an Internet for robots"[4].

For this thesis, the use of Computation Offloading in near real time scenarios has
been analyzed. More precisely, the focus was on the offloading of stereo-vision tasks to
the Cloud. In this sense, a dynamically scalable cloud-based 3D Point Cloud Extraction
Platform was initially developed [5] . Afterwards, this platform was used for naviga-
tion assistance of mobile robots[6] (see figure 1.2). The experiments showed that, when
higher resolutions were required, the limitations of the robot’s embedded hardware
started to arise. Therefore, the robot was able to navigate better using the cloud. Fur-
thermore, the study of this case showed the trade-off between computation offloading
and communication, and that choosing which tasks should be offloaded to the Cloud
is far from trivial.

These experiments showed the viability of computation offloading in a near to real
time scenario. Moreover, several aspects and challanges of computation offloading
were thoroughly analyzed: offloading models, communication bottlenecks, commu-
nication delays... etc. However, it was necessary to take a step further, and make
a deeper analysis of the concept of computation offloading. Therefore, fruit of this
research, an extension of the Amdahl’s Law for Cloud Computing was devised, pro-
viding a theoretical analysis for computation offloading in terms of performance and
energy efficiency[7]. This helps to set a reference theoretical framework when dealing
with computation offloading and Cloud Computing. It helps to get an idea whether
an application should or shouldn’t be offloaded. Moreover, it is an extremely useful
tool for researchers to study future trends in computation offloading and hardware
development.

This thesis is made of a series of papers [5]–[7], which are included in part II. In
part I, there is a summary structured as follows: in chapter 2 the general objectives
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of this thesis are described. In chapter 3 all the results obtained from this research are
explained and analyzed. From these results, in chapter 4 we dive into their implications
and future challenges. Finally, we outline the conclusions from this research in chapter
5.



Chapter 2

General Objectives

As stated in chapter 1, this thesis’ main objective is to study the viability of Cloud
Offloading for embedded systems. In order to obtain an answer, it is necessary to
analyze various elements. These can be organized in the following categories:

Use Case Analysis [UCA]

In order to empirically prove that computation offloading in embedded systems is a
feasible option, a real use case must be analyzed. In this sense, as stated in chapter
1, Robotics can be an extremely useful application scenario. In addition to this, cases
involving extremely heavy computations and near to real time constraints could best
showcase the Cloud’s potential. Not to mention the innumerable research challenges
that a case like this inherently brings. For all those reasons, the chosen case for this
thesis is that of Navigation Assistance based on Stereo Vision. Therefore, the objectives
in this category would be:

(UCA-1): Build a Cloud Based Stereo Vision platform where robots can offload
stereo information processing.

(UCA-2): Build a Cloud-based Navigation Assistant that uses the stereo informa-
tion to avoid obstacles.

(UCA-3): Perform tests on the whole system using simulated data, finding its po-
tential benefits and pitfalls.

(UCA-4): Perform real navigation tests, comparing two cases: using computation
offloading and performing all the computation on-board.

Study of Cloud Properties [SCP]

As mentioned in chapter 1, the cloud has unique properties that imply a big leap over
other technologies such as cluster or grid computing. Because of that, this work must
make use of all those properties when providing a Cloud offloading solution for em-
bedded systems. Therefore, this category contains the following objectives:

(SCP-1): Analyze the performance impact of different virtual machine types.

(SCP-2): Study the existing trade-off when choosing different offloading models
and configurations.

(SCP-3): Exploit Cloud’s dynamic scalability property when building a solution
and study its performance impact when using more and less resources
(scaling out and back).

7
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Compare Communication Technologies [CCT]

When it comes to offloading, especially when dealing with time constraints, there is
unavoidable question that must be addressed: How can we overcome network laten-
cies? Indeed, there is a risk that, even though there are computation speedups, the
information does not arrive in time because of delays in the communication technolo-
gies. Therefore, in this thesis a thorough research on this area must be done in order to
mitigate its effects:

(CCT-1): Compare the performance impact when using different kind of technolo-
gies.

(CCT-2): Perform deeper testing on wireless technologies, vital for mobile robots.
Study the current state of 802.11ac technology, as is the newest and most
promising.

(CCT-3): Propose a way to mitigate the effects of a delay in the information.

Devise a Theoretical Framework [DTF]

While performing empirical demonstrations is essential for answering this thesis’ main
question, not less valuable is providing a small theoretical framework for researchers
and developers. This would be extremely useful for future application development,
as well as new research areas. Hence, the objectives would be the following:

(DTF-1): Provide a general design pattern for offloading robotic applications.

(DTF-2): Provide basic theoretical formulae that helps deciding whether an appli-
cation is worth offloading or not.

(DTF-3): Make predictions on the future possibilities of computation offloading.



Chapter 3

Summary of results

In this chapter all the obtained research results will be briefly described. These results
will make reference to the objectives described in chapter 2. These global results can be
divided into two categories:

Stereo Vision Offloading applied to navigation assistance

In this thesis, an application case is used to study the properties, issues and challenges
of Cloud Offloading.In other words, an empirical demonstration of the effectiveness of
Cloud offloading is sought.

Due to the high computational requirements and their importance in robotics, a
case in stereo vision is proposed: several vision tasks use as main input a 3D Point
Cloud (3DPC), which can be obtained from several input sources (stereo cameras, laser
rangefinders, RGB-D cameras...). Extracting a 3DPC from stereo frame pairs (see figure
3.1) is computationally expensive. In addition to this, if more quality of the environ-
ment representation is desired, then higher resolution in the stereo camera is required.
As a result, legacy embedded systems may be unable to obtain 3DPCs from stereo
frames in a reasonable time. Therefore, developers would have no option but to pur-
chase expensive, cutting-edge embedded systems, and still there would be no warranty
that they would be able to process, for instance, HD 1080p stereo frames fast enough.

Because of this, a Cloud-based 3DPC Extraction Platform was implemented (UCA-
1) based upon the aforementioned general architecture (DTF-1). This platform is based
on the Robotics Operating System (ROS), and specially designed to be able to scale
out and back depending on the computational needs at runtime (SCP-3). In order to
do so, pipeline-based parallelism is exploited, as it can be seen in figure 3.2. Using
a front-end node, the stereo stream is scattered to a set of 3DPC Extractor nodes in a
round-robin fashion. This front-end node knows at runtime how many nodes are alive
at any moment. Hence, if more computing power is required, more nodes would be
dynamically added (thanks to a front-end node, as seen in figure 3.3). On the other
side, if less computing power is required, then less 3DPC extractor nodes would be
shut down.

The performance of the platform was tested using a private cloud and using simu-
lated stereo footage (UCA-3). Several tests were performed, which can be divided into
two main categories: scalability and communication performance.

In the first category the performance speedup was measured when increasing the
number of virtual resources (SCP-1, SCP-3). The results (shown in table 3.1) show that,
when the resolution of the image is sufficiently high (and therefore, the amount of
required computation increases as well), the solution scales properly and considerable
speedup is obtained.

9
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FIGURE 3.1: 3D Point Cloud Extraction from stereo frames. Im-
ages taken from https://erget.wordpress.com/2014/02/01/

calibrating-a-stereo-camera-with-opencv/

FIGURE 3.2: Stereo frame pipeline process. Four nodes process (in a
pipeline fashion) the frame pairs that the front-end node delivers in a

round-robin form.

https://erget.wordpress.com/2014/02/01/calibrating-a-stereo-camera-with-opencv/
https://erget.wordpress.com/2014/02/01/calibrating-a-stereo-camera-with-opencv/
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FIGURE 3.3: Dynamic adaptation of the platform when the number of
3DPC Extractors changes.

Execution Time (s)
p/n 32 64 128 256 512 1024 2048

1 53.97 96.76 173 331 632 1213 2494
2 32.5 48.47 91.71 178 318 629 1218
4 25.38 33.84 55.09 106 186 437 904
6 27.07 36.66 51.48 87.02 171.3 351 635

TABLE 3.1: Total times to process and receive n point clouds using p
3DPC extractors. Resolution of the stereo pairs is 1920x1080 and com-

munication tehcnology used is that of Gigabit Ethernet.
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Average Frequency of 3DPC reception (Hz)
320x240 640x480 1024x768 1920x1080

Gigabit 16.3 6.65 2.22 0.84
Wifi 11n 4.04 2.04 0.29 0.14
Wifi 11ac 4.98 3.02 0.76 0.24

Erratic Alone 7.15 2.61 1.01 0.02

TABLE 3.2: Performance measures for different communication tech-
nologies. ‘Erratic alone’ means that the Erratic robot is working alone,

that is, working as a local stereo vision system.

# Robots Mean Transfer Time (s)
Average
Message Success (%)

1 0.117 100.00
2 0.124 100.00
4 0.157 94.99

5 Hz

6 0.147 87.88
1 0.063 100.00
2 0.086 99.86
4 0.082 94.99

10 Hz

6 0.084 87.79

TABLE 3.3: Performance comparison when adding more robots in the
case of 320x240 when no 3DPC extraction is done and only delays in
stereo frame transmissions are considered. The wireless technology is
that of 802.11ac. Note that the average time is for the messages that have

arrived. Hence, a reduction in the number of successful messages

In the second category, there are several tests focused on measuring which com-
munication technology performs better (CCT-1). In addition to this, we also compare it
with the "all on-board" computation case, so it can be seen when the Cloud outperforms
the embedded system. The embedded platform used for testing is the Erratic Robot by
Videre LLC, with a Core 2 Duo CPU. Results show that, at the moment, Gigabit Eth-
ernet provides the least communication penalties, with 802.11ac still far behind. This
shows that current devices and software drivers are still unable to obtain the promised
867 Mbps bandwidth. However, when the resolution of the stereo footage increases,
the limitations of the embedded hardware start to arise, being offloading a reasonable
option, even with 802.11ac (see table 3.2).

In addition to this, an extra test was done for the case of 802.11ac (CCT-2). As the
platform is expected to be used by multiple robots, it is necessary to analyze possible
communication penalties when increasing the number of robots using the platform.
The results show that, when increasing the number of robot nodes, communication
penalties appear. There are two kind of penalties: delay in the message transfer time,
and number of messages lost (see table 3.3 and figure 3.4). This shows an inherent
tradeoff between the number of robots and wireless performance, and therefore solu-
tions to mitigate this problem must be found (CCT-3). Some methods that can fin this
problem are the following: changing the transport layer, changing the robotic middle-
ware, implement TDMA methods[8]... amongst others.

Once the Stereo Vision Platform was developed and tested, a real application case
was proposeed: a Cloud-based navigation assistant (UCA-2). It is meant to assist the
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FIGURE 3.5: Block diagram of the Cloud-Based Navigation Assistant for
the teleoperation of a mobile robot. The different types of data transfer
are the following: Stereo frame pairs, 3D Point Clouds (3DPC), robot ve-
locity commands ans user input commands. Also bond status messages

are required by ROS bond library.

teleoperated navigation of a mobile robot by modifying the user’s joysticks commands
(see figure 3.5). This led to two different analyses.

To begin with, there was a timing analysis, obtaining that four main times are im-
plied in the solution, as it can be seen in figure 3.6. The second analysis is vital for
exploiting properly the Cloud properties: choosing the correct offloading model (SCP-
2). As it is seen in figure 3.5, there are several modules that can be either executed
on-board or offloaded to the Cloud. In this sense, when offloading to the Cloud, it is
desirable to maximize the following properties:

• Best scalability: indicates if the involved processing can be easily scaled out or
back.

• Least communication bandwidth: bandwidth is a precious resource in cloud
computing and a source of timing delays.

• Least virtual computing resources: it indicates the amount of cloud resources
used by an option,

• Cheapest cloud pricing: this must be considered when using public clouds, such
as Amazon EC2.

However, there is a trade-off between those properties. In this work, four mod-
els were evaluated to see which one resulted in better performance (figure 3.7). This
analysis is generic enough to be applied in other applications.

Fruit of these two analyses, new experiments were done. The first one is meant to
compare the performance obtained with the different offloading models. The results
(see table 3.4) showed that the best option is 1, even though option 3 seems a more
common configuration for a real time system. The main reason for this is the fact that
the navigation assistant is computationally expensive and needs a high amount of data
(3DPCs). Because of this, when moving it to the Cloud, we dramatically decrease the
consumed bandwidth, and thus obtain better performance results. The second exper-
iment was done to emphasize another essential issue when dealing with near to real
time scenarios: the delay in the information. As it can be seen in table 3.5, this is due
to both communication and processing latencies. Therefore, implementing predictive
timing corrections[9] is extremely necessary.
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FIGURE 3.6: Time diagram of the system. Camera O captures a frame
pair that sends it to the Point Clod extraction C. This extracts the 3D
Point Cloud and sends it to the Navigation assistant, which fuses this
information with the user command coming from the joystick J . Finally
the actuators U receives the velocity commands. Different interval times

increment the total latency of the system.

Frequency (Hz)
320x240 640x480 1024x768 1920x1080

Option 1 12.55 5.72 3.73 1.06
Option 2 8.14 2.29 0.89 0.03
Option 3 7.48 2.16 0.96 0.25
Option 4 7.15 2.61 1.01 0.02

TABLE 3.4: Navigation assistant update frequencies for the different of-
floading models using 802.11ac WiFi.

Mean Delays (s)
to tp tc tf Total Comm. Total

Option 1 0.199 0.382 0.154 0.026 0.353 0.761
Option 2 0.077 1.007 0.652 0.026 0.729 1.762
Option 3 0.511 0.382 1.223 0.064 1.734 2.180
Option 4 0.077 0.966 0.181 0.096 0.258 1.320

TABLE 3.5: Average delays of the system for 1024x768 frames and dif-
ferent offloading models using 802.11ac WiFi.
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FIGURE 3.7: Possible configurations for Cloud offloading. Mandatory
wireless communications (those which origin or destination is the robot)
are represented by dotted arrows while communications that can be

wired are depicted by continuous arrows.
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Resolution Option # Collisions Ratio
640x480 1 7 0.10
640x480 4 32 0.46
320x240 1 38 0.54
320x240 4 31 0.44

TABLE 3.6: Navigation results for test 2 using options 1,4 and two frame
resolutions. The ratio is calculated over 70 maneuvers.

As a final test, a real navigation test is performed. This is crucial as it would em-
pirically demonstrate not only the viability of cloud offloading, but also its potential
benefits. Using a testing circuit, the Erratic robot is teleoperated using a stereo camera
built from two PS Eye cameras. Along the circuit, the teleoperator tries to collide the
robot to several obstacles, and the navigation system should stop the robot accordingly.
Two main cases are tested: with offloading and without offloading. Moreover, different
camera resolutions are tested. The results can be seen in table 3.6. Several conclusions
can be extracted from it:

To begin with, there is little different between on-board and cloud offloading with
low resolution images. Taking this into account, if navigating with 320x240 resolution
stereo frames was enough, then no offloading would be necessary. However, as it can
be seen, that quality of the stereo frames is not enough for the navigation. However,
when the resolution of the stereo frames is increased, the quality of the navigation
increases. This has been extensively demonstrated in the literature[10], [11].

The final and most important conclusion is that, as it was already shown with the
simulated data, when the resolution of the stereo stream increases, the robot’s hardware
is unable to extract the 3DPCs and assist navigation in time. Therefore, the number of
collisions are inevitably high. On the other side, thanks to the use of Cloud offloading,
the collision rate was dramatically reduced (around 460%). Obviously, sometimes a
delay in the information can lead to collisions. Nevertheless, it must be pointed out that
802.11ac has not reached yet to its full potential, so even better results can be expected
for this experiment in the future.

Theoretical analysis of Cloud Offloading

Apart from empirically outlining Cloud Offloading current advantages and issues, in
this thesis, a deeper approach in the concept of computation offloading is done. From a
theoretical point of view, a general offloading architecture for robotic tasks is proposed
(DTF-1), which can serve as a reference for developers when building applications that
require the computing power that the Cloud provides (see figure 3.8). In addition to
this, a first theoretical analysis regarding the effectiveness of Cloud offloading is done
(DTF-2), which first result can be summarized as:

tlocal > tremote if NI
NData

> IPS
BW

where:

• tlocal: Execution time of a robotic task on-board.

• tremote: Execution time of a robotic task when offloading to the Cloud.

• NI : Number of instructions of the robotic task.
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FIGURE 3.8: Block Diagram of a Cloud-based computation offloading
system

• NData: Data to be sent when offloading to the Cloud.

• IPS: Instructions per Second that local embedded system can execute. It is
assumed that each processor available in the Cloud, due to its vast processing
power, can execute at least this value of instructions per second.

• BW : Network bandwidth.

As it can be seen, not every single task should be offloaded to the cloud. It must be
taken into account the amount of available bandwidth, the data to be sent, the number
of instructions and the speed of the embedded system. Looking at the inequation, two
main elements can be defined:

• DI = NI
NData

: This is the "computing density" of the application. This refers to a
relationship between the number of instructions executed and the number of bits
(both data and code) transferred. Ideally, the Cloud would obtain more benefits
with high values of this fraction, that is to say, it computes a lot for every bit
of data to be sent. Hence, the more instructions to execute and the less data to
transfer, the more beneficial for Cloud Offloading. Obviously, these two variables
that form the fraction are entirely task-dependent. For instance, a task that needs
high resolution frame processing will presumably have bigger NData than a task
that simply requires a joystick command, which only occupies few bytes. This
same reasoning can be applied to the NI variable. For instance, a stereo vision
task that uses Graph Cuts with Occlusions, with O(n11)) time complexity, will
presumably have a bigger value ofNI than a stereo vision task that uses Dynamic
Programming, which has O(n3) time complexity [12] (assuming that both use the
same input data).

• µ = IPS
BW = (CPI · T · BW )−1: This relationship refers to the execution power of

the local embedded system and the available network bandwidth. In this sense,
Cloud Offloading would benefit if fast networks are used. On the other side, the
less instructions per second can the embedded system execute, the more benefits
will obtain from the Cloud. In contrast with NI

NData
, this fraction is almost com-

pletely technology-dependent. In other words, if a task has a certain value of NI

and D, this will have little effect in the value of IPS and BW , as the first one
depends on the embedded hardware and the second in the network connection.
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Taking a step further, an extension of Amdahl’s Law for Cloud Computing is pre-
sented (DTF-2). Amdahl’s law is expressed as follows:

S =
1

(1− F ) + F
Sf

where:

• F : Fraction of the program can that be parallelized.

• S: Global speedup of the program.

• Sf : Speedup obtained by parallelizing the fraction F of the program.

Firstly, an analysis is done for the case of computation speedup. In this sense, the
following extension is proposed:

St =

F
Nc,local

+ (1− F )
µ
DI

+ (1− F )

where, apart from the all the aforementioned variables, the number of available
cores in the local embedded system Nc,local is considered.The more cores the local sys-
tem has, the more parallelism it can exploit. On the other side, it is assumed that the
amount of cores available in the Cloud Nc,cloud tends to infinity.

After analyses and simulations, several results are obtained, which help to make
predictions on the future of Cloud offloading (DTF-3):

1. Total cloud execution time depends strongly on the amount of communication
and computation times that can be overlapped. Therefore, middleware solutions
for Cloud Offloading should focus in that matter.

2. µ
DI

plays a crucial role in speedup. In this sense, due to the expected develop-
ment in network bandwidth, together with the stabilized value of CPI · T , it can
be assured that µ will progressively decrease. Hence the amount of achievable
speedup will increase, making the offloading choice more desirable.

3. As long as µ
DI

decreases in the future, simplifying hardware may set a trend. This
implication is vital for the development of the Internet of Things (IoT).

In addition to this, a second analysis is done for the case of energy efficiency, which
is essential for embedded systems. In this sense, it is also essential to know whether to
offload an application to the cloud saves energy in the local device. For this reason, an
extension of Amdahl’s law for energy has been devised:

StxE =
Elocal · tlocal
Ecloud · tcloud

=
[(1− F ) · (Nc,local − 1) · kidle + 1] · P

µ
DI
· P

·
F

Nc,local
+ (1− F )

µ
DI

+ (1− F )

Just like the case of computational time speedup, some predictions can be made
from the obtained results:

1. In general, cloud offloading would not be beneficial for applications with lowDI ,
for instance those that do not reuse input data like video or audio streaming.
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FIGURE 3.9: Two-Roofline Model for GIPS (Giga Instructions Per Sec-
ond) vs. D I for the Snapdragon 610 S4 Pro. The diminution of maximum

device GIPS is marked with down arrows.

2. If µ continues with its expected reduction, these bounds will decrease close to a
proportional rate. Therefore, future evolution for current technology is promot-
ing offloading computation for embedded devices.

3. - When F → 1 or Nc,local = 1, the energy speedup is proportional to StxE =(
DI
µ

)2
. For simple devices or very parallel applications, energy efficiency of

cloud migration is expected to be reached way earlier than that of timing speedup
(quadratic order).

In addition to this, this papers analyzes several example applications (DAXPY, ma-
trix multiplication, and stereo vision), obtaining the following results:

1. For many applications, F and DI grow with the order of the problem. As a con-
sequence, as new applications require more accurate solutions, using the cloud
becomes a more viable solution. Moreover, future research should focus on trying
to reduce NData.

2. When F = 1, the maximum achievable performance can be seen using an exten-
sion of the Roofline Model for GIPS (see figure 3.9). This helps to conclude that
some applications, which have poor CPI and real GIPS are far from the maximum,
may obtain benefits by moving its computation to the Cloud (as local device’s
maximum theoretical GIPS cannot be achieved).

Even though the real world is much more complex than a theoretical model, these
Amdahl’s law extensions did help to encompass the main trends and have an idea of
what the future holds for Cloud Offloading.



Chapter 4

Discussion

Undoubtedly, Cloud Computing has become one of the top trending computing tech-
nologies in this decade[13], even though it is still at a relatively early stage. Cloud
Computing is more than virtual web servers and storage (basically, this is for what it is
currently known for). The Cloud still has an enormous potential to offer in the follow-
ing decades, not only for humans, but also for embedded systems. Because of this, the
rising interest of applying the Cloud in virtually every area is more than justified.

Moreover, this is especially interesting in the area of robotics (Cloud Robotics),
which is imagined like "offload compute-intensive tasks like image recognition and
voice recognition and even download new skills instantly, Matrix-style" [14]. How-
ever, is it Matrix-style robotics far-fetched? Until what extent is feasible? As stated in
section 1, this work aims to give answers to this question. But, has this thesis succeeded
in bringing more light to the topic? In this chapter, this last question will be discussed.

To begin with, this work has not been the first one in trying to demonstrate the va-
lidity of Cloud Computing for robotics. In this sense, several works can be found in the
literature since approximately 2010 (even though the dream of Cloud Computing dates
from decades ago[1]). In [15] an overall analysis of the Cloud Robotics area can be seen.
Its general architecture, applications and technical challenges are described. About the
architecture, it defines three cloud models: peer-based model (the one used in this the-
sis), proxy-based model and clone-based model. Regarding the technical challenges,
the following are enumerated: high communication failure rates, virtual resource opti-
mization, security and truth establishment and optimal energy consumption.

One of the best known projects was the Roboearth project [4], which had as a main
goal the creation of an "Internet for robots". Indeed, by having a cloud-based knowl-
edge base where robots can share information, robots can not only perform collabora-
tive tasks successfully, but also extend their capabilities by downloading new knowl-
edge. Therefore, there are several areas where this cloud feature is being exploited[3],
[16], such as human-robot interaction [17], healthcare [18] or world representation [19].
Moreover, this knowledge base helps the Cloud to become a global planner, as seen
in [20] and [21]. These works, amongst others, show the great potential of knowledge
sharing in different areas: healthcare, energy and transportation. Moreover, following
the Roboearth approach, new global knowledge platforms are arising, like the Robo-
Brain project, which will learn not only from robots, but also from computer simula-
tions and Internet resources[22].

In this sense, this is simply a natural extension of the interconnected world mankind
already enjoys. Nowadays, the necessity and effectiveness of interconnected embed-
ded systems is so taken for granted that no thesis would be necessary to prove it.
However, this is not that clear in the area of computation offloading.

Indeed, its the main advantage is clearly seen: cheaper embedded devices could
potentially perform complex tasks, thus saving money and energy. Nevertheless, as it

21
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can be read in [14]:

"But Laumond and others note that the cloud is not the solution to all of
robotics’ difficulties. In particular, controlling a robot’s motion- which relies
heavily on sensors and feedback - won’t benefit much from the cloud."

The question is: is this statement axiomatic? will never Cloud offloading be benefi-
cial when dealing with near to real time tasks? In this sense, together with this thesis,
several works can be found striving to show for what cases this statement is not true:

For instance, in [23] cloud offloading is applied to traffic light status detection based
on image processing. Instead of robots, this work makes use of mobile phones which
send camera frames to a Cloud server, responsible of detecting the status of the traffic
light. Even though the task has time constraints, the Cloud is able to respond success-
fully in less than a second, especially by trying to reduce the amount of transferred
data thanks to image compression. This relates to the necessity of reducing NData that
was mentioned in section 3.

Another example of image processing offloading can be seen in [24], where a cloud-
based face detector is implemented. This system was implemented in a Pioneer P3-
DX robot and wireless communication. Though their results are at an early stage (for
instance, no performance figures are provided), offloading works sucessfully in this
task.

A widely used robotics application is that of Self Localization and Mapping (SLAM).
Therefore, several works try to prove the viability of offloading this task. In [25],
GPUs are combined with the virtual resources of a national datacenter, with every-
thing connected using Gigabit Ethernet. Thanks to this, high resolution stereo footage
(1224x1024) at 15 frames per second was successfully processed. Moreover, This paper
points virtualization as one of the main sources of delays. In [26] the main difference
resides in the communication technology used: wireless for the robot and fabric for the
Cloud. This solution is based on landmark databases, which can be helpful for exploit-
ing parallelism. This work states that using Cloud offloading increases the throughput
compared with their previous on-board solution. This papers points as future research
the necessity of examining the limits of network technologies, which is exactly what
this thesis strives to analyze (see section 3). In the case of [27], a step further is taken,
as a complete Platform-as-a-Service (PaaS) solution is here developed. This platform,
Rapyuta, is general enough to be applied to any robotic task. On the other side, the
dynamic scalability property is not exploited, as it is implemented using a Clone-based
model[15], hence the parallelism is exploited inside a virtual machine. As a conse-
quence, it would be necessary to shut down and respawn a bigger virtual machines in
order to get more resources. A very interesting contribution in [27] is the combination
of not only computation offloading, but also knowledge sharing, as a map is collabo-
ratively built by two robots using 802.11n technology. In comparison with this thesis,
Rapyuta also outlines the limitations of current 802.11n (802.11ac was not tested in this
work) wireless devices in terms of throughput, proposing optimizations in NData such
as keyframing and compression techniques.

Apart from Rapyuta, other Cloud Robotics Platforms can be found in the litera-
ture. Continuing with the SLAM task, the C2TAM platform offers SLAM as a service
[28]. They combine both computation offloading and collaborative work, as the frame-
work allows fusing the information obtained from several robots. Thanks to the use
of keyframes, NData is reduced, obtaining a data flow of 1MB/s with 640x480 RGBD
cameras, perfectly assumable by the wireless technologies used in the paper. Another
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robotics offloading platform is the DaVinci Platform[29]. Just like Rapyuta, it is meant
to be used with any robotic algorithm, as long as it uses the Map-Reduce approach. In
order to validate the platform, the offloading of the FastSLAM algorithm was tested
using a dataset. Just like this thesis, the scalability of the cloud was demonstrated, ob-
taining considerable speedup when increasing the number of nodes. Compared with
this thesis, their performance figures are better because FastSLAM is embarrasingly
parallel. However, they did not consider the effects of network latencies or dynamic
scalability. This can be put down to the fact that they were not dealing with task with
real-time constraints. Another similar platform is that of REALcloud [30] which, com-
pared to Da-Vinci, has security and user authentication as a major asset. In addition
to these platforms, [31] presents the Robot-Cloud framework, which is also based in
a Hadoop Cluster. It contains high level protocols and services that allow a robot to
choose between several robotic algorithms. Just like Da-Vinci, it performs several scal-
ability tests but using less compute nodes. In this sense, can be seen that the speedup
results degrade whenNData increases (in the case of three compute nodes, the speedup
drops from 3x to 2x when doubling NData).

Another example of robotic task with real-time constraints is that of object detection
and tracking. In [32] this task is offloaded to the cloud using a decision based system.
This is done by estimating both communication (802.11g is used) and computation
times required to perform the task. This is related to the Amdahl’s law extension pre-
sented in this thesis. In this sense, the paper also considers bandwidth (denoted as β)
and server speed (denoted as η) as important factors to take into account when offload-
ing. Therefore, future work should try to apply this extension to their communication
and computation estimations. In [33] high resolution SIFT-based object detection is
speeded up by transmitting on-board preprocessed image information instead of raw
image data to external servers (once again, this is a way of reducingNData). The config-
uration of these external servers is specific to this work, so some properties of the cloud
computing paradigm are not exploited. In addition to this, authors of [34] present an
object-tracking scenario for a 14-DOF industrial dual-arm robot using a UDP transport
protocol for transmitting large-volume image over an Ethernet network. Thanks to the
very low sending and cloud image processing times that are achieved, a stabilizing
control law can be implemented, with time-varying feedback time delay.

In addition to this, cloud offloading has been applied to grasp analysis and plan-
ning. Using a Hadoop Cluster in the Cloud, [35] offloads this task, obtaining successful
results when increasing the number of nodes (they tested up to 500 processing nodes).
Moreover, in order to increase performance, they propose using asynchronous paral-
lelism, that is, to only wait for a subset of processing nodes to finish rather than waiting
for all of them.

Apart from new results to compare, this thesis does add new contributions to the
area. To begin with, when reading most of the aforementioned works, a question in-
evitable arises: why calling it Cloud and not Cluster, Grid, or simply Server? There
are already a vast amount of research works dealing with distributed systems, and
most of the offloading tasks perfectly could be done in a simple server (actually, this is
what several of the aforementioned works do). Is this simply a nomenclature change
or really the Cloud has something else that previous distributed systems had not? This
thesis defends that the Cloud does bring an added value, and properties like infinite
resources or dynamic scalability should always be taken into account. In this sense, the
platform here proposed was developed with this idea in mind: to be able to adapt itself
to different computing needs at runtime. Hence, the classical distributed applications
design pattern may not exploit the cloud’s full potential.
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However, having accepted that dynamic scalability is one of Cloud’s major assets,
why would this be desirable in the case of embedded systems offloading? Why would
a robot want the Cloud to scale back instead of having full processing power the whole
execution? Reasonable question, if in the wrong era. Nowadays, having a vast comput-
ing system as the Cloud for just one robot sounds illogical. The idea would be to have
tens, even hundreds of robots (or embedded systems) offloading tasks. Moreover, even
though the Cloud is theoretically supposed to have infinite resources, the actual reality
is quite different. Therefore, it is vital to transparently balance computing resources
trying to maintain the best Quality of Service. As it can be seen, this differs little from
what the Cloud is currently providing to enterprises and end-users, why would it be
different for the case of robots? Hence, if we really aim for realistic scenarios, then
talking about adaption and elasticity is simply mandatory.

Following this idea, when dealing with a multiple-robot setup, it is vital to define
proper scheduling and resource allocation strategies, in order to optimize both CPU
and bandwidth usage. In this sense, [36] proposes a scheduling mechanism for multi-
sensor data retrieval. It is based on market-based management strategies and it allows
to set Quality-of-Service (QoS) criteria. Results show that time of response, reliability
of response, bandwidth usage and CPU load are improved when using their proposed
mechanism. This strategy could be extended for dealing with dynamic scalability, so
the system is able to decide when to scale out and back. In this sense, there are other
real-time scheduling strategies that could be used to extend the Stereo Vision Platform
implemented in this thesis, for instance: QoS-aware scheduling [37] or scheming con-
sidering temporal overlapping [38]. Therefore, future work of this thesis should focus
on studying, implementing and extending these different heuristics.

Another contribution of the thesis is the application case: navigation assistance.
Few of the aforementioned previous work has tried to study offloading in such a reac-
tive and delicate task (where small errors do compromise the integrity of a robot). In
[39] a theoretical cloud framework for navigation, but no implementation or real tests
are provided. A more empirical approach is that of [30], where REALcloud is used by
a robot to follow a line according to the images acquired from a single low resolution
(320x240) camera that points to the floor. However, this thesis takes a step further and
deals with a more complex approach, which has teleoperation and collision avoidance.
After the experiments detailed in the thesis, we can assure that a robot has obtained
better results using the Cloud than by processing on-board. However, it must be ad-
mitted that the developed solution still needs more robustness, as some collisions were
unavoided. Nevertheless, this thesis did not intend to ditch on-board computing in
favor of cloud offloading. This is not a matter of discarding, it is a matter of combinat-
ing. That is the main reason why this thesis also emphasizes the necessity of offloading
configurations. Therefore, choosing carefully what to offload is the key to success in
virtually any application case, even those with real time requirements. In this sense,
in the area of mobile code offloading, there are several frameworks that try to analyze
which parts of an application should be offloaded [40]. Most are based on code pro-
filing, either automatic, like the COMET framework [41] or manual, like the ThinkAir
platform [42]. However, this is not without issues and challenges [40] like inaccurate
code profiling or integration complexity. In any case, extending these frameworks for
robotic applications and, even more important, for real time constraints is a very inter-
esting and challenging area of research. In addition to this, when it comes to offloading,
the principles of multi-agent robotics systems (MARS) should applied [43]: modularity,
concurrency, distributed architecture... amongst others. This would make the process
of developing and offloading applications much easier thanks to these properties.
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Closely related to this, we cannot detach computation offloading from another vital
concept: communication. In this sense, this thesis offers a more in-depth analysis in
both the key and state of current technologies, especially 802.11ac. If we really aim
for successful offloading when having time constraints, delays in information must be
thoroughly analyzed. Admittedly, the performance results shown for 802.11ac, even
though its bandwidth is expected to be close to 1 Gbps [44], are still far from being "the
Gigabit Ethernet equivalent of wireless networks". However, this thesis helped to turn
the spotlight on future research works:

• How can the variability of transfer times be reduced? Are the TCP and UDP
layers enough for task offloading? As the TCP transport layer is not prepared
for real time systems, it might be time to study and develop enhancements (or
other alternatives alternative layers) especially focused in this kind of tasks. In
this sense, further improvements in 802.11ac MAC layer like TDMA protocols,
would reduce substantially this latency variance [8]. Moreover, Contention Free
Period in the infrastructure mode with fixed size packets could guarantee a mini-
mum bandwidth reservation, which may be suitable for many real time systems.
If we really aim for successful offloading when having time constraints, some
QoS mechanisms should be incorporated to allow differentiation between traffic
types and guarantee allocation of resources to the offloaded applications with real
time requirements. These QoS mechanisms can be classified into two main cate-
gories:"Traffic handling mechanisms” or ”bandwidth management mechanisms"
[44] . Traffic handling mechanisms are designed to classify, handle, and monitor
the traffic across the network, while bandwidth management mechanisms man-
age the network resource and coordinate the network devices. Typically, mech-
anisms from the two categories can be used together: for instance, packet classi-
fication may be used to distinguish between different kinds of traffics and then
an admission control mechanism takes a decision of accepting or not the incom-
ing flow according to its QoS requirements and the available network resources
[44] . With IEEE 802.11ac, enhanced distributed channel access (EDCA) is the pri-
marily adopted access control mechanism for multimedia traffic transmission, so
it seems that it could also be used when offloading applications with real time
requirements. However, its inefficient backoff procedure may introduce unpre-
dictable delays [45]. There are still many open research issues with regard to this
important question.

• To what extent non real time middleware and variable data transfers affect a soft
real time system? Not only current hardware must be enhanced, but also the
available software and frameworks like ROS should have a focus on real time
requirements.

• What happens if suddenly the communication is broken? A robot that relies
solely in the Cloud lacks enough robustness. Hence, offloading solutions with
fallback mechanisms in case of network fault should be studied and analyzed.

• Can the negative effect of delayed information be circumvented by using predic-
tive time corrections[9]? If a predictive method is implemented, then robots may
afford to use delayed information even with reactive applications.

Apart from all this, computation offloading cannot avoid the following questions:
is this just a short-term trend? will embedded hardware develop with such a pace that
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FIGURE 4.1: Concept of Peer to Peer Cloud applied to Robotics. The
leftmost robot makes use of the computational resources in the Cloud
but, instead, the second robot makes use of the resources of a third robot

renders Cloud Offloading useless? In this sense, [46] stated in that Cloud Offloading
can be beneficial for some applications. As a very interesting idea, it must be taken
into account that if the data is already stored in the Cloud, no data transfer would be
necessary, only a pointer to it. That implies considerable energy savings. Just like [46],
this thesis did not hide and strived to provide answers, not only in the case of energy
but also in the case of performance. That is the reason why another contribution was a
deeper study in the concept of offloading, having as a result the extension of Amdahl’s
Law for Cloud Computing. Thanks to this research, it could be seen that Cloud Offload-
ing will have its place due to both current technology and software trends. Moreover,
it helps developers and researchers to have an idea of whether a certain computation
should be offloaded or not. In addition to this, this extension of Amdahl’s law shows
a tendency: in the future, computation offloading will be more and more beneficial.
Therefore, another question arises: what is the role of other computing platforms like
embedded Graphical Processing Units (GPUs)? If, down the line, offloading will pro-
vide better performance and energy results, then maybe embedded GPUs could be the
technology with an expiry date (obviously, GPUs could be of great use in the Cloud,
but probably not in the embedded system). Furthermore, Field Programmable Gate
Arrays (FGPAs), which offers extraordinary performance results (thanks to its hun-
dreds of available functional units) are also increasingly becoming more energy effi-
cient. Hence, it can be assured that, in the future, two computing choices will prevail:
very simple devices that use computation offloading (this is very related to the rise of
Internet of Things [47] and Cloud Computing, known as Cloud of Things [48]) and
reconfigurable computing devices.

Of course, in order to provide the Amdahl’s Law extension and its inherent pre-
dictions, it was necessary to make some simplifications and assumptions. Not to men-
tion the fact that, for complex applications, obtaining the parallel fraction F can be ex-
tremely challenging. However, is not less true this was the necessary first step in order
to develop a deeper and more ambitious theoretical framework. In this sense, future
research could study and model issues like virtualization, middleware and OS over-
heads, task scheduling, amount of overlap between transfers, heterogeinity of hard-
ware resources between cloud and the embedded system... amongst others.

In addition to this, this thesis’ results point where future research and development
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should focus on, for instance trying to increase DI and reduce NData of applications
by developing new software and compressing techniques. Not only this is important
for performance, but also for energy efficiency. As it was mentioned before, this ef-
fort to optimize these values can be seen in several works [23], [27], [28], [32], [33].
Moreover, in cases where the data to be sent are images (just like this thesis), there
are other works that propose energy-efficient compression techniques which are worth
applying in Cloud Offloading. For instance, [49] proposes a bandwidth aware com-
pression method, obtaining a 20% energy reduction average. In addition to this, [50]
proposes a method based in dynamic switching of compression level based on the
available bandwidth, thus optimizing data transfer. Apart from this, it is important
to study cross-layer transmission techniques to, once again, optimize communication
and energy savings [51].

For all this reasons, it can be assured that this thesis, with its issues and limitations,
not only provided experimental contributions to the scientific community, but also it is
a first step in the development of a future Cloud Offloading theoretical framework.

As a final discussion item, there is another element that should be taken into ac-
count: practically all the mentioned works, including this thesis, treat the cloud as a
centralized platform that robots make use of. Hence, another question arises: is this
enough? Should we go a step further and make robots "part of the Cloud"? This is
especially related to the concept of Peer-to-peer Cloud [52]. Let us imagine a set of het-
erogeneous robots performing several tasks. If one of the robots has plenty of compu-
tational resources, these could be offered to the rest of robots for offloading (see figure
4.1). Thanks to this, robots would have more flexibility when choosing where to of-
fload their tasks. In this sense, [53] proposes the Robot-as-a-Service framework, where
thanks to the use of web 2.0 technologies and Service Oriented Architecture (SOA), a
robot would be Cloud Computing Unit, just as Software, Platform or Infrastructure.
This idea is extended in several works. For instance, [54] integrates the use of SOA
and Map-Reduce algorithms in a Hadoop Cluster. In [55] an algorithm for providing
robotic resources in order to satisfy a certain QoS is proposed. In addition to this, in
[56] the RoboWeb architecture is created. This architecutre exposes both robot’s soft-
ware and hardware and exposes them as services through the Web. Another related
concept is the term "Robotic Cluster" introduced in [57]: "group of individual robots
which are able to share their processing resources, therefore, the robots can solve diffi-
cult problems by using the processing units of other robots". In this sense, [58] applies
this concept to the use case of SLAM, developing two archictectures (stateless and state-
ful) in order to cope with the limitations of bandwidth. The speedup results obtained
are promising, hence the combination of robotic clusters, robots as a service and cen-
tralized approaches would extend Cloud Offloading capabilities. An example of this
can be seen in [59], where an engine for collaboration between networked robots and
public clouds is developed. This platform makes decisions of where each task should
be executed (either in the robots or in the Cloud). At the moment only two policies
have been implemented: minimum energy and minimum budget (as it is using a pub-
lic cloud, using its resources cost money). However, it is a perfect starting point for
future work in integrating both centralized cloud and cluster of robots. Therefore, as it
can be seen, the definition of Cloud Computing keeps evolving through the years, and
in this sense, the results of this thesis strived to take a step forward in this direction.
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Conclusions

• Cloud Offloading can be beneficial even in applications with near to real time
applications. It is here demonstrated that the teleoperation of a mobile robot
using a cloud-based navigation assistant (using stereo-vision obstacle detection)
provided better quality than its all-on-board counterpart.

• Not all applications may benefit from Cloud Offloading. Several parameters must
be taken into account: data size, bandwidth, local resources, potential energy
savings, response time, characteristics of the application... amongst others. In this
sense, the most important parameters are the density of instructions DI = NI

NData

and the technological factor µ, which depends on the execution power of the local
embedded system and the available network bandwidth.

• Current 802.11ac wireless devices are still unable to provide speeds close to Gi-
gabit Ethernet. However, they perform better than 802.11n devices. If future
developments of WiFi AC obtain throughputs close its theoretical 867 Mbps, sub-
stantial speedups could be obtained.

• Benefits of offloading increase with DI/µ linearly in performance but quadrati-
cally in energy.

• Researchers and software developers should target in increasingDI and reducing
NData by compression and software techniques.

• There is an inherent trade-off between computation and communication in Cloud
Offloading. Therefore, when developing applications, all the different offloading
configurations (that is, which modules must reside on board or be offloaded)
must be analyzed, especially the implied transfers. Not every offloading config-
uration provides successful results.

• Trends indicate that µ will decrease in the future. As DI and F (parallel frac-
tion) grow with the order of the problem, Cloud Offloading will become more
and more beneficial as years go by. Therefore, the full offload of computation-
ally expensive applications will become preferable, even for tasks that nowadays
provide better results when running on-board.

Future work:

• When offloading tasks with time constraints, a big issue is the delay in the pro-
cessed information. In order to mitigate this effect, predictive time corrections
should be studied and developed.

• Current middleware and transport layer technologies introduce high variability
in the information transfer. Research should focus on studying the performance
given by alternative standard and non-standard technologies and platforms.
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Study of Communication Issues
in Dynamically Scalable Cloud-Based
Vision Systems for Mobile Robots

Javier Salmerón-García, Pablo Iñigo-Blasco, Fernando Díaz-del-Río
and Daniel Cagigas-Muñiz

Abstract Thanks to the advent of technologies like Cloud Computing, the idea of
computation offloading of robotic tasks is more than feasible. Therefore, it is possible
to use legacy embedded systems for computationally heavy tasks like navigation
or artificial vision, hence extending its lifespan. In this chapter we apply Cloud
Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images.
The objective is to have a dynamically scalable solution (one of Cloud Computing’s
most important features) and applicable to near real-time scenarios. This last feature
brings several challenges that must be addressed: meeting of deadlines, stability,
limitation of communication technologies. All those elements will be thoroughly
analyzed in this chapter, providing experimental results that prove the efficacy of the
solution. At the end of the chapter, a successful use case of the platform is explained:
navigation assistance.

Keywords Cloud computing · Computation offloading · Robotics · Dynamic scal-
ability

1 Introduction

Nowadays, new computationally expensive tasks are expected to be performed with
relative fluency by robotic platforms. A well-known example is that of artificial
vision and higher level tasks arisen from it, such as object detection, recognition and
tracking; surveillance, gesture recognition, etc. However, these tasks are so com-
putationally heavy that they may take several seconds in current embedded robot
computers. Hence the advantages of using computation offloading (i.e. moving this
computing task to an external computer system) are becoming evident in terms of
time to finish the task, mobile robot energy saving, amongst others.
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An interesting candidate for the aforementioned external computer system is that
of a Cloud infrastructure, thanks to its inherent characteristics [7]: high reliability,
larger storage capacity, stable electric power, reutilization of hardware, dynamic scal-
ability and better resource utilization. In particular, the dynamic scalability property
is very useful in robotics, as it allows the adaptation of the computing power at run-
time (that is, scaling out and back, depending on the needs), and therefore it permits
the robot to rapidly adapt in a changing environment. Moreover, another advantage
of the Cloud is the instant incorporation of more computation demanding algorithms
as they are being implemented.

Apart from computationally heavy tasks, the cloud is being used as a centralized
powerful infrastructure for multi-robot cooperative systems that usually works at
intermediate levels. This area is intensively studied as new cooperative algorithms are
being developed. Examples of these solutions are multi-robot SLAM (simultaneous
localization and mapping), map merging (acquired by several robots), networked
information repository for robots [23], etc.

As a result, an important number of research papers and projects addressing the use
of cloud infrastructures in robotics have been published during the last few years (see
Sect. 3). Besides, the term Cloud Robotics has emerged to include this area, which
promises a fast development of complex distributed robotics tasks in the forthcoming
years.

This chapter addresses the “computation offloading” of an intermediate robot
level task: 3-D point cloud (3DPC) extraction from stereo image pairs. In order to do
so, a Cloud-based 3DPC extraction platform will be developed. This platform has
innumerable applications, such as AI, artificial vision and navigation. The latter is
especially interesting, as 3DPCs are one of the most used representation for several
navigation tasks, including those of motion planning and obstacle avoidance. Because
of that, at the end of the chapter (Sect. 6.5) a navigation use case of our platform will
be briefly explained.

In this respect, current embedded computers are able to extract a 3D point cloud
and to build a map of the surrounding obstacles in a natural and dynamically changing
environment in less than a second, providing that low resolution frames are used.
Nevertheless, when an accurate vision is needed, frame resolution must be increased.
In addition to this, should the robot be in a fast changing environment, then higher
frame rates would be necessary. As a consequence, the limitations of robot embedded
hardware will likely arise, and thus sending the stereo image pairs to the cloud
can compensate the inherent trade-offs of network communications (explained in
Sect. 5.2 in more detail).

In order to exploit the cloud capabilities, the implemented platform must be able
to scale out and back, so the robot gets the results faster when more computation
power is required. Hence, a dynamically parallel algorithm has been implemented.
In this context, the quotient between computation and communication times mainly
indicates if the parallelization is to be successful. The developed platform is expected
to be applied to near real-time systems as well, which is not without several challenges
in terms of meeting deadlines. In this respect, the ratio between local-to-cloud transfer
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time (especially in the case of large amounts of data) and computation time in a single
node must be taken into account as well, as it indicates the usefulness of cloud off-
loading.

Section 3 summarizes several related works. Before presenting the developed plat-
form, a thorough analysis of which robotics tasks (especially those that need some soft
real time requirements) are candidate for computation offloading is done in Sect. 4.
An overall analysis of the implemented solution is depicted in Sect. 5 (together with
a time analysis). Experimental results are shown in Sect. 6 to quantify the benefits
of the cloud approach for different scenarios. In this last section, we summarize an
example application case of the presented platform: a navigation assistant for mobile
robots [19]. Finally, conclusions are summarized in Sect. 7.

2 Background

This book chapter covers several areas. The first (and most important) is that of
Cloud Computing. In this sense, books like [20] can be helpful for understanding
its inherent characteristics. More specifically, this chapter focuses on the idea of
computation offloading of High Performance Computing applications. Therefore,
so some basic concepts this kind of applications, together with basic concepts on
parallelism applied to cloud computing, are crucial to understand this chapter. These
concepts are clearly explained in [4].

In addition to this, the developed platform is used for stereo vision, and more
specifically in 3D Point Cloud extraction. The readers can find several works in the
literature regarding this specific topic, for instance [22]. However, it is not necessary
to know how a 3D Point Cloud is obtained from stereo frame pairs (that is, debayering,
rectification, amongst others) to understand the contents of this chapter.

Moreover, The presented software solution was developed using the ROS Plat-
form. Basic information about this software, together with beginner tutorials, can be
found in their wiki (http://wiki.ros.org/). In [12] there is a thorough outline of current
Robotics Software Frameworks (RSF).

Finally, communication issues are covered in this chapter. Therefore, readers can
read [21] to get basic knowledge about basic networking concepts and technologies.

3 Related Work

In the last few years works and projects that accomplish high level vision tasks
without real time requirements are more and more common [2, 9, 23]. Most of them
use the cloud robotics paradigm to offload the robot from high level tasks like those
related with visual processing or multirobot cooperation. In our opinion this is a
tendency that will burst in the next decade, due to the previous cloud computing
advantages.
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However, a small group of papers proposes offloading the processing of several
parts of the sensor feedback information that are near to real-time. For those opera-
tions, a fast and reliable response is needed. In [3] a high resolution SIFT-based object
detection is speeded up by transmitting on-board preprocessed image information
instead of raw image data to external servers. Here, properties of the cloud computing
paradigm are not fully exploited, because the configuration of these external servers
is specific to this work.

The idea of Computation Offloading is studied in [16]. These authors present
an estimation of the computation and communication times needed for the tasks
of recognition and object tracking in order to minimize the total execution time
(approaching the real-time constraints). Their analysis permits making offloading
decisions for object recognition for different bandwidths, background complexities,
and database sizes. In this sense, the method for identifying the optimal balance
between a cloud system overhead and performance presented in [8] can be useful.
Executing SLAM in the cloud is also studied in [18], where they develop a cloud
mapping framework (C2TAM). They combine both computation offloading and col-
laborative work, as the framework allows fusing the information obtained from sev-
eral robots. They work with a 640 × 480 pixel RGBD camera and an average data
flow of 1 MB/s, below 3 MB/s, which is the usual wireless bandwidth and hence the
mapping is successfully done (moreover, they work with keyframes, reducing the
amount of images to send).

In [24] an object-tracking scenario for a 14-DOF industrial dual-arm robot is
presented. Standard UDP transport protocol for transmitting large-volume images
over an Ethernet network is used. Thanks to the very low sending and cloud image
processing times that are achieved, a stabilizing control law can be implemented. Due
to the inherent time-varying Ethernet protocol delays, actuation signals incorporate
an ingenious hold action.

Finally, the work [1] also asks whether the performance of distributed offloading
tasks can be compared with those executed on-board. While the experiment per-
formed here is simple (a visual line follower that guides the robot using a single low
resolution camera that points to the floor), this demonstrator gives an idea of the
possible scenario for many cloud-based robots of the upcoming future.

Contributions of the chapter: Compared with the described literature, the work
presented in this chapter is the first that tries implement a stereo vision platform with
focus on both dynamic scalability and near real-time applications. Moreover, a gen-
eral offloading architecture (applicable to any case) is proposed, used to implement
the presented platform. In addition to this, a thorough explanation of the the role of
communication technologies, the problems of multi-robot and WiFi AC adds more
novelty to our work.
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4 Cloud Offloading for Robotics Applications

Figure 1 shows a block diagram of a Cloud-based computation offloading robotics
applications. The robot’s controller will collect any necessary environment informa-
tion (using both internal and external sensors) to send the most convenient action
to the actuators. Usually internal sensors (e.g. odometric) and simple sensor (e.g.
sonars) are easy to be processed on-board, so they provide a fast and reactive feed-
back to the robot. On the contrary, the robot can include some others more complex or
high level sensors (e.g. cameras), whose processing algorithms are more demanding
both in computing time and energy.

Because of this, the Cloud-based approach aims that the robot’s controller will be
freed from heavy computations by offloading. In order to do so, it must send to the
Cloud all the sensor information. While the size of high level sensoring is usually
big, the rest of sensors suppose a few additional bits; hence all the information can
be sent to the Cloud. This will even allow the Cloud to do more involved sensor
fusion algorithms without demanding real time constraints (like SLAM). While the
Cloud is performing all those high demanding computations, the robot can dedicate
its computing power for other (real-time) tasks. Once the Cloud has the processed
information ready and tailored to each robot, the robot will receive it and make
use of it for whatever operation the robot may require (e.g. vision, AI, trajectory
modification, etc.). Cloud offloading provides additional benefits due to the inherent
centralization that the Cloud supposes for a distributed robotic team. For example,
team collaborative tasks can be more easily and fluently handled in the Cloud as it
can manage complete information from all the robots.

Even though its advantages are evident, there are several communication bounds
and development issues when offloading robotics tasks. The software architecture
(and its components) of a complex robotic system must cater for a variety of charac-
teristics, which distinguish it from other system. The most relevant characteristics of
are [12]: Concurrent and distributed architecture, Modularity (several components
of high cohesion but low coupling), Robustness and fault tolerance; and real time

Fig. 1 Block Diagram of a Cloud-based computation offloading system
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efficiency. The first two characteristics are primarily benefited by cloud offloading,
while the third introduces new challenges (network robustness and fault tolerance
appear as a new aspect to considerate). Nevertheless, due that the platform described
in this chapter must cope with timing efficiency, communication delays are analyzed
in the rest of this section.

As explained in Fig. 1 the robot has to send sensoring information packets to the
cloud and wait until it receives the Cloud answer. The communication delays suppose
an obligatory inferior bound in the loop controller period. Let BW be the network
bandwidth rate and D, the total amount of transmitted and received data. Therefore
D/BW must be inferior to the controller deadline. This minimum bound does not
suppose for current network technologies a limit, except for the very reactive tasks.
For example a WiFi AC networks can deliver until almost 1 Gbps [5]. Even for a
demanding control loop of 50 Hz (higher than most mobile robot control loops),
this bound would not be exceeded if the transmitted data were less than 0.02 Gbits,
because the loop period is 0.02 s.

If images are to be transmitted, an amount of 20 Mbits of data represents 8 raw
B/W images of 640 × 480 pixels (or 32 images for a lower resolution of 320 × 240
pixels). This suppose that the robot is sending 4 (16 for the lower resolution) stereo
frame pairs at each period (without any compression). This is not the common case
for a current robot, which is equipped usually with only one stereo camera. Moreover,
currently the steady incremental ratio of WiFi networks is more than 40 % per year,
which means that only in two years the bandwidth is predicted to duplicate. Hence
it can be assured that theoretical bandwidth does not impose a limit in computation
offloading. Nevertheless, this may not be the case for latency variability, as our results
in Sect. 6.4 demonstrates.

Going further, a quantitative comparison of the times involved in local versus
remote computing points out new outcomes. Let IPS the rate of instructions per
second that the robot computer can execute [11]. Let us assume that the cloud can
speedup an application S times more than the robot, that is, it gets an IPS of S · IPS.
A high S is expected because of several reasons. Firstly, the cloud is expected to
have far more computational resources than a local (usually low power consuming)
computer. Likewise, there are big amounts of data parallelism to be exploited when
using many sensoring information (image processing, object, voice or face recog-
nition, etc.). Finally these tasks are usually very repetitive. For instance, in image
recognition, a pattern has to be compared with thousands of stored patterns. Hence,
it can be supposed that S is very big for most sensoring applications. Therefore, for
NI computer instructions local and remote execution times are:

tlocal = NI

IPS
; tremote = NI

(IPS · S)
+ D

BW
;

And we can obtain this formula for timing comparison:

tlocal > tremote if
NI

D
>

IPS

BW

jsalmeron2@us.es



Study of Communication Issues in Dynamically Scalable Cloud-Based Vision … 39

which indicates whether computation offloading is faster than local computation, and
gives us a prospect of which applications are prone to be offloaded. For example, let
us compute an estimation of the two members of previous inequality for the Erratic
Robot, which CPU runs at a frequency f = 1.4 GHz and has a CPI (Clocks per
Instruction) around 2.0 [14]. Hence, if a frame pair is computed by this robot in
texec = 0.96 s (see Sect. 6), the number of instructions that are executed [11] results:

NI = (texec · f )

CPI
= 6.72 · 108instructions

Besides, transmitted data of this experiment (see Sect. 6) consists mainly in a color
1024 × 768 frame pair, that is: D = 1024 · 768 · 3 · 2 · 8 = 3.77 · 107bits. Hence:

NI

D
= 17.8instr/bit

Let us remark that the first term of the inequality is application dependent, which
means that high intensive computing tasks will be benefited by cloud computing.
On the contrary, the second member is mainly technology dependent. Being IPS =
f/CPI [11], the Erratic CPU IPS = 7.0 ·108instr/s, but others platforms can achieve
a higher IPS. Moreover, a 400 Mbps data rate transmission can be easily reached with
WiFi IEEE 802.11ac. With these values, offloading is not bounded by time latency,
as the second term has a very much lower value (1.75 for actual case) than the first
one. As a conclusion, networking bandwidth is crucial for a successful offloading.

Let us finally make some predictions about the tendency of these two terms. If
the last decade trend continues, uniprocessor IPS will have an annual growth rate
much inferior to that of network technology [11]. This means that cloud offloading
is promised to take even more advantage for the next years. With respect to the
software development, it seems that the only possibility to speedup embedded CPU
IPS is by means of more parallelism (and by more efficient tools to develop it). But
this, indeed, would be beneficial for the advancement on cloud programming.

To sum up, it can be concluded that those applications with ratio NI /D bigger than
a few units, are currently candidates to be remotely executed. Those where this ratio
would be inferior may be successfully offloaded in a few years. This includes many
tasks from the top, middle, and even lowest, level of a common layered robot architec-
ture (see Sect. 1). Moreover, independently of this ratio value, there are applications
where the size of required (stored) data is huge (see Sect. 1). For them, maintaining
local massive storage (in terms of power, failure immunity, backup, weight, etc.) is
a hard problem and it is obvious that external offloading is the best solution.
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5 3D Point Cloud (3DPC) Extraction Platform

Using the architecture shown in Fig. 1, the offloading of stereo vision tasks has been
implemented. As stereo cameras are the high level external sensors, the robot will
send a stereo video stream (“Sensor Information” in Fig. 1). The Cloud will extract
all the necessary 3D information, sending that processed data (see Fig. 1) back to the
robot in the form of 3D Point Clouds (3DPC). The resulting architecture can be seen
in Fig. 2. These 3DPCs can be used by the robot to execute, for instance, a navigation
algorithm (as explained in Sect. 6.5) or a SLAM algorithm (together with the internal
sensing).

As mentioned in Sect. 1, with respect to the precision of the extracted informa-
tion, the bigger the image resolution is, the more accurate the reconstruction of the
surrounding objects will be (extensively demonstrated in the literature [10, 15]). The
reason for choosing stereo cameras instead of other simpler sensors (such as those
with infrared or ultrasonic technologies) is the completeness of the information they
can offer, as well as they can serve for other high level visual tasks (like object
detection and recognition, gesture recognition, etc.).

5.1 Software Implementation

In order to convert the image stream sent by the robot to a set of point clouds, the best
option is the Point Cloud Library (PCL, http://www.pointclouds.org) combined with
the OpenCV Library (www.opencv.org). These large-scale, open source projects for
2D/3D point cloud processing and computer vision, are used by a ROS (Robotics
Operating System) library called stereo_image_proc.

This package offers a node that converts two stereo frames to a 3D Point Cloud.
In order to do so, the node has an inner pipeline (using ROS nodelets) with several
stages. Firstly, a monochrome version of the image is produced (debayer stage).

Fig. 2 Block diagram of the 3DPC extraction platform
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Secondly, using the stereo camera intrinsic matrices, a rectified version of the image
is produced (rectify stage). With the rectified frames, the image matching occurs,
obtaining a disparity map (disparity stage). Finally, with this information, the fourth
and last step is the 3D point cloud construction (3DPC stage). Due to the very different
processing times of the four steps, the minimum time for processing a frame pair
will be the maximum of all step times (usually the disparity stage, which lasts most
of the whole processing time).

As it can be seen, the aforementioned process cannot be parallelized, as the steps
need to be done in order. However, one of the objectives outlined in Sect. 1 is to
have a dynamically scalable platform. In order to do so we have exploited the frame
pair-level parallelism. Figure 3 depicts the parallel solution. The 3DPC extraction
pipeline (stereo_image_proc) is replicated in several virtual instances in the cloud.
Therefore, each stereo frame pair will be sent to a different virtual machine in a round-
robin fashion. This solution requires an intermediate front-end node, responsible of
scattering the stereo stream between the available 3DPC extraction nodes. This way,
should the need faster 3DPC extraction times, then more virtual instances could be
spun up. However, some extra considerations must be taken into account in order to
exploit the parallelism successfully. These considerations are thoroughly explained
in Sect. 6.3.

Nevertheless, if we want our system to be dynamically scalable, then it must be
able to adapt itself at runtime. Therefore, the buffer node must be able to know how
many virtual instances are alive at any moment. This feature is implemented thanks

Fig. 3 Stereo frame pipeline process. Four nodes process (in a pipeline fashion) the frame pairs
that the front-end node delivers in a round-robin form. T f is the robot’s stereo camera frequency, to
is the time required to send the frame and tp is the time required to obtain the 3DPC (see Sect. 5.2
for more information on the involved times). The time required to forward the frame from the buffer
node to the 3DPC extractors, thanks to the Gigabit Ethernet connection, is negligible
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Fig. 4 Dynamic adaptation of the platform when the number of 3DPC extractors changes

to ROS bond library. This library helps to establish a link between the intermediate
buffer node and a 3DPC extractor. So, if one of the nodes of the link disappears, the
other would be automatically notified. Figure 4 shows the different cases:

• A new 3DPC Extractor is added at runtime: as soon as a 3DPC Extractor node is
spun up, it will automatically contact the buffer node and establish a bond between
them. The buffer node, with this new link added, will add this new node to the
round-robin list.

• One existing 3DPC Extractor is shut down: if this occurs, then the bond would
be broken, and the buffer node would be immediately informed. Therefore, the
round-robin list would be updated.

When dealing with dynamically scalable solutions, another question arises: When
should the platform launch more 3DPC extractors or shut down virtual instances?
For vision processing applications a simple Quality-of-Service (QoS) magnitude can
serve to determine these actions (with a previous agreement between the robot and
the platform). For instance: if the robot has agreed a 3DPC reception frequency of
5 Hz and the cloud is under-providing, then it can scale out to satisfy its demands. The
same could be applied for over-providing. The user could change this QoS agreement
at any time, and the platform would have to apply it accordingly.

For more technical details of the platform, the code is available with GPL license
in GitHub.1 In addition to this, there are cloud images ready for deployment using the
newest cloud technologies: Amazon EC2 virtual machines 2 and Docker containers.3

1https://github.com/javsalgar/cloud_3dpc_extractor.
2The EC2 AMI is ami-893b11b9.
3https://registry.hub.docker.com/u/javsalgar/cloud_3dpc_extractor/.
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Fig. 5 Time diagram of the point cloud extraction for one virtual node. More virtual nodes suppose
that more processes P will be running in parallel with different frames, so a little number of frames
would be discarded

5.2 Time Analysis

Processes are running in different machines that are interconnected via standard net-
work protocols, due that the system is running over the Robotic Software Framework
ROS [17]. Figure 5 shows a simplified timing diagram for one virtual node (the front-
end node is not shown because its delay times are negligible with respect to the other
involved times). The two physical systems are shown in the upper part of the figure:
the robot and the cloud, each one containing the different logical nodes of the system.
As seen in Fig. 2, the robot comprises the stereo camera O and the robot controller
R (responsible of tasks such as motor actuation subsystem, motion planner, amongst
others). Here, R only contains a reception process that validates the point clouds and
do the timing calculation. On the other side, the cloud is running the point cloud
extractor P , which can be cloned in several virtual nodes.

Pairs of frames are continuously sent from camera node O to the cloud at a spec-
ified frequency. The transmission time from O to P is to. Each virtual node receives
frames in a round robin fashion (in the figure only one node P[1] is represented for
simplicity). P[1] extracts the 3DPC, being tp the time invested.

This new extracted 3DPC is sent back to the robot R. If a new stereo pair joins the
stereo_image_proc inner pipeline (explained in Sect. 5) and enters a stage that is still
busy processing a previous frame, this new stereo pair will be discarded. Therefore,
when processing times of P (tp in Fig. 5) are elevated (more than the period of O),
some frames are discarded (shown like clear rectangles in Fig. 5) until the point cloud
extractors are idle again.
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One of the crucial points in the timing analysis is the determination of the number
of nodes that the cloud computer dedicates to the image processing (tp in Fig. 5), in
order to assure that the mean time to process a pair of frames is less than the transfer
time (to in Fig. 5). To get rid of this issue, and due that a scalable cloud computer is
available, this number is overestimated, so tp/p < to is always guaranteed (where
p is the number of active nodes).

A common issue in distributed systems is the synchronization of the different
processes and platforms. For the present experiments a simple solution has been
carried out: a ping-pong messaging loop is executed between the cloud and the
robot. In spite of non-deterministic TCP protocols, an offset under 0.03 s is always
achieved, which is enough for our purposes as total computing latencies (see Sect. 6)
are always above 0.2 s. Of course a better synchronization will be reached by using
TDMA methods or by the incorporation of an external sync device to each platform.

6 Experimental Results

In this section, a set of experiments is described to do an intensive performance testing
for different stereo streams, cloud states and connection technologies (between the
robot and the cloud). Our cloud-based solution has been deployed in a private small
cluster of 5 physical nodes (1 front-end node and 4 computing nodes). Each node has
a AMD Phenom 965 × 4 CPU (with virtual extensions enabled) and 8 GB of RAM.
They are all connected using Gigabit Ethernet bandwidth and Openstack Havana is
the cloud middleware installed (other well known solutions such as Hadoop were
not suitable as we are working with real time systems).

6.1 Scalability of the Platform

The first of the tests is a demonstration that the scalability of our solution is working
properly. Thus we use high resolution images (1920 × 1080 pixels) that result into
large 3DPC processing times. In order to isolate this experiment from other delaying
factors, the test is carried out with offline video images, and the robot is emulated
using an Intel Core i7 4750-HQ laptop with 16 GB of RAM. Moreover, the fastest
available TCP network (Gigabit) is used to reduce transmission delay overheads. A
variable number of frames is sent to the cloud, which processes them and sends a
3DPC back to the emulated robot.

As Gigabit Ethernet is a possible scenario for static robots, this experiment serves
also as a reference of the number of virtual nodes needed to extract 3DPC for high
resolution images.

Needless to say that, for low resolution images, 3DPC computation is sufficiently
fast, so elevated frequencies are obtained for any p (number of virtual computing
cloud nodes). The performance test shown in Table 1 measures the time required for
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Table 1 Total times to process and receive n point clouds using p 3DPC extractors

Execution time (s)

p/n 32 64 128 256 512 1024 2048

1 53.97 96.76 173 331 632 1213 2494

2 32.5 48.47 91.71 178 318 629 1218

4 25.38 33.84 55.09 106 186 437 904

6 27.07 36.66 51.48 87.02 171.3 351 635

Resolution of the stereo pairs is 1920×1080

the emulated robot to receive n point clouds processed in p nodes for HD 1080i
video stream frames. A significant speedup (ratio between total time for 1 node and
for p nodes) is obtained, approaching a sustained average frequency near to 4 frame
pairs per second (reached when a high number of frames are processed). In this case,
cloud elasticity makes it possible for the robot to change between different computing
resources depending on the frequency required by the robot.

6.2 Communication Technology Performance Measures

Once the scalability of the cloud computing solution has been demonstrated, a second
experiment is devised to analyze the performance impact of different communication
technologies. As stated before, Gigabit Ethernet is a possible scenario for static
robots, but the case of mobile robots (where the use of wireless technologies is
practically mandatory) must be taken into account as well.

With this in mind, we have tested two wireless technologies: IEEE 802.11n WiFi
and IEEE 802.11ac WiFi. The latter, though being still quite recent, can theoretically
achieve bandwidths of 768 Mbps (which is close to what Gigabit Ethernet can offer).
In this experiment, we have used the on-board computer of the Videre Erratic robot.
the stereo camera and the image transmission has been carried out by a real mobile
robot (in this case Videre Erratic by LLC). The cloud is configured to have p = 6
3DPC Extractors.

Table 2 compares the performance of the system (in terms of 3DPC reception fre-
quency) using different technologies and frame resolutions. Two facts can be deduced
from these results. First of all, for the case of extracting 3DPC for small resolution
frames, no performance boost has been found. This is due to two factors: the robot’s
hardware hardware is powerful enough (for simpler robots, cloud offloading of this
process may be beneficial), and insufficient bandwidth of the networks used (better
results could have been found for 10 Gbps Ethernet or Infiniband).

However, the robot starts performing worse (due to its hardware limitations) when
the quality of the frames is increased. Hence we are able to obtain speed-ups when
offloading this demanding computations.
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Table 2 Performance measures for different communication technologies

Average Frequency of 3DPC reception (Hz)

320 × 240 640 × 480 1024 × 768 1920 × 1080

Gigabit 16.3 6.65 2.22 0.84

WiFi 11n 4.04 2.04 0.29 0.14

WiFi 11ac 4.98 3.02 0.76 0.24

Erratic alone 7.15 2.61 1.01 0.02

Erratic alone means that the Erratic robot is working alone, that is, working as a local stereo vision
system

Note that there are performance differences between the Erratic robot and the
laptop used in Sect. 6.1. To begin with, the laptop’s hardware (both RAM and CPU)
is 4 times better than that of Erratic’s. Moreover, there are extra factors that affect the
overall performance (even though the robot’s controller has less to compute because
of the offloading), such as frame buffering and sending, peer to peer connection
management, 3DPC reception, amongst others.

This experiment (together with the one explained in Sect. 6.4) shows the current
limitations of wireless technologies due to the big amount of data to transfer. In
order to address this (as explained in Sect. 4) the computation versus communication
trade-off must be carefully analyzed for each application case (as done in Sect. 6.5).

6.3 Time Delay Measures

Very delayed data is usually useless for most information processing applications,
especially those with near real-time requirements. Taking into account the timing
explained in Sect. 5.2, in this third experiment the average latencies to receive the
3DPC of each individual frame are obtained. Each latency is defined here as the time
passed since the source stereo frame was actually obtained to the 3DPC reception.

Table 3 shows the latencies obtained (using 1024768 resolution frames) for dif-
ferent communication technologies. The last row shows the same times for Erratic
robot computing all the process on its own (no network is used). Once again, these
times can serve as a reference to show the viability of cloud computing.

Table 3 Average delay measures for Gigabit Ethernet in the case of 1024 × 768 resolution frames

Delay times (s)

to tp tc Total

Gigabit 0.0704 0.389 0.317 0.7764

WiFi 11n 0.676 2.377 3.442

WiFi 11ac 0.4740 1.61 2.473

Erratic alone 0.0670 0.966 0.166 1.199

Erratic alone means that the Erratic robot is working alone, that is, working as a local stereo vision
system
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In order to calculate the delay, the average times taken to perform each of the stages
explained in Sect. 5.2 (to, tp and tc) are measured using time stamps at the beginning
of every process. The average latencies are calculated by adding the mean runtime of
all these stages. In the case of using the cloud, the difference between technologies
can be found in the transfer times to and tc, whereas tp remains unaffected (Fig. 2
clarifies this statement).

As it can be seen, for lower resolutions the robot can outperform the Cloud if wire-
less technologies are used. However, when increasing the stereo frame resolution,
there is a point where the limitations of the embedded hardware start to arise. There-
fore, it is worth considering Cloud offloading when bigger resolutions are required.

6.4 Interference Analysis with WiFi AC

The performance of the Cloud itself is not crucial, as we have the premise of “infinite
resources”. However, as wireless technology is the best choice for mobile robots, an
in-depth analysis of interference when increasing the number of robots must be done.
It is highly likely that not only one robot, but several are using the cloud at the same
time. Hence it is extremely important to study the possible communication quality
degradation.

The aim of this experiment is to analyze how WiFi 11ac manages the interferences,
and to prove that it is the most suitable technology for mobile robots operation. We
will focus only in the transmission of stereo frame pairs (resolution of 320 × 240)
to the Cloud, what renders enough information about interference problems. We are
interested in two elements:

• The average transfer time needed to send a stereo frame pair to the Cloud. As we
are working with a real-time system, the meeting of certain deadlines is vital. For
example, if the robot is transmitting stereo frames at 5 Hz, transfer times lower
than 1/5 Hz = 0.2 s are desired in order to meet deadlines.

• The message success rate. When more robots are added, there is the risk that some
of the packets that form the message (containing a stereo frame pair) collide and get
corrupted. Even though transport-level protocols like TCP allow packet resending,
the following scenario could occur: while the Cloud waits for the missing packet
(which corresponds to a stereo frame message with timestamp t) to be resent, the
same robot had already begun sending packets of a new stereo frame message (that
is, a frame with timestamp t + 1). Should a packet from a frame with timestamp
t + 1 arrive, then all the packets from messages with a timestamp lower than t + 1
would be automatically discarded (because of its obsolescence). This necessary
implies a lower message success ratio.

Table 4 compares the average latency and message success ratio when the number
of robots and the message frequency increase. To begin with, note that the packet
success rate works exactly as expected. When more robots are added, the number of
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Table 4 Performance comparison when adding more robots in the case of 320 × 240 when no
3DPC extraction is done and only delays in stereo frame transmissions are considered

# Robots Mean transfer time (s) Average message success (%)

5 Hz 1 0.117 100.00

2 0.124 100.00

4 0.157 94.99

6 0.147 87.88

10 Hz 1 0.063 100.00

2 0.086 99.86

4 0.082 94.99

6 0.084 87.79

The wireless technology is that of 802.11ac

packet collisions increases, and therefore more messages are lost. Thus, there is a
trade-off between number of robots and system stability (e.g., missing environment
information can result in a robot crash, in the context of robot navigation). The
average transfer time deteriorates until a point where the percentage of message
success is low enough. This phenomenon is understood because the mean transfer
times are calculated only with those packets that have arrived successfully. That is,
those “lucky” packets last little time to complete. Hence, it is not that messages are
faster now, but that more packets do never arrive to the Cloud (and therefore their
transfer time cannot be properly measured). Therefore, we can assure that there is
another trade-off between message success ratio and average transfer time.

With respect to the meeting of deadlines, Fig. 6 shows the Empirical Cumulative
Distribution Frequency (ECDF) of delays for the experiment above shown. As it can
be seen, adding more robots make it more difficult to meet deadlines (vertical gray
dashed line in the figures) because of network interference. This is especially evident
in the case of 10 Hz. Therefore, because of the trade-offs previously explained, we
can conclude that current wireless technologies are (at the moment) not enough
developed for very critical real-time applications when more than one robot in the
same wireless cell. Should this be the scenario, then it would be necessary to allow
less strict deadlines. The high variability of total latency times that occurs in our
experiments can be mitigated by a predictive timing correction of actuation signals
[13]. There will be necessary further improvements in 802.11ac MAC layer like
TDMA protocols to reduce this latency variance (as mentioned in Sect. 5.2). The
use of the Contention Free Period with fixed size packets is an alternative to TDMA
protocols. This could guarantee a minimum bandwidth reservation, and therefore we
could address the issues explained in this experiment.

6.5 Application Case: Navigation Assistant

This last test summarizes the results for a real task for our cloud vision platform:
a navigation assistant for mobile robots. While a teleoperator is driving a mobile
robot, the information processed by the 3DPC Extraction Platform helps him/her
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Fig. 6 Empirical cumulative distribution frequency of delays with 5 and 10 Hz

to avoid collisions. Numerous questions arise, as in any real experiment: are really
high quality stereo frames necessary to assist in the navigation?, are cloud solution
more effective than the on-board one?, do packet latency variability suppose a prob-
lem when navigating? If on-board navigation were successful enough for 320 × 240
stereo frames (which have an adequate 3DPC frequency rate, see Table 2), then Cloud
offloading would not be necessary at all. In order to answer these questions, a test-
ing circuit was prepared (see Fig. 7). The Erratic robot was equipped with a stereo
camera built from two PSEye cameras and the circuit was completed several times.
The ratio of collisions by maneuvers was used as a success magnitude.

The results obtained in Sects. 6.3 show that most of the delays come from tc, that
is, the time required to transfer the 3DPC back to the robot. Thus, we got rid of this
communication overhead by moving the navigation assistant to the Cloud as well.
Figure 8 shows the diagram of the resulting architecture.
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Fig. 7 Testing circuit used in the experiments

Fig. 8 Overview of the platform applied to the navigation use case

Thanks to this change in the offloading model, we obtained the following results,
which solve most of previous questions. First of all, collisions were very frequent
(about 50 %) when using 320 × 240 images (for any computing option). Secondly, the
number of collisions were considerably reduced (less than 10 %) with higher resolu-
tions (640 × 480 pixels) and using the Cloud. As a conclusion, for the stereo vision
algorithm used here, low resolution images are not enough to detect the obstacle
information properly, and hence using higher resolution images is justified. More-
over, images with more than 320 × 240 are more difficult for the Erratic robot to
process on-board. A demonstration video can be found in [6] and all the details of
the experiments and the navigation assistant can be seen in [19].

7 Conclusions and Lessons Learned

The implemented platform (and its experimental results) shows that the cloud-based
offloading of heavy visual processing tasks is possible. Several conclusions can be
extracted from the experience.

jsalmeron2@us.es



Study of Communication Issues in Dynamically Scalable Cloud-Based Vision … 51

Firstly, the main bottleneck of cloud offloading is due to communication over-
heads. It is extremely important to mitigate this effect by choosing the correct
network technology. Moreover, the non-real time middleware and the inherent
non-deterministic of the TCP protocol (available in most Robotics Software Frame-
works) introduce a high variability in timing latency. Thus, this drawback should be
mitigated by using some kind of predictive correction terms in the loop controller and
more deterministic middleware and networks. However, the results obtained by WiFi
11ac are promising, and in future years it may be able to provide bandwidths close
to its theoretical 768 Mbps, which may reduce the collision problem that currently
appears even for a reduced number of robots (as it has been outlined in Sect. 6.4).

Secondly, there is an inherent trade-off between computation offloading and com-
munication overhead times. Therefore, the platform should be used finding the best
balance between those two. In that sense, depending on the use case, it may be worth
considering offloading not only the 3DPC extraction, but also other robotics tasks
(just like the case shown in Sect. 6.5).

In addition to all this, it has also been demonstrated that if a Cloud Solution is
not scalable, it is highly unlikely that good performance results can be achieved,
and therefore impossible to meet real-time requirements. As it has been shown in
Sect. 6.1, this is an indispensable element to exploit the Cloud’s true potential.

As a final conclusion, it can be assured that, despite there are challenges that need
to be addressed, the main question has been answered: using the Cloud for offloading
can imply better performance results in a robot than using on-board computation (at
least for a typical robot, whose hardware is much limited).
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A Tradeoff Analysis of a Cloud-Based Robot
Navigation Assistant Using Stereo Image Processing

Javier Salmerón-Garcı́a, Pablo Íñigo-Blasco, Fernando Dı́az-del-Rı́o, and Daniel Cagigas-Muñiz

Abstract—The use of Cloud Computing for computation of-
floading in the robotics area has become a field of interest today.
The aim of this work is to demonstrate the viability of cloud of-
floading in a low level and intensive computing task: a vision-based
navigation assistance of a service mobile robot. In order to do so,
a prototype, running over a ROS-based mobile robot (Erratic by
Videre Design LLC) is presented. The information extracted from
on-board stereo cameras will be used by a private cloud platform
consisting of five bare-metal nodes with AMD Phenom 965 4
CPU, with the cloud middleware Openstack Havana. The actual
task is the shared control of the robot teleoperation, that is, the
smooth filtering of the teleoperated commands with the detected
obstacles to prevent collisions. All the possible offloading models
for this case are presented and analyzed. Several performance
results using different communication technologies and offloading
models are explained as well. In addition to this, a real navigation
case in a domestic circuit was done. The tests demonstrate that
offloading computation to the Cloud improves the performance
and navigation results with respect to the case where all processing
is done by the robot.

Note to Practitioners—Cloud computing for robotics is very
promising for several reasons, like robot's energy saving, larger
storage capacity, stable electric power, better resource utilization
and the difficulty of upgrading the robots' embedded hardware.
The presented application extracts 3D point clouds from the stereo
image pairs of a camera situated on the robot. Using these 3D
points, a shared control is implemented to help the remote teleop-
eration of a robot. That is, the commands sent by a joystick are
attenuated when a possible collision is detected (by checking the
future commanded trajectory against the 3D points). All of these
computationally heavy tasks (difficult to perform by a mobile
robot) are done in the cloud. The offloading models proposed in
this paper are generic enough to be used in other applications.
Obtained results show that further improvement in communica-
tion technologies will suppose a significant performance boost for
offloading computation.

Index Terms—Cloud offloading, cloud robotics, image point
cloud, mobile robots, navigation assistance, shared control.
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I. INTRODUCTION

C LOUD computing is an emerging technology for robotics,
especially for mobile service robots. The needs come

from the huge amount of information that a service robot has
to process in order to interact and interpret the environment
correctly. For this reason, during the last few years, an im-
portant number of research papers and projects are addressing
the use of cloud infrastructures in robotics [1]–[4]. Research
fields where clouds are of interest are those where computation
is very intensive. But, where and how can high computing
tasks be identified in mobile robots? According to [5], a robot
usually has a layered architecture. Layers in the top level of the
hierarchy can contain processes that, for example, perform cog-
nitive tasks similar to humans. In the middle layers, tasks also
involve complex processes like path planning, object handling,
speech recognition, etc. Finally, in the lowest levels reactive
and real-time control operations are performed (e.g., obstacle
avoidance, guidance, beacon detection, signal communications
processing, etc). The amount of computation is not necessarily
proportional to the level. For instance, in [6], it is pointed out
that an intelligent mobile robot in an office-like environment
can be modeled by the Soar cognitive architecture with only a
few milliseconds of computational cost. However, other middle
and low-level tasks that feed higher layers in a robot architec-
ture, can be very computing demanding. The main example is
that of artificial vision and higher level tasks arising from it,
such as object detection, recognition and tracking, surveillance,
gesture recognition, etc. Another very promising field is that
related to multi-robot cooperation at different levels, where
new cooperative algorithms are being developed like multi-
robot simultaneous localization and mapping (SLAM) [7], map
merging (acquired by several robots), networked information
repository for robots [8], amongst others.
The main properties that make cloud infrastructures com-

pelling are the following: high reliability, larger storage
capacity, stable electric power, reutilization of hardware, dy-
namic scalability and better resource utilization. In particular,
the dynamic scalability property (adaptation of the computing
power at runtime) is extremely useful in Robotics, because it
allows the almost instant incorporation of new computation
demanding algorithms as soon as they are implemented. Be-
sides, the term “Cloud Robotics” has emerged to include this
area, which promises fast development of complex distributed
robotics tasks in the forthcoming years.
Consequently, the use of cloud computing is expected to be

widespread in the next few years in the service and rehabilita-
tion robotics field. Its use can offer them additional advantages,
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such as: supplementing local information collected by the robot
with that coming from Intelligent Environments, Ambient As-
sisted Living applications likemonitoring user's health and daily
activities, multirobot cooperation and so on. In this respect, it
must be noticed that images captured by on-board cameras are
to be required by higher robotics levels (like object detection
and recognition, gesture recognition, etc., which must run in the
cloud), or by a human teleoperator that must make a decision
over the robotics system or simply teleoperate the robot itself.
Therefore, these images will be transmitted to the cloud in any
case, and these transfers would not be a burden for the whole
system.
Navigation assistance and human-computer shared control,

are common application cases for intelligent wheelchairs. Many
wheelchairs incorporate high-ended sensors, like stereo cam-
eras, laser rangers, and Ambient Intelligence aids [9] to address
this question. However, despite great advancements in power
wheelchair technology, research shows that wheelchair related
accidents occur frequently, especially for users with consider-
able handicaps [10]. Daily wheelchair maneuvers could be chal-
lenging due to the users' pathologies, poor maneuvering skills,
user's fatigue, and unknown or adverse environments. There-
fore, a safe maneuverability of a wheelchair using on-board or
external high-ended sensors has great importance in this kind of
situations. Moreover, remote teleoperation of the wheelchair by
an external caregiver could be sometimes necessary.
In addition to this, the results obtained in our Lab research in

advanced wheelchairs control [11], [12] support the necessity of
navigation assistance in certain situations. Because of the prob-
able omnipresence of cloud infrastructures for service robots,
in this work a prototype is implemented as a first step to an-
alyze and demonstrate the viability of carrying out in a cloud
the lower (but intensive computing) levels of a mobile robot
navigation assistant. The presented prototype is running over a
Robotic Operating System (ROS)-based mobile robot (Erratic
by Videre Design LLC) due to its software deploying and de-
bugging ease. However, this idea will be applied to other de-
vices like intelligent wheelchairs or other mobile service robots,
extending our previous research. More precisely, the task con-
sists of the teleoperation by a local or remote (which has little
influence because the inherent distributed architecture of the de-
veloped system) user, who is helped by using the sensing in-
formation extracted from an on-board (but processed in a cloud
infrastructure) stereo camera. In order to exploit the cloud capa-
bilities, a dynamic parallel algorithm has been implemented, so
the solution is able to scale out and back. Hence, the robot gets
the results faster when more computation power is required.
The Computation offloading of a robotics task includes sev-

eral tradeoffs. The software architecture (and its components) of
a complex robotic system must cater for a variety of character-
istics, distinguish it from other systems. The most relevant are
[13]: concurrent and distributed architecture, modularity (sev-
eral components of high cohesion but low coupling), robustness
and fault tolerance, and real-time efficiency. The first two char-
acteristics primarily benefit from cloud offloading, while the
third introduces new challenges (network robustness and fault
tolerance appear as a new aspect to considerate). Nevertheless,
the main issue that offloading must address for a navigation
task is the fourth of them. In this respect, a short quantitative

comparison of times involved in local versus remote computing
follows. This demonstrates the theoretical real-time viability of
cloud offloading and it points out new considerations.
The first mandatory bound is the time spent in data transmis-

sion to the cloud. If the bandwidth rate of communication tech-
nology is , and data size to be transmitted and received is
, it is concluded that must be inferior to the dead-

line of the task. Nowadays, there are wireless networks whose
bandwidths [14] are approaching to 1 Gbps, with a steady in-
cremental ratio of more than 40% per year, or two times every
two years (see http://www.wi-fi.org/). For a typical navigation
control loop, frequencies around 20 Hz (period s) are
usually enough. This gives us a limit of 0.05 Gbits, or equiva-
lently, a 3 Mpixel raw stereo image, per period. There-
fore, offloading computing is feasible, which, indeed, has the
aforementioned benefits.
A secondary aim is that cloud accelerates timing execution.

Let us suppose that the robot computer can execute at a rate of
instructions per second (millions of or is a

common magnitude in computer architecture [15]), and that the
cloud can speedup an application times more that this .
Therefore, local and remote execution times for computer
instructions could be expressed as

For stereo vision applications, is very big because the cloud
is supposed to have far more computational resources than the
local computer, and many operations are performed in parallel.
Being that the case, timing comparison gets to a short formula,
which indicates whether computation offloading is faster than
local execution, that is, , if

The first term of this inequality is entirely dependent on
each application. This means that high intensive computing
tasks benefit from cloud computing. With respect to image
processing, many of the filters that extract features used in
point cloud processing have computational complexity orders
higher than , being the number of pixels. For example,
in our experiments, a frame pair is computed by the Erratic
in s (see Section V). As the Erratic CPU (Intel
Celeron-M) runs at a frequency of GHz and has a
Clocks per Instruction (CPI) around 2.0 [16], then, the number
of instructions is [15]

Besides, transmitted data in this experiment (see Section V)
mainly consists of a color 1024 768 frame pair, that is:

bits. Hence

On the contrary, the second member of the inequality is
mainly technology dependent. Nowadays, is
[15], so for the Erratic CPU, it rounds instr/s.
Therefore, networking bandwidth is crucial to have success in
the offloading. Using WiFi IEEE 802.11ac, 400 Mbps data rate
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transmissions can be easily achieved and, hence, the second
term has a very much lower value (1.75 for actual case) that the
first one, which promises a successful offloading. On the whole,
it can be concluded that many tasks from the top, middle, and
even lowest, level of a common layered robot architecture are
presently candidates to be remotely executed, or they would be
it in a few years.
The rest of this paper is organized as follows. Section II sum-

marizes several related works. Next, two sections analyze the
practical case study: Section III explains the architecture of the
system, especially the navigation assistant and a timing anal-
ysis. This timing analysis is vital for studying the computa-
tion offloading possibilities of the presented solution, which will
be explained in Section IV. Experimental results are shown in
Section V to quantify the benefits of the cloud approach, and
finally conclusions are summarized in Section VI.

II. RELATED WORK

Cloud robotics has two major lines of work. The first one
corresponds to the creation of an “Internet for robots” [8],
where all robots extend their knowledge using a predefined lan-
guage and collaborative build and merge/retrieve information
[17]–[20]. The second line of work (though not being com-
pletely separated of the former) is the one studied in this work:
computation offloading. This paradigm is being used by many
works and projects that accomplish high-level vision tasks,
though they do not have real-time requirements [2], [3], [21].
However, some papers have appeared in the last few years that
propose the external processing of several parts of the sensor
feedback information, achieving close to real-time performance
for these operations. In [22], they combine GPUs and cloud
offloading (to a private cloud infrastructure) to perform SLAM,
with successful results in different environments. They study
different virtual resources configurations as well: 1 virtual
machine per bare metal node, several VM's per node, amongst
others, finding that virtualization overheads imply a degradation
in speedup (they use Xen as virtualization technology). In this
sense, the method for identifying the optimal balance between
a cloud system overhead and performance presented in [7] can
be useful. Executing SLAM in the cloud is also studied in [23],
where they develop a cloud mapping framework (C2TAM).
They combine both computation offloading and collaborative
work, as the framework allows fusing the information obtained
from several robots. They work with a 640 480 pixel RGBD
camera and an average data flow of 1 MB/s, below 3 MB/s,
which is the usual wireless bandwidth and hence the mapping
is successfully done (moreover, they work with keyframes,
reducing the amount of images to send). Another computation
offloading example is proposed in [24], where a high-resolution
SIFT-based object detection is speeded up by transmitting
on-board preprocessed image information instead of raw image
data to external servers. The configuration of these external
servers is specific to this work, so some properties of the cloud
computing paradigm are not exploited.
The idea of Computation Offloading is studied in [25], and an

estimation of the computation and communication times needed
for the recognition and object tracking tasks is presented in
order to minimize the total execution time (approaching the

Fig. 1. Block diagram of the Cloud-Based Navigation Assistant for the teleop-
eration of a mobile robot. The different types of data transfer are the following:
Stereo frame pairs, 3DPC, robot velocity commands, and user input commands.
Also, bond status messages are required by ROS bond library.

real-time constraints). Their analysis permits making offloading
decisions for object recognition for different bandwidths, back-
ground complexities, and database sizes.
Authors of [26] present an object-tracking scenario for

a 14-DOF industrial dual-arm robot using a UDP transport
protocol for transmitting large-volume image over an Ethernet
network. Thanks to the very low sending and cloud image
processing times that are achieved, a stabilizing control law can
be implemented, with time-varying feedback time delay.
The work [27] also asks whether the performance of dis-

tributed offloading tasks can be compared with those executed
on-board. The experiment performed consists of a simple con-
troller that guides the robot in order to follow a line according
to the images acquired from a single low-resolution (320 240)
camera that points to the floor.
Compared with the described literature, the work presented

in our paper is the first that tries to analyze the cloud offloading
of such a real-time task as navigation assistance. In addition
to this, a thorough explanation of all the offloading possibili-
ties, together with the role of communication technologies, adds
more novelty to our work.

III. OVERVIEW OF THE SYSTEM
The analyzed robotic application consists of a teleoperated

mobile robot using a shared control via on-board cloud-based
stereo vision (continuing the work presented in [28]) and the
robotic software framework ROS (http://www.ros.org). The ex-
perience of our Lab in shared control for wheelchairs [29] has
inspired this present proposal, whose aim is to enable inexpe-
rienced or handicapped pilots to safely drive vehicles in chal-
lenging scenarios.
Section III-A summarizes the different modules of the ap-

plication and Section B explains the stereo vision processing
implementation. Section III-C explains how the navigation as-
sistance system works and Section III-D addresses the timing
analysis of the computation offloading.

A. Block Diagram of the System
Fig. 1 shows a simple diagram of a vision navigation assisted

robot. The robot carries a stereo camera which sends frames
to the teleoperator and to those processes responsible for 3D
Point Cloud (3DPC) extraction. Once a 3DPC is obtained from
a stereo frame pair, it is sent to a navigation assistant node.
This navigation assistant node will also receive input commands
from the local command interface (a joystick in this case), which
are translated to the desired linear and angular speeds
With the previously received obstacle information (that is, the
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3DPC), and the historic buffering of robot velocities, the nav-
igation assistant will be able to calculate the correct that
avoids an obstacle collision. Once this has been computed,
a velocity command which satisfies the same curvature
suggested by the user through the joystick, is sent to the robot.
This fusion of information is usually called “continuous shared
control” [29], which is frequently preferable for most naviga-
tion assistance systems, because the desired commands were
smoothly and continuously combinedwith a collision avoidance
criteria [30].
The distributed implementation and the discussion of where

should each node run, whether the robot or the cloud, are more
deeply discussed in Section IV.

B. Stereo Image Processing

Processing stereo images is currently a very heavy compu-
tation task. However, the use of stereo cameras as the sensing
technology implies several advantages against other simpler
sensors (such as infrared or ultrasonic sensors). First, the infor-
mation obtained with these cameras is more complete. Second,
cameras have usually wider fields of vision. In addition to this,
as explained in Section I, the stereo pairs will serve for the
teleoperator or will presumably be required by other high-level
application. Hence, images need to be transferred out of the
robot in any case. Nevertheless, there is always the possibility
of combining the visual processed information with that of
more basic and reactive sensors. Besides, RGB-D cameras
are being developed quickly and at relatively low prices [31].
However, low priced RGB-D cameras are currently aimed for
the game market, and, hence, they present several disadvan-
tages. Regarding to our system, their drawbacks are: they do
not work well when there is lot of sunlight (even indoors), their
FOV is much more limited, maximum and minimum distance
detection is bounded, amongst others.
For a successful navigation assistance, the frequency of stereo

frame processing must be sufficiently high, whereas its latency
small enough. This requirement can become very difficult to
meet when more accurate reconstruction of the environment is
demanded. Hence, the heavy task of 3DPC extraction must be
processed in a powerful computing system. Furthermore, this
processing must be designed, not only to be parallel, but also to
exploit the special properties that a cloud system offers (more
importantly, that of dynamic scalability).
The 3DPC extractors (Fig. 1) are implemented thanks to

a ROS package called stereo image proc, which uses two
large-scale, open source libraries for 2D/3D point cloud pro-
cessing and computer vision libraries: the Point Cloud Library
(PCL, http://www.pointclouds.org) and OpenCV Library. More
precisely, this stereo image proc ROS package offers a node
which takes a pair of synchronized stereo frames and, after
rectifying the images, produces a point cloud with all the 3D
information. ROS implements an inner pipeline (using ROS
nodelets) with several stages: image debayer, image rectifica-
tion, disparity map creation and point cloud building. As each
stage is dependent from the previous one, no parallelism can be
achieved for an unique frame pair.
In order to make the image processing dynamically scal-

able, a parallel solution for different frame pairs has been

Fig. 2. Stereo frame pipeline process. 3DPC Extractor nodes process (in a
pipeline fashion) the frame pairs that the front-end node delivers.

implemented. The idea developed is based on the ability to
replicate the 3DPC extractor nodes (see Fig. 2), in several
virtual instances in the cloud. Each stereo frame pair will be
sent to a different node in a round-robin fashion. If were
the time to process a frame pair and the frame acquiring
period, the minimum number of nodes would be (in
practice some additional nodes are added due to the variance of
processing times). This scattering method requires a front-end
frame buffering node (“Buffer” node in Fig. 1) that will be
responsible of determining how many 3DPC extractor nodes
are alive at any moment, as well as distributing the stereo
stream. This parallel solution increases the performance of the
whole system, which is especially evident when bigger frame
resolutions are used. The main advantage of this solution is
its inherent dynamic nature. If the solution needs to scale out,
more 3DPC extractors can be launched at runtime. Once the
buffering node detects them (thanks to ROS bond library, using
bond status messages), they will start receiving stereo pairs for
processing. Reversely, if the system must be scaled back, some
nodes will be shut down and hence resources would be freed.

C. Overview of the Navigation Assistance

The “Navigation assistant” node receives the 3DPC, which
includes the obstacle information. A shared control that con-
tinuously filters user commands by means of the obstacle in-
formation is implemented as follows. Due that frontal view of
cameras only allows controlling small curvature arcs, a simpli-
fied version of [29] is used here. Nevertheless, as the user can
receive visual feedback of the operated scene, he/she can com-
mand pure turns in those areas where no lateral obstacle have
been seen by her/him.
The first step is the projection of all those points in the XY

plane. After that, for each point in the 3DPC, a trajec-
tory from the driven wheel axle center O (axis origin in Fig. 3)
is calculated. This process is done by finding a circumference
whose radius has endpoints at O and at . This circum-
ference supposes a feasible circular path of the robot, whose
center is and whose equation is

As the circumference has endpoints at and , the
radius , curvature value and can be calculated as follows:
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Fig. 3. Plot of the navigation assistant approach. The upper circles are points
of the Point Cloud. The circumference that crosses a point and the middle driven
wheel axis is calculated.

Finally, using the angle between X axis and the radius, the
arc distance from O to is obtained (see Fig. 3)

For each point , a pair is calculated, and thus
it is possible to interpolate a function with all this
information, that is, the distance to collision for each curvature.
Every time a new stereo pair is received, will be up-
dated.
Simultaneously, the user is sending joystick commands,

which are proportionally translated to a desired pair of linear and
angular velocities , and a curvature . This
desired curvature is mapped to a distance value .
Using the uniformly accelerated motion equations, the max-

imum linear velocity that guarantees a stop without col-
lision can be obtained: , where
is the maximum braking acceleration of the robot. Every time

is updated, is reviewed and updated. If is
less than , the input command cannot be allowed, and the
speed sent to the robot is . Angular speed is cal-
culated so the resulting pair sent to the robot retains
the same curvature asked by the user. This way the teleoper-
ator does not feel that the navigation aids change the desired
trajectory. Should be updated fast enough, this event
would occur naturally, and the robot brakes progressively. Oth-
erwise, the navigation assistant will automatically send brake
commands at a certain frequency.

D. Communication Time Analysis
When working with real-time navigation, an analysis over

the average latency is required. Most of the latency comes from
the time the system takes to process the visual information. A
simplified timing diagram of system is shown in Fig. 4 (the
front-end buffer node is not shown because its delay times
are negligible with respect to the other involved times). The
robot's on-board computer comprises the stereo camera and
the motor actuation subsystem . Depending on the offloading
model, the following nodes can be either in the robot or in the
cloud (Section IV analyzes these possibilities): the point cloud
extraction C and the navigation assistant ( and ). is
responsible for creating and updating the function

Fig. 4. Time diagram of the system. Camera captures a frame pair that sends
it to the Point Clod extraction . This extracts the 3DPC and sends it to the Nav-
igation assistant, which fuses this information with the user command coming
from the joystick . Finally, the actuators receives the velocity commands.
Different interval times increment the total latency of the system.

explained in Section III-C and fuses the information from
the joystick J with .
Pairs of frames are continuously sent from camera node O to

C (via the buffer) at a specified frequency. The transfer time of
this message is named . As explained in Section III.-A, the C
nodes receive the stereo pairs in a round-robin fashion (in the
figure only one node is represented for simplicity). After
computing time , this new extracted 3DPC is sent to the nav-
igation assistant (taking ). There, the function is
obtained and updated in a time . On the other side of the figure,
each time the joystick J sends a command, a new action will
be computed by . Time intervals and involved in this
sending, are negligible with respect to the others. This action
is sent back to the robot, where module applies the desired
speeds to the actuators. These speeds need to be recalculated
until a new action arrives, as the period of the actuation sub-
system is inferior to the time to transfer a new frame pair. At
the moment, a simple interpolation taking into account the real
robot speeds and the last sensed obstacle map is carried.
If, for instance, one new stereo pair tried to enter the

stereo image proc pipeline (see Section III-C) and no nodes
were free, this new pair would be discarded. In the case of only
one node , as the processing times in Fig. 4) are usually
longer than the period of , many frames would be discarded
(shown like clear rectangles in the figure) until the node were
idle again. In order to cut down the number of discarded frames,
this timing analysis gives us another bound to the minimum
number of 3DPC extractor nodes. As images are to be sent
by a single physical channel (that is, wirelessly), transfer times

are not overlapped. Due to this, frame acquiring period
cannot be inferior than . Furthermore, the mean time to

process a pair of frames must be less than the transfer
time to send it. In order to get rid of this issue and, as we
are working with high scalability systems, is overestimated.
Hence, is always guaranteed.
Another two critical aspects arise from the proper network

characteristics: 1) a strict periodical controller cannot be imple-
mented as WiFi networks (proper candidate for mobile robots)
have considerable fluctuations in transmission times and 2) the
presence of delays in control loops tends to produce oscillations.
Nevertheless, these oscillations are overcome by two reasons.
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Fig. 5. Example case of delay correction in distance to collision s calculation.
As the obstacle information is delayed, time predictive corrections must be ap-
plied. At , the system would calculate that an obstacle is at meters,
but the robot is actually closer. A simple predictive correction consists of sub-
tracting an estimated distance , where , and
is the commanded speed.

First, the effect of these oscillations are mitigated or counter-
acted by the user, because he/she is conscious of this kind of
problem when remotely driving a slow robot. Second, some
delay corrections have been incorporated (see Fig. 5) in the ac-
tuation subsystem. As the information obtained from the stereo
cameras is delayed, obstacles are actually nearer than
states. Let us suppose that the system calculates at that
an obstacle is at meters. Due to the timing latencies (see
Fig. 4), the robot is actually closer. To be conservative, we have
supposed that during this latency time the robot has moved at
the maximum speed asked by the user, named . Therefore, a
simple predictive correction consists of subtracting an esti-
mated distance , where .
One final critical issue must also be considered: the case

where the actuation subsystem does not receive any command
for a long time. This case is addressed automatically due to
the way the interpolation is implemented. The idea is that the
robot speeds are gradually reduced at each actuation period
to prevent a collision, according to the last obstacle reading.
In this case, the robot speeds will tend to zero. There is an
even more critical circumstance: when last camera processing
did not find any obstacle, so sends to U an obstacle-free
signal, and no other obstacle information is received anymore.
Due to this, a deadline internal time is considered by U: if it
is exceeded, robot speeds are progressively decremented to
prevent a collision.

IV. COMPUTATION OFFLOADING ANALYSIS

This section analyzes and debates how the cloud can serve
to offload the implied computation of the previously explained
robotic application. It should be noted that the discussion pre-
sented here is generic enough to be applied to other applications.
For example, a cloud offload autonomous robot has similar pro-
cessing nodes to those shown in this section.
As stated in Section I, there are inherent tradeoffs when

moving computation into the cloud: the communication over-
heads, the amount of computing resources used, along with

Fig. 6. Possible configurations for Cloud offloading. Mandatory wireless com-
munications (those which origin or destination is the robot) are represented by
dotted arrows while communications that can be wired are depicted by contin-
uous arrows.

others. Different options will be presented, justifying which is
the best one among them (for the current application).
For this reason, a summary table, which classifies the dif-

ferent options qualitatively, is presented at the end of this sec-
tion. The selected parameters of this table have been chosen due
to their relevance in cloud computing and robotic technologies.
They are: a) Best scalability, which indicates if the involved pro-
cessing can be easily scaled out or back. b) Least communica-
tion bandwidth, as bandwidth is a precious resource in cloud
computing and a source of timing delays. c) Least virtual com-
puting resources. It indicates the amount of cloud resources used
by an option. d) Cheapest cloud pricing, which must be consid-
ered when using public clouds, such as Amazon EC2. In addi-
tion to this, Section V will include experimental numerical re-
sults that quantifies which option is the best for the presented
application.
Fig. 6 shows the most interesting ways of distributing the

main computation tasks to be carried out in the navigation
assisted teleoperation. These tasks are: the Frame buffering
process (“Buffer” in Fig. 6), 3DPC extractors (“3DPC Ext.”
replicated in nodes in Fig. 6), and the navigation assistant.
For the current system, experiments in Section V show that
the 3DPC extraction is more computationally complex than
the navigation assistant, which basically includes the
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TABLE I
QUALITATIVE CLASSIFICATION OF DIFFERENT OFFLOADING MODELS. THE HIGHER THE NUMBER,

THE WORSE THE OPTION IS REGARDING THAT PROPERTY

function processing (see Section III). The necessary messages
between these tasks are: 1) Color frames from camera to
buffer, whose size is approximately proportional to image
resolution; 2) Color frames from the buffer to the 3DPC ex-
tractors; 3) 3DPCs sent to the navigation assistant, which size
in bytes ranges from 2 to 3 times that of raw color frames; and
4) Velocity commands that will be received by the actuation
subsystem, which suppose just a few bytes.
For obtaining more reliable performance measures, every

node moved to the cloud is isolated in one virtual machine.
As explained in Section III, the different nodes of this solution
have inherent distributed nature thanks to ROS middleware.
Fig. 6 shows 3DPC extractor nodes, because this processing
part was designed to be dynamically scalable (see Section III).
Last option 4 is the classical robot centralized approach, but,

when cloud offloading can be considered, other options are con-
ceivable. As moving the camera to the cloud makes no sense (it
must stay in the robot), and the buffer must reside in the same
platform that the 3DPC extractors to prevent a waste of frame
transfers, three additional options appear (see Fig. 6).
Option 1: 3DPC extraction and navigation assistance in the

Cloud. This first configuration aims to move all the existing
computation to the Cloud. A first advantage is that the robot has
practically all its computing power available for other robotic
tasks.Moreover, this configuration allows the exploitation of the
cloud properties, due to the following fact: should the robot re-
quire more computing power, more 3DPC virtual machines can
be spun up at runtime, and therefore the quality of the navigation
will presumably increase (as it will be able to reach higher fre-
quency rates or to process bigger frame resolutions). In terms of
communication bandwidth usage, this configuration requires the
transmission of stereo frame pairs (which size in bytes increases
linearly with the frame resolution) to the cloud and reception of
velocity commands (which size is commonly very short).
Option 2: Navigation assistance in the Cloud. This choice

tries to better balance the computing tasks between local and
cloud computation, but it is less scalable. Scaling out and back
in the robot is far more limited than doing it in the Cloud. In
terms of bandwidth usage, instead of sending frames to the
cloud, 3DPCs will be sent (whose size ranges from 2 to 3
times that of frames’), and velocity commands (a few bytes)
will be received. Therefore, the wireless bandwidth usage is
bigger than the previous case, not being the case of virtual
computing requirements. For a fully autonomous robot, images
must not come out of the robot. However, for our current
teleoperated application, video streaming must also be sent to
the teleoperator, thus increasing bandwidth interferences and
consumption. With respect to the current application, in terms
of cloud pricing, this solution is cheaper than the previous one.

However, because 3DPC extraction is more computationally
complex than the navigation assistance, the robot will probably
be unable to respond correctly when a better quality of the
navigation is required (for example a bigger frame resolution,
as delays in Section V exhibit).
Option 3: 3DPC extraction in the Cloud. In this case, the

heaviest processing is moved to the cloud, whereas the navi-
gation assistant node (which could be more reactive if the robot
included another simple sensor) stays in the robot. This configu-
ration seems the sensiblest in terms of typical real-time applica-
tions. In terms of scalability, it is possible to scale out and back
3DPC nodes depending on the needs. In terms of virtual com-
puting power requirements, it is very similar to the first choice
since the main core of computation resides in the 3DPC extrac-
tion. However, the main drawback of this configuration for the
current application is the big amount of wireless communication
that takes place: the robot sends stereo frame pairs and receives
3DPCs. As a consequence, if the communication technologies
are not good enough, this solution can yield bad performance
results. In addition to this, this solution may be the most expen-
sive in terms of pricing due to the high bandwidth consumption.
Option 4: All processing in the robot. In this case, the only

communication overheads will be internal to the robot node,
which nowadays are usually inferior to those of remote commu-
nication. This choice does not use the cloud, hence it requires
the robot's embedded hardware to be powerful enough. For the
real application considered here, the next section demonstrates
its poor performance results (even for Erratic Robot, which in-
corporates medium-end hardware). Just like option 2, the use of
remote communication would be necessary if robot camera im-
ages were sent to the teleoperator.
Table I classifies all the choices according to all the properties

analyzed. Taking into account all the advantages and disadvan-
tages, it seems that options 1 and 3 are the most suitable for the
described application. Section V proves that option 1 yields the
best performance results.

V. EXPERIMENTAL RESULTS
This section presents the performance results for different

experiments using the aforementioned example robotic appli-
cation. The main objective is to prove which cloud computing
options are viable for a real-time robotic system. In [28], it was
proved that the scalability of the cloud works properly when
changing the number of virtual cloud nodes. The system was
tested with the hardest computing and communication pro-
cessing: high definition resolution images (HD 1080i frames),
the most consuming bandwidth model (option 3 in Fig. 6),
but with the fastest available TCP network (Gigabit). It was
showed that a significant speedup (ratio between total time for
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1 node and for nodes) can be obtained. This means that cloud
elasticity makes it possible for the robot to change between
different computing resources depending on the frequency and
image resolution required by the system. Despite the fact that
in some applications low-quality images and small updating
frequencies could be enough, the stereoscopic formula for the
depth error [32] says that this error is proportional to the real
size of a pixel (that is, for a given CCD size, the more horizontal
resolution, the less depth error exists. As an extension of this
idea, it is evident that with perfect lighting and essentially infi-
nite SNR, the highest accuracy is achieved using a combination
of high framerate and high resolution, with limits only set by
the available computational budget [33].
Section V-A analyzes the performance impact of current

communication technologies, which has direct impact in the
offloading. In that sense, Section V-B shows the application
qualities when choosing the different offloading options pre-
sented in Section IV. Finally, Section V-C presents a real
navigation experiment, both using the cloud and the robot on
its own.
The cloud infrastructure used for the experiments is the fol-

lowing: a cluster consisting of five bare-metal machines (one
front-end and four compute machines) with AMD Phenom 965
x4 CPU (with virtual extensions enabled) and 8 GB of RAM
each one. They are all connected using Gigabit Ethernet band-
width and Openstack Havana is the Infrastructure-as-a-Service
(IaaS) cloud middleware installed. KVM has been chosen as
the virtualization technology. Other well known solutions such
as Hadoop were not suitable for real-time systems. The Erratic
robot hardware has a 1.4 GHz Core 2 Duo Processor with 1 GB
of RAM.
When moving computation to the cloud, the following map-

ping between nodes and virtual machines has been considered:
each 3DPC extractor node is executed in a separate virtual ma-
chine with 2 Virtual CPUs (VCPU) and 2 GB of RAM (the
front-end buffer VM has exactly the same properties). In the
case of the navigation assistant node, a larger VM was chosen,
consisting of 4 VCPUs and 8 GB of RAM (as the parallelization
of function is obvious).

A. Analysis of Communication Technologies
This first experiment is done to compare how different com-

munication technologies affect to the achievable processing
rates. Moreover, using the cloud for mobile robot navigation,
more realistic technology choices such as IEEE 802.11n WiFi
and IEEE 802.11ac WiFi must be considered. The second one
is quite recent and promises an expected bandwidth close to
that of Gigabit Ethernet. In this experiment, the stereo camera
and the image transmission has been carried out by a real
mobile robot (in this case Videre Erratic). The cloud offloading
configuration chosen is option 3, so this experiment checks
if the bandwidth limitations are being a burden in the whole
performance of the system.
Table II shows the frequency of the system for different

technologies and different frame resolutions. In order to give
a proper comparison, the table contains the results of option 4
as well (that is, the robot without cloud). Two conclusions can
be extracted from these results. First of all, when using small

TABLE II
PERFORMANCE MEASURES FOR DIFFERENT COMMUNICATION TECHNOLOGIES

TABLE III
NAVIGATION ASSISTANT UPDATE FREQUENCIES FOR THE DIFFERENT

OFFLOADING MODELS OF SECTION V USING 802.11AC WIFI

resolution frames (for extracting 3DPCs), a boost of perfor-
mance when using an external platform is not obtained with
the communication technologies used here. The reasons are the
following: the robot hardware is fast enough, and the networks
used do not have enough bandwidth (for Infiniband or 10 Gbps
Ethernet results might be better). This means that, for other
simpler robots, offloading this process might be beneficial.
Despite this, when the quality of the frames is increased, the
robot hardware limitations arise. Therefore, the Cloud can be
used not only for a simple computation offloading, but also for
speeding it up.
It must be pointed out that, when changing the hardware plat-

form from that of the robot to a modern laptop, the frequencies
obtained for Gigabit Ethernet differ from that of [28]. This fact
is easily understood because both the CPU and RAM are four
times better in the case of the laptop. Even though the robot
has been freed from heavy computations, there are other fac-
tors that do affect in the whole performance of the system (peer
to peer connection management, frame buffering and sending,
3DPC reception, along with others). The second fact discovered
is that current wireless technologies are not enough to handle
this process successfully due to the big amount of data trans-
ferred (not only the frames are transferred but also the 3DPCs).
However, it must be noted that the offloading model chosen was
not beneficial for limited communication technologies.

B. Comparison of Offloading Models
In order to compare all the offloading models of Section IV,

two tests were carried out: the first one compares the frequencies
in which is updated for different frame sizes, while the
second one measures the latencies of the whole application.
Table III shows the results for different frame sizes and

models using 802.11ac WiFi. The faster gets updated,
the higher the quality of the navigation will be. Just as expected,
the option 1, which has less bandwidth consumption, has the
best results, even though option 3 seems a more common
configuration for a real-time system. Only when the frame
resolution is small, the required computation can be assumable
by the robot (option 4) on its own. Due to the communication
overheads, the speedup between options 1 and 4 becomes
greater when the size of the frame increases, being worth having
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TABLE IV
AVERAGE DELAYS OF THE SYSTEM FOR 1024 768 FRAMES AND DIFFERENT

OFFLOADING MODELS USING 802.11AC WIFI

Fig. 7. Histogram of 1024 768 frames using option 1 and 802.11ac WiFi.

communication overheads in exchange of higher frequency of
the whole system.
The second test measures the latencies of the whole applica-

tion, that is, the difference between the time the stereo frame
pair was taken and the time was calculated for them.
Table IV shows that the main cause of delays in the system are
again the communication overheads. Thus, an offloading model
that minimizes them is benefited. The robot on its own is unable
to get acceptable latencies; this time due to the heavy computa-
tion. With these two tests, it is certain that option 1 is the best of-
floading model for this case, obtaining decent results even with
wireless technologies.
Finally, as communication latencies cannot be constant, it is

interesting to show a histogram for (in Fig. 7, 1024 768
stereo frame pairs were used for option 1 and Wifi AC). Al-
though variance is not very big, some messages (only a 2%)
present a high variability of the latency. This is due to four
main factors: 1) the ROS middleware used; 2) complexity of
3DPC filters; 3) TCP protocols; and 4) interferences, and packet
rejection with backoff periods in MAC layer. As percentage
of late packet is very low, a simple predictive timing correc-
tion algorithm (see Section III) mitigates possible oscillations
in the control loop. Besides, further improvements in 802.11ac
MAC layer like time-division multiple-access (TDMA) proto-
cols, would reduce substantially this latency variance. An al-
ternative to TDMA protocols is the use of the Contention Free
Period in the infrastructure mode with fixed size packets. This
could not reduce the variability as much as the use of TDMA,
but it guarantees a minimum bandwidth reservation, which may
be suitable for many real-time systems.

C. Analysis of a Real Navigation Case
Two final tests show that cloud-based robot navigation (op-

tion 1) is possible and even can improve its on-board counter-
part. The vehicle has been configured with: m/s,

rad/s, maximum linear acceleration

Fig. 8. Example of (in meters).

Fig. 9. Response of the navigation assistant to joystick commands.

TABLE V
NAVIGATION RESULTS FOR TEST 2 USING OPTIONS 1, 4, AND TWO FRAME

RESOLUTIONS. THE RATIO IS CALCULATED OVER 70 MANEUVERS

, maximum linear brake m/s . Circuit of
the first test contains obstacle free areas (where the robot is able
to move at maximum speed) and four walls, where the robot
should stop to prevent a collision. Figs. 8 and 9 demonstrate the
viability of option 1. Fig. 8 shows when approaching
one of these walls. Fig. 9 shows the difference between the joy-
stick linear velocity and the final computed linear speed com-
mand when completing a turn of the circuit.
The second test compares the navigation of the robot in an of-

fice environment for options 1 and 4, and for low and medium
resolutions (320 240 and 640 480 pixels) at 10 fps. The cir-
cuit is completed ten times per case. The number of collisions
are measured as a quality magnitude, because, due to the delay
variances in the navigation assistant computation, some colli-
sions are difficult to avoid. For each obstacle approaching ma-
neuver, the joystick is pushed to its extreme positions (desired
commands are always those of maximum speeds), in order to
test the shared control in the worst conditions. As there are seven
of these maneuvers for each turn of the circuit, we have a total
of 70 possible collisions. Table V shows the number and ratio
of collisions for the four tested alternatives. The first conclu-
sion is that for the stereo algorithm used here, low resolutions
are not enough to detect properly some of the walls (when the
robot is in movement), and collisions are very frequent for any
computing option. The second important conclusion is obtained
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for the 640 480 pixel resolution. Collision rate is very much
reduced when the cloud is working, which is mainly explained
because frame processing frequencies are more than double for
option 1 than for 4 (see Table III). In this case, the only collisions
are produced against an metallic furniture which texture is very
much homogeneous. Another additional trouble is the limited
FOV of the camera. This means that unavoidable collisions are
produced when robot makes brusque turns (this must be solved
by the inclusion of more cameras in the future). A demonstra-
tion video can be found in [34].

VI. CONCLUSION
This work analyzes and shows that running a vision based

navigation assistant completely on an external cloud is feasible.
Twomain evidences allow this: a) cloud scalability is pretty well
achieved and b) processing times run in parallel to the transmis-
sion ones, being the latter the bottleneck of the cloud offloading.
In fact, the mean processing frequencies are almost proportional
to bandwidth network. It is expected that the extension and nat-
ural evolution of wireless networks would improve their band-
width in the next few years. Experiments demonstrate that the
proper computation offloading model must be carefully chosen.
In that sense, the computation versus communication tradeoff
has to be analyzed. Moreover, the key to success in computation
offloading is the scalability of the developed solutions. Finally,
the implemented prototype (a teleoperated mobile robot using
shared control) can be useful for the teleoperation of wheel-
chairs of other service robots, which can be done by the user or
by an external caregiver. As a better navigation is obtained when
using higher resolution images, the necessity of the cloud has
been empirically demonstrated. It is also shown that the naviga-
tion assistant must contemplate a predictive temporal correction
that should prevent a possible collision, caused by the sensoring
delay, mainly due to the transmission latencies.
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Extending Amdahl's Law For the 
Cloud Computing Era 

ABSTRACT 

  

This is the era of Cloud Computing. A gradual change from centralized to distributed 

execution is taking place, but not without some practical issues related to process migrations 

(transparent middleware, efficient and secure data transmissions, …). Extending Amdahl’s law 

to Cloud Computing will provide a better understanding of the involved factors related to the 

offloading process such as the time and energy speedups, together with some hints about the 

future of this era.  

Keywords: cloud computing, energy savings, computation offloading 

INTRODUCTION  

Cloud computing is here to stay. According to Gartner's Hype cycle
1
, Cloud computing is 

mature enough to be in a productive phase. Nowadays, Cloud computing services can be 

exploited at several levels: Infrastructure-as-a-Service (IaaS), if customers are provided with a 

virtual machine that can be used in a customized way (e.g., Amazon EC2); Platform-as-a-service 

(PaaS), when providers offer a framework where customers can develop applications (Google 

App Engine, Windows Azure); and Software-as-a-Service (SaaS), if users only have access to 

specific applications (like Microsoft Office Web or Dropbox). 

The cloud offers considerable advantages over computing on local devices: automatic scaling; 

no need to purchase, upgrade or maintain bare-metal hardware; amongst others
2
. Even more of 

them can be listed in the case of mobile devices: energy savings, together with scarcity of local 

resources (which is largely tied to energy consumption). Indeed, the potential use of cloud 

offloading opens new doors to researchers (new programming paradigms, mobile agent 

software, security and privacy topics, balancing and deploying tools, etc.). However, when 

applications require some kind of real-time constraint, whether remote execution is faster than 

local execution would inevitably be called into question. Hence, not only energy consumption 

but also performance is crucial for these devices. 

But why moving certain applications to the Cloud yield extraordinary results whereas 

offloading others is simply out of the question? Consider for instance applications based on 

some type of searching in huge information databases stored in servers. Ranging from the 
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simple Internet search of a term to a feature-based image searching using Google Goggles app, 

all of them perform a search over a gigantic amount of possible matching terms. Hence, the 

offloading overhead time is way lower than the time to obtain the search results. Obviously 

these apps are done on the server side for two reasons: the stored information and the high 

amount of computation that is required. Similarly, if user information to be processed was 

already stored in the cloud, almost no data transfer
5
 would be required (only a pointer to the 

data), so cloud computing would be preferred. But what about those apps where information is 

captured online from the local device? Can they benefit by offloading today? And tomorrow?  

Software developers may want to weigh the pros and cons prior to moving their applications 

to the Cloud. In order to do so, a simple extension of Amdahl's Law is here presented. Moreover, 

this will help us to foresee what the future holds for Cloud Computing, together with its 

forthcoming research challenges.  

EXTENDING AMDAHL'S LAW  

While originally stated for uniprocessor vs. multiprocessor execution time comparisons, the 

famous Gene Amdahl's law can be widely applied to any system. Let speedup S be the original 

execution time divided by an enhanced execution time
3
. If a fraction F (of the original time) is 

enhanced by a speedup Sfraction, the overall speedup is: 

S= 1

(1 − F )+F / S fraction  
Note that Amdahl assumed the extreme case: fraction F was infinitely parallelizable (no 

overhead times were included), and the remaining fraction, 1–F, was totally sequential.  

To extend Amdahl’s law for cloud computing, let us remember the application centralized 

execution model. Figure 1 depicts the main architectural pieces involved in centralized 

computation (red square). Next, we will extend it to describe the process involved in remote 

computation offloading.  
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A. Centralized Computation Performance 

Classical centralized architectures consist of a Central Processing Unit (CPU) responsible for 

doing the following: capturing code instructions and operand data from its local hierarchic 

memory, executing them, and finally storing the result back in memory. Inside each core, 

instructions are executed in a sequential fashion according to the Von Neumann model. As a 

result, execution time for a uniprocessor can be expressed as NI CPI T (see sidebar 1), where NI 

is the Number of program instructions, CPI, the mean number of cycles per instruction, and T, 

the clock period. Nowadays, a CPU is composed of a number Nc,local of “cores”, so according to 

Amdahl's model, the Nc,local cores execute in parallel the fraction F of the program, while the rest 

is executed by a single core. Namely, F NI instructions are executed in parallel whereas (1-F)NI  

are not. For the sake of simplicity, let us suppose that CPU is a symmetric multicore chip (all 

cores are identical, currently the most widespread type). Likewise, the interaction with the outer 

world (input/output subsystem) is commonly assumed to be irrelevant in terms of execution 

time. Only the connection with the Internet, usually called NIC (Network Interface Controller), 

is to spend a significant time in our model. 

With the previous model, local program execution time is: 

tlocal=(1 − F) N I CPI local T local+
F N I

N c ,local

CPI local T local=[(1 − F)+
F

N c ,local

] N I CPI local T local
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Figure 1. Centralized (red square) and Offloading computation (right and bottom) models. 
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B. Cloud performance 

If an application is offloaded onto a cloud, the local device must first send its data and code 

through the Internet (green arrow, step 1, Figure 1). Secondly, the transferred application is 

executed on the cloud, and finally results are sent back to the local device (green arrow, step 3, 

Figure 1). From a time-based point of view, the bottom of Figure 1 schematizes the involved 

times in steps 1, 2, 3, where NData =ND,intput + ND,output is the total amount in bits of data 

exchanged with the Cloud.  

Some extra simplifications will be assumed as well to calculate cloud execution time: 

• The program's code size can be neglected: either it is much smaller than the data size 

(this is evident when images, videos, big data, etc., are processed) or it already resided in 

the cloud in its major part (e.g. libraries).  

• Data transfer is done at a constant rate BW (communication bandwidth), while its startup 

latency is negligible (or done in parallel with transmissions).  

• Internal Cloud overhead times are not considered, as most of them should occur in 

parallel with other times.  

Indeed, some overlapping can exist between communication and computation times, being the 

two extreme overlapping cases: 

1) If no overlapping existed, cloud execution time would be the sum of communication and 

computation times: 

 

( ) ( ) cloudcloudI
Data

cloudcloudI

cloudc,

Data
cloud TCPINF+

BW

N
=TCPIN

N

F
+F+

BW

N
=t −








− 11  

As cloud resources can be dynamically scaled up, the number of virtual processors is 

supposed to be large enough so as F/Nc,cloud → 0.  

2) Conversely, if overlapping were complete, communication times would be completely 

hidden, and hence: 

 t cloud, overlapping=(1− F)N I CPIcloud T cloud   

C. Comparing Cloud and local performance 

For the sake of simplicity, local and cloud CPU technologies are supposed to be similar, that is, 
CPIcloud ≈ CPI local ;T cloud ≈ T local . In fact, the cloud should be composed of cutting-edge 

technology, which means that cloud cores may well be probably faster than local cores. Hence, 

this simplification works in favor of local machines.  

With complete communication-computation overlapping, local execution time will be longer 

than cloud execution time. This is because communication penalties are not paid while cloud 

resources are far bigger than local ones. To ponder the worst Cloud case scenario, we will refer 
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to the aforementioned “no overlapping” model. Dividing numerator and denominator by NI CPI 

T and reordering, we get the following speedup for this worst case:  

S t(F ,N c, local ,µ ,D I )=

F

Nc ,local

+(1− F)

µ
D I

+(1− F)
 

For purposes of description, we have defined two parameters. Technological factors are 

comprised in μ = (CPI T BW)
-1

, which can be seen as the ratio between the local machine's 

capacity of executing instructions per second and core (CPI T)-1, by its capacity of sending data 

bits per second (BW). That is, it is reciprocal to the “offloading capabilities” that a machine has. 

The other parameter DI = NI/Ndata is the “computing density” of an application, that is, the mean 

number of instructions that are executed for any data bit to be exchanged with the cloud.  

 Figure 2a shows the speedups St as a function of DI for different F, supposing a modest local 

device (Nc,local=1). Note that scales are logarithmic, because St rises to high values for large DI. 

For high values of F, remote execution is clearly very advantageous when DI is moderate. But 

for F<0.5, offloading is faster even for low values of DI (bigger than 2). To sum up: for simple 

devices cloud computing can be beneficial in a huge range of applications. This situation is less 

favorable when the local device is more powerful (Nc,local=4, Figure 2b). Nevertheless, a new 

effect then appears: for moderate values of DI>8, offloading is advantageous for any F≥0.5. This 

effect is similar for an extremely powerful device (Nc,local=16, Figure 2c): from DI>20, the high 

consuming local device would not be beneficial. 
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Figure 2. Speedups of remote versus local execution (Nc,local=1, 4, 16) as a function of DI for different F 

and µ=1.  

Result 1. Total cloud execution time depends strongly on the amount of communication and 

computation times that can be overlapped.  

Implication 1. This overlap should be thoroughly analyzed by the middleware that manages 

the task offloading (Sidebar 2 depicts an application case for mobile robots). 

Result 2. 
ID

μ
 plays a critical role in speedup. Nowadays, μ is estimated by a few units (CPI 

rounds 1.0 for most programs, and the orders of T and network BW are 1 ns and 1 Gbps 

respectively). However, in the near future μ is expected to progressively decrease, as the 

bandwidth will presumably continue increasing at a geometric rate, and CPI T has reached a 

fixed value (difficult to surpass with present technology, see Sidebar 1). DI is application 

dependent and will be analyzed in section 'Characterizing applications'. 

Implication 2. As 
ID

μ
 is expected to decrease considering current technology trends, using the 

cloud will be more and more beneficial as years go by. 

Result 3. When using uniprocessors in the local device (Nc,local = 1), 

( )F+
D

μ
=S

I

t

−1

1
; thus 

offloading would be convenient for applications with low DI (even if F is less than 0.5).  

Implication 3. As long as 
ID

μ
 decreases in the future, simplifying device hardware may set a 

trend. This has the additional benefits of saving energy and reducing its software complexity. 

Note that in IoT (Internet of Things) or “bare” thin client devices, local CPUs (see Figure 1) 
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would not even exist.  

CONSIDERING PERFORMANCE AND ENERGY  

Performance speedup is useful for any system, but for mobile devices there is another 

extremely serious constraint when executing computation-demanding applications
4
: their battery 

lifetime. With current technology, it is known that most of the energy consumption when 

offloading an application is due to transmission if data to be transmitted is big enough. 

Therefore, the question is: can an Amdahl's law extension predict if the energy saved by 

offloading would compensate the energy consumed by local processing5?  

Energy consumption is the sum of power multiplied by times for the different periods: 

∑ ×
i

ii tP . Using the model by Woo and Lee 6, the local execution has two periods: the parallel 

and the sequential one. During the fraction of parallel execution time F, all the cores are 

involved, so power is Nc,localP1, P1 being the power of a single core. During the sequential period 

(1-F), the power is kidleP1(Nc,local-1)+P1, as one core is fully active while the rest are in an idle 

state (which consume kidleP1, kidle<1). All along this study only the energy consumed by the 

analyzed application is to be considered (ignoring the rest of the system or processes). With 

these assumptions, consumed energy will be
6
:  

Elocal=[(1 − F)(N c ,local − 1)k idle+1] P1(N I CPI T )  
Once again for the case of cloud computing, local energy consumption depends on the amount 

of overlapping between communication and computation times, being obviously lowest in case 

of complete overlapping. Similarly to previous sections, we consider the least favorable case for 

the cloud (no overlapping). Given that case, local energy would be obtained by the sum of 

communication periods and the cloud computation one. Data transmission adds an extra power 

Pt. If we assume that NIC is transmitting data by directly accessing the local memory, during 

both periods all the local cores could be in an off state. Hence, the energy wasted by the local 

device is: 

 
Ecloud=

N D

BW
Pt+[(1 − F )(N I CPI T )+

ND

BW
]N c, local koff P1

 
During the periods when the local device is waiting for the cloud response, the current 

application does not need the local device to be running. It is evident that the device can be 

awake in order to manage other inner tasks, but this energy consumption cannot be attributed to 

the offloaded application that we are analyzing. From the application point of view, the local 

device could be almost fully off (only waiting for the NIC), which means that koff is negligible.   

The magnitude that comprises all the energy-efficiency factors is the performance achievable 

in the same battery life cycle
6
 (that is, with the same energy). The resultant speed-up St×E is 

given by: 
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S t×E=
E local tlocal

Ecloud t cloud

=SE S t

 
Finally, reordering and using the same parameters µ, DI, we obtain (assuming that koff =0): 

S t×E=
[(1− F)(N c, local− 1)k idle+1]P1

µ
DI

P t

×

F

N c, local

+(1− F )

µ
D I

+(1− F )
   

Result 1. DI is the fundamental parameter in order to know if offloading is energetically 

beneficial. Using technological magnitudes for a typical mobile device (μ=1, kidle=0.3 -same as 

Woo and Lee6-, P1 = Pt = 1W), St×E becomes very favorable to the cloud from moderate values 

of DI. For simple devices (Nc,local=1), having a DI greater than 1.3, migration is advantageous 

(St×E>1) for any F≥0.5. For more powerful devices, the bounds grow a little. Moreover, for 

applications with low F, migration is more favorable even for lower DI (the more powerful the 

device, the more notable this effect).  

Implication 1. Middleware designers should target how to increase DI (by compressing 

techniques and good data coding). Furthermore, software engineers should estimate if future 

versions of an application would tend to increase DI (see next section). In general, cloud 

offloading would not be beneficial for applications with low DI, for instance those that do not 

reuse input data like video or audio streaming. 

Result 2. If μ continues with its expected reduction, these bounds will decrease close to a 

proportional rate. That is, if μ were reduced by one-tenth, the bounds on DI would go down to 

approximately 0.1, 0.2, 0.4 (for Nc,local=1, 4, 16 respectively). 

Implication 2. Future evolution for current technology is promoting offloading computation 

for embedded devices.  

Result 3. The cases F→1 (which is common in most of scientific applications, see next 

section) or Nc,local=1 show a speedup almost proportional to 
S t×E=(

D I

µ )
2

. 

Implication 3. For simple devices or very parallel applications, energy efficiency of cloud 

migration is expected to be reached way earlier than that of timing speedup (quadratic order).  

CHARACTERIZING APPLICATIONS 

Would a given application be benefited by offloading? Let us analyze several applications in 

view of our model.  

The first example is a very computationally intensive algorithm, matrix multiplication, which 

is the kernel of many scientific applications. Let A=B×C be a product of n×n ranked matrices. 

Basically, it consists of these three loops: 
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    for row = 1...n 

        for col = 1...n 

            for  k = 1...n 

                A[row][col] += B[row][k] * C[k][col] 

 

The two outer loops iterate over the elements of A, while the inner loop computes the dot 

product of a row of the first matrix by a column of the second matrix. The total amount of 

multiply operations is the same as the iterations of the inner loop: an order of O(n3). For most 

scientific applications, the bigger n is, the more accurate the results will be. However, the high 

computational order (together with the elevated amount of memory) makes many programmers 

reluctant to use big matrices.  

What if the application were offloaded? B and C must be sent to the cloud, and after the 

processing, A must be returned back, that is, O(n2) bits to be exchanged. Hence, the order of DI  

becomes: 
DI=

O(n3)
O(n2)=O(n)

. Besides, all the elements of A can be computed in parallel, and only 

the sum of products -i.e. O(n)- must be done sequentially, which gives this dependence of 1-F: 

1 − F= O (n)
O (n3)

=O(n− 2)
. Finally, the dependence of speedups is: St=O(n), St×E=O(n

2
). Hence, the 

more accurate the results were wanted, the more speedups from cloud computation could be 

extracted. To sum up, not only μ, but also F, DI are playing in favor of offloading.   

The second example plays a crucial role for many robotic applications: processing frame pairs 

captured by a stereo camera. In Sidebar 2, it is shown that this processing can be designed, not 

only to be parallel but also with an efficient pipeline between processing and transmission times. 

Hence parallel ratio F is very near to 1 for a medium resolution image. This sidebar shows that 

usual complexities of these algorithms are O(N
3
), being N the horizontal image size. As 

transmitted data are proportional to image resolution, that is, O(N
2
), we find again that DI is 

O(N). Once again, the more resolution the image has, the more speedups from cloud 

computation can be extracted. 

The previous reasoning can be extended to most cases. For instance, scientific applications
3
  

are usually parallel and have complexity orders that vary between O(n log n) -e.g. Fast Fourier 

Transform- and O(n) -e.g. finite element-based applications- for a data size n. This means that 

while F approaches 1, DI grows like O(log n) or remains constant. In the first case, once again, 

the more data (i.e. accuracy) are used, the more speedups are achieved, while in the second case 

the benefits will be only accomplished when technological progress makes μ bigger.   

 

Result 1. For many applications, F and DI grow with the order of the problem. 

Implication 1. As new applications require more accurate solutions, using the cloud becomes a 

more viable solution. Furthermore, one of the software designers and researchers' objectives 
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should be to decrease NData (by compressing techniques and good data coding
7
 in order to make 

DI grow).  

Result 2. For the case F=1, the extreme performance that can be achieved for a complete 

system is depicted in Figure 3. Abscissa represents different values of DI, and ordinate, GIPS 

(Giga Instructions Per Second). This graph has been obtained for the real case of a common 

current system (Snapdragon 610 S4 Pro, with 1.5 GHz quad-core Krait 300). This can be seen as 

an extension of the Roofline Model8 for GIPS, instead of GFLOPS (Giga FLoating point 

Operations Per Second). The result is a Two-Roofline Model. Maximum device GIPS is 

obtained as the inverse of 
clock

seconds

ninstructio

clocks
× , multiplied by the number of cores Nc,local, that 

is, (CPIminimum T)
-1

Nc,local. Theoretical maximum Cloud GIPS would be obtained in the same way 

(if cloud resources were finite). When execution implies many RAM accesses, this maximum 

cannot be reached: the product 
seconds

databit

databit

nsinstructio
× , i.e., DI BWRAM, gives the left line (the 

first roof-line). Second roof-line is obtained for the network connection between the device and 

the cloud: DI BW. 

Implication 2. Contrary to initial thoughts, remote execution of “bad” applications (those that 

have poor CPI and real GIPS are far from the maximum
3
, as marked with down arrows in Figure 

3) may be the best option. If the prolongation of second roof-line (dotted red line) crossed real 

device GIPS, remote execution would obtain the same GIPS as local one. Other benefits, like 

energy savings, may stimulate the remote option.   
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Figure 3. Two-Roofline Model for GIPS (Giga Instructions Per Second) vs. DI for the 

Snapdragon 610 S4 Pro. The diminution of maximum device GIPS is marked with down arrows.   
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LESSONS FROM HISTORY  

For those applications that required vast amounts of data residing in a server, cloud computing 

is the only option. But, what can our cloud computing Amdahl’s law predict about the rest of 

applications that elude offloading?  

With respect to technological factors like μ, it is clear that its evolution would benefit cloud 

computing for the next decade if they continue following Moore's Laws.  

What about those factors, like F and DI, which depend on holistic aspects? This is no simple 

matter. Nevertheless, there are some valuable lessons from history. Amdahl argued that values of 

1-F were large enough to favor single processors. But now enhanced machines allow massive 

computations difficult to be envisioned by him
9
, making F soar to values very close to 1. Thus,  

F can be stretched as more computation resources become available.  

Let us visualize the expected evolution of DI. History has shown us that “software is a gas: it 

expands to fill any size hardware container”10 as one of Myhrvold's Laws states. Imagine that 

users or developers noticed that a remote application is more powerful (and maybe faster and 

more energy-saving) than its local counterpart, which runs in a smaller hardware container. Or 

let us consider the case when mobile programmers discover that they have unlimited 

computation power in the Cloud. We would wager that users would ditch the local option and 

embrace the Cloud, and that the efforts needed to transform a complex algorithm into one that 

would run fast on a low-power computer, could instead be used for other more productive 

purposes. Hence, it is highly likely that DI will increase when all programmers easily and 

transparently use the cloud. To sum up, St and St×E are being pushed up by the three factors.  

Even those applications that must run close to the target system show a tendency to be 

offloaded. Nowadays, some platforms like mbed.org offer a remote compilation for embedded 

systems and the possibility of generating a development project to be loaded into a certain 

device. Let us canvas two embedded system programmers: one is developing directly over the 

system, and the other one is supplied with the cloud to develop with her/his comfortable, 

competitive, usable, accessible, favorite, beloved (and so on) environment. Who will develop 

faster and more pleasantly? Obvious, isn't it?      

ENDINGS  

 Undoubtedly, the real world is much more complex than a theoretical model, which tries to 

encompass the main trends and must include several assumptions. Some of them benefit the 

cloud execution time, like forgetting virtualization, middleware, O.S. overheads, or the 

scheduling software tasks to divide a program on local and external computation. Others benefit 

the local execution time, like considering no overlap between communication and computation, 

supposing that resources (memory, caches, bus speeds, etc.) are identical for cloud and local 

system, etc. Some studies in the literature show how complex this puzzle of practical issues can 
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be
11

.  

Two main practical issues make the cloud model more attractive. Firstly, the commercial 

success of cloud facilities is not without substantial R&D investments, approaching the real 

cloud execution time to that of our assumptions. Secondly, migrating an application to the cloud 

would be very cost-effective, because it would suppose a simplification of the local device, 

being the offload cost minimal. This probably will be brought out with efficient networking and 

distributing computing techniques. Which indeed will highly likely pave the way for new 

programming paradigms that contemplate automatic code migration and distributed computing 

as a new form of computation.  
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SIDEBAR 1: COMPONENTS OF THE EXECUTION TIME 

Almost any computer machine works like a finite state machine (FSM). It can be considered 

that almost everything is synchronous with a clock which period is T, being the Central 

Processing Unit (CPU) the heart of this FSM. Therefore, the execution time t exec  of any 

program must be multiple of Nclocks clock periods:, that is, t exec=N clocksT . Likewise, Von 

Neumann model, settled 60 years ago, is the current model of the vast majority of modern 

computers. Von Neumann postulated that a program would consist of a number, namely NI, of 

instructions that would be executed in sequential order. e sequential execution is not an efficient 

(fast) way to make a computation, it is the common form that humans have to express the 

solution of problems, and hence most computing languages stick to this representation.  

Nclocks can be split like: 
N clocks=N I

N clocks

N I

=N I CPI
, and therefore: t exec=N I CPIT . This is 

the fundamental formula of computer architects, and each of the 3 factors that contains (NI, CPI, 

T) do play a role in the design of a microprocessor.  

CPI (Clocks Per Instruction) comprises the “ability” that a CPU has to execute many 

instructions per clock. During the first stages of computer era, CPI was relatively high (several 

clocks per instruction), but with the advent of RISC (Reduced Instruction Set Machines) 

machines from 1985, architects could design efficient CPU pipelines that execute several 

instructions in just one clock cycle (CPI<1). Thus execution times could be reduced 

progressively due to CPI diminution and period contraction. But at the end of last century 

architectural innovations come to a limit. Today ideal CPI is given by the width of processor 

issue stage, which has been stuck around 5 for the last 15 years, although CPU stall cycles 

makes this quantity to be more than one (for a representative set of benchmarks). To make 

matters worse, around 2005 CPU period comes to a limit as well. These constraints had 

promoted the advent of the so-called “multicore Era”.     
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SIDEBAR 2: STEREO VISION OFFLOADING FOR MOBILE ROBOTS 

Mobile robots have reached an elevated degree of maturity during the last decade. As an 

example, the time where fully autonomous cars are commercially available is now approaching. 

One of the points that has motivated this is the advancements on sensoring information 

processing, like stereo vision. This was allowed mainly due to the advent of more powerful 

parallel architectures, and to the availability of distributed operating systems, like the so-called 

RSF (Robotics Software Frameworks). RSFs have recently allowed to improve aspects such as 

scalability, reusability, deployment, and debugging1, and to deploy tasks either on board or on a 

cloud computing system, depending on their constraints
2
.  

Stereo vision is currently a very active field of research. When processing stereo frame pairs, 

the step with a higher degree of time complexity is the analysis of their differences, that is, the 

difference between what left and right eyes see. The so-called disparity map permits to calculate 

the distance of the objects to the cameras, more or less accurately in function of the used 

algorithm and the image features. Most representative algorithms have time complexities 

ranging from O(N
2
) to O(N

11
), where N is the horizontal image size

3
. One of the most extended 

algorithm is that included in OpenCV
4
, which has a complexity of O(N

3
) -the usual for most of 

them-. The key problem is that real time requirements can become very difficult to meet when 

more accurate reconstruction of the environment is demanded. The frequency of stereo frame 

processing must be sufficiently high, whereas its latency small enough. For example, when the 

robot is moving, the distance to the nearest obstacle must be computed soon enough to avoid a 

crash or an emergency stop. Hence, this heavy task must be processed in a powerful computing 

system, or -as it is usual nowadays- carried out with low resolution images. 

Thus, cloud-based stereo vision is a possibility that is gaining more place. The offloading 

processing must be designed, not only to be parallel, but also to exploit the dynamic scalability 

of the cloud system. Concretely, if multiple CPU cores were available, processing times can run 

in parallel to the transfer ones, being the latter the bottleneck of the cloud offloading2. As a 

result, the mean processing frequencies result almost proportional to bandwidth network. 
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