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Abstract

In smectic-A liquid crystals a unity director vector n appear, modeling an average

preferential direction of the molecules and also the normal vector of the layer configuration.

In the E’s model [5], the Ginzburg-Landau penalization related to the constraint |n| = 1

is considered and, assuming the constraint ∇×n = 0, n is replaced by the so-called layer

variable ϕ such that n = ∇ϕ.

In this paper, a double penalized problem is introduced related to a smectic-A liquid

crystal flows, considering a Cahn-Hilliard system to model the behavior of n. Then, the

issue of the global in time behavior of solutions is attacked, including the proof of the

convergence of the whole trajectory towards a unique equilibrium state.

Keywords: Smectic-A liquid crystals, Navier-Stokes equations, Cahn-Hilliard system, cou-

pled non-linear parabolic system, convergence to equilibrium.

1 Introduction

The original equations in the continuum theory of liquid crystals models was developed

during the period of 1958 through 1968 by Ericksen and Leslie. Smectic crystals are a liquid-

crystalline phase, where the molecules of the liquid crystal have a certain orientational order

(as in the nematic case) and also have a certain positional order (layer structure). In the uni-

axial case, the molecules of a liquid crystal have a preferred orientation modeled by an unit

vectorial function, d. In smectic case, the molecules are arranged in almost incompressible

layers of almost constant width. In smectic-A case, the single optical axis perpendicular to

∗This work has been partially financed by DGI-MEC (Spain), Grant MTM2009–12927.
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the layer, n, is proportional to d because the preferred direction of molecules is perpendicular

to the layers. The incompressibility of the layers is modeled by the conditions ∇×n = 0 and

|n| = 1. Then, in particular d = n.

Notice that, since ∇ × n = 0 then n can by written like n = ∇ϕ, where the level sets

of the potential function ϕ represent the layer structure. In this way, a model for smectic-A

liquid crystals is presented by E in [5] written in the velocity-pressure variables (u, p) and the

layer variable ϕ. This model has a decreasing in time energy. In particular, a fourth order

ϕ-equation is considered. Existence of global weak solutions of the E’s model is deduced by

Liu in [8], proving also the global in time regularity in the case of viscosity coefficient large

enough. Existence of weak solutions bounded up to infinity time and time-periodic weak

solutions for time-dependent boundary Dirichlet data for ϕ are proved in [4], just as existence

and uniqueness of regular solutions (up to infinity time) for both problems (the initial value

problem and the time-periodic one), assuming a viscosity coefficient large enough. Finally, in a

recent paper [9], Segatti and Wu prove the convergence of each trajectory towards equilibrium

states of this E’s model.

By the contrary, in this paper we will introduced a double penalized model written in

the “primitive” variables (u, p) and n, jointly to an auxiliary variable w related to the Euler-

Lagrange system for a (double penalized) elastic energy (see (8) below). This new model also

has a decreasing in time energy. Afterwards, the issue of the global in time behavior of weak

and strong solutions is attacked, including the convergence of the whole trajectory towards a

unique equilibrium state, without imposing viscosity coefficient large enough.

More concretely, we study the following PDE system in Ω× (0,+∞):

ρ(∂tu + (u · ∇)u)−∆u− λ(∇n)tw +∇q = 0, (1)

∇ · u = 0, (2)

∂tn + u · ∇n− γ∆w = 0, (3)

Aε2(n) + fε1(n)−w = 0, (4)

where fε1(n) =
1

ε2
1

(|n|2 − 1)d and Aε2(n) is an elliptic operator such that

(Aε2(n),n) := aε2(n,n) := (∇n,∇n) +
1

ε2
2

(∇× n,∇× n) ∀n,n ∈ H1
0(Ω).

This system models a Smectic-A liquid crystal confined in an open bounded domain Ω ⊂ IRN

(N = 2 or 3) with regular boundary ∂Ω during the time interval [0,+∞). Here, u : Ω ×
[0,+∞) 7→ RN is the flow velocity, q : Ω × [0,+∞) 7→ R describes the fluid pressure plus

other potential terms, n models the orientation of the crystal molecules and w is a variable

related to the equilibrium equation. The constants ρ, ν, λ, and γ are positive, representing
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respectively, the density and viscosity of the fluid, the ratio between the kinetic energy and

the elastic one, and the elastic relaxation time.

The rest of the paper is organized as follows. After some notations, we derive the model

in Section 2 and introduce some preliminary results in Section 3. Two time differential

inequalities in weak and strong norms are proved in Section 4 and Section 5, respectively,

concluding the existence of global in time weak solutions of the system and the existence

and uniqueness of strong solutions in large times. In Section 6, the limiting process when

the relaxation parameter ε2 of the curl-free condition goes to zero is studied. Finally, in

Section 7 the behavior at infinite time of the double penalized problem is analyzed, proving

the convergence of the whole trajectory towards a unique equilibrium state.

1.1 Notations

• In general, the notation will be abridged. We set Lp = Lp(Ω), p ≥ 1, H1
0 = H1

0 (Ω), etc.

If X = X(Ω) is a space of functions defined in the open set Ω, we denote by Lp(X) the

Banach space Lp(0, T ;X(Ω)). Also, boldface letters will be used for vectorial spaces,

for instance L2 = L2(Ω)N .

• The Lp-norm is denoted by | · |p, 1 ≤ p ≤ ∞, the Hm-norm by ‖ · ‖m (in particular

| · |2 = ‖ · ‖0). The inner product of L2(Ω) is denoted by (·, ·). The boundary Hs(∂Ω)-

norm is denoted by ‖ · ‖s;∂Ω.

• We set V the space formed by all fields u ∈ C∞0 (Ω)N satisfying ∇·u = 0. We denote H

(respectively V ) the closure of V in L2 (respectively H1). H and V are Hilbert spaces

for the norms | · |2 and ‖ · ‖1, respectively. Furthermore,

H = {u ∈ L2; ∇ · u = 0, u · n = 0 on ∂Ω}, V = {u ∈ H1; ∇ · u = 0, u = 0 on ∂Ω}

• The notation rotational is used in the following sense:

For 2D domains (i.e. N = 2), ∇× n = ∇⊥ · n = −∂2n1 + ∂1n2 (with ∇⊥ = (−∂2, ∂1)t)

and

Aε2(n) = A1(n) +
1

ε2
2

A2(n) = −∆n− 1

ε2
2

∇⊥(∇⊥ · n)

where

A2(n) = −∇⊥(∇⊥ · n) = (∂2(∇⊥ · n),−∂1(∇⊥ · n))t.

For 3D domains (i.e. N = 3), ∇ × n = (∂2n3 − ∂3n2, ∂3n1 − ∂1n3, ∂1n2 − ∂2n1) and
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Aε2(n) = A1(n) +
1

ε2
2

A2(n) where A1(n) = ∆n and

A2(n) = (∂2(∂1n2 − ∂2n1)− ∂3(∂3n1 − ∂1n3),

∂3(∂2n3 − ∂3n2)− ∂1(∂1n2 − ∂2n1),

∂1(∂3n1 − ∂1n3)− ∂2(∂2n3 − ∂3n2))t.

• We will consider Ω regular enough to have the following equivalent norms:

‖n‖21 ≈ aε2(n,n) + ‖n∂Ω‖21/2;∂Ω (5)

‖n‖22 ≈ |Aε2(n)|22 + ‖n∂Ω‖23/2;∂Ω (6)

‖n‖22 ≈ ‖Aε2(n)‖21 + ‖n∂Ω‖25/2;∂Ω (7)

• In the sequel, C > 0 will denote different constants, depending only on the fixed data

of the problem.

2 Derivation of the Model

It is usual to consider an approximation by Ginzburg-Landau penalization,

Fε1(n) =
1

4ε2
1

(|n|2 − 1)2

for the non-convex constraint |n| = 1 (|n| = |n(t, x)| denotes the point-wise euclidean norm)

[1]. In the equations, the function

fε1(n) = ∇nFε1(n) =
1

ε2
1

(|n|2 − 1)d (ε1 > 0)

appear.

On the other hand, with respect to the constraint ∇×n = 0, we consider the penalization

function

Gε2(n) =
1

2ε2
2

|∇ × n|2 (ε2 > 0).

The molecule configuration is determined by minimizing the convex functional (called Dirich-

let energy),
1

2

∫
Ω
|∇n|2 with the non-convex constraint |n| = 1 and the linear constraint

∇ × n = 0. This problem can be replaced by a problem without constraints by minimizing

the (double) penalized energy (called elastic energy):

Ee =
1

2

∫
Ω
|∇n|2 +

∫
Ω
Fε1(n) +

∫
Ω
Gε2(n). (8)
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The Euler-Lagrange system obtained is w = 0 where

w ≡ Aε2(n) + fε1(n). (9)

We consider a system for n of Cahn-Hilliard type:

∂tn +∇ · (u⊗ n− γ∇w) = 0, (10)

where the positive constant γ is an elastic relaxation time. From conservation of linear

momentum, we have the system

ρ(∂tu + (u · ∇)u)−∇ · (σd + λσe) +
λ

ε2
(∇n)tA2

ε2(n) +∇p = 0, ∇ · u = 0 (11)

where the term
λ

ε2
(∇n)tA2

ε2(n) corresponds to the zero rotational constraint and the Cauchy

stress tensor has been split, besides the pressure term ∇p, in a dissipative (or viscous) tensor

σd plus the elastic tensor of Ericsen-Leslie’s theory σe:

σd = µ4D(u), σe = −∇ · ((∇n)t∇n). (12)

Here D(u) =
1

2
(∇u + ∇tu) denotes the symmetric tensor of the velocity gradient. Taking

into account that

∇ · ((∇n)t∇n) = ∇
(
|∇n|2

2
+ Fε1(n)

)
+ (∇n)t (∆n− f(n))

and, since ∇ · u = 0, ∇ · D(u) =
µ4

2
∆u = ν∆u for ν = µ4/2, then (9), (10), (11) can be

rewritten as (1)-(4) defining the potential function

q = p+ λ

(
|∇n|2

2
+ Fε1(n)

)
.

The system (1)-(4) is completed with the (Dirichlet) boundary conditions

u|∂Ω = 0, n|∂Ω = n∂Ω, w|∂Ω = 0 (13)

the initial conditions

u(0) = u0, n(0) = n0 in Ω (14)

Without loss of generality, we fix the constants ν = ρ = λ = γ = 1.
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3 Some preliminary results and definitions

The two following results are proved in [3]

Lemma 1 Let E,Φ ∈ L1
loc(0,+∞) be two functions in IR satisfying a.e. t ∈ (0,+∞):

E(t), Φ(t) ≥ 0, E′(t) + Φ(t) ≤ 0.

Then, E ∈ Cb[0,+∞), is a decreasing function and

∃ lim
t→+∞

E(t) = E∞ ≥ 0.

Moreover, Φ ∈ L1(0,+∞)

Lemma 2 Let Φ ∈ L1(0,+∞) be a function satisfying Φ′(t) ≤ C(Φ(t)3 + 1). Then, Φ(t) is a

function asymptotically stable to 0, that is, lim
t→+∞

Φ(t) = 0. In particular, there exists t∗ ≥ 0

such that Φ ∈ Cb[t∗,+∞), that is it is a continuous and bounded function.

One can prove the following Lojasiewicz-Simon inequality modifying slightly the proof of

Lemma 6.3.4 in [11]. In fact, in [11], the homogeneous condition n|∂Ω = 0 is assumed. See

[10] for a non homogeneus Dirichlet boundary condition.

Lemma 3 Let E be the following set of equilibrium points:

E = {n : Aε2(n) + fε1(n) = 0,n|∂Ω = n∂Ω}

and n ∈ E. Then there are two positive constants β and θ ∈ (0, 1/2) depending on n such

that for all n ∈ H2 with n|∂Ω = n∂Ω and ‖n− n‖2 ≤ β, it holds

|Ee(n)− Ee(n)|1−θ ≤ C|w|2

Definition 4 We say that (u,n,w) is a weak solution of (1)-(4), (13), (14) in [0, T ] if

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V), w ∈ L2(0, T ;H1), n ∈ L∞(0, T ;H1),

u(0) = u0 n(0) = n0 in Ω, u|∂Ω = 0, n|∂Ω = n∂Ω, w|∂Ω = 0

and

(∂tu, ū) + ((u · ∇)u, ū) + (∇u,∇ū)− ((∇n)tw, ū) = 0 ∀ū ∈ V, (15)

(∂tn, w̄) + (u · ∇n, w̄) + (∇w,∇w̄) = 0 ∀w̄ ∈ H1
0, (16)

aε2(n, n̄) + (fε1(n), n̄)− (w, n̄) = 0 ∀n̄ ∈ H1
0. (17)
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Moreover, from the regularity of w and (7), we can obtain n ∈ L2(H3) whenever n∂Ω ∈
H5/2(∂Ω).

Definition 5 We say that a weak solution (u,n,w) of (1)-(4), (13), (14) in [0, T ] is a strong

solution if

u ∈ L∞(H1) ∩ L2(H2), w ∈ L∞(H1), ∂tn ∈ L2(H1)

and the fully differential system (1)-(4) is verified a.e. in [0, T ]× Ω.

Moreover, from the regularity of w and (7), we can obtain n ∈ L∞(H3) whenever n∂Ω ∈
H5/2(∂Ω).

4 Energy Equality and Weak Estimates

If (u,n,w) is a regular enough solution of (1)-(4), (13), (14), we can carry out the following

argument. By taking ū = u, w̄ = w and n̄ = ∂tn as test function in (15), (16) and (17)

respectively (observe that ∂tn ∈ H1
0 because u∂Ω does not depend on time), one has

1

2

d

dt
|u|22 + |∇u|22 − ((∇n)tw,u) = 0,

(∂tn,w) + (u · ∇n,w) + |∇w|22 = 0,

d

dt

(
1

2
aε2(n,n) +

∫
Ω
Fε1(n)

)
− (w, ∂tn) = 0.

Adding and canceling the nonlinear convective term (u·∇n,w) with the elastic term−((∇n)tw,u),

one arrives at the following energy equality:

d

dt

∫
Ω

(
1

2
|u|2 +

1

2
aε2(n,n) + Fε1(n)

)
+

∫
Ω

(
|∇u|2 + |∇w|2

)
= 0, (18)

which shows the dissipative character of the model. Moreover, assuming the initial estimates

|u0|22 ≤ C and ‖n0‖21 ≤ C and taking into account (5) and that w|∂Ω = 0, one has the

following weak estimates (which are uniform bounds in the infinite time interval [0,+∞)):

u in L∞(0,+∞;H) ∩ L2(0,+∞;V), w in L2(0,+∞;H1), n in L∞(0,+∞;H1). (19)

Moreover, from the bound of w in L2(H1) and (7), one has

n is uniformly bounded in L2(0, T ;H3), ∀T > 0. (20)
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5 Strong Estimates

By taking Au as test function in the u-system (1) (A being the Stokes operator), applying

Hölder and Young’s inequalities and the weak estimate ‖n(t)‖1 ≤ C, one obtains:

1

2

d

dt
|∇u|22 + |Au|22 ≤ C

(
|(u · ∇)u|2 + |(∇n)tw|2

)
‖u‖2

≤ C (|u|6|∇u|3 + |∇n|3|w|6) ‖u‖2 ≤ C
(
‖u‖3/21 ‖u‖

3/2
2 + ‖n‖1/22 |∇w|2‖u‖2

)
≤ 1

2
|Au|22 + C

(
|∇u|62 + ‖n‖2|∇w|22

)
Then,

d

dt
|∇u|22 + |Au|22 ≤ C

(
|∇u|62 + ‖n‖2|∇w|22

)
. (21)

By taking ∂tw as test function in the w-system of (3), deriving the n-system (4) respect

to t, taking ∂tn as test function, adding both equalities and canceling the term (∂tn, ∂tw) one

has:
1

2

d

dt
|∇w|22 + aε2(∂tn, ∂tn) = −(u · ∇n, ∂tw)− (∂tfε1(n), ∂tn)

≤ ‖u · ∇n‖1‖∂tw‖−1 + |∇nfε1(n)|3|∂tn|2‖∂tn‖1.
(22)

By making the t-derivative of the n-system (4):

‖∂tw‖−1 ≤ C(‖∂tn‖1 + |∇nfε1(n)|3|∂tn|2),

and, using the weak estimate ‖n(t)‖1 ≤ C:

|∇nfε1(n)|3 ≤ C(1 + |n|26) ≤ C.

Therefore, from (22) we obtain

1

2

d

dt
|∇w|22 + aε2(∂tn, ∂tn) ≤ ε‖∂tn‖21 + C(‖u · ∇n‖21 + |∂tn|22). (23)

The second term on the right hand side of (23) can be bounded as

‖u · ∇n‖21 ≤ C‖u‖1‖u‖2‖n‖22 ≤ δ‖u‖22 + C‖u‖21‖n‖42

(for δ > 0) and the third one as

|∂tn|22 ≤ ‖∂tn‖−1‖∂tn‖1 ≤ ε‖∂tn‖21 + C(‖u · ∇n‖2−1 + |∇w|22).

Therefore, from the inequality K‖∂tn‖21 ≤ aε2(∂tn, ∂tn) and taking ε ≤ K/4,

d

dt
|∇w|22 +K‖∂tn‖21 ≤ δ‖u‖22 + C

(
‖u‖21‖n‖42 + |∇w|22

)
. (24)
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By using the n-system (4),

‖n‖2 ≤ |fε1(n)|2 + |w|2 + ‖n∂Ω‖3/2 ≤ C(1 + |w|2).

Then, from (21) and (24) we obtain (taking δ small enough):

d

dt
(|∇u|22 + |∇w|22) +

1

2
|Au|22 +K‖∂tn‖21

≤ C
(
|∇u|62 + |∇w|22(1 + |w|2) + ‖u‖21(1 + |w|42)

)
≤ C

(
1 + (|∇u|22 + |∇w|22)3

)
.

(25)

Fixed the initial datum (u0,n0) ∈ H×H1 and assuming boundary data n∂Ω ∈ H3/2(∂Ω), by

using a Galerkin Method and proceeding in analogous way to [7], [2], one can prove existence

of weak solutions of (1)-(4),(13),(14) in (0,+∞), and existence (and uniqueness) of strong

solution of (1)-(4),(13),(14) in (t∗,+∞) for a big enough time t∗ ≥ 0. This last result is

based in a small initial data argument associated to (25). Since ∇u,∇w ∈ L2(0,+∞;L2(Ω)),

in particular, there exists a big enough time t∗ such that |∇u(t∗)|2 and |∇w(t∗)|2 are small

enough.

6 The limit model as ε2 goes to zero

In this part, C > 0 denote a generic constant independent of ε2. For each ε2 > 0, let us

consider a weak solution (uε2 , nε2 ,wε2) of the ε2-approximate problem(1)-(4), (13), (14). The

goal of this section is to take limits as ε2 goes to zero.

Let u0 ∈ H and n0 ∈ H1(Ω) such that n0|∂Ω = n∂Ω. We can repeat Section 4 to obtain

the energy inequality,

d

dt

∫
Ω

(
1

2
|uε2 |2 +

1

2
aε2(nε2 ,nε2) + Fε1(nε2)

)
+

∫
Ω

(
|∇uε2 |2 + |∇wε2 |2

)
≤ 0.

If we suppose that

|∇ × n0|22 ≤ C ε2
2,

in particular,
1

2
|u0|2 +

1

2
aε2(n0,n0) + Fε1(n0) ≤ C

and then the following bounds (independent of ε2) hold:

aε2(nε2 ,nε2) is bounded in L∞(0,+∞),

uε2 is bounded in L∞(0,+∞;H) ∩ L2(0,+∞;V),

wε2 is bounded in L2(0,+∞;H1).
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From the bound of aε2(·, ·) and (5),

nε2 is bounded in L∞(0, T ;H1), ∀T > 0

whenever n∂Ω ∈ H1/2(∂Ω). In particular,

1

ε2
2

|∇ × nε2 |22 is bounded in L∞(0,+∞). (26)

Moreover, since (u·∇)u is bounded in L4/3(0,+∞;H−1) and (∇n)tw is bounded in L∞(0, T ;L3/2),

from the u-system (1),

∂tuε2 is bounded in L4/3(0, T ;V′),

and from the w-system (3),

∂tnε2 is bounded in L2(0, T ;H−1).

Consequently, there exists subsequences (for simplicity, equally denoted) and limit functions

u, n, w such that

uε2 → u weakly in L2(0,+∞;V), strongly in L2(0, T ;H) and a.e. in (0, T )× Ω,

nε2 → n weakly-? in L∞(0, T ;H1), strongly in C(0, T ;L2) and a.e. in (0, T )× Ω,

wε2 → w weakly in L2(0,+∞;H1),

∂tuε2 → ∂tu weakly in L4/3(0, T ;H−1),

∂tnε2 → ∂tn weakly in L2(0, T ;H−1),

This allows to pass to the limit when ε2 goes to zero, in each term of ε2-approximate problem.

First of all, from (26) the limit vector n verifies the constraint ∇× n = 0.

Moreover, observe that for test functions ū ∈ V, n̄ ∈ H1
0 such that ∇ × n̄ = 0, and for

any T > 0, we have that∫ T

0
〈(∇nε2)twε2 , ū〉 = −

∫ T

0

∫
Ω

(ū · ∇)wε2 · nε2 −→ −
∫ T

0

∫
Ω

(ū · ∇)w · n

and

0 =

∫ T

0

∫
Ω
∇nε2 : ∇n̄ +

1

ε2
2

(∇× nε2) · (∇× n̄) + fε1(nε2) · n̄−wε2 · n̄

−→
∫ T

0

∫
Ω
∇n : ∇n̄ + fε1(n) · n̄−w · n̄ = 0.

Therefore, taking advantage of the De Rham results, we arrive at the following limit problem:

∂tu + (u · ∇)u−∆u− (∇n)tw +∇q = 0,

∇ · u = 0,

∂tn + u · ∇n−∆w = 0,

−∆n + fε1(n)−w +∇⊥ψ = 0,

∇× n = 0,
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where q and ψ are the Lagrange multipliers corresponding to the constraints ∇ · u = 0 and

∇× n = 0.

7 Behavior at infinite time

Now, we study the large time behavior of the ε2-problem, (1)-(4),(13),(14), for each ε2

fixed.

We define respectively the kinetic, elastic and total energy as:

Ek(u(t)) =
1

2

∫
Ω
|u(t)|2, Ee(n(t)) =

∫
Ω

(
1

2
aε2(n(t),n(t)) + Fε1(n(t))

)
,

E(u(t),n(t)) = Ek(u(t)) + Ee(n(t))

Theorem 6 Assume that (u0,n0) ∈ H×H1. Fixed (u(t),n(t),w(t)) a weak solution of (1)-

(4),(13),(14) in (0,+∞) which is a strong solution in (t∗,+∞) for some t∗ > 0, then there

exists a number E∞ ≥ 0 such that the total energy satisfies

E(u(t),n(t))↘ E∞ in IR as t ↑ +∞. (27)

Moreover

u(t)→ 0 in H1
0 and w(t)→ 0 in H1 as t ↑ +∞. (28)

Proof. From energy equality (18) and Lemma 1 we obtain (27). If we denote

Φ(t) = ‖u‖21 + |∇w|22, Ψ(t) = ‖u‖22 + ‖∂tn‖21,

from (25), we obtain

Φ′ + C1Ψ ≤ C2(Φ3 + 1).

By applying Lemma 2 we have that lim
t→+∞

Φ(t) = 0, that is, (28).

Let S be the set of equilibrium points of (1)-(4):

S = {(0,n) : Aε2(n) + fε1(n) = 0,n|∂Ω = n∂Ω}.

On the other hand, the ω-limit set of (u0,n0) ∈ V×H2 is defined as follows:

ω(u0,n0) = {(u∞,n∞) ∈ V×H3 : ∃{tn} ↑ +∞ s.t. (u(tn),n(tn))→ (u∞,n∞) in H1 ×H3}.

Theorem 7 Under hypothesis of Theorem 6, ω(u0,n0) is a nonempty bounded subset of

V × H3 and ω(u0,n0) ⊂ S. Moreover, for any (0,n) ∈ S such that (0,n) ∈ ω(u0,n0), it

holds Ee(n) = E∞.
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Proof.

Step 1: We will see that ω(u0,n0) 6= ∅ and ω(u0,n0) ⊂ S.

From weak estimates, (u,n) ∈ L∞(0,+∞;H ×H1), hence there exists {tn} ↑ +∞ and

(u∞,n∞) such that (u(tn),n(tn)) → (u∞,n∞) weakly in H ×H1. From (28), u∞ = 0 and

u(tn) → 0 in H1
0. On the other hand, n∞ is a weak solution of the equilibrium equation.

Indeed, n(tn)→ n∞ a.e. in Ω and strongly in Lp for all p < 6, therefore fε1(n(tn))→ fε1(n∞)

a.e. in Ω and |fε1(n(tn))|2 ≤ C‖n(tn)‖1 ≤ C, hence fε1(n(tn))→ fε1(n∞) strongly in L2. By

taking into account that n(tn)→ n∞ weakly in H1 and w(t)→ 0 in H1, it suffices take limits

in (17) as {tn} ↑ +∞ to obtain that n∞ verifies the equilibrium equation.

Now, we are going to prove the convergence n(tn) → n∞ in H2. Indeed, by using

Aε2(n∞)− fε1(n∞) = 0, one has

|Aε2(n(tn))−Aε2(n∞)|2 ≤ |Aε2(n(tn))− fε1(n(tn)) + |fε1(n(tn))− fε1(n∞)|2
= |w(tn)|2 + |fε1(n(tn))− fε1(n∞)|2 → 0 as n→∞.

Therefore, from the H2-continuous dependence of the elliptic problem associated to Aε2 ,

‖n(tn)− n∞‖2 ≤ C|Aε2(n(tn))−Aε2(n∞)|2 → 0.

Now, by using the convergences of n(tn)→ n∞ in H2 and w(t)→ 0 in H1 in the inequality

‖Aε2(n(tn))−Aε2(n∞)‖1 ≤ ‖w(tn)‖1 + ‖fε1(n(tn))− fε1(n∞)‖1,

and the H3-continuous dependence of the elliptic problem associated to Aε2 , we obtain the

convergence n(tn)→ n∞ in H3.

Step 2: If (0,n) ∈ ω(u0,n0) then Ee(n) = E∞

From Step 1, there exists {tn} ↑ +∞ such that (u(tn),n(tn)) → (0,n) in H1 × H3 as

n ↑ +∞. Then, from (27) we obtain that

E∞ = lim
n→+∞

E(u(tn),n(tn)) = Ee(n).

Although the set of critical points n (with the same elastic energy) might be a continuum,

we are going to prove the uniqueness of limit of the whole trajectory of n(t).

Theorem 8 Under conditions of Theorem 7, n(t) → n in H3 as t ↑ +∞. In particular,

ω(u0,n0) = {(0,n)}.

Proof. Let (0,n) ∈ ω(u0,n0) ⊂ S. In particular, there exists tn ↑ +∞ such that u(tn) → 0

in H1 and n(tn)→ n in H3.
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Step 1: Let us suppose there exists t? > 0 such that

‖n(t)− n‖2 ≤ β and |u(t)|2 ≤ 1 ∀ t ≥ t?

(β > 0 being the constant appearing in Lemma 3), then the following inequalities hold:

d

dt

(
(E(u(t),n(t))− Ee(n))θ

)
+ C θ (|∇u(t)|2 + |∇w(t)|2) ≤ 0, ∀ t ≥ t? (29)

∫ t1

t0

‖∂tn‖−1 ≤
C

θ
(E(u(t0),n(t0))− Ee(n)))θ, ∀ t0, t1 ≥ t?, (30)

where θ ∈ (0, 1/2] is the constant appearing in Lemma 3 (of Lojasiewicz-Simon). Indeed, the

energy equality (18) is written as

dE

dt
= −C

(
|∇u|22 + |∇w|22

)
.

Then, by taking the time derivative of the function

H(t) := (E(u(t),n(t))− E∞)θ,

we have

−dH(t)

dt
= θ(E(u(t),n(t))− E∞)θ−1C(

∣∣∇u(t)|22 + |∇w(t)|22
)
. (31)

On the other hand, recalling that the unique critical point of the kinetic energy is u = 0,

taking into account that |Ek(u)−Ek(0)| = 1

2
|u|22 and since 2(1− θ) > 1 and |u(t)|2 ≤ 1, then

|Ek(u(t))− Ek(0)|1−θ = C|u(t)|2(1−θ)
2 ≤ C|u(t)|2 ∀ t ≥ t?

Therefore, by using the Lojasiewicz-Simon inequality (given in Lemma 3), we have,

|E(u(t),n(t))−E∞)|1−θ ≤ |Ek(u(t))−Ek(0)|1−θ+|Ee(n(t))−Ee(n)|1−θ ≤ C(|u(t)|2+|w(t)|2).

Hence, by using the Poincare inequality in (31) we obtain

−dH(t)

dt
≥ Cθ(|u(t)|2 + |w(t)|2)−1(|∇u(t)|22 + |∇w(t)|22) ≥ Cθ(|∇u(t)|2 + |∇w(t)|2) ∀ t ≥ t?

and (29) is proved. Integrating (29) in [t0, t1] (for any t0, t1 ≥ t?) one gets

C(E(u(t1),n(t1))− E∞)θ + θ

∫ t1

t0

(|∇u|2 + |∇w|2) ≤ C(E(u(t0),n(t0))− E∞)θ. (32)

On the other hand, since ∂tn+∇·(u⊗n−∇w) = 0, by using the weak estimate ‖n(t)‖1 ≤ C,

in particular

‖∂tn‖−1 ≤ C(|u⊗ n|2 + |∇w|2) ≤ C(|∇u|2 + |∇w|2)
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Integrating in [t0, t1] and applying (32), we obtain (30).

Step 2: There exists n0 big enough such that ‖n(t)− n‖2 ≤ β and |u(t)|2 ≤ 1 for all t ≥ tn0

The second bound becomes from u(t)→ 0 in H1
0 given in (28). Then, we will see the first

bound for n(t). Since n(tn) → n in H3 and E(u(tn),n(tn)) → E∞ = Ee(n), then for any

ε ∈ (0, β), there exists an integer N(ε) such that for all n ≥ N(ε):

‖n(tn)− n‖2 ≤ ε and
C

θ
(Ee(u(tn),n(tn))− E∞)θ ≤ ε (33)

For each n ≥ N(ε), we define

tn = sup{t : t > tn, ‖n(s)− n‖2 < β ∀s ∈ [tn, t)}.

It suffices to prove that tn = +∞. Assume by contradiction that tn < tn < +∞. Observe

that ‖n(tn) − n‖2 = β and ‖n(t) − n‖2 < β for all t ∈ [tn, tn). By step 1, for all t ∈ [tn, tn],

from (30) and (33) we obtain that ∫ tn

tn

‖∂tn‖−1 ≤ Cε.

Therefore,

‖n(tn)− n‖−1 ≤ ‖n(tn)− n‖−1 +

∫ tn

tn

‖∂tn‖−1 ≤ Cε,

which implies that limn→+∞ ‖n(tn) − n‖−1 = 0. Since n is bounded in L∞(t∗,+∞;H3)

then, n(t) is relatively compact in H2. Therefore, there exists a subsequence of n(tn), still

denoted n(tn) converging to n in H2. Hence, for n sufficiently large ‖n(tn)−n‖2 < β, which

contradicts the definition of tn.

Step 3: n(t) converges to n in H3 as t ↑ +∞.

By using Steps 1 and 2, we have from (30) that n(t)t≥tn0
is a Cauchy sequence in H−1 as

t ↑ +∞. This and the strong H3-convergence by sequences of n(t), gives the convergence of

the whole trajectory of n(t) towards n in H3.

References
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[2] B.Climent-Ezquerra, F.Guillén-González, M.J. Moreno-Iraberte. Regularity and Time-periodicity

for a Nematic Liquid Crystal model, Nonlinear Analysis, 71, (2009), 539-549

14
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[4] B.Climent-Ezquerra, F.Guillén-González. Global in time solutions and time-periodicity for a

Smectic-A liquid crystal model., Communications on Pure and Applied Analysis, 9 (2010), 1473-

1493.

[5] W. E. Nonlinear Continuum Theory of Smectic-A Liquid Crystals, Arch. Rat. Mech. Anal., 137,

2 (2010), 1473-1493.

[6] M.Grasselli, H.Wu. Long-time behavior for a nematic liquid crystal model with asymptotic stabi-

lizing boundary condition and external force, preprint.

[7] F.H.Lin, C.Liu. Non-parabolic dissipative systems modelling the flow of liquid crystals,

Comm. Pure Appl. Math., 4 (1995), 501-537.

[8] C.Liu. Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity,

Discrete and Continuous Dynamical Systems 6, 3 (2000), 591-608.

[9] A.Segatti, H.Wu. Finite dimensional reduction and convergence to equilibrium for incompressible

Smectic-A liquid crystal flows, Arxiv preprint arXiv: 1011.0358v1 [math.AP] 1 nov 2010.

[10] H.Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal

flows, Discrete and Continuous Dynamical System, 26, 1, (2010), 379-396.

[11] S.Zheng Nonlinear Evolution Equations Pitman Monographs and Surveys in Pure and Applied

Mathematics) [Hardcover] 133, Chapman and Hall/CRC, Boca Raton, Florida, (2004).

15


