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We study a nematic crystal model appearing in [Liu et al.,2007] modeling stretching effects
depending on the different shape of microscopic molecules of the material, under periodic
boundary conditions. The aim of the present article is twofold: to extend the results given
in [Sun & Liu, 2009], to a model with more complete stretching terms and to obtain some sta-
bility and asymptotic stability properties for this model.
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1. Introduction

The Nematic Liquid Crystal system is a Navier-
Stokes type model for incompressible fluids respect
to the macroscopic variables, that takes into ac-
count the crystallinity of the microscopic molecules
of the material. It can be obtained coupling Navier-
Stokes equations with the Ginzburg-Landau equa-
tions, being its unknowns the solenoidal velocity
u(t,x), the pressure of the fluid p(¢,x), and the di-
rector field d(t,x), that represents the orientation
of the liquid crystal molecules. Moreover, we sup-
pose that the fluid is confined in a domain £ C R3.

We deal with an Ericksen-Leslie type formula-
tion. A simplified model was analyzed by F. H. Lin
& C. Liuin [Lin & Liu, 1995]. In fact, this model is
a penalized one depending on the Ginzburg-Landau

function:

f.(d) = (|[d*-1) d,

1

2

where |d| denotes the euclidean norm in R?® and

€ > 0 is a penalization parameter. This penaliza-

tion function has a potential structure, i. e. there
1

exists the function F,(d) = i (Jd]* - 1)2 such
€

that f.(d) = Vq(F.(d)) for all d € R3.

We denote @ = (0, 4+00) xQ and ¥ = (0, +00) X

09, where  C R3 is a smooth enough domain and

0€) its boundary. We consider the EDP system ap-

pearing in [Liu et al.,2007; system (1.9), p. 1187],

that reads as:

Diu—vAu+Vp—AV.-0¢° = 0 inQ,
(LC) V-u = 0 inQ,
Did+yw = 0 in Q,
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being
Diu =0+ (u-V)u

the material derivative of u,
0¢=—(Vd)'vd — pwd’ — (1 + B)dw’ (1)
the elastic stress tensor (5 € R) and
w = —Ad + f.(d)

the Euler-Lagrange system derived from the mini-
mization problem respect to the elastic energy

1
E@=; [ [waP+ [ Rl @
2 Ja Q
The term
Dtd = Dtd + C(d, VU)

describes a general derivative containing the ma-
terial derivative D;d = 0id + (u - V)d and the
quadratic term

C(d, Vu) = 8(Vu)d + (1 + 8)(Vu)'d

modeling the so-called stretching effects, depending
on the form of the molecules [Liu et al., 2007]. In
fact, the constant § = —« is associated with the
aspect ratio r of the ellipsoid particles. The case of
a near to 1 corresponds to rod like particles (then
the transport is purely covariant stretching), the
case of a near to 0 corresponds to disc like particles
(then the transport is anti-stretching) and the case
of a near to 1/2 corresponds to the spherical shape
(the transport is the rigid rotation of the center of
the mass).

Finally, v > 0 is the fluid viscosity, A > 0 is the
elasticity constant and v > 0 is a relaxation in time
constant.

The theoretical analysis of a simplified model
without stretching effects, i.e for C'(d, Vu) = 0 and
the corresponding elastic tensor o¢ = —(Vd)!Vd,
was made in [Lin & Liu, 1995] obtaining existence
of global weak solution, i. e.

u e L®(0,T; L2(Q)) N L2(0, T; H(Q)),
d € L>(0,T; H?(2)) N L*(0, T; H3(Q)),

for all ' > 0, and the existence (and uniqueness) of
local strong solution, i. e.

u € L=(0, 7 H'(Q)) N L*(0, T2 H*(Q)),
d € L>=(0,T:; H*(Q2)) N L*(0, T2 H*(Q)),

with T, < T (small enough) or T, = T (for each
T > 0) for big enough viscosity coefficient v or for
two-dimensional domains. All these previous re-
sults are given for the time-independent Dirichlet
boundary data:

u=0, d=h onX, (h+#h())

and for the initial-value boundary problem with ini-
tial condition:

u‘t:() = Uy, d|t:0 = d() in Q. (3)
When time-dependent Dirichlet data for d is con-
sidered (h = h(t)), the existence of weak time-
periodic solution, that is solutions obtained by
changing (3) by u(0) = wu(T) and d(0) =
d(T'), is obtained in [Climent-Ezquerra et al.,].
The strong regularity up to infinite time for big
enough viscosity v jointly with the strong regu-
larity of time-periodic solutions are obtained in
[Climent-Ezquerra et al.,].

The results corresponding to the initial-
value boundary problem are extended in
[Lin & Liu, 2000] to a much more complete

model respect to the dissipative tensor and consid-
ering the particular stretching effects for the case
of spherical molecules, i.e. taking = —1/2 in (1).

Recently, a liquid crystal model with a stretch-
ing term for the case of rod like particles (taking
f = —1in (1)) and periodic boundary conditions for
both u and d has been studied in [Sun & Liu, 2009],
obtaining global weak solution and local strong so-
lution (which is global for large enough viscosity)

The aim of the present article is twofold: to ex-
tend the last results of [Sun & Liu, 2009] to a model
with more complete stretching terms and to obtain
some stability and asymptotic stability properties
for this model.

2. General Framework.

Assume that we have the following situation, a.e.
t € (to, +00):
E(t), F(t) >0, E'(t)+F(t)<O0. (4)

Then, E € Cy[tg, +0), is a decreasing function and
there exists

lim E(t) = Fo > 0.

t——+o0
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On the other hand, F' € L(tg, +00), that is,

+o00
/ F(t)dt < +oc.

to

In this case, for any 6 > 0, there exists a large
enough time t7 = t5(0) > to such that:

+o00
F(t)dt < 6. (5)

t

In particular, we can say that for each § > 0 there
exists a large enough time ¢(J) > to such that

I 5
= / F(t)ydt < —, V7 >0, Vt>t7(5). (6)
T J T

Lemma 2.1. Let F € L'(tg,+00), F > 0 in
(to, +00), satisfying (6). Then, V6 > 0, Vt > t7(0)
and Y7 > 0 there exists a time t € [t,t + 7| such
that:

Fi <2 @

Indeed, the set of points t € [t,t + 7| satisfying (7)
has measure > /2.

Proof. We focus on the proof in the interval [¢], ]+
7]. The proof for another interval of length 7 con-
tained in [t}, +00) is similar.

Indeed, we define:

A={sclthti+7]) F(s) > 275}.

Therefore,
/ Ft) dt + / Flt)dt < o,
A c

and thus

2
Diaj<s = 42
2

(R

That is, |A¢| > 7/2. [ |

Now, we assume that the following differential
inequality for F'(¢) holds:

F'(t) < Co(F(t)° +1). (8)

Lemma 2.2. Let F € L'(tg,+00) be a function
satisfying the differential inequality (8). For any
e < 1, if F(tg) < €/3, then F(t) < e Vt €

[to, to + T.(€)], where T.() = 3%2

Proof. We argue by contradiction: Suppose that
there exists a time ¢; € [to,to + Tx(¢)] such that
F(t) < ein [tg,t1) and F(t1) = €. Then, from eq.
(8) we obtain that F’ < 2Cy en [to, t1]. Integrating
in [to, t1], we get:

F(tl) < F(to) +2Cy (tl — to)

F(to) + 2CoT.(¢)

IN

g g
S a0, - —
3 T 2C%35,

IN

E.

This fact contradicts the starting hypothesis. [ |

2.1. Asymptotic stability.

Theorem 2.3. Let ¢ < 1, and F € L0, +o0),
F > 0, such that both (8) and inequality (6) hold
2

€ T (g)
for 6 = 360, 5 Then,

t =t7(9) and T =

O _keo+ 5. 0

F(t)<e Vt>th =1t .
(t)<e 2ty =11+ 60,

Remark 2.4. In particular, F € W1l(t5, +00) —
C[t3, +o0).

Proof. We argue by contradiction: Assume that
there exists a time ¢ > t3 such that F(t) > e. We
consider the interval [t — Ti(g)/2,1] C [t}, +00).
From Lemma 2.1 we conclude that for each in-
terval of length T (¢)/2 contained in [t},+00) and
Vt > t* there exists a time #; € [t — Ti(¢)/2, 1] such
that:
€2/(18Cy) ¢

F == ="6cy ~3

Thus, applying Lemma 2.2, one verifies:

F(t) <e, Vtelt,t1+Te(e)].
Observe that ¢ € [ty,#; + Ti(¢)], which gives us to
contradiction. |

Corollary 2.5. Let F' € L'(ty, +00) be a function
satisfying eq. (8). Then, F(t) is a function asymp-
totically stable to 0, that is,

lim F(t) =0.

t——+o0
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2.2. Stability until infinite time.

If we assume that:

2,_:2

36Cy’
then, from (4) we get: Vt; > ¢

(H1) E(to) < d(e) =

/ Fdt < Blio) — E(h) < 6(6)

to

In fact, one has (5) for tj(e)
Theorem 2.3, we obtain:

= to. Then, applying

F(t)<e Vtzto—i—;@(—toJrT*Q(E)) (10)

If, moreover,

(H2) Flto) < <

€
— 3’
then applying Lemma 2.2, we get:
F(t) <e VteE [to,to+ Ti(e)] (11)

In summary, assuming (H1) and (H?2), one has:

E(t) <6(e), F(t)<e, VYt>t.

3. The Nematic Liquid Crystal Model

3.1. Weak estimates

If we consider both u(t) and w(t) as test functions
in the u-system and d-system of (LC') respectively,
taking into account the equality:

V. (VA)'Vd) = —(Vd)'w + VE.(d),
we obtain:
s OlRa0) + AR 22(0)
+— )\/Q[(u V)d] - wdx (12)

-2 / [Bw'd + (1+ B)d'w] : Vudx =0
Q

and

d
& (31T + @) + 1wl

—i—/ﬂ[(u-V)d] -de—i—/QC(d,Vu)-de :((1)3)

for any boundary conditions for (u,d) given in the
Introduction (that is, Dirichlet, Neumann or peri-
odic for d). Then, adding (12) to (13) multiplied
by A, the last two terms of (12) and (13) cancel and
the so-called energy equality holds:

d |1
= |52 + AB(d(1) "

| Vu(t) |32 q) + MIW(EIF2q) =0
(recall that E.(d) is given in (2)).

Note that, defining the time functions E(t) and
F(t) as:

B#) = Lu(t)Ra + AELA@),  (15)

F() = vIVu(®)]2s 0+ M w20,

(16)
the inequality (4) is deduced from (14). As a con-
sequence, we can deduce the existence of weak so-
lutions of the problem. Moreover, by using this
weak regularity and the H?(Q) and H3(Q) regu-
larity of the elliptic problem —Ad + f(d) = w
with appropriate boundary conditions, we can de-

duce [Climent-Ezquerra et al.,):

IN

C (WL +1)

C(Iwle o) +1) -

dlle2(0)

[dlles) <

(17)

In the next section, we will use repeatedly these
estimates.

3.2. Strong estimates

In this section, we only consider the periodic bound-
ary conditions case for all variables (u,p,d). Tak-
ing both —Au and —A\Aw as test functions in the
u-system and in the d-system of (LC') respectively,
one can obtain ([Sun & Liu, 2009]):

HVUIILz +v[|Au|ffzq)

)\2

< (- V)ullsg) + C— (V) Wiz (18)

+)\/Q {Bwd" + (14 B)dw'} V(Au)dx
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and

)\/ Void : Tw dx + 2| Vw2 g
Q
+)\/ V((u-V)d) : Vwdx (19)
Q

—I—)\/ VC(d,Vu): Vwdx =0
Q

Observe that the first term of (19) can be rewritten
as:

/ Vod : Vwdx = —/ A(Od)w dx
/atwwdx—/f ) (0 d)w dx (20)

2dt ||L2 /f ) (0 d)W dx

Now, using the d-system of (LC), that is, d;d =
—(u-V)d - C(d, Vu) — yw, one has:

- / F()(@rd)w dx
/ fi(d

: (HAuHia(m
+C: (F3(t) +1)

(u-V)d+C(d,Vu) +yw) wdx

+ VW22 )

(21)
for € small enough.
The more nonlinear terms of the last term of
(19) are manipulated as follows (here, the periodic
boundary conditions are again applied):

A / (BV(Vwd + (1 + B)V(Vu)'d) : Vwdx
Q

< —)\/QV(Au) {Bwd" + (1+ B)dw'} dx

+C[ Dl () VdlLs (o) [WllLs @)

(22)
Note that the first term on the right-hand side of
(22) cancels with the last term in (18). The re-
maining part of the last term of (19) can be written

/\/Q (B(Vd-V)u: Vw

+(1+ B)(Vw - V)u: Vd) dx (23)

< O PIIVW o[ VdlLs@) [ Vallws @)

being C'(A, 5) a constant depending on A and /.
Therefore, adding (18) to (19) and taking into
account estimates (20)-(23), we obtain:

d
= (Ivulaq) + AlwliEze)

[ Aulfzg) + MIVWIE2 g

< [[(u- V)ullfz o) + C*H(Vd) WL (o)

[ Vi Vid): T (24)
Q

+C (F3(t) + 1)

+C||D?ull12(0) VAo (@) W13 (0)

+C(A,

= Zz‘:l I;

Using Sobolev’s inequalities, the estimates for the
I;-terms can be summarized as follows:

ANIVWwllLz o) [[Vdl[Ls@) IVulls )

L < ||u|]i69 HVullis(Q)

< elAullfa g + CelVullf g
L < HVd||L6<mellLs<m

<

5”VW||%,2(Q) + CE”WH%Q(Q)
I3 < [[Vul|pso) [V Ls o) VWL )

+lullLs o) [Ad]|Ls @) [VWIL2@) = L1 + I52

where term I37 as the same type of estimates as

term Ig.
Iso < lullpso)llAdfLs) VWL (o)

< el[Vwll )

+ Cel[Vull o g Wl 2 )
<& (I aulag + 1YWl ) + Cellwlig )
Io < e (I8l + VW)
£ Ol IVl
Now, we introduce function G(t) defined as:
G(t) = vl|Au|feq) + MIIVWIEa)  (25)

Observe that, finally, (2
following form:

Fl(t)+G(t) < C (1+ Ft)),

4) can be written in the
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being F(t) and G(t) the functions defined in (16)
and (25) respectively. Therefore, function F'(t) sat-
isfies (8).

4. Applications of the General Framework
to Nematic Liquid Crystal.

4.1. Asymptotic stability.

Let (ug,dg) € HY(Q) x H?(Q) be two given func-
tions and (u(t),d(t)) a weak solution of system
(LC) with periodic boundary conditions and initial
data (ug,dp).

Since (4) and (8) hold, applying the results
from Section 2, one has:

Et)] Ex(>0) inR, t1+o00

{F(t)%o in R, t T +o0
hence:

E'(t)—-0 inR t 1 +oo

u(t) -0 in HY(Q) ¢1 +oo

w(t) =0 inL*Q) ¢1+oo
Moreover, for each subsequence t; T 400, there ex-

ists a subsequence (t;,) C (t;) such that:
d(t;x) = d in H*(Q)-weak for k1 +oc.

being d a critical point of the elastic energy E.(d),
that is, a solution for the stationary problem:

~Ad+ f.(d) = 0 inQ,

with periodic boundary conditions on 0f). Note
that,

Bo=2 (|Vd<t>\% =7 F(d(t») (@)

that is, every possible limit of the director field d
when ¢ 1 400 is a critical point of the elastic energy
and all these possible limits have the same elastic
energy Foo.

4.2. Stability for constant director fields.

If (up,dp) are such that:
(H1)

1 2 A 2
3 lvollzz (o) + 5 [IVdollgzi) + A QFe(dO) < d(e)

(in particular, ||dee — do”%{l(ﬂ) < C¢&? for a con-
stant vector dege with |dege| = 1) and

€
H2 =,
(2) :
where wog = —Adg + fc(dp) then for each t > to,
applying the results from Section 2 one has:

v[|Vuol[f2iqy + 1M IWollf2 () <

1 A
SO0y 5 190 a0 [ Fuld(®) < 6(6)
and

V[ Vut)[|Es ) + 1AW 120 <

w | ™

Acknowledgements

The authors have been partially supported by
Projects MTM2006-07932 and P06-FQM-02373.

References

Climent-Ezquerra, B., Guillén-Gonzalez, F. &
Rojas-Medar, M.A. [2006] “Reproductivity for a
nematic liquid crystal model,” Z. Angew. Math.
Phys. 576, No. 6, 984-998.

Climent-Ezquerra, B., Guillén-Gonzalez, F. &
Moreno-Iraberte, M. J. [ “Regularity and
Time-periodicity for a Nematic Liquid Crys-
tal model,” Accepted in Nonlinear Analysis ,
http://dx.doi.org/10.1016/j.na.2008.10.092.

Lin, F. H.& Liu, C. [1995] “Nonparabolic Dissipa-
tive Systems Modeling the Flow of Liquid Crys-
tals,” Comm. Pure Appl. Math. 48, 501-537.

Lin, F. H. & Liu, C. [2000] “Existence of Solutions
for the Ericksen-Leslie System,” Arch. Rational
Mech. Anal. 154, 135-156.

Liu, C., Shen, J. & Yang, X. [2007] “Dynamics of
Defect Motion in Nematic Liquid Crystal Flow:
Modeling and Numerical Simulation,” Commun.
Comput. Phys. 2-No. 6, 1184-1198.

Sun, H. & Liu, C. [2009] “On Energetic Varia-
tional Approaches in Modeling the Nematic Liqg-
uid Crystal Flows,” Discrete and Continuous
Dynamical Systems 23-INo.1&2, 455-475.



