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Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, SPAIN.

E-mail: bcliment@us.es, guillen@us.es, angeles@us.es

February 27, 2009
Dedicated to the memory of Valery S. Melnik

We study a nematic crystal model appearing in [Liu et al.,2007] modeling stretching effects
depending on the different shape of microscopic molecules of the material, under periodic
boundary conditions. The aim of the present article is twofold: to extend the results given
in [Sun & Liu, 2009], to a model with more complete stretching terms and to obtain some sta-
bility and asymptotic stability properties for this model.
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1. Introduction

The Nematic Liquid Crystal system is a Navier-
Stokes type model for incompressible fluids respect
to the macroscopic variables, that takes into ac-
count the crystallinity of the microscopic molecules
of the material. It can be obtained coupling Navier-
Stokes equations with the Ginzburg-Landau equa-
tions, being its unknowns the solenoidal velocity
u(t,x), the pressure of the fluid p(t,x), and the di-
rector field d(t,x), that represents the orientation
of the liquid crystal molecules. Moreover, we sup-
pose that the fluid is confined in a domain Ω ⊂ R3.

We deal with an Ericksen-Leslie type formula-
tion. A simplified model was analyzed by F. H. Lin
& C. Liu in [Lin & Liu, 1995]. In fact, this model is
a penalized one depending on the Ginzburg-Landau

function:

fε(d) =
1

ε2
(
|d|2 − 1

)
d,

where |d| denotes the euclidean norm in R3 and
ε > 0 is a penalization parameter. This penaliza-
tion function has a potential structure, i. e. there

exists the function Fε(d) =
1

4 ε2
(
|d|2 − 1

)2
such

that fε(d) = ∇d(Fε(d)) for all d ∈ R3.

We denote Q = (0,+∞)×Ω and Σ = (0,+∞)×
∂Ω, where Ω ⊂ R3 is a smooth enough domain and
∂Ω its boundary. We consider the EDP system ap-
pearing in [Liu et al.,2007; system (1.9), p. 1187],
that reads as:

(LC)


Dtu− ν∆u +∇p− λ∇ · σe = 0 in Q,

∇ · u = 0 in Q,

Dtd + γw = 0 in Q,
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being
Dtu = ∂tu + (u · ∇)u

the material derivative of u,

σe = −(∇d)t∇d− βw dt − (1 + β)d wt (1)

the elastic stress tensor (β ∈ R) and

w = −∆d + fε(d)

the Euler-Lagrange system derived from the mini-
mization problem respect to the elastic energy

Ee(d) =
1

2

∫
Ω
|∇d|2 +

∫
Ω

Fε(d). (2)

The term

Dtd = Dtd + C(d,∇u)

describes a general derivative containing the ma-
terial derivative Dtd = ∂td + (u · ∇)d and the
quadratic term

C(d,∇u) = β(∇u)d + (1 + β)(∇u)td

modeling the so-called stretching effects, depending
on the form of the molecules [Liu et al., 2007]. In
fact, the constant β = −α is associated with the
aspect ratio r of the ellipsoid particles. The case of
α near to 1 corresponds to rod like particles (then
the transport is purely covariant stretching), the
case of α near to 0 corresponds to disc like particles
(then the transport is anti-stretching) and the case
of α near to 1/2 corresponds to the spherical shape
(the transport is the rigid rotation of the center of
the mass).

Finally, ν > 0 is the fluid viscosity, λ > 0 is the
elasticity constant and γ > 0 is a relaxation in time
constant.

The theoretical analysis of a simplified model
without stretching effects, i.e for C(d,∇u) = 0 and
the corresponding elastic tensor σe = −(∇d)t∇d,
was made in [Lin & Liu, 1995] obtaining existence
of global weak solution, i. e.

u ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),

d ∈ L∞(0, T ; H2(Ω)) ∩ L2(0, T ; H3(Ω)),

for all T > 0, and the existence (and uniqueness) of
local strong solution, i. e.

u ∈ L∞(0, T∗; H
1(Ω)) ∩ L2(0, T∗; H

2(Ω)),

d ∈ L∞(0, T∗; H
2(Ω)) ∩ L2(0, T∗; H

3(Ω)),

with T∗ ≤ T (small enough) or T∗ = T (for each
T > 0) for big enough viscosity coefficient ν or for
two-dimensional domains. All these previous re-
sults are given for the time-independent Dirichlet
boundary data:

u = 0, d = h on Σ, (h 6= h(t))

and for the initial-value boundary problem with ini-
tial condition:

u|t=0 = u0, d|t=0 = d0 in Ω. (3)

When time-dependent Dirichlet data for d is con-
sidered (h = h(t)), the existence of weak time-
periodic solution, that is solutions obtained by
changing (3) by u(0) = u(T ) and d(0) =
d(T ), is obtained in [Climent-Ezquerra et al.,].
The strong regularity up to infinite time for big
enough viscosity ν jointly with the strong regu-
larity of time-periodic solutions are obtained in
[Climent-Ezquerra et al.,].

The results corresponding to the initial-
value boundary problem are extended in
[Lin & Liu, 2000] to a much more complete
model respect to the dissipative tensor and consid-
ering the particular stretching effects for the case
of spherical molecules, i.e. taking β = −1/2 in (1).

Recently, a liquid crystal model with a stretch-
ing term for the case of rod like particles (taking
β = −1 in (1)) and periodic boundary conditions for
both u and d has been studied in [Sun & Liu, 2009],
obtaining global weak solution and local strong so-
lution (which is global for large enough viscosity)

The aim of the present article is twofold: to ex-
tend the last results of [Sun & Liu, 2009] to a model
with more complete stretching terms and to obtain
some stability and asymptotic stability properties
for this model.

2. General Framework.

Assume that we have the following situation, a.e.
t ∈ (t0,+∞):

E(t), F (t) ≥ 0, E′(t) + F (t) ≤ 0. (4)

Then, E ∈ Cb[t0,+∞), is a decreasing function and
there exists

lim
t→+∞

E(t) = E∞ ≥ 0.
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On the other hand, F ∈ L1(t0,+∞), that is,∫ +∞

t0

F (t) dt < +∞.

In this case, for any δ > 0, there exists a large
enough time t∗1 = t∗1(δ) ≥ t0 such that:∫ +∞

t∗1

F (t) dt ≤ δ. (5)

In particular, we can say that for each δ > 0 there
exists a large enough time t∗1(δ) ≥ t0 such that

1

τ

∫ t+τ

t
F (t) dt ≤ δ

τ
, ∀τ > 0, ∀t ≥ t∗1(δ). (6)

Lemma 2.1. Let F ∈ L1(t0,+∞), F ≥ 0 in
(t0,+∞), satisfying (6). Then, ∀δ > 0, ∀t ≥ t∗1(δ)
and ∀τ > 0 there exists a time t̄ ∈ [t, t + τ ] such
that:

F (t̄) ≤ 2δ

τ
. (7)

Indeed, the set of points t̄ ∈ [t, t + τ ] satisfying (7)
has measure ≥ τ/2.

Proof. We focus on the proof in the interval [t∗1, t
∗
1+

τ ]. The proof for another interval of length τ con-
tained in [t∗1,+∞) is similar.

Indeed, we define:

A = {s ∈ [t∗1, t
∗
1 + τ ]/F (s) ≥ 2δ

τ
}.

Therefore, ∫
A
F (t) dt+

∫
Ac

F (t) dt ≤ δ,

and thus

2δ

τ
|A| ≤ δ ⇒ |A| ≤ τ

2
.

That is, |Ac| ≥ τ/2.

Now, we assume that the following differential
inequality for F (t) holds:

F ′(t) ≤ C2(F (t)3 + 1). (8)

Lemma 2.2. Let F ∈ L1(t0,+∞) be a function
satisfying the differential inequality (8). For any
ε < 1, if F (t0) ≤ ε/3, then F (t) ≤ ε ∀t ∈
[t0, t0 + T∗(ε)], where T∗(ε) =

ε

3C2
.

Proof. We argue by contradiction: Suppose that
there exists a time t1 ∈ [t0, t0 + T∗(ε)] such that
F (t) < ε in [t0, t1) and F (t1) = ε. Then, from eq.
(8) we obtain that F ′ < 2C2 en [t0, t1]. Integrating
in [t0, t1], we get:

F (t1) < F (t0) + 2C2 (t1 − t0)

≤ F (t0) + 2C2T∗(ε)

≤ ε

3
+ 2C2

ε

3C2
= ε.

This fact contradicts the starting hypothesis.

2.1. Asymptotic stability.

Theorem 2.3. Let ε < 1, and F ∈ L1(0,+∞),
F ≥ 0, such that both (8) and inequality (6) hold

for δ =
ε2

36C2
, t∗1 = t∗1(δ) and τ =

T∗(ε)

2
. Then,

F (t) ≤ ε, ∀ t ≥ t∗2 = t∗1 +
T∗(ε)

2
= t∗1(δ)+

ε

6C2
. (9)

Remark 2.4. In particular, F ∈ W 1,1(t∗2,+∞) ↪→
C[t∗2,+∞).

Proof. We argue by contradiction: Assume that
there exists a time t̃ > t∗2 such that F (t) > ε. We
consider the interval [t̃− T∗(ε)/2, t̃] ⊂ [t∗1,+∞).

From Lemma 2.1 we conclude that for each in-
terval of length T∗(ε)/2 contained in [t∗1,+∞) and
∀t ≥ t∗1 there exists a time t̄1 ∈ [t̃− T∗(ε)/2, t̃] such
that:

F (t̄1) ≤ 2δ

τ
=
ε2/(18C2)

ε/(6C2)
=
ε

3
.

Thus, applying Lemma 2.2, one verifies:

F (t) ≤ ε, ∀t ∈ [t̄1, t̄1 + T∗(ε)].

Observe that t̃ ∈ [t̄1, t̄1 + T∗(ε)], which gives us to
contradiction.

Corollary 2.5. Let F ∈ L1(t0,+∞) be a function
satisfying eq. (8). Then, F (t) is a function asymp-
totically stable to 0, that is,

lim
t→+∞

F (t) = 0.
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2.2. Stability until infinite time.

If we assume that:

(H1) E(t0) ≤ δ(ε) =
ε2

36C2
,

then, from (4) we get: ∀t1 > t0∫ t1

t0

F (t) dt ≤ E(t0)− E(t1) ≤ δ(ε)

In fact, one has (5) for t∗1(ε) = t0. Then, applying
Theorem 2.3, we obtain:

F (t) ≤ ε ∀t ≥ t0 +
ε

6C2

(
= t0 +

T∗(ε)

2

)
(10)

If, moreover,

(H2) F (t0) ≤ ε

3
,

then applying Lemma 2.2, we get:

F (t) ≤ ε ∀t ∈ [t0, t0 + T∗(ε)] (11)

In summary, assuming (H1) and (H2), one has:

E(t) ≤ δ(ε), F (t) ≤ ε, ∀t ≥ t0.

3. The Nematic Liquid Crystal Model

3.1. Weak estimates

If we consider both u(t) and w(t) as test functions
in the u-system and d-system of (LC) respectively,
taking into account the equality:

∇ · ((∇d)t∇d) = −(∇d)tw +∇Ee(d),

we obtain:

1

2

d

dt
‖u(t)‖2L2(Ω) + ν‖∇u(t)‖2L2(Ω)

+− λ
∫

Ω
[(u · ∇)d] ·w dx

−λ
∫

Ω

[
βwtd + (1 + β)dtw

]
: ∇u dx = 0

(12)

and

d

dt

(
1

2
‖∇d(t)‖2L2(Ω) + Fε(d)(t)

)
+ γ‖w‖2L2(Ω)

+

∫
Ω

[(u · ∇)d] ·w dx +

∫
Ω
C(d,∇u) ·w dx = 0

(13)

for any boundary conditions for (u,d) given in the
Introduction (that is, Dirichlet, Neumann or peri-
odic for d). Then, adding (12) to (13) multiplied
by λ, the last two terms of (12) and (13) cancel and
the so-called energy equality holds:

d

dt

[
1

2
‖u(t)‖2L2(Ω) + λEe(d(t))

]
+ν‖∇u(t)‖2L2(Ω) + λγ‖w(t)‖2L2(Ω) = 0

(14)

(recall that Ee(d) is given in (2)).

Note that, defining the time functions E(t) and
F (t) as:

E(t) =
1

2
‖u(t)‖2L2(Ω) + λEe(d(t)), (15)

F (t) = ν‖∇u(t)‖2L2(Ω) + γλ‖w(t)‖2L2(Ω),

(16)
the inequality (4) is deduced from (14). As a con-
sequence, we can deduce the existence of weak so-
lutions of the problem. Moreover, by using this
weak regularity and the H2(Ω) and H3(Ω) regu-
larity of the elliptic problem −∆d + fε(d) = w
with appropriate boundary conditions, we can de-
duce [Climent-Ezquerra et al.,]:

‖d‖H2(Ω) ≤ C
(
‖w‖L2(Ω) + 1

)
,

‖d‖H3(Ω) ≤ C
(
‖w‖H1(Ω) + 1

)
.

(17)

In the next section, we will use repeatedly these
estimates.

3.2. Strong estimates

In this section, we only consider the periodic bound-
ary conditions case for all variables (u, p,d). Tak-
ing both −∆u and −λ∆w as test functions in the
u-system and in the d-system of (LC) respectively,
one can obtain ([Sun & Liu, 2009]):

d

dt
‖∇u‖2L2(Ω) + ν‖∆u‖2L2(Ω)

≤ ‖(u · ∇)u‖2L2(Ω) + C
λ2

ν
‖(∇d)tw‖2L2(Ω)

+λ

∫
Ω

{
βwdt + (1 + β)dwt

}
∇(∆u) dx

(18)
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and

λ

∫
Ω
∇∂td : ∇w dx + λγ‖∇w‖2L2(Ω)

+λ

∫
Ω
∇((u · ∇)d) : ∇w dx

+λ

∫
Ω
∇C(d,∇u) : ∇w dx = 0

(19)

Observe that the first term of (19) can be rewritten
as: ∫

Ω
∇∂td : ∇w dx = −

∫
Ω

∆(∂td)w dx

=

∫
Ω
∂tw w dx−

∫
Ω
f ′ε(d)(∂td)w dx

=
1

2

d

dt
‖w‖2L2(Ω) −

∫
Ω
f ′ε(d)(∂td)w dx

(20)

Now, using the d-system of (LC), that is, ∂td =
−(u · ∇)d− C(d,∇u)− γw, one has:

−
∫

Ω
f ′ε(d)(∂td)w dx

=

∫
Ω
f ′ε(d) ((u · ∇)d + C(d,∇u) + γw) w dx

≤ ε
(
‖∆u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)
+Cε

(
F 3(t) + 1

)
(21)

for ε small enough.
The more nonlinear terms of the last term of

(19) are manipulated as follows (here, the periodic
boundary conditions are again applied):

λ

∫
Ω

(
β∇(∇u)d + (1 + β)∇(∇u)td

)
: ∇w dx

≤ −λ
∫

Ω
∇(∆u) :

{
βwdt + (1 + β)dwt

}
dx

+C‖D2u‖L2(Ω)‖∇d‖L6(Ω)‖w‖L3(Ω)

(22)
Note that the first term on the right-hand side of
(22) cancels with the last term in (18). The re-
maining part of the last term of (19) can be written
as:

λ

∫
Ω

(β(∇d · ∇)u : ∇w

+(1 + β)(∇w · ∇)u : ∇d) dx

≤ C(λ, β)‖∇w‖L2(Ω)‖∇d‖L6(Ω)‖∇u‖L3(Ω)

(23)

being C(λ, β) a constant depending on λ and β.
Therefore, adding (18) to (19) and taking into

account estimates (20)-(23), we obtain:

d

dt

(
‖∇u‖2L2(Ω) + λ‖w‖2L2(Ω)

)
+ν‖∆u‖2L2(Ω) + λγ‖∇w‖2L2(Ω)

≤ ‖(u · ∇)u‖2L2(Ω) + C
λ2

ν
‖(∇d)tw‖2L2(Ω)

+λ

∫
Ω
∇((u · ∇)d) : ∇w dx

+C
(
F 3(t) + 1

)
+C‖D2u‖L2(Ω)‖∇d‖L6(Ω)‖w‖L3(Ω)

+C(λ, β)‖∇w‖L2(Ω)‖∇d‖L6(Ω)‖∇u‖L3(Ω)

=
∑6

i=1 Ii

(24)

Using Sobolev’s inequalities, the estimates for the
Ii-terms can be summarized as follows:

I1 ≤ ‖u‖2L6(Ω)‖∇u‖2L3(Ω)

≤ ε‖∆u‖2L2(Ω) + Cε‖∇u‖6L2(Ω)

I2 ≤ ‖∇d‖2L6(Ω)‖w‖
2
L3(Ω)

≤ ε‖∇w‖2L2(Ω) + Cε‖w‖6L2(Ω)

I3 ≤ ‖∇u‖L3(Ω)‖∇d‖L6(Ω)‖∇w‖L2(Ω)

+‖u‖L6(Ω)‖∆d‖L3(Ω)‖∇w‖L2(Ω) = I31 + I32

where term I31 as the same type of estimates as
term I6.

I32 ≤ ‖u‖L6(Ω)‖∆d‖L3(Ω)‖∇w‖L2(Ω)

≤ ε‖∇w‖L2(Ω) + Cε‖∇u‖4L2(Ω)‖w‖
2
L2(Ω)

I5 ≤ ε
(
‖∆u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)
+ Cε‖w‖6L2(Ω)

I6 ≤ ε
(
‖∆u‖2L2(Ω) + ‖∇w‖2L2(Ω)

)
+ Cε‖w‖4L2(Ω)‖∇u‖2L2(Ω)

Now, we introduce function G(t) defined as:

G(t) = ν‖∆u‖2L2(Ω) + λγ‖∇w‖2L2(Ω) (25)

Observe that, finally, (24) can be written in the
following form:

F ′(t) +G(t) ≤ C
(
1 + F 3(t)

)
,
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being F (t) and G(t) the functions defined in (16)
and (25) respectively. Therefore, function F (t) sat-
isfies (8).

4. Applications of the General Framework
to Nematic Liquid Crystal.

4.1. Asymptotic stability.

Let (u0,d0) ∈ H1(Ω) ×H2(Ω) be two given func-
tions and (u(t),d(t)) a weak solution of system
(LC) with periodic boundary conditions and initial
data (u0,d0).

Since (4) and (8) hold, applying the results
from Section 2, one has:{

E(t) ↓ E∞ (≥ 0) in R, t ↑ +∞

F (t)→ 0 in R, t ↑ +∞

hence: 
E′(t)→ 0 in R t ↑ +∞

u(t)→ 0 in H1
0(Ω) t ↑ +∞

w(t)→ 0 in L2(Ω) t ↑ +∞

Moreover, for each subsequence tj ↑ +∞, there ex-
ists a subsequence (tjk) ⊂ (tj) such that:

d(tjk) ⇀ d̄ in H2(Ω)-weak for k ↑ +∞.

being d̄ a critical point of the elastic energy Ee(d),
that is, a solution for the stationary problem:

−∆d̄ + fε(d̄) = 0 in Ω,

with periodic boundary conditions on ∂Ω. Note
that,

E∞ =
λ

2

(
|∇d̄(t)|22 + 2

∫
Ω
F (d̄(t))

)
= λEe(d̄)

that is, every possible limit of the director field d̄
when t ↑ +∞ is a critical point of the elastic energy
and all these possible limits have the same elastic
energy E∞.

4.2. Stability for constant director fields.

If (u0,d0) are such that:
(H1)

1

2
‖u0‖2L2(Ω) +

λ

2
‖∇d0‖2L2(Ω) + λ

∫
Ω
Fε(d0) ≤ δ(ε)

(in particular, ‖dcte − d0‖2H1(Ω) ≤ C ε2 for a con-

stant vector d̄cte with |d̄cte| = 1) and

(H2) ν‖∇u0‖2L2(Ω) + γλ‖w0‖2L2(Ω) ≤
ε

3
,

where w0 = −∆d0 + fε(d0) then for each t ≥ t0,
applying the results from Section 2 one has:

1

2
‖u(t)‖2L2(Ω)+

λ

2
‖∇d(t)‖2L2(Ω)+λ

∫
Ω
Fε(d(t)) ≤ δ(ε)

and

ν‖∇u(t)‖2L2(Ω) + γλ‖w(t)‖2L2(Ω) ≤
ε

3
.
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