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Abstract. In this paper we study the positive solutions of a cooperative sys-
tem of any number of equations which considers the case of the slow diffusion
and includes the Lotka-Volterra model. We determine conditions of existence
of global solution and blow-up in finite time in term of the value of the spectral
radius of a certain nonnegative matrix associated to the system. The results
generalize the ones known for the particular case of two equations and we
justify them by using the specific properties of nonnegative matrices which
translate the cooperative character of the system.

1. Introduction

Let Ω ⊂ RN be a regular domain with N ≥ 1. For each T > 0, we denote
DT = (0, T ]× Ω ST = (0, T ]× ∂Ω and consider

(1)





∂

∂t
wi −∆(wm

i ) = wi(λi − wi +
n∑

j=1
j 6=i

aijwj) in DT ,

wi = 0 in ST ,
wi(0, x) = w0

i (x) in Ω.

1 ≤ i ≤ n.

This problem can be viewed as a model for the temporal evolution of the population
density of n species which cooperate two against two, confined in a domain Ω in
which boundary they can not live and which spread slowly. Here, λi ∈ R are
the birth rates (if positive) or the dead rates (if negative) of each species, m > 1
is the parameter which entails the diffusion rate (the diffusion decreases when m
increases) and aij > 0 describe the interaction rates of the species.

In the particular case n = 2, in [2] the existence of positive solution global in
time of (1) is proved assuming the existence of a pair of sub-supersolution of (1).

In this paper, we consider the following system

(2)





∂

∂t
ui −∆ui = u

1/m
i (λi − u

1/m
i +

n∑
j=1
j 6=i

aiju
1/m
j ) in DT ,

ui = 0 in ST ,
ui(0, x) = u0

i (x) in Ω.

1 ≤ i ≤ n.

Problems (1) and (2) are different but related systems; for instance, in [4] for n = 2
it is proved that its linearizing at the steady-state are equivalent.

The case of two species (i.e. n = 2) was approached in [6] when m = 1 and in [4]
when m > 1 where we send for more details about the genesis of the model. The
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results of the papers show the great difference between both cases. The case n = 3
was studied in [5]. In the case n = 2 and m > 1 we got the following result

Theorem 1.1. (1) Suppose a12a21 < 1. If (λ1, λ2) ∈ R+
2 \ {(0, 0)}, then

the problem (2) has one unique positive global solution (u1(t, x), u2(t, x))
and the corresponding steady problem has at least one positive solution
(u1s(x), u2s(x)). Moreover, if one of the following hypotheses is satisfied:
• 1 < m < 2 and a12 and a21 “sufficiently small” (cf. [4] for specific

bounds),
• m = 2,
• 2 < m, 1− a12a21(m− 1)2 > 0, λ(1− a12a21(m− 1)) ≥ a12µ(m− 2),

µ(1− a12a21(m− 1)) ≥ a21λ(m− 2),
then, the positive solution of the steady problem is unique.

(2) Suppose a12a21 = 1. If m > 1 and (λ1, λ2) ∈ R+
2\{(0, 0)}, then there exists

one unique positive global solution (u1(t, x), u2(t, x)) and the corresponding
steady problem has at least one positive solution.

(3) Suppose a12a21 > 1.
(a) If 1 < m < 2, there exist 0 < λi < λi, for i = 1, 2 such that for λi > λi

the solution of (2) (u1(t, x), u2(t, x)) blows up in finite time and if
0 < λ < λi, then (2) has positive global solution and the corresponding
steady problem has at least one positive solution.

(b) If m = 2, the problem (2) has positive global solution which can be not
bounded.

(c) If 2 < m and (λ1, λ2) ∈ R2 \ {(0, 0)}, then (2) has positive global
solution and the corresponding steady problem has at least a positive
solution.

As consequence, the behaviour of the solutions of the problem depends crucially
on the product a12a21 whose value > 1 or < 1 determines the so-called strong or
weak interactions in the literature for the case m = 1 and n = 2 (cf., for instance,
[8] and [3]). In [5] we justified that if we introduce the third equation, the spectral
radius of certain matrix is the parameter which determines the behaviour of the
solutions. However, there we used specific arguments for matrix of order 3 which
can not be adapted to cover the general case. In this paper we will prove a result for
a system of n equations where the importance of the cooperative character of the
system will be very clear. We will limit our framework to case λi > 0, i = 1, ..., n,
although results can be given in other cases. In our knowledge, the results are new
even in the linear case (m = 1).

We will call matrix of the system (2) to

A =




−1 a12 . . . a1n

a21 −1 . . . a2n

...
...

. . .
...

an1 an2 . . . −1


 .

Associated to A, we consider the matrix

A =




0 a12 . . . a1n

a21 0 . . . a2n

...
...

. . .
...

an1 an2 . . . 0
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that will be transformed into our object of study. Note that in a general case, when
the matrix of the system is

A =




−a11 a12 . . . a1n

a21 −a22 . . . a2n

...
...

. . .
...

an1 an2 . . . −ann




then the problem can be reduced to the previous form, if m 6= 2, through a linear
variable change which provides us to the associated matrix

A =




0 b12 . . . b1n

b21 0 . . . b2n

...
...

. . .
...

bn1 bn2 . . . 0




being

(3) bij = aija
(m−1)/(2−m)
ii a

1/(m−2)
jj .

This transformation also changes the birth rates, but this is not outstanding in the
following.

The outline of the paper is as follows. In Section 2, we recall some results from
the theory of matrices that we will need. In Section 3 we extend the results about
the sub-supersolution method, the sweeping principle and the uniqueness of positive
solution of parabolic problem to systems with more of two equations. In Section
4 we carry out the estimates for the steady problem. In the following Section we
study the parabolic problem in the different cases. In the last Section we will give
a summary of results in the case m = 1.

2. Some results from the theory of matrices

Consider a matrix M of nonnegative elements and dimension s; let ρ(M) denote
its spectral radius. It is well known, by Perron-Frobenius theorem (cf. [11]), that
M has a real positive eigenvalue, ρ, such that ρ(M) = ρ. We denote by

φM (λ) = det(λI −M)

which is a polynomial with positive main coefficient. It is clear that if φM (1) < 0,
then there exists a real eigenvalue greater than 1. So

(4) φM (1) = det (I −M) < 0 =⇒ ρ(M) > 1.

On the other hand, we recall that a principal minor of a matrix M is the deter-
minant of a square submatrix of M obtained by crossing out any j rows and the
corresponding j columns of M , where 1 ≤ j ≤ n. It is also well known (cf. [1],
pg. 150, for instance) that for k = 1, ..., s − 1, φ

k)
M (1) is equal to the sum of the

principal minors of dimension s− k multiplied by k!. So, if all the principal minors
of order s− k of M are nonnegative, then φ

k)
M (1) ≥ 0.

Lemma 2.1. If all the principal minors of M are nonnegative and ρ(M) > 1, then
det (I −M) < 0.
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Proof. The Taylor formula allows to write

φM (λ) = φM (1) + φ
′
M (1)(λ− 1) + ... +

φ
s)
M (1)
s!

(λ− 1)s.

By hypotheses, φ
′
M (1), ..., φs−1)

M (1) are nonnegative and φ
s)
M (1) = s! > 0; therefore,

since φM (1) ≥ 0, it follows that φM (λ) > 0, ∀λ > 1. So that ρ(M) ≤ 1. ¤

Finally, we send to [11] for the definition of irreducible matrix. Note that a
matrix as A is irreducible. We will use the following result (cf. [11], Lemma 2.6).

Theorem 2.2. If M is a irreducible matrix of nonnegative terms and Mi is a
principal matrix of M , then ρ(Mi) < ρ(M).

3. Preliminaries

We will collect some results that will be used throughout this paper. Consider
the matrix operator L = diag(−∆, . . . ,−∆). We pose

(HR) f(x, z) : Ω×Rn
+ 7→ Rn, f ∈ F , f increasing in z,

where F := Cβ(Ω × Rn
+;Rn) ∩ C2(Ω × (0,∞)n;Rn), β ∈ (0, 1) and f is called

increasing in z if fi is increasing in zj for all j 6= i.
Consider the following parabolic system

(5)





zt + Lz = f(x, z) in DT ,
z = 0 on ST ,
z(0, x) = z0(x) in Ω,

where z0 ∈ (Cβ(Ω))n and satisfies the compatibility condition z0(x) = 0 on ∂Ω.

Definition 3.1. Suppose (HR). We will say that z, z ∈ (Cβ(DT )∩C2(DT ))n is a
sub-supersolution of (5) if z ≤ z in DT and:

(1) zt + Lz − f(x, z) ≥ 0 ≥ zt + Lz − f(x, z) in DT ,
(2) z ≥ 0 ≥ z on ST ,
(3) z(0, x) ≥ z0(x) ≥ z(0, x) in Ω.

We have (cf. [4])

Theorem 3.2. Suppose (HR) and that there exists a sub-supersolution z, z of
(5). Then, there exist z∗ and z∗ ∈ (C1+β(DT ) ∩ C2+β(DT ))n which are minimal
and maximal solutions of (5), respectively in the sense that for every solution z ∈
(C1+β(DT ) ∩ C2+β(DT ))n of (5) with z ≤ z ≤ z, it is verified that z∗ ≤ z ≤ z∗.

For the uniqueness of positive solution of (5), we need some notation. We denote
by

int(P ) := {u ∈ C1
0 (Ω) : u(x) > 0 in Ω and ∂u/∂n < 0 on ∂Ω}

where n stands for the outward unit normal on ∂Ω. We say that a function u ∈
C1

0 (Ω) is positive if u ∈ int(P ). Let M(x) = (mij(x)) be a matrix of order n × n
whose elements mij ∈ C1(Ω) verify

(HM)
{

mij > 0 i 6= j,
∃ K > 0, α ∈ [0, 2) such that |mij(x)|[dist(x, ∂Ω)]α ≤ K.

The following result was proved in [4] in the case n = 2 and the proof extends easily
to general case.
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Proposition 3.3. Suppose (HR) and that for every z ∈ (int(P ))n the matrix

DF (z)(x) := (Difj(x, z(x)))

satisfies (HM). Then, there exists at most one positive solution, i.e. z(t, x) ∈
(int(P ))n for any t ≥ 0, of (5).

In order to obtain a priori bounds of the stationary solutions of (5) and some
uniqueness results, we will use the following sweeping principle for systems (see
Lemma 3 in [4] and Theorem 4 in [9]).

Proposition 3.4. Suppose (HR) and that f satisfies the hypotheses of the Propo-
sition 3.3. Consider z a steady solution of (5) and zr with r ∈ (r0, r1] a family of
positive functions such that:

(1) Lzr ≥ f(x, zr) in Ω and zr ≥ 0 on ∂Ω,
(2) zr depends on r continuously and is increasing on r for all x ∈ Ω,
(3) z ≤ zr1 and z 6= zr for all r,
(4) Either zr is strictly increasing on r or ∂zr/∂n depends continuously on r

for x ∈ ∂Ω.
Then,

z ≤ inf
r∈(r0,r1]

zr.

Remark 3.5. The same result is true for a family of subsolutions, with the appro-
priate changes in the inequalities.

4. A priori estimates for the solutions of the steady system

We consider in this Section the steady system corresponding to (2), i.e.

(6)





−∆ui = u
1/m
i (λi − u

1/m
i +

n∑
j=1
j 6=i

aiju
1/m
j ) in Ω,

ui = 0 on ∂Ω.

1 ≤ i ≤ n

The following result holds

Theorem 4.1. We define

bii = 0, bij = aij for i 6= j, 1 ≤ i, j ≤ n

and let
A = (bij)

be. We denote α = min1≤i≤n λi and β = max1≤i≤n λi. If ρ(A) < 1 and α > 0,
then there exist n+1 positive constants Pi, i = 1, ..., n and r0 such that any positive
solution, ui, of (6) verifies:

(1) If 1 < m < 2,

θα ≤ ui ≤ r0Piθβ , i = 1, ..., n

(2) If 2 ≤ m,
θα ≤ ui ≤ Piθβ , i = 1, ..., n

where θγ is the unique positive solution (cf. [4]) of the problem

(7)
{ −∆z = z1/m(γ − z1/m) in Ω,

z = 0 on ∂Ω.
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Proof. It is easy to see that if u = (u1, · · · , un) is a positive solution of (6), then
it is supersolution of (7) with γ = α. On the other hand, there exists a positive
subsolution u of (7) such that u ≤ u. So, θα ≤ ui, i = 1, ..., n by the uniqueness of
positive solution of (7).

Now, we consider the family

uir = rmPiθβ , i = 1, ..., n r ∈ (r0, r1), with r1 > r0 > 1

for some parameters Pi to be chosen. To verify the hypotheses of Proposition 3.4 ,
we need that

−∆uir − u
1/m
ir (λi − u

1/m
ir +

n∑
j=1
j 6=i

aiju
1/m
jr ) ≥ 0, i = 1, ..., n.

A straightforward calculation gives

−∆uir − u
1/m
ir (λi − u

1/m
ir +

n∑
j=1
j 6=i

aiju
1/m
jr ) =

rP
1/m
i θ

1/m
β [(rm−1P

1−1/m
i β−λi)+θ

1/m
β (−rm−1P

1−1/m
i +r(P 1/m

i −
n∑

j=1
j 6=i

aijP
1/m
j ))] ≥

rP
1/m
i θ

1/m
β [(rm−1P

1−1/m
i − 1)λi + θ

1/m
β (−rm−1P

1−1/m
i + r(P 1/m

i −
n∑

j=1
j 6=i

aijP
1/m
j ))]

for i = 1, ..., n. Note that the linear system

P
1/m
i −

n∑
j=1
j 6=i

aijP
1/m
j = 1, i = 1, ..., n ⇐⇒

(8)




P
1/m
1
...

P
1/m
n


 =




0 a12 . . . a1n

...
...

...
...

an1 an2 . . . 0







P
1/m
1
...

P
1/m
n


 +




1
...
1




has a unique solution whose components are greater than 1. Indeed, the iterative
method tied to the former fixed point equation is convergent since ρ(A) < 1; and,
since the matrix is nonnegative, the convergent sequence to the solution which
emanates from the origin has each component of each term greater than 1. If we
take these values as P

1/m
i , i = 1, ..., n, then Pi > 1, i = 1, ..., n. Hence,

−∆uir − u
1/m
ir (λi − u

1/m
ir +

n∑
j=1
j 6=i

aijP
1/m
j ) ≥

rP
1/m
i θ

1/m
β

[
(rm−1P

1−1/m
i − 1)λi + θ

1/m
β (−rm−1P

1−1/m
i + r)

]
for i = 1, ..., n.

Case 1. If 1 < m < 2, we take

(9) −rm−1[ max
1≤i≤n

(Pi)]1−1/m + r ≥ 0 ⇐⇒ r ≥ r0 := [ max
1≤i≤n

(Pi)](m−1)/[m(2−m)] > 1.
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The claim follows of Proposition 3.4.
Case 2. If m ≥ 2, we have for each i

r − rm−1P
1−1/m
i = r(1− rm−2P

1−1/m
i ) ≤ 0

for whatever r0 ≥ 1 we choose. So, since θ
1/m
β ≤ β (cf. [4]), we can apply Proposi-

tion 3.4 if

(rm−1P
1−1/m
i − 1)λi + β(−rm−1P

1−1/m
i + r) ≥ 0 for i = 1, ..., n,

which is trivial, because

(rm−1P
1−1/m
i − 1)λi + β(−rm−1P

1−1/m
i + r) ≥

λi(rm−1P
1−1/m
i − 1− rm−1P

1−1/m
i + r) ≥ 0

with no new restriction for r0. So that, we can apply Proposition 3.4 with r0 defined
in (9). The proof finishes as in the Case 1. ¤

5. The parabolic problem

5.1. Case ρ(A) < 1. Let Mi i = 1, ..., n denote the solution for the linear system

(10) Mi −
n∑

j=1
j 6=i

aijMj = λi 1 ≤ i ≤ n

which verifies Mi > λi, i = 1, ..., n as before was Pi > 1. Observe that these n
numbers are independent of m.

Denote δ = inf
Ω

θα

θβ
which satisfies 0 < δ ≤ 1 (cf. [4]). We have

Theorem 5.1. Suppose ρ(A) < 1. If λi ∈ R+\{0} for i = 1, ..., n, then, there exists
one unique global positive solution ui(t, x), i = 1, ..., n of the parabolic problem (2)
and at least one positive solution usi(x), i = 1, .., n of the elliptic problem (6).

Moreover, if one of the following options holds

(1) 1 < m < 2 and

max
1≤i≤n

n∑
j=1
j 6=i

aijP
1/m
j ≤

(
δ

r0

)1/m

(2) m = 2
(3) m > 2 and the values Mi (solutions of (10)) are such that verify

(11) λi ≥ m− 2
m− 1

Mi, i = 1, ..., n,

then, usi, i = 1, ..., n is the unique positive solution of (6).

Remark 5.2. Observe that, given m > 2, it can occur that no n-tuple of nonnega-
tive numbers λi, i = 1, ..., n verify (11). However, given a n-tuple of nonnegative
numbers with some of them positive, we can find a value of m close to 2 for which
(11) is true.
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Proof. Assume that λi > 0 for all i = 1, ..., n. If λi > 0 for some i = 1, ..., n, the
proof follows analogously. The argument of the proof is similar to Theorem 10 of
[4] where the reader can find details.

The possible solutions of steady system (6) are bounded; in fact, from the max-
imum principle it follows that

(12) θλi ≤ usi ≤ Mm
i .

The sub-supersolution method gives the existence of solution for the steady prob-
lem. The same sub-supersolution of the steady problem is also a sub-supersolution
of the parabolic problem independent of the time; this shows the existence of global
solution for this problem. Finally, the uniqueness of positive solution for the para-
bolic problem follows from Proposition 3.3.

The uniqueness of solutions of the elliptic problem follows from Proposition 3.4.
In fact, the a priori bounds of positive solutions (see (12)) allow to obtain always
one minimal positive solution which we denote u∗i(x), i = 1, ..., n. It will be
enough that every solution usi of this problem verifies

usi ≤ u∗i, i = 1, ..., n.

For this, we consider the family of subsolutions Wr = (rusi), i = 1, ..., n with
r ∈ [r, 1) and r sufficiently small such that

rusi ≤ u∗i, i = 1, ..., n.

The conditions for Wr are
(13)

λi(1− r1−1/m) + (
n∑

j=1
j 6=i

aiju
1/m
sj − u

1/m
si )(r1/m − r1−1/m) ≥ 0 for i = 1, ..., n.

(1) If 1 < m < 2, since r < 1, we have

1− r1−1/m > 0 and r1/m − r1−1/m < 0.

In order to verify (13), it will be enough that
n∑

j=1
j 6=i

aiju
1/m
sj − u

1/m
si ≤ 0, i = 1, ..., n.

By the estimates of the Theorem 4.1, we have
n∑

j=1
j 6=i

aiju
1/m
sj ≤

n∑
j=1
j 6=i

aij(r0Pjθβ)1/m ≤ θ1/m
α ≤ u

1/m
si .

(2) If m = 2, the inequalities are trivially true.
(3) If m > 2, we have r1/m > r1−1/m and by (12) the sufficient condition is

λi(1− r1−1/m)−Mi(r1/m − r1−1/m) ≥ 0, i = 1, ..., n.

But the function

f(r) =
1− r1−1/m

r1/m − r1−1/m

is decreasing for r ≤ 1 and limr→1− f(r) = m−1
m−2 . So, (13) follows from the

hypothesis of Theorem 5.1.
The proof concludes as one of the Theorem 10 of [4]. ¤
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5.2. Case ρ(A) = 1. In this case, the following result can be stated.

Theorem 5.3. Suppose that ρ(A) = 1 and m > 1. If λi ∈ R+\{0}, for i = 1, ..., n,
then, there exist one unique global positive solution of (2) and at least one positive
solution of (6).

Proof. We will build a pair of sub-supersolutions for (2) and (6) independent of the
time. As subsolution we can pick for each i, ui = σθα with σ > 0 a constant to
choose. For the supersolution, we consider the function ϕ(x) = R2 − |x|2 with R
large enough for ϕ > 0 on Ω and we look for the supersolution in the form

u1 = Kϕ, ui = Kkiϕ, i = 2, ..., n

with ki > 0, i = 2, ..., n and K > 0 to be chosen. We must verify



2KN − (Kϕ)1/m(λ1 + (Kϕ)1/m(−1 +
n∑

j=2

a1jk
1/m
j )) ≥ 0,

2KkiN − (Kkiϕ)1/m(λi + (Kϕ)1/m(−k
1/m
i + ai1 +

n∑

j=2

j 6= i

aijk
1/m
j )) ≥ 0,

for i = 2, ..., n. These inequalities hold if that K is sufficiently large and we find
positive ki such that

(14)





−1 +
n∑

j=2

a1jk
1/m
j = 0,

−k
1/m
i + ai1 +

n∑
j=2
j 6=i

aijk
1/m
j = 0,

for i = 2, ..., n. It is easy to check that the compatibility condition of (14) is
ρ(A) = 1. On the other hand, the system of the n− 1 last equations of (14) can be
written as


k

1/m
2
...

k
1/m
n


 =




0 a23 . . . a2n

...
...

...
...

an2 an3 . . . 0







k
1/m
2
...

k
1/m
n


 +




a21

...
an1


 .

The matrix of this system has spectral radius < 1 (cf. Theorem 2.2), and so the
solution is positive. ¤
5.3. Case ρ(A) > 1. Suppose that in (2) we fix i, we do aij = 0, j = 1, ..., n;
i 6= j, and we leave the equation i out. We start proving that if the resulting n− 1-
dimensional system has solutions that blow up in finite time, then the solutions
of (2) also blow up in finite time. We will suppose without loss of generality that
i = n.

Theorem 5.4. Suppose that the solutions of the problem
(15)



∂

∂t
ui −∆ui = u

1/m
i (λi − u

1/m
i +

n−1∑
j=1
j 6=i

aiju
1/m
j ) in DT ,

ui = 0 in ST ,
ui(0, x) = u0

i (x) on Ω,

1 ≤ i ≤ n− 1
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blow up in finite time. Then, the solutions of (2) blow up also in finite time whatever
ain > 0.

Proof. It will be enough to check that (u, u) = (0, u) is a sub-supersolution of (15),
where u = (u1, · · · , un−1) and (u1, · · · , un) is one solution of the system (2). The
uniqueness of positive solution of (15) implies that

0 ≤ ũi ≤ ui, i = 1, ..., n− 1

where ũi is the solution of (15). The result follows. ¤

So, if a subsystem of dimension lower than n blows up in finite time, then the
n-dimensional system also blows up in finite time. So we can suppose the following
hypothesis

(H)
{

Given (2), the solutions of any system of dimension ≤ n− 1
extracted from it, are global in time for any λi > 0

since otherwise the blow-up in finite time will be sure. Note that the matrix of a
subsystem is a principal submatrix of A.

To justify the main result we consider the function

(16) f(r) = r2−m + a1nr − an1r
1−m − 1.

It is easy to prove that if 1 < m < 2,

lim
r↓0+

f(r) = −∞, lim
r↑+∞

f(r) = +∞, f ′(r) > 0 if r > 0

and therefore the equation f(r) = 0 has one positive solution which we call r.
The main result is the following

Theorem 5.5. Suppose that ρ(A) > 1 and 1 < m < 2. Then, there exist λi >
0, i = 1, ..., n such that for λi > λi, the solution of (2) blows up in finite time.

Proof. There is nothing to prove if (H) is not verified. So, suppose (H). We use
the induction on dim (A) = n. The result is true for n = 2 (cf. [4]). Suppose
that is also true until n− 1; in other words, suppose that if the associated matrix
to a system with dimension lower than n− 1 has the spectral radius > 1 then, its
solutions blow up in finite time. (4) ensures that if for any principal submatrix Ai,
is det (I − Ai) < 0, then ρ(Ai) > 1 and, for the induction hypothesis, (H) is not
true; so, every principal submatrix of A, Ai, must verify det (I −Ai) ≥ 0. And, by
Lemma 2.1, it will be true also that det (I −A) < 0.

For the case n, the proof carries out in two steps.
Step 1

Suppose that

λn = rm−1λ1; anj = rm−1a1j , j = 2, ..., n− 1; u0
n(x) = rmu0

1(x).
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We search the conditions which ensure that the solution of (2) is of the form
un = ku1 for some k > 0. It is not difficult to show that (2) becomes in




∂

∂t
u1 −∆u1 = u

1/m
1 (λ1 − (1− a1nk1/m)u1/m

1 +
n−1∑

j=2

aiju
1/m
j ) in DT ,

∂

∂t
ui −∆ui = u

1/m
i (λi − u

1/m
i + (ai1 + aink1/m)u1/m

1 +
n−1∑
j=2
j 6=i

aiju
1/m
j ) in DT ,

∂

∂t
u1 −∆u1 = k1/m−1u

1/m
1 (λn − (k1/m − an1)u

1/m
1 +

n−1∑

j=2

anju
1/m
j ) in DT ,

ui = 0 in ST ,
ui(0, x) = u0

i (x) on Ω,

for i = 2, .., n− 1. The first and the last equations are the same if k = rm in which
case the system comes down to a n − 1-dimensional one which has the following
matrix

A1 =




−(1− a1nr) a12 . . . a1,n−1

a21 + a2nr −1 . . . a2,n−1

...
...

. . .
...

an−1,1 + an−1,nr an−1,2 . . . −1




and whose associated matrix is (see (3))

A1 =




0 c12 . . . c1,n−1

c21 0 . . . a2,n−1

...
...

. . .
...

cn−1,1 an−1,2 . . . 0




being

c1j = a1j(1− a1nr)(m−1)/(2−m), ci1 = (ai1 + ainr)(1− a1nr)1/(m−2)

for i, j = 2, ..., n− 1. Note that

1− a1nr > 0.

Indeed, it is trivial to check that

f

(
1

a1n

)
=

(
1

a1n

)1−m (
1− a1nan1

a1n

)
> 0

since the principal minor of I −A generated by the submatrix

B =
(

1 −a1n

−an1 1

)

is positive. Indeed, if ρ(I − B) = 1 then the spectral radius of any submatrix
containing I − B will be greater than 1 (see Theorem 2.2), and the induction
hypothesis and Theorem 5.4 complete the proof.
By Theorem 5.4 and the induction hypothesis it remains to prove that ρ(A1) > 1.
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And, by (4), it will be sufficient to justify that det (I −A1) < 0. We know that

det (I −A) =

∣∣∣∣∣∣∣∣∣

1 −a12 . . . −a1n

−a21 1 . . . −a2n

...
...

. . .
...

−an1 −a12r
m−1 . . . 1

∣∣∣∣∣∣∣∣∣
< 0.

Then, through elementary transformations (we change the first row for the sum of
such row and the product of the row n multiplied by −r1−m, we multiply the first
row by 1/(a1n + r1−m) and the column n by r and we change the column 1 by the
sum of the columns 1 and n) and developing by the first row, we obtain

det (I −A) =

∣∣∣∣∣∣∣∣∣

1 −a12 . . . −a1n

−a21 1 . . . −a2n

...
...

. . .
...

−an1 −a12r
m−1 . . . 1

∣∣∣∣∣∣∣∣∣
=

(r1−m + a1n)(−1)n+2

∣∣∣∣∣∣∣∣∣

−a21 − a2nr 1 . . . −a2,n−1

−a31 − a3nr −a32 . . . −a3,n−1

...
...

. . .
...

−an1 + r −a12r
m−1 . . . −a1,n−1r

m−1

∣∣∣∣∣∣∣∣∣
.

Now we pass the last row to the first one, multiply the first row by pr1−m, p :=
(1−a1nr)(1−m)/(m−2) and the first column by q := (1−a1nr)1/(m−2), and we obtain

det (I −A) =

∣∣∣∣∣∣∣∣∣

1 −a12 . . . −a1n

−a21 1 . . . −a2n

...
...

. . .
...

−an1 −a12r
m−1 . . . 1

∣∣∣∣∣∣∣∣∣
=

r1−m + a1n

pqr1−m (−1)2n

∣∣∣∣∣∣∣∣∣

(−an1 + r)r1−mpq −a12p . . . −a1,n−1p
(−a21 − a2nr)q 1 . . . −a2,n−1

...
...

. . .
...

(−an−1,1 − an−1,nr)q −an−1,2 . . . 1

∣∣∣∣∣∣∣∣∣
=

=
r1−m + a1n

pqr1−m det (I −A1)

since (−an1 + r)r1−mpq = 1. It follows that det (I −A1) < 0, as we needed.
Step 2

For the general case, we introduce the following notations:

{
If anj ≥ rm−1a1j , then d1j := a1j , dnj := rm−1a1j

If anj < rm−1a1j , then d1j := r1−manj , dnj := anj
j = 1, ..., n.
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We pose now the problem




∂

∂t
v1 −∆v1 = v

1/m
1 (r1−mλn − v

1/m
1 +

n∑

j=2

d1jv
1/m
j )

∂

∂t
vi −∆vi = v

1/m
i (λi − v

1/m
i +

n∑
j=1
j 6=i

aijv
1/m
j ) in DT ,

∂

∂t
vn −∆vn = v

1/m
n (λn − v

1/m
n +

n−1∑

j=1

dnjv
1/m
j )

vi = 0 in ST ,
vi(0, x) = v0

i (x) on Ω,

for i = 2, ..., n − 1, defining v0
1 = r−mv0

n, v0
i = u0

i , 1 = 2, ..., n − 1 and choosing
v0

n ∈ int (P ) and such that v0
n < rmu0

1. This problem is in the framework of
the Step 1 and its solutions bound from below the ones of the original problem if
λ1 > r1−mλn, from where the conclusion follows. A similar reasoning can be used
when λ1 < r1−mλn. ¤

However, we can obtain global solution when the parameters λi are small enough
or when the diffusion is slow enough.

Theorem 5.6. Suppose (H) and ρ(A) > 1. Then
(1) If 1 < m < 2, then there exist values λi > 0 such that for 0 < λi < λi,

there is one unique global positive solution of (2) and at least one positive
solution of the corresponding steady problem.

(2) If 2 < m, then whatever λi > 0, there is one unique global positive solution
of (2) and at least one positive solution of the corresponding steady problem.

Proof. By the sub-supersolutions method, we look for the supersolution in the form
ui = Sψ being ψ the positive solution of

{ −∆w = 1 in Ω,
w = 0 on ∂Ω,

and S > 0 a positive constant to choose. The n-tuple ui is a supersolution of (2) if

(17) S1−1/m + S1/mψ2/m(1−
n∑

j=1
j 6=i

aij) ≥ λiψ
1/m, i = 1, ..., n.

If 1 < m < 2, (17) can be written as

(18) S1−1/m(1 + S2/m−1ψ2/m(1−
n∑

j=1
j 6=i

aij)) ≥ λiψ
1/m, i = 1, ..., n.

The inequalities (18) hold provided λi is chosen sufficiently small or even whatever
λi under a stronger condition than (H), 1−∑n

j=1
j 6=i

aij ≥ 0.

If 2 < m, (17) can be written as

S1/m(S1−2/m + ψ2/m(1−
n∑

j=1
j 6=i

aij)) ≥ λiψ
1/m, i = 1, ..., n,
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and are satisfied whatever λi > 0 if S is sufficiently large.
We look for the subsolutions in the form ui = σθα with σ > 0 constant to choose.

The conditions to verify are

(σ1−1/m − 1)α− θ1/m
α (σ1−1/m + σ1/m(−1 +

n∑
j=1
j 6=i

aij)) ≤ 0, i = 1, ..., n,

that can be obtained doing σ sufficiently small.
Finally, the pair of sub-supersolutions can be ordered. ¤

In the case m = 2, we can prove

Theorem 5.7. Suppose (H), ρ(A) > 1 and m = 2. Then, (2) has one unique global
positive solution u = (u1, · · · , un). In this case, it can occur that ‖ui(x, t)‖∞ →∞
as t → +∞ for some i = 1, · · · , n.

Proof. It suffices to use as sub-supersolutions

ui = Keγt, ui = σθα, i = 1, ..., n

being K, γ and σ suitable positive constants. ¤

6. The case m = 1

In the case m = 1, the above results can be clarified. In fact, we can prove the
following result, which generalizes Theorems 3.1, 3.2 and 3.3 in [7] and Theorem
3.2 in [6]. We need the following notation. We define

bii = 0, bij = aij for i 6= j, 1 ≤ i, j ≤ n

and let
A = (bij)

be. Let σ1 and φ1 be the principal eigenvalue and the corresponding positive
eigenfunction of the laplacian with homogeneous Dirichlet boundary conditions.
We denote wγ the unique positive solution of (7) with m = 1, which exists if, and
only if, γ > σ1. Moreover, we denote α = min1≤i≤n λi, β = max1≤i≤n λi and, if
α > σ1,

ρ := inf
Ω

wα

wβ
.

It is well known that 0 < ρ ≤ 1. Finally, we will write Qi i = 1, . . . , n to denote
the solution of (8) with m = 1.

Theorem 6.1. Assume α > σ1. Then,
(1) Problem (6) with m = 1 possesses one positive solution if and only if ρ(A) <

1. In this case, for any positive solution, ui, of (6) for m = 1, it holds:

(19) wα ≤ ui ≤ Qiwβ , i = 1, ..., n.

(2) If ρ(A) < 1, there exists one unique global positive solution ui(t, x), i =
1, ..., n of the parabolic problem (2) for m = 1 and at least one positive
solution usi(x), i = 1, .., n of the elliptic problem (6) for m = 1.

Moreover, if

max
1≤i≤n

n∑
j=1
j 6=i

aijQj ≤ ρ
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holds, then, usi, i = 1, ..., n is the unique positive solution of (6) for
m = 1.

(3) If ρ(A) = 1, there exists one unique positive solution global of (2) for m = 1,
and as t →∞

‖ui(x, t)‖∞ →∞, for all i = 1, . . . , n.

(4) If ρ(A) > 1, the positive solution of (2) for m = 1 blows up in finite time.

Proof. Assume ρ(A) < 1. The existence of positive solution of (6) with m = 1, (19)
and the second paragraph follow by Theorems 4.1 and 5.1.
Now, on the contrary suppose that there exists one positive solution ui, i = 1, . . . , n,
of (6) with m = 1 and that ρ(A) ≥ 1. Let α̂ = (α1, . . . , αn) the componentwise
positive eigenvector of A associated to ρ(A), i.e.,

Aα̂ = ρ(A)α̂.

Take Wr = (rαiφ1), i = 1, . . . , n with r ∈ [r0, r1) with r0 sufficiently small such
that

r0αi ≤ ui i = 1, . . . , n.

Observe that Wr is a family of subsolutions. Indeed, for each i = 1, . . . , n we have

−∆(rαiφ1)−(rαiφ1)(λi−rαiφ1+
n∑

j=1
j 6=i

aijrαjφ1) = rαiφ1(σ1−λi+rφ1αi(1−ρ(A))) ≤ 0.

So, Wr is subsolution for all r > r0. This shows the contradiction.
Suppose ρ(A) = 1. Since α > σ1, it is easy to prove that (εφ1, . . . , εφ1) is a sub-

solution of (6) with m = 1, provided that ε is sufficiently small. Hence, the positive
solution, ui(t, x), of (2) with m = 1 and u0

i = εφ1 is monotone nondecreasing in
t (see Lemma 10.4.1 in [10] and Lemma 3.1 in [6], for instance). If ui is bounded
in ‖ · ‖∞ for all i = 1, . . . , n, then ui converges to a positive solution of (6) with
m = 1, which is impossible by the first paragraph. So that, ui is unbounded for
some i, and by Theorem 5.4, the result follows.

Suppose ρ(A) > 1. Firstly, observe that the function f defined in (16) possesses
one unique positive solution given by

r =
1 + an1

1 + a1n
.

In this case, we can repeat exactly the proof of Theorem 5.5, using in the induction
process for n = 2 Theorem 3.2 of [6]. ¤
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[2] R. dal Passo and P. de Mottoni, Some existence, uniqueness and stability results for a class

of semilinear degenerate elliptic systems, Boll. Un. Mat. Ital. C (6), 3, 203-231 (1975).
[3] M. Delgado, J. López-Gómez and A. Suárez, On the symbiotic Lotka-Volterra model with

diffusion and transport effects, J. Differential Eqns. 160, 175-262 (2000).
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