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Abstract. In this work we analyze the existence, stability and multiplicity of coexistence
states for a symbiotic Lotka-Volterra model with general diffusivities and transport effects.
Global bifurcation theory, blowing up arguments for a priori bounds, singular perturbation
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of the model between the cases of weak and strong mutualism between the species. Our
methodology works out to treat much more general classes of symbiotic models.
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1. Introduction. In this paper we analyze the existence, multiplicity and stability of
coexistence states for the following problem

L1u = λu− a(x)u2 + b(x)uv

L2v = µv − d(x)v2 + c(x)uv
in Ω , (1.1a)

u = v = 0 on ∂Ω , (1.1b)
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where Ω is a bounded domain of RN with boundary ∂Ω of class C2 regularity, Lk,
k = 1 , 2 are two second order uniformly elliptic operators of the form

Lk = −
N∑

i,j=1

aijk(x)∂i∂j +
N∑

j=1

bjk(x)∂j + ck(x) k = 1 , 2 , (1.2)

with

aijk ∈ C(Ω) , bjk , ck ∈ L∞(Ω) , i , j ∈ {1, ..., N} , k ∈ {1, 2} , (1.3)

and a, b, c, d ∈ C(Ω) satisfy a(x) > 0, d(x) > 0, for each x ∈ Ω, and b ≥ 0, c ≥ 0 in Ω,
b 6= 0, c 6= 0; λ, µ ∈ R will be regarded as bifurcation parameters. Under these assump-
tions, (1.1) provides us with a model for symbiotic species, where Ω is the inhabiting
region, u(x) and v(x) are the densities of each of the species, a(x) and d(x) describe the
limiting effects of crowding in each population, b(x) and c(x) are the interaction rates
between the species, the operators Lk − ck(x), k = 1, 2, measure the diffusivities and
the external transport effects of the species, and λ − c1(x), µ − c2(x) are the growth
rates of the species, positive on favorable regions and negative on unfavorable ones. In
this model we are assuming that Ω is fully surrounded by inhospitable areas, because
both population densities are subject to homogeneous Dirichlet boundary conditions.

In this work our attention will be focused into the problem of analyzing the existence,
stability and multiplicity of the non-negative solution couples (u, v) of (1.1). Due to the
structure of (1.1) and thanks to the strong maximum principle, if (u, v) is a solution
of (1.1) with u 6= 0 (resp. v 6= 0), then u (resp. v) is strongly positive in the sense of
Section 2. Therefore, (1.1) admits three types of non-negative component-wise solution
couples. Namely, the trivial one, (0, 0); those with one component positive and the
other zero, (u, 0) or (0, v), referred as the semi-trivial positive solutions, and those with
both components positive, the coexistence states.

The symbiotic model has attracted much less attention in the literature than its
competing and predator-prey counterparts, due basically to the absence of a priori
bounds for the coexistence states in high spatial dimensions (N ≥ 6) under strong
mutualism (bc− ad large). This lack of a priori bounds was observed originally in [16],
where it was shown that the positive solutions of the parabolic problem associated with
(1.1) may blow up in finite time when L1 = L2 = −∆ and bc > ad, and in [21], where
it was shown that if in addition λ = µ, then the coexistence states of (1.1) are given by
the positive solutions of

−∆w = λw + w2 in Ω , w|∂Ω = 0 , (1.4)

and that thanks to the results of [13], (1.4) possesses uniform a priori bounds in any
compact subinterval of λ if, and only if, 2 < N+2

N−2 , i.e. if N ≤ 5.
The absence of a priori bounds for the coexistence states of (1.1) makes very involved

the problem of finding out global sufficient conditions for the existence of a coexistence
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state, since most of the technical tools available to attack this kind of problems involve
either degree theory, i.e. global bifurcation theory, or monotonicity techniques, where
the existence of a priori bounds is needed. Nevertheless, although most of the attention
has been focused into the very special case when L1 = L2 = −∆ and a, b, c, d are
constants, in recent years some substantial progress has been carried out into the analysis
of these problems.

The study of symbiotic species actually started in [19], where it was constructed
monotonic sequences which approximate the solutions of (1.1). In [17] the method
of sub and supersolutions for systems, coming from [28], was used to show that if
λ > σ1 and µ > σ1, then (1.1) possesses a coexistence state if, and only if, bc < ad,
where σ1 is the principal eigenvalue of −∆ in Ω under homogeneous Dirichlet boundary
conditions. This result was generalized in [20] to cover some more general classes of
symbiotic kinetics. The first global result about the existence of coexistence states
for the symbiotic model was found in [25] by using global bifurcation theory, where it
was shown that if any of the semi-trivial positive solutions is linearly unstable, then
the model possesses a coexistence state provided bc < ad; global in the sense that if
some of the semi-trivial states is stable, then there are choices of the several parameters
involved in the setting of (1.1) for which the model does not admit a coexistence state
(cf. Section 11 here in for further details). Almost simultaneously, in [35] was found the
same result included in [25], but this time using the method of sub and supersolutions.
More recently, allowing the coefficients of the model to vary, the technique of decoupling
was shown to work out to get the same result as in [25] and [35], [5]. In [21] and [23]
fixed point index in cones and global bifurcation theory were shown to work out to get
the corresponding results for wider classes of models.

Although the global results of [21] work out to show that a global continuum of
coexistence states emanates from each of the surfaces of semi-trivial positive solutions
along their curves of change of stability in the space of the parameters (λ, µ), the first
global result in the case bc > ad was found in [27], where it was shown that if N ≤ 5 and
some of the semi-trivial positive solutions is linearly stable, then the model possesses a
coexistence state. We point out that this result was obtained for the special case when
L1 = L2 = −∆ and all coefficients are constant. In [27], the blowing up argument of
[13] was adapted to show the existence of a priori bounds in case N ≤ 5 and then the
fixed point index in cones was used to complete the proof.

In this work we extend and complete all the previous features, obtaining in addition
some optimal non-existence and multiplicity results for all ranges of the parameters in
the general setting of (1.1), and in addition we analyze the bifurcation equations of (1.1)
at (λ, µ) = (σΩ

1 [L1], σΩ
1 [L2]). Hereafter, given an elliptic operator L, σΩ

1 [L] will stand for
the principal eigenvalue of L in Ω under homogeneous Dirichlet boundary conditions.
Our analysis of the bifurcation equations at (σΩ

1 [L1], σΩ
1 [L2]) explains the drastic change

of behavior of the global continuum of coexistence states as some of the interactions
between the species, b or c, grows acrossing the critical value given by Theorem 10.1 in
Section 10. Namely, the global manifold of coexistence states linking the two surfaces of
semi-trivial positive solutions turns backwards in the parameter space (λ, µ) changing
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its relative position with respect to each the surfaces of semi-trivial solutions, as the
amplitude of b, or c, grows.

To state our main results, we have to introduce some of notation. Given λ > σΩ
1 [L1]

(resp. µ > σΩ
1 [L2]), (θλ, 0) (resp. (0, θµ)) will stand for the unique semi-trivial solution

of (1.1) of the form (u, 0), u > 0 (resp. (0, v), v > 0). Moreover, for any f ∈ L∞(Ω) we
denote

fL := ess inf
Ω

f , fM := ess sup
Ω

f .

Among our main results we list the following ones:
• If bMcM < aLdL and any of the semitrivial positive solutions is linearly unstable,

then (1.1) possesses a coexistence state. If in addition λ > σΩ
1 [L1] and µ > σΩ

1 [L2], then
there exists I0 > 0 such that if

min {bM , cM} < I0 ,

then the coexistence state is unique and exponentially asymptotically stable.
• If bMcM < aLdL and for (λ, µ) = (λ0, µ0) some of the semitrivial positive solutions

is linearly stable and (1.1) possesses a coexistence state, then it possesses a coexistence
state for each (λ, µ) satisfying λ ≥ λ0, µ ≥ µ0, and at least two coexistence states if
λ > λ0, µ > µ0 and some of the semi-trivial positive solutions is linearly stable.
• If bMcM < aLdL, then for each λ ∈ R, there exists µext(λ) ∈ R such that (1.1)

does not admit a coexistence state if µ ≤ µext(λ). Similarly, for each µ ∈ R, there exists
λext(µ) ∈ R such that (1.1) does not admit a coexistence state if λ ≤ λext(µ).
• If L1 = L2, N ≤ 5,

bLcL − aMdM > max {aMbM − aLbL , dMcM − dLcL} , (1.5)

and some of the semitrivial positive solutions is linearly stable, then (1.1) possesses a
coexistence state.
• Assume that L1 = L2, N ≤ 5, (1.5), and that there exists (λ, µ) = (λ0, µ0) for

which (1.1) possesses a coexistence state being any of the semi-trivial states linearly
unstable. Then, (1.1) possesses a coexistence state for each (λ, µ) satisfying λ ≤ λ0 and
µ ≤ µ0, and at least two coexistence states if λ < λ0, µ < µ0 and any of the semi-trivial
states is linearly unstable.
• Assume L1 = L2, N ≤ 5 and (1.5). Then, for each λ ∈ R there exists µext(λ) ∈ R

such that (1.1) does not admit a coexistence state if µ ≥ µext(λ). Similarly, for each
µ ∈ R, there exists λext(µ) ∈ R such that (1.1) does not admit a coexistence state if
λ ≥ λext(µ).

We now describe the distribution and contains of this paper. In Section 2 we give an
extension of Theorem 2.5 in [22] to cover our general setting here in, and then use it to
infer some basic monotonicity properties of principal eigenvalues. Most of these results
come from Section 2 of [3].
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In Section 3 we study the single boundary value problem

L1u = λu− a(x)u2 in Ω , u|∂Ω = 0 . (1.6)

A particular attention is paid to the behavior of its unique positive solution as λ ↑ ∞,
showing that

lim
λ↑∞

θ[L1,λ,a]

λ
= a−1 (1.7)

uniformly on any compact subset of Ω, where θ[L1,λ,a] stands for the unique positive
solution of (1.6). This result extends the corresponding singular perturbation result in
Section 3 of [12] to our general setting here in, and it is the basic technical tool to get
our non-existence results in Section 7.

In Section 4 we characterize the attractive character of each of the semitrivial positive
solutions in terms of several parameters involved in the setting of (1.1) through by the
principal eigenvalues of some related second order elliptic operators. Then, we analyze
the shape of the curves of change of stability in the space of the parameters (λ, µ).

Section 5 is devoted to the abstract results concerning the existence of global continua
of coexistence states emanating from the surfaces of semitrivial positive solutions along
their respective curves of change of stability. The analysis throughout this work shows
that these results are optimal, reducing the problem of finding out coexistence states
for (1.1) to the problem of finding out a priori bounds for the component-wise positive
solutions of (1.1). The methodology adopted in this section comes from the abstract
theory developed in [21] for general systems with two species.

In Section 6 we analyze the existence of coexistence states for the case of small
interaction coefficients. How small should they are is measured by condition

bMcM < cLdL . (1.8)

Precisely, we will find out some non-existence results and then we will use the theory
of Section 5 to show that (1.1) possesses a coexistence state if any of the semitrivial
positive solutions is linearly unstable. The analysis of Section 11 for the case of constant
coefficients will show the optimality of our results.

In Section 7 we analyze the existence of coexistence states for the case of large
interaction coefficients. How large should they are is measured by condition (1.5).
Notice that if any coefficient is assumed to be constant, then (1.5) becomes into

bc > ad . (1.9)

By technical reasons for most of the results in this section we need assuming that
L1 = L2, assumption needed in all previous references. We begin the section giving a
necessary condition for the existence of coexistence states which is totally new even for
the simplest symbiotic models where L1 = L2 = −∆ and any coefficient is constant.
Namely, if (0, θ[L1,µ,d]) (resp. (θ[L1,λ,a])) is linearly unstable, then (1.1) does not admit a
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coexistence state if µ (resp. λ) is sufficiently large (cf. Theorem 7.1 here in). This non-
existence result is based upon (1.7), finding out the behavior of an eventual sequence of
coexistence states for µ, or λ, large. Then, we adapt the blowing up argument of [13]
to show that uniform a priori bounds for the coexistence states of (1.1) are available if
N ≤ 5. We should point out that our blowing up argument differs substantially from
the corresponding argument of [27] and that we need a general Liouville type result
much sharper than the corresponding result in [27]. These additional difficulties coming
from the fact that in this work we are dealing with a general elliptic operator and with
spatially varying coefficients. We refer to Section 7 for further details. Bringing together
the non-existence results and the a priori bounds, it follows from the global results in
Section 5 that if any of the semitrivial positive solutions is linearly stable, then (1.1)
possesses a coexistence state.

In Section 8 we use the abstract theory of [2] to show that the method of sub and
supersolutions is valid for (1.1). Then, we use it to analyze the structure of the set
of λ’s and µ’s for which (1.1) possesses a coexistence state and to get our multiplicity
results, those already stated in the list above.

In Section 9 we obtain simple readily computable conditions in terms of the several
coefficients involved in the setting of (1.1) ensuring that (1.1) has a unique stable co-
existence state, and then consider the parabolic problem associated with (1.1) to show
that there is a dense subset of the set of initial data such that any solution starting
there in converges to the coexistence state as time grows to infinity.

In Section 10, considering (λ, µ) as the main bifurcation parameters we describe the
possible local bifurcation diagrams near the co-dimension two singularity

(λ, µ) = (σΩ
1 [L1], σΩ

1 [L2]) .

For this, we apply the general results of [10] where one of the authors developed a
singularity theory to deal with this type of two parameter bifurcation problems.

Finally, in Section 11 we restrict ourselves to the original Lotka-Volterra symbiotic
model with diffusion, L1 = L2 = −∆ and a, b, c, d constants, for which we can give
some sharper existence and non-existence results and can go further in the analysis of
the bifurcation equation around the co-dimension two bifurcation point, obtaining in
addition some global results about the nature of the local bifurcations to coexistence
states from the surfaces of semitrivial positive solutions along their curves of change of
stability. As a result from this analysis we can explain the drastic change of behavior
of the global manifold of coexistence that links the two surfaces of semitrivial positive
solutions along their curves of change of stability as bc acrosses the critical value ad
passing from values where bc < ad to values where bc > ad.

2. The maximum principle. Main properties of the principal eigenvalues. In
this section we give an extension of Theorem 2.5 in [22] to cover our setting here and then
we infer some basic properties of principal eigenvalues which will be used throughout
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this paper. We will consider a uniformly elliptic operator of the form

L = −
N∑

i,j=1

aij(x)∂i∂j +
N∑

j=1

bj(x)∂j + e(x) , (2.1)

with
aij ∈ C(Ω) , bj , e ∈ L∞(Ω) , i , j ∈ {1, ..., N} , (2.2)

and use the natural product order on Lp(Ω) × Lp(∂Ω). Recall that p > N implies
W 2,p(Ω) ⊂ C2−N

p −ε(Ω) with compact imbedding for all ε > 0 and that each u ∈
W 2,p(Ω) is a.e. twice classically differentiable in Ω (e.g. Theorem VIII.1 of [33]).

Suppose that p > N . Then u ∈ W 2,p(Ω) is said to be strongly positive if u(x) > 0
for x ∈ Ω and ∂nu(x) < 0 for all x ∈ ∂Ω with u(x) = 0, where n is the outward unit
normal on ∂Ω. The operator L is said to satisfy the strong maximum principle in Ω if
p > N , u ∈ W 2,p(Ω), and (Lu, u) > (0, 0) imply that u is strongly positive. Consider
the eigenvalue problem

Lu = σu in Ω , u = 0 on ∂Ω , (2.3)

in W 2,p(Ω) and let Lp denote the closure of the operator L|W 2,p(Ω)∩W 1,p
0 (Ω) in Lp(Ω).

Then, (2.3) can be reformulated as the eigenvalue equation

Lpu = σu in Lp(Ω) . (2.4)

It is an easy consequence of standard regularity theory that the spectrum and the
eigenspaces of Lp are independent of p > N . Moreover, from the strong maximum
principle and the generalization of the Krein Rutman Theorem of [32] together with
Theorem 3 in [29], the following result holds (cf. Section 2 of [3]).

Theorem 2.1. There exists a least eigenvalue of (2.4), denoted by σΩ
1 [L] and called

principal eigenvalue of L in Ω. This eigenvalue is simple and possesses a unique eigen-
function, up to multiplicative constants, which can be taken positive, the so called prin-
cipal eigenfunction of L in Ω. Moreover, the principal eigenfunction is strongly positive
and σΩ

1 [L] is the only eigenvalue of (2.4) possessing a positive eigenfunction. Further-
more, any other eigenvalue σ of (2.4) satisfies

Re σ > σΩ
1 [L]

and (Lp + ν)−1 ∈ L(Lp(Ω)) is positive, compact and irreducible for ν > −σΩ
1 [L].

If p > N a function u ∈ W 2,p(Ω) is said to be a positive supersolution of L in Ω if
u ≥ 0 and (Lu, u) ≥ (0, 0). If in addition (Lu, u) > (0, 0), then it is said that u is a
positive strict supersolution. Similarly, a function u ∈ W 2,p(Ω) is said to be a positive
subsolution of L in Ω if u ≥ 0 and (Lu, u) ≤ (0, 0). If in addition (Lu, u) < (0, 0), then
it is said that u is a positive strict subsolution.

¿From the strong maximum principle it is easily seen that any positive strict su-
persolution is strongly positive. Moreover, the following characterization of the strong
maximum principle holds (cf. Theorem 2.5 in [22] and Theorem 2.4 in [3]).
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Theorem 2.2. The following assertions are equivalent:
(i) σΩ

1 [L] > 0;
(ii) L possesses a positive strict supersolution in Ω;
(iii) L satisfies the strong maximum principle in Ω.

From this characterization we can readily get the following properties of σΩ
1 [L] which

will be used throughout this work. For selfadjoint operators, these properties are easily
obtained from the variational characterization of the principal eigenvalue.

Theorem 2.3. (i) Monotonicity with respect to the potential: Let V1, V2 ∈ L∞(Ω) such
that V1 ≤ V2 and V1 < V2 on a set of positive measure. Then,

σΩ
1 [L+ V1] < σΩ

1 [L+ V2] . (2.5)

(ii) Continuity with respect to the potential: If Vn ∈ L∞(Ω), n ≥ 1 is a sequence of
potentials such that

lim
n→∞

‖Vn − V ‖∞,Ω = 0 ,

then
lim

n→∞
σΩ

1 [L+ Vn] = σΩ
1 [L+ V ] .

(iii) If Ω1 is a proper subdomain of Ω with ∂Ω1 of class C2, then

σΩ1
1 [L] > σΩ

1 [L] . (2.6)

Proof. (i) Let ϕ1 be the principal eigenfunction associated with σΩ
1 [L+ V1]. Then,

(L+ V2)ϕ1 = σΩ
1 [L+ V1]ϕ1 + (V2 − V1)ϕ1 > σΩ

1 [L+ V1]ϕ1

on a set of positive measure, and hence ϕ1 is a positive strict supersolution of L+ V2−
σΩ

1 [L+ V1]. Thus, thanks to Theorem 2.2, we find that

σΩ
1 [L+ V2 − σΩ

1 [L+ V1]] > 0 .

This relation implies (2.5).
(ii) For any ε > 0 there exists N0 ∈ N such that

V − ε ≤ Vn ≤ V + ε ∀n ≥ N0 .

Thus, by Part (i) we find that

σΩ
1 [L+ V ]− ε ≤ σΩ

1 [L+ Vn] ≤ σΩ
1 [L+ V ] + ε .

This completes the proof.
(iii) Let ϕ denote the principal eigenfunction associated with σΩ

1 [L]. Then,

(L − σΩ
1 [L])ϕ = 0

in Ω1 and ϕ > 0 on ∂Ω1. Thus, ϕ is a positive strict supersolution of L − σΩ
1 [L] in Ω1

and hence, it follows from Theorem 2.2 that

σΩ1
1 [L − σΩ

1 [L]] > 0 .

This relation implies (2.6). ¤
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3. The logistic equation. The semi-trivial positive solutions of (1.1) are given by
the positive solutions of a semilinear elliptic boundary value problem of the form

Lw = γw − f(x)w2 in Ω ,
w = 0 on ∂Ω ,

(3.1)

where L is a second order uniformly elliptic operator of the form (2.1) with coefficients
satisfying (2.2), γ ∈ R , and f ∈ C(Ω) satisfies f(x) > 0 for each x ∈ Ω. If p > N and
w ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) is a positive solution of (3.1), then

(L+ fw)w = γw

and thanks to Theorem 2.1 we have that

γ = σΩ
1 [L+ fw] (3.2)

and that w is strongly positive. Therefore, w(x) > 0 for each x ∈ Ω and ∂nw(x) < 0 for
each x ∈ ∂Ω. The following result characterizes the existence of positive solutions for
(3.1).

Theorem 3.1. If p > N , then the problem (3.1) possesses a positive solution in
W 2,p(Ω) ∩ W 1,p

0 (Ω) if, and only if, γ > σΩ
1 [L]. Moreover, it is unique if it exists.

Let θ[L,γ,f ] denote it. Then,
lim

γ↓σΩ
1 [L]

θ[L,γ,f ] = 0 (3.3)

uniformly in Ω.

Condition (3.3) says that the positive solutions bifurcate from the trivial state w = 0
at the critical value of the parameter γ = σΩ

1 [L]. This result is well known under some
additional regularity conditions on the several coefficients involved in the model setting,
e.g. see [14]. By the sake of completeness we shall give a short self-contained proof of
it.

Proof of Theorem 3.1. Let w be a positive solution of (3.1). Then, thanks to Theorem
2.1, we have (3.2) and hence Theorem 2.3(i) implies

γ = σΩ
1 [L+ fw] > σΩ

1 [L] .

Therefore, γ > σΩ
1 [L] is necessary for the existence of a positive solution. Assume

γ > σΩ
1 [L]. It is easily seen that large positive constants provide us with supersolutions

of (3.1) and that if ϕ > 0 stands for the principal eigenfunction associated with σΩ
1 [L],

then εϕ provide us with arbitrarily small positive subsolutions if ε > 0 is sufficiently
small. Therefore, (3.1) possesses at least a positive solution for each γ > σΩ

1 [L]. We
point out that the method of sub and supersolutions works out thanks to the validity
of the strong maximum principle.
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To show the uniqueness let w1, w2 be two arbitrary positive solutions of (3.1). Then,

(L+ f(w1 + w2)− γ)(w1 − w2) = 0 ,

and therefore, 0 is an eigenvalue of L+ f(w1 + w2)− γ in W 2,p(Ω) ∩W 1,p
0 (Ω). On the

other hand, it follows from Theorem 2.3(i) and (3.2) that

σΩ
1 [L+ f(w1 + w2)− γ] > σΩ

1 [L+ fw1 − γ] = 0

and hence, due to Theorem 2.1,

Re σ > σΩ
1 [L+ f(w1 + w2)− γ] > 0

for any other eigenvalue σ of L+f(w1 +w2)−γ. This contradiction completes the proof
of the uniqueness. Condition (3.3) follows easily from the simplicity of σΩ

1 [L] and the
uniqueness given by the local bifurcation theorem of [7]. This completes the proof. ¤

The following result will be very usefull to compare positive solutions of different
logistic boundary value problems.

Lemma 3.2. (i) If γ ≤ σΩ
1 [L], then (3.1) does not admit a positive subsolution.

(ii) If γ > σΩ
1 [L] and w ∈ W 2,p(Ω) is a positive strict supersolution of (3.1), then

w − θ[L,γ,f ] is strongly positive.

(iii) Similarly, if γ > σΩ
1 [L] and w ∈ W 2,p(Ω) is a positive strict subsolution of (3.1),

then θ[L,γ,f ] − w is strongly positive.

Proof. (i) Assume that γ ≤ σΩ
1 [L] and that (3.1) possesses a positive subsolution. Then,

since sufficiently large constants are supersolutions, (3.1) possesses a positive solution.
By Theorem 3.1 this is impossible and therefore, (3.1) can not admit a positive subso-
lution.

(ii) Assume γ > σΩ
1 [L] and let w ∈ W 2,p(Ω) be a positive strict supersolution of

(3.1). Then,

( (L+ f(w + θ[L,γ,f ])− γ)(w − θ[L,γ,f ]), w|∂Ω ) > (0, 0)

and since
σΩ

1 [L+ f(w + θ[L,γ,f ])− γ] > σΩ
1 [L+ fθ[L,γ,f ] − γ] = 0 ,

Theorem 2.2 completes the proof. Similarly, (iii) follows. ¤

In the sequel, given any function f ∈ L∞(Ω) we shall denote

fM := ess sup
Ω

f , fL := ess inf
Ω

f .
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Corollary 3.3. Assume σΩ
1 [L] < γ1 < γ2. Then,

θ[L,γ2,f ] − θ[L,γ1,f ]

is strongly positive. It will simply said that

θ[L,γ1,f ] << θ[L,γ2,f ] .

Moreover,

θ[L,γ,f ] ≤
γ − eL

fL
.

Proof. We have

Lθ[L,γ1,f ] = γ1θ[L,γ1,f ] − fθ2
[L,γ1,f ] < γ2θ[L,γ1,f ] − fθ2

[L,γ1,f ]

and hence, θ[L,γ1,f ] is a positive strict subsolution of (3.1) with γ = γ2. Lemma 3.2(iii)
completes the proof of this part.

Now, observe that

(L − e)θ[L,γ,f ] = (γ − e)θ[L,γ,f ] − fθ2
[L,γ,f ] ≤ (γ − eL)θ[L,γ,f ] − fLθ2

[L,γ,f ] ,

and hence, thanks to Lemma 3.2, γ − eL > σΩ
1 [L − e] and

θ[L,γ,f ] ≤ θ[L−e,γ−eL,fL] .

Moreover, since γ−eL

fL
is a positive supersolution of

(L − e)u = (γ − eL)u− fLu2 ,

a further application of Lemma 3.2 gives

θ[L−e,γ−eL,fL] ≤
γ − eL

fL
.

Notice that any positive constant is a positive strict supersolution of L− e in Ω. Hence,
σΩ

1 [L − e] > 0 and γ − eL > 0. This completes the proof. ¤
The following result provides us with the growth of θ[L,γ,f ] as γ ↑ ∞.

Theorem 3.4. The following holds

lim
γ↑∞

θ[L,γ,f ]

γ
= f−1

uniformly on compact subsets of Ω.
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Proof. The new function Ψγ defined by

θ[L,γ,f ] = γΨγ

is the unique positive solution of

1
γ
LΨ = Ψ− fΨ2 in Ω , Ψ|∂Ω = 0 . (3.4)

It suffices to show that
lim
γ↑∞

Ψγ = f−1 (3.5)

uniformly on compact subsets of Ω.
Let K be a compact subset of Ω. We shall show that given ε > 0 there exists

γ=γ(K, ε) > 0 such that for every γ > γ(K, ε)

f−1 − ε ≤ Ψγ ≤ f−1 + ε in K .

Fix ε > 0 and let Ψ ∈ C∞(Ω) such that

f−1 +
ε

2
≤ Ψ ≤ f−1 + ε in Ω .

Then, there exists γ0 = γ0(ε) such that for any γ > γ0 the following is satisfied

Ψ− fΨ
2

= fΨ(f−1 −Ψ) ≤ −ε

2
fΨ ≤ 1

γ
LΨ in Ω .

Thus, for any γ > γ0 the function Ψ is a supersolution of (3.4) and thanks to Lemma
3.2 we have

Ψγ ≤ Ψ ≤ f−1 + ε .

Since K is compact, to complete the proof of (3.5) it suffices to show that given x0 ∈ K
there exist a neighborhood U(x0) of x0 and a γ1 = γ1(x0) such that

Ψγ ≥ f−1 − ε in U(x0)

for each γ > γ1. For R > 0 such that BR(x0) ⊂ Ω, where BR(x0) is the ball of radius
R centered at x0, and γ sufficiently large ΨBR(x0)

γ will stand for the unique positive
solution of

1
γ
LΨ = Ψ− fΨ2 in BR(x0) , Ψ|∂BR(x0) = 0 . (3.6)

Since Ψγ is a positive strict supersolution of (3.6), we find from Lemma 3.2 that

ΨBR(x0)
γ ≤ Ψγ in BR(x0) .
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Thus, to complete the proof it remains to show that there exists γ1 such that

ΨBR(x0)
γ ≥ f−1 − ε in BR

2
(x0) , (3.7)

for each γ > γ1. To prove this we consider two different cases.

Case 1: There exists R > 0 such that f(x) is constant in B0 := BR(x0) ⊂ Ω. Let
ϕ0 denote the principal eigenfunction associated with σB0

1 [L] normalized so that

‖ϕ0‖∞,B0 =
1
2

.

Set B1 := BR
2
(x0). Then, ϕ0(x) > 0 for each x ∈ B1 and there exists ϕ̂0 ∈ W 2,p(B1)

such that
ϕ̂0(x0) = 1 , ‖ϕ̂0‖∞,B1 = 1 , ϕ̂0(x) > 0 ∀x ∈ B1

and the function Φ : B0 → R defined by

Φ(x) =





ϕ0(x) if x ∈ B0 \B1 ,

ϕ̂0(x) if x ∈ B1 ,

lies in W 2,p(B0). Given δ ∈ (0, 1) arbitrary set

Φδ := δf−1Φ ∈ W 2,p(B0) .

We claim that Φδ is a positive subsolution of (3.6) if γ is sufficiently large. Indeed, the
following relation holds

γ−1LΦδ ≤ Φδ − fΦ2
δ in B0

if, and only if,
LΦ
Φ

≤ γ(1− δΦ) in B0 . (3.8)

Since γ > 0, δ < 1 and 0 ≤ Φ ≤ 1, the right hand side of (3.8) is bounded away from
zero. Moreover, by the construction of Φ it is easily seen that LΦ

Φ is bounded above
in B0. Thus, (3.8) is satisfied for γ large enough. This shows the previous claim and
hence, thanks to Lemma 3.2, we have that for γ sufficiently large

Ψγ ≥ ΨBR(x0)
γ ≥ Φδ in BR(x0) .

Clearly, if δ is taken sufficiently close to 1, then Φδ will be as close as we want to f−1

on some ball centered at x0, since Φ(x0) = 1. This completes the proof in this case.
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Case 2: If f(x) is not constant in some ball centered at x0, then we can compare
ΨB0

γ with the positive solution of a problem with constant coefficients. Indeed, we have

γ−1LΨB0
γ = ΨB0

γ − f(ΨB0
γ )2 ≥ ΨB0

γ − sup
B0

f(ΨB0
γ )2

and so, ΨB0
γ is a positive supersolution of

γ−1LΨ = Ψ− sup
B0

fΨ2 in BR(x0) , Ψ|∂BR(x0) = 0 . (3.9)

Thus, it follows from Lemma 3.2 that

ΨB0
γ ≥ Ψ̂B0

γ ,

where Ψ̂B0
γ stands for the unique positive solution of (3.9). Thus, there exists a neigh-

borhood U(x0) such that

ΨB0
γ ≥ Ψ̂B0

γ ≥ (sup
B0

f)−1 − ε

2

in U(x0). Therefore, if B0 is chosen so that for each x ∈ B0

(sup
B0

f)−1 ≥ (f(x))−1 − ε

2
,

then
ΨB0

γ ≥ (f(x))−1 − ε

for each x ∈ U(x0). This completes the proof. ¤

4. Change of stability of semi-trivial positive solutions. By Theorem 3.1, (1.1)
possesses a semi-trivial positive solution of the form (u, 0) if, and only if, λ > σΩ

1 [L1].
Moreover, in this case the semi-trivial state is (θ[L1,λ,a], 0). Similarly, (1.1) possesses
a semi-trivial positive solution of the form (0, v) if, and only if, µ > σΩ

1 [L2] and if
this is the case, then it is given by (0, θ[L2,µ,d]). The following result characterizes the
linearized stability of each of these semi-trivial states.

Proposition 4.1. Assume λ > σΩ
1 [L1]. Then, (θ[L1,λ,a], 0) is linearly asymptotically

stable if, and only if,
µ < σΩ

1 [L2 − c(x)θ[L1,λ,a]] ; (4.1)

linearly unstable if, and only if,

µ > σΩ
1 [L2 − c(x)θ[L1,λ,a]] ; (4.2)
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and linearly neutrally stable if

µ = σΩ
1 [L2 − c(x)θ[L1,λ,a]] . (4.3)

Similarly, if we assume µ > σΩ
1 [L2], then (0, θ[L2,µ,d]) is linearly asymptotically stable

if, and only if, λ < σΩ
1 [L1 − b(x)θ[L2,µ,d]]; linearly unstable if, and only if, λ > σΩ

1 [L1 −
b(x)θ[L2,µ,d]]; and linearly neutrally stable if

λ = σΩ
1 [L1 − b(x)θ[L2,µ,d]] . (4.4)

Proof. The linearized stability of (θ[L1,λ,a], 0) is given by the sign of the real parts of the
eigenvalues of the linearization of (1.1) at (θ[L1,λ,a], 0), i.e. by the real parts of the τ ’s
for which the following linear problem admits a solution (u, v) ∈ (W 1,p

0 (Ω)∩W 2,p(Ω))2\
{(0, 0)}

L1u = (λ− 2aθ[L1,λ,a])u + bθ[L1,λ,a]v + τ u ,

L2v = (µ + cθ[L1,λ,a])v + τ v .
(4.5)

If v = 0, then (4.5) becomes into

L1u = (λ− 2aθ[L1,λ,a])u + τ u . (4.6)

On the other hand, from the definition of θ[L1,λ,a] we find from Theorem 2.1 that

σΩ
1 [L1 + aθ[L1,λ,a] − λ] = 0 .

Thus, Theorem 2.3 implies

σΩ
1 [L1 + 2aθ[L1,λ,a] − λ] > 0 , (4.7)

and hence, by Theorem 2.1 any eigenvalue τ of (4.6) satisfies

Re τ > σΩ
1 [L1 + 2aθ[L1,λ,a] − λ] > 0 .

Thus, the eigenvalues with associated eigenfunctions of the form (u, 0) have positive
real part. If v 6= 0, then τ is an eigenvalue of L2 − cθ[L1,λ,a] − µ. Assume (4.1). Then,

σΩ
1 [L2 − cθ[L1,λ,a] − µ] > 0

and due to Theorem 2.1 the real part of any eigenvalue of L2 − cθ[L1,λ,a] − µ must be
positive. Hence, under condition (4.1) the real parts of any eigenvalue τ of (4.5) are
positive and therefore, the state (θ[L1,λ,a], 0) is linearly asymptotically stable. Now,
assume (4.2). Then,

τ1 := σΩ
1 [L2 − cθ[L1,λ,a] − µ] < 0
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is an eigenvalue to a positive eigenfunction, say ψ, of the second equation of (4.5). Since
τ1 < 0, (4.7) implies

σΩ
1 [L1 + 2aθ[L1,λ,a] − λ− τ1] > 0 ,

and therefore, thanks to the strong maximum principle, the first equation of (4.5) with
τ = τ1 possesses a unique solution. Namely,

u = (L1 + 2aθ[L1,λ,a] − λ− τ1)−1(bθ[L1,λ,a]ψ) .

Therefore, under condition (4.2) τ1 < 0 is an eigenvalue of (4.5) and hence the state
(θ[L1,λ,a], 0) is linearly unstable. Finally if we assume (4.3), it is easily seen that τ1 = 0
is an eigenvalue of (4.5) and that any other eigenvalue has positive real part. Therefore,
under condition (4.3) the state (θ[L1,λ,a], 0) is linearly neutrally stable.

The results concerning with the other semi-trivial state follow by symmetry interex-
changing L1, λ, a and b by L2, µ, d and c, respectively. ¤

By Proposition 4.1 we shall refer to the curve (4.3) in the (λ, µ)-plane as the curve of
change of stability of the semi-trivial positive solution (θ[L1,λ,a], 0). Similarly, the curve
(4.4) will be refereed as the curve of change of stability of (0, θ[L2,µ,d]). The following
result provides us with the global behavior of these curves.

Proposition 4.2. The mapping F (λ) defined by

F (λ) := σΩ
1 [L2 − c(x)θ[L1,λ,a]] , λ > σΩ

1 [L1] , (4.8)

is continuous strictly decreasing and satisfies

lim
λ↓σΩ

1 [L1]
F (λ) = σΩ

1 [L2] , lim
λ↑∞

F (λ) = −∞ . (4.9)

Similarly, the mapping G(µ) defined by

G(µ) := σΩ
1 [L1 − b(x)θ[L2,µ,d]] , µ > σΩ

1 [L2] , (4.10)

is continuous strictly decreasing and satisfies

lim
µ↓σΩ

1 [L2]
G(µ) = σΩ

1 [L1] , lim
µ↑∞

G(µ) = −∞ . (4.11)

Proof. The continuity and monotonicity of F (λ) can be easily obtained from Theorem
3.1, Corollary 3.3 and Theorem 2.3(ii). The first relation of (4.9) follows from (3.3) and
Theorem 2.3(ii). We now show the second relation of (4.9). Since c ∈ C(Ω), c ≥ 0,
c 6= 0, there exists a ball B with B ⊂ Ω such that

cL := min
B

c > 0 .
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On the other hand, by Theorem 3.4

lim
λ↑∞

θ[L1,λ,a]

λ
= a−1 uniformly in B ,

and hence, there exists λ0 such that for λ > λ0

θ[L1,λ,a] >
λ

2 maxB a
in B .

Therefore, Theorem 2.3 implies

F (λ) < σB
1 [L2 − c(x)θ[L1,λ,a]] < σB

1 [L2]− cL

2maxB a
λ

for each λ > λ0. This completes the proof. The same argument shows the corresponding
properties of G(µ). ¤

By Proposition 4.2 the curves of change of stability of the semi-trivial positive solu-
tions meet at (σΩ

1 [L1], σΩ
1 [L2]). The next result provides us with the tangents of these

curves and their concavity or convexity character at this co-dimension two singularity.

Lemma 4.3. Let ϕj , ϕ∗j be the principal eigenfunctions associated with Lj and L∗j ,
respectively, j = 1, 2, where ∗ stands for the adjoint and

∫

Ω

ϕ2
j = 1 ,

∫

Ω

ϕjϕ
∗
j = 1 , j = 1 , 2 .

Then,

θ[L1,λ,a] = (λ− σΩ
1 [L1])m−1

a,1ϕ1 + (λ− σΩ
1 [L1])2m−2

a,1U1 + O((λ− σΩ
1 [L1])3) ,

θ[L2,µ,d] = (µ− σΩ
1 [L2])m−1

d,1ϕ2 + (µ− σΩ
1 [L2])2m−2

d,1U2 + O((µ− σΩ
1 [L2])3) ,

(4.12)

σΩ
1 [L2 − c(x)θ[L1,λ,a]] = σΩ

1 [L2]−mc,a(λ− σΩ
1 [L1])−Mc,a(λ− σΩ

1 [L1])2

+ O((λ− σΩ
1 [L1])3) ,

σΩ
1 [L1 − b(x)θ[L2,µ,d]] = σΩ

1 [L1]−mb,d(µ− σΩ
1 [L2])−Mb,d(µ− σΩ

1 [L2])2

+ O((µ− σΩ
1 [L2])3) ,

(4.13)

as λ ↓ σΩ
1 [L1] and µ ↓ σΩ

1 [L2], where

ma,1 :=
∫

Ω

aϕ2
1ϕ
∗
1 > 0 , md,1 :=

∫

Ω

dϕ2
2ϕ
∗
2 > 0 ,

mc,a := m−1
a,1

∫

Ω

cϕ1ϕ2ϕ
∗
2 , mb,d := m−1

d,1

∫

Ω

bϕ2ϕ1ϕ
∗
1 ,
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Mc,a :=
∫

Ω

c(x)(m−1
a,1ψ2ϕ1 + m−2

a,1U1ϕ2)ϕ∗2 −mc,a

∫

Ω

ψ2ϕ
∗
2 .

Mb,d :=
∫

Ω

b(x)(m−1
d,1ψ1ϕ2 + m−2

d,1U2ϕ1)ϕ∗1 −mb,d

∫

Ω

ψ1ϕ
∗
1 ,

and we have denoted by βi, i = 1, 2, and ψi, i = 1, 2, the unique solutions of the following
linear problems in Ω under homogeneous Dirichlet boundary conditions

(L1 − σΩ
1 [L1])β1 = ma,1ϕ1 − a(x)ϕ2

1 ,

∫

Ω

β1ϕ1 = 0 ,

(L2 − σΩ
1 [L2])β2 = md,1ϕ2 − d(x)ϕ2

2 ,

∫

Ω

β2ϕ2 = 0 ,

(L1 − σΩ
1 [L1])ψ1 = (−mb,d + m−1

d,1b(x)ϕ2)ϕ1 ,

∫

Ω

ψ1ϕ1 = 0 ,

(L2 − σΩ
1 [L2])ψ2 = (−mc,a + m−1

a,1c(x)ϕ1)ϕ2 ,

∫

Ω

ψ2ϕ2 = 0 ,

U1 := β1 − ma,2

ma,1
· ϕ1 , U2 := β2 − md,2

md,1
· ϕ2 ,

where

ma,2 := 2
∫

Ω

aβ1ϕ1ϕ
∗
1 −ma,1

∫

Ω

β1ϕ
∗
1 , md,2 := 2

∫

Ω

dβ2ϕ2ϕ
∗
2 −md,1

∫

Ω

β2ϕ
∗
2 .

Proof. The relations (4.12) follow from the main theorem of [7] applied to (3.1) with
(L, γ, f) = (L1, λ, a) and (L, γ, f) = (L2, µ, d). Assume (L, γ, f) = (L1, λ, a). For
λ ' σΩ

1 [L1], the semi-trivial branch (λ, θ[L1,λ,a]) may be parametrized by two analytic
functions

λ(s) = σΩ
1 [L1] +

∞∑

j=1

λjs
j , θ[L1,λ,a](s) = sϕ1 +

∞∑

j=1

ujs
j+1 , s ' 0 ,

where ∫

Ω

ujϕ1 = 0 , j ≥ 1 . (4.14)

Substituting these expansions into (3.1) and identifying the terms of order two and three
in s yields

(L1 − σΩ
1 [L1])u1 = λ1ϕ1 − a(x)ϕ2

1 in Ω , u1|∂Ω = 0 , (4.15a)

(L1 − σΩ
1 [L1])u2 = λ1u1 + λ2ϕ1 − 2a(x)ϕ1u1 in Ω , u2|∂Ω = 0 , (4.15b)

respectively. From (4.14) and the Fredholm alternative applied to (4.15) it is easily seen
that

λ1 = ma,1 , u1 = β1 , λ2 = ma,2 .
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To obtain the first relation of (4.12), it suffices calculating s as a function of λ from
λ(s). Doing so, we obtain that

s(λ) = m−1
a,1(λ− σΩ

1 [L1])− ma,2

m3
a,1

(λ− σΩ
1 [L1])2 + O((λ− σΩ

1 [L1])3) .

Indeed, substituting this expansion into the expansion of θ[L1,λ,a](s), the first relation
of (4.12) get shown.

By standard perturbation results (cf. [18]), the principal eigenvalues in the left hand
sides of (4.13) vary analytically with λ and µ. Thus, there exist Kj ∈ R, j = 1 , 2, such
that

σΩ
1 [L2 − c(x)θ[L1,λ,a]] = σΩ

1 [L2] + K1(λ− σΩ
1 [L1])

+ K2(λ− σΩ
1 [L1])2 + O((λ− σΩ

1 [L1])3) .
(4.16)

Moreover, if Ψ(λ) > 0 stands for the principal eigenfunction of σΩ
1 [L2 − c(x)θ[L1,λ,a]],

i.e. {
L2Ψ(λ)− c(x)θ[L1,λ,a]Ψ(λ) =σΩ

1 [L2 − cθ[L1,λ,a]]Ψ(λ) in Ω

Ψ(λ) =0 on ∂Ω ,
(4.17)

normalized so that
∫

Ω

Ψ(λ)2 = 1 ,

∫

Ω

(Ψ(λ)− ϕ2)ϕ2 = 0 , (4.18)

then Ψ(λ) admits a unique expansion of the form

Ψ(λ) = Ψ0 + (λ− σΩ
1 [L1])Ψ1 + (λ− σΩ

1 [L1])2Ψ2 + O((λ− σΩ
1 [L1])3) . (4.19)

Using (4.18) gives

Ψ0 = ϕ2 ,

∫

Ω

Ψjϕ2 = 0 , j ≥ 1 . (4.20)

Now, substituting (4.16), (4.19) into (4.17), using (4.12), (4.20) and identifying the
terms with the same order in λ− σΩ

1 [L1], we find that

(L2 − σΩ
1 [L2])Ψ1 = (K1 + m−1

a,1c(x)ϕ1)ϕ2 , (4.21)

(L2 − σΩ
1 [L2])Ψ2 = c(x)(m−1

a,1ϕ1Ψ1 + m−2
a,1U1ϕ2) + K1Ψ1 + K2ϕ2 . (4.22)

Applying Fredholm’s alternative to (4.21) yields

K1 = −m−1
a,1

∫

Ω

c(x)ϕ1ϕ2ϕ
∗
2 = −mc,a , Ψ1 = ψ2 .

Now, substituting these values into (4.22) and applying Fredholm’s alternative gives

K2 = −
∫

Ω

c(x)(m−1
a,1ϕ1ψ2 + m−2

a,1U1ϕ2)ϕ∗2 + mc,a

∫

Ω

ψ2ϕ
∗
2 = −Mc,a .
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By symmetry, θ[L2,µ,d] and σΩ
1 [L1− b(x)θ[L2,µ,d]] have the expansions given in the state-

ment. The proof is completed. ¤
By (4.13), the tangents to the curves of change of stability of the semi-trivial positive

solutions (4.3) and (4.4) at the singularity (σΩ
1 [L1], σΩ

1 [L2]) are given, respectively, by
the stright lines

µ = σΩ
1 [L2]−mc,a(λ− σΩ

1 [L1]) , λ = σΩ
1 [L1]−mb,d(µ− σΩ

1 [L2]) . (4.23)

Close to the singularity (σΩ
1 [L1], σΩ

1 [L2]) the convexity or concavity of these curves is
given by the sign of Mc,a and Md,b, respectively. Although in general the problem of
ascertaining the sign of these quantities might be very difficult to handle with, as they
depend upon some unknown solutions of certain homogeneous Dirichlet boundary value
problems, there are some special cases where these signs can be easily found out, as the
following result shows.

Lemma 4.4. If L1 = L2 is a selfadjoint operator and the coefficients a and c are
constants, then

Mc,a > 0 . (4.24)

By symmetry, if b and d are constant, then

Mb,d > 0 .

Therefore, if a, b, c and d are constant, then the curves of change of stability are concave
in a neighborhood of (σΩ

1 [L1], σΩ
1 [L2]).

Proof. Since L1 = L2 is a selfadjoint operator, we have that

ϕ1 = ϕ2 = ϕ∗1 = ϕ∗2 .

Hence, ∫

Ω

ψ2ϕ
∗
2 =

∫

Ω

ψ2ϕ2 = 0

and
Mc,a := cm−1

a,1

∫

Ω

ψ2ϕ
2
1 + cm−2

a,1

∫

Ω

U1ϕ
2
1 . (4.25)

Moreover,

ma,1 = a

∫

Ω

ϕ3
1 , ma,2 = 2a

∫

Ω

β1ϕ
2
1 , U1 = β1 − 2

∫
Ω

β1ϕ
2
1∫

Ω
ϕ3

1

ϕ1 , (4.26)

and by the uniqueness of the solution of the corresponding boundary value problem in
the orthogonal complement of ϕ1, we find that

ψ2 =
−c

a2
∫
Ω

ϕ3
1

β1 . (4.27)
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Thus, substituting (4.26) and (4.27) into (4.25) gives

Mc,a = −ca−2(
∫

Ω

ϕ3
1)
−2(1 + c/a)

∫

Ω

β1ϕ
2
1 . (4.28)

To complete the proof of (4.24), it remains to show that∫

Ω

β1ϕ
2
1 < 0 . (4.29)

Indeed, from the β1-equation it is easily seen that∫

Ω

β1(L1 − σΩ
1 [L1])β1 = −a

∫

Ω

β1ϕ
2
1 , (4.30)

since
∫
Ω

β1ϕ1 = 0. Moreover, β1 changes of sign in Ω, and hence the variational char-
acterization of σΩ

1 [L1] implies that∫

Ω

β1(L1 − σΩ
1 [L1])β1 > 0 .

Therefore, (4.30) implies (4.29). This completes the proof. ¤
In Figure 1 we have represented the curves of change of stability of the semi-trivial

positive solutions in the case when a, b, c and d are constant and L1 = L2 is selfadjoint.

λ

µ

µ=

λ=

σ

σ Ω

Ω
1

1

F

G

[L

[L 1

1

(λ)

(µ)

]

]

Figure 1: The curves of change of stability.
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5. The existence of unbounded continua of coexistence states. Although with
less regularity on the several coefficients involved into our setting the abstract theory
of [21] applies to (1.1) if the solutions of (1.1) are regarded as fixed points of a compact
operator on (C1

0 (Ω))2. This observation provides us with the following result, where the
notations introduced in the previous sections will be kept.

Theorem 5.1. Fix λ > σΩ
1 [L1] and regard to µ ∈ R as the bifurcation parameter.

Then, the point
(µ, u, v) = (σΩ

1 [L2 − cθ[L1,λ,a]], θ[L1,λ,a], 0)

is the only bifurcation point to coexistence states from the semi-trivial state (θ[L1,λ,a], 0).
Moreover, the maximal component (closed and connected) of coexistence states emanat-
ing from (θ[L1,λ,a], 0) at µ = F (λ), say C+

(µ,u,0) ⊂ R× C1
0 (Ω)× C1

0 (Ω), is unbounded.

Now, fix µ < σΩ
1 [L2] and regard to λ ∈ R as the bifurcation parameter. By Proposition

4.2 there exists a unique λµ > σΩ
1 [L1] such that µ = F (λµ). Then, the point

(λ, u, v) = (λµ, θ[L1,λµ,a], 0)

is the only bifurcation point to coexistence states from the curve (θ[L1,λ,a], 0). Moreover,
the maximal component (closed and connected) of coexistence states emanating from
(θ[L1,λ,a], 0) at λ = λµ, say C+

(λ,u,0) ⊂ R× C1
0 (Ω)× C1

0 (Ω), is unbounded.

Similarly, if we fix µ > σΩ
1 [L2] and regard to λ ∈ R as the bifurcation parameter,

then the point
(λ, u, v) = (σΩ

1 [L1 − bθ[L2,µ,d]], 0, θ[L2,µ,d])

is the only bifurcation point to coexistence states from the semi-trivial state (0, θ[L2,µ,d])
and the maximal component (closed and connected) of coexistence states emanating from
(0, θ[L2,µ,d]) at λ = G(µ), say C+

(λ,0,v) ⊂ R× C1
0 (Ω)× C1

0 (Ω), is unbounded.

Finally, fix λ < σΩ
1 [L1] and regard to µ ∈ R as the bifurcation parameter. By Propo-

sition 4.2 there exists a unique µλ > σΩ
1 [L2] such that λ = G(µλ). In this case, the

point
(µ, u, v) = (µλ, 0, θ[L2,µλ,d])

is the only bifurcation point to coexistence states from the curve (0, θ[L2,µ,d]) and the max-
imal component (closed and connected) of coexistence states emanating from (0, θ[L2,µ,d])
at µ = µλ, say C+

(µ,0,v) ⊂ R× C1
0 (Ω)× C1

0 (Ω), is unbounded.

Proof. The local bifurcations are obtained as an application of the main theorem of
[7] using rather standard arguments. It remains to show that each of the continua of
coexistence states emanating from the semi-trivial states are unbounded in the phase
space. We shall show this for the continuum C+

(µ,u,0). The argument can be easily
adapted to cover the remaining cases.

By Theorem 4.1 in [21] the continuum C+
(µ,u,0) satisfies some of the following alterna-

tives: Either



SYMBIOTIC SPECIES 23

(i) C+
(µ,u,0) is unbounded in R× C1

0 (Ω)× C1
0 (Ω); or

(ii) there exists µ∞ ∈ R such that

λ = σΩ
1 [L1 − bθ[L2,µ∞,d]] (5.1)

and (µ∞, 0, θ[L2,µ∞,d]) ∈ closure C+
(µ,u,0) ; or

(iii) there exists a positive solution θ̂[L1,λ,a] 6= θ[L1,λ,a] of

L1u = λu− au2 in Ω , u|∂Ω = 0 , (5.2)

such that (σΩ
1 [L1 − bθ̂[L1,λ,a]], θ[L1,λ,a], 0) ∈ closure C+

(µ,u,0) ; or

(iv) λ = σΩ
1 [L1] and (σΩ

1 [L2], 0, 0) ∈ closure C+
(µ,u,0) .

Since we are assuming that λ > σΩ
1 [L1], alternative (iv) is not possible. Moreover,

by Theorem 3.1 θ[L1,λ,a] is the unique positive solution of (5.2) and hence, alternative
(iii) is not possible either. Notice that (5.1) is not possible either, since

σΩ
1 [L1 − bθ[L2,µ∞,d]] ≤ σΩ

1 [L1] .

Therefore, alternative (i) must occur. This completes the proof. ¤

6. Coexistence regions for small interaction coefficients. As an easy conse-
quence from Corollary 3.3 we obtain the following result.

Lemma 6.1. Assume that
bMcM < aLdL , (6.1)

and that (1.1) possesses a coexistence state, say (u, v). Then,





λ >(c1)L
cMbM

aLdL
+ σΩ

1 [L1]
(

1− cMbM

aLdL

)
− bM

dL
(µ− (c2)L) ,

µ >(c2)L
cMbM

aLdL
+ σΩ

1 [L2]
(

1− cMbM

aLdL

)
− cM

aL
(λ− (c1)L) ,

(6.2)

and 



uM ≤ (λ− (c1)L)dL + (µ− (c2)L)bM

aLdL − bMcM
,

vM ≤ (µ− (c2)L)aL + (λ− (c1)L)cM

aLdL − bMcM
.

(6.3)

Proof. From (1.1) it is easily seen that

u = θ[L1,λ+bv,a] , v = θ[L2,µ+cu,d] .
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Moreover, by Lemma 3.2 and Corollary 3.3 we have

θ[L1,λ+bv,a] ≤ θ[L1,λ+bM vM ,aL] ≤
λ + bMvM − (c1)L

aL
.

Thus,

uM ≤ λ + bMvM − (c1)L

aL
. (6.4a)

Similarly,

vM ≤ µ + cMuM − (c2)L

dL
. (6.4b)

¿From (6.4), relations (6.3) follow readily.
Moreover, the second relation of (6.3) implies

λ + bMvM ≤ λaLdL + bMaL(µ− (c2)L)− cMbM (c1)L

aLdL − bMcM
,

and therefore, since θ[L1,λ+bM vM ,aL] ≥ u > 0, we find from Theorem 3.1 that

λaLdL + bMaL(µ− (c2)L)− cMbM (c1)L

aLdL − bMcM
> σΩ

1 [L1]. (6.5a)

Similarly,
µaLdL + cMdL(λ− (c1)L)− cMbM (c2)L

aLdL − bMcM
> σΩ

1 [L2]. (6.5b)

Relations (6.2) follow readily from (6.5). This completes the proof. ¤

Note that if λ and µ satisfy (6.2), then the following relations hold





λ >(c1)L − bM

dL
(µ− (c2)L) ,

µ >(c2)L − cM

aL
(λ− (c1)L) ,

(6.6)

and therefore, the right hand sides of (6.3) are positive. Indeed, it is easily seen from
Theorems 2.2, 2.3 that

σΩ
1 [L1] = σΩ

1 [L1 − c1 + c1] > σΩ
1 [L1 − c1] + (c1)L > (c1)L . (6.7)

Thus, we find from (6.1) and (6.7) that

cMbM

aLdL
(c1)L + σΩ

1 [L1](1− bMcM

aLdL
) > (c1)L ,
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and hence,

(c1)L
cMbM

aLdL
+ σΩ

1 [L1]
(

1− cMbM

aLdL

)
− bM

dL
(µ− (c2)L) > (c1)L − bM

dL
(µ− (c2)L) .

Similarly,

(c2)L
cMbM

aLdL
+ σΩ

1 [L2]
(

1− cMbM

aLdL

)
− cM

aL
(λ− (c1)L) > (c2)L − cM

aL
(λ− (c1)L) .

This shows the claim above.
Under assumption (6.1), (6.2) provides us with a simple readily computable necessary

condition for the existence of a coexistence state. Moreover, (6.3) shows that we have a
priori bounds in L∞(Ω) for the coexistence states of (1.1) uniformly on compact subsets
of the parameter space (λ, µ). By the Lp-estimates of Agmon, Douglis and Nirenberg we
have uniform a priori bounds in W 2,p(Ω) for all p ∈ [2,∞). Notice that the boundary
of the non-existence region given by (6.2) consists of the stright lines

λ = (c1)L
cMbM

aLdL
+ σΩ

1 [L1](1− cMbM

aLdL
)− bM

dL
(µ− (c2)L) ,

µ = (c2)L
cMbM

aLdL
+ σΩ

1 [L2](1− cMbM

aLdL
)− cM

aL
(λ− (c1)L) .

In Figure 2 we have represented these lines together with the curves of change of stability
of semi-trivial positive solutions.

µ

λ

µ=

λ=

F

G

(λ)

(µ)

Figure 2: Estimating the coexistence region.
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The stright lines in the figure across at the point

(σΩ
1 [L1]− bM

dL
(σΩ

1 [L2]− (c2)L) , σΩ
1 [L2]− cM

aL
(σΩ

1 [L1]− (c1)L) )

and is is easily seen that their relative positions with respects to the curves of change
of stability are those shown on it. Indeed, if µ > σΩ

1 [L2] then we have from Lemma 3.2,
Corollary 3.3 and (6.7) that

σΩ
1 [L1 − bθ[L2,µ,d]] ≥σΩ

1 [L1 − bM

dL
(µ− (c2)L)] = σΩ

1 [L1]− bM

dL
(µ− (c2)L)

>(c1)L
cMbM

aLdL
+ σΩ

1 [L1]
(

1− cMbM

aLdL

)
− bM

dL
(µ− (c2)L) .

Similarly, if λ > σΩ
1 [L1] then

σΩ
1 [L2 − bθ[L1,λ,a]] > (c2)L

cMbM

aLdL
+ σΩ

1 [L2]
(

1− cMbM

aLdL

)
− cM

aL
(λ− (c1)L) .

Therefore, in the dark grey region of Figure 2 (1.1) does not admit a coexistence state.
The next theorem shows that (1.1) possesses a coexistence state in the bright grey

region of Figure 2. In the area in between these two regions (1.1) may have or not a
coexistence state depending on the size of the coefficients.

Theorem 6.2. Assume (6.1) and

λ > σΩ
1 [L1 − bθ[L2,µ,d]] , µ > σΩ

1 [L2 − cθ[L1,λ,a]] . (6.8)

Then, (1.1) possesses a coexistence state.

Proof. Fix µ > σΩ
1 [L2] and regard to λ as the main bifurcation parameter. By Lemma

6.1 problem (1.1) does not admit a coexistence state if

λ ≤ (c1)L
cMbM

aLdL
+ σΩ

1 [L1]
(

1− cMbM

aLdL

)
− bM

dL
(µ− (c2)L) .

Moreover, by Theorem 5.1 the continuum C+
(λ,0,v) of coexistence states emanating from

(0, θ[L2,µ,d]) at the value of the parameter λ = σΩ
1 [L1 − bθ[L2,µ,d]] is unbounded, and

thanks to Lemma 6.1 these coexistence states are bounded in C1
0 (Ω)×C1

0 (Ω) uniformly
on compact subintervals of λ. Therefore, (1.1) possesses a coexistence state for each
λ > σΩ

1 [L1− bθ[L2,µ,d]]. Similarly, if λ > σΩ
1 [L1], then (1.1) possesses a coexistence state

for each µ > σΩ
1 [L2 − cθ[L1,λ,a]]. This completes the proof. ¤
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7. On the existence of coexistence states for large interaction coefficients in
the case L1 = L2. Throughout this section we assume that

L1 = L2 = L , (7.1)

where L is a differential operator of the form (2.1) with coefficients satisfying (2.2).
First we shall obtain some necessary conditions for the existence of a coexistence state.
Then, we shall show the existence of uniform a priori bounds for the coexistence states
in low space dimensions. Finally, we shall combine these results together with the global
bifurcation theorem of Section 5 to get some sufficient conditions for the existence of a
coexistence state. All these results will be obtained for the case when the interactions
between the species are sufficiently large. How large must be the interactions will be
measured in terms of the several coefficients involved in the setting of (1.1).

7.1. Necessary conditions. The following result provides us with some necessary
conditions for the existence of coexistence states of (1.1) in the case when the interactions
between the two species are sufficiently large.

Theorem 7.1. Under condition (7.1), the following assertions are true:
(i) If µ ≥ λ > σΩ

1 [L] and

bLcL ≥ aMdM + aMbM − aLbL , (7.2)

then (1.1) does not admit a coexistence state.
(ii) If λ ≥ µ > σΩ

1 [L] and

bLcL ≥ aMdM + dMcM − dLcL , (7.3)

then (1.1) does not admit a coexistence state.
(iii) If

bLcL > aMdM + aMbM − aLbL , (7.4)

then for each λ < σΩ
1 [L] there exists µ = µ(λ) such that λ > σΩ

1 [L − bθ[L,µ(λ),d]] and
(1.1) does not admit a coexistence state if µ > µ(λ). Moreover, µ(λ) can be chosen to
be continuous in λ.

(iv) If
bLcL > aMdM + dMcM − dLcL , (7.5)

then for each µ < σΩ
1 [L] there exists λ = λ(µ) such that µ > σΩ

1 [L − cθ[L,λ(µ),a]] and
(1.1) does not admit a coexistence state if λ > λ(µ). Moreover, λ(µ) can be chosen to
be continuous in µ.

If the coefficients a, b, c and d of (1.1) are assumed to be constant, then (7.2) and
(7.3) become into

bc ≥ ad (7.6)
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and it follows from Theorem 7.1 (i), (ii) that under condition (7.6) the problem (1.1)
does not admit a coexistence state in the region

λ > σΩ
1 [L] , µ > σΩ

1 [L] .

Therefore, Parts (i), (ii) of Theorem 7.1 provide us with a substantial extension of
Theorem 3.3 in [27] to cover our general setting. Theorem 3.3 of [27] as well as the
corresponding non-existence results of [17], [20] and [30] were found for the very special
case when L = −∆ and a(x), b(x), c(x), d(x) are constants. Parts (iii), (iv) of Theorem
7.1 are new even for this special case and besides their intrinsic interest, they are pivotal
to get our existence and multiplicity results from Theorem 5.1. The proof of Theorem
7.1 will follow after a couple of lemmas which are of interest in their own right. The first
lemma is an extension of Lemma 3.2 in [27]. The second one is a sharper result showing
that the coexistence states of (1.1) must grow to infinity as µ ↑ ∞ at least linearly in
µ, uniformly on compact subsets of Ω.

Lemma 7.2. (i) Assume (7.1), µ ≥ λ, and let (u, v) be any coexistence state of (1.1).
Then,

u ≤ bM + dM

cL + aL
v . (7.7)

(ii) By symmetry, under conditions (7.1) and λ ≥ µ, we have

v ≤ cM + aM

bL + dL
u , (7.8)

for any coexistence state (u, v) of (1.1).

Proof. Assume (7.1), µ ≥ λ, and let (u, v) be any coexistence state of (1.1). Set

w = (bM + dM )v − (cL + aL)u .

Then, it is easily seen from (1.1) that

(L − λ + aLu + dMv)w ≥ 0 . (7.9)

Moreover, it follows from the second equation of (1.1) that

µ = σΩ
1 [L − cu + dv] ,

and hence, by the monotonicity of the principal eigenvalue with respect to the potential
we find that

λ ≤ µ ≤ σΩ
1 [L − cLu + dMv] .

Thus,
σΩ

1 [L − λ− cLu + dMv] ≥ 0

and
σΩ

1 [L − λ + aLu + dMv] > σΩ
1 [L − λ− cLu + dMv] ≥ 0 .

Therefore, due to the strong maximum principle, (7.9) implies w ≥ 0. This completes
the proof. ¤

The following result holds for general differential operators L1 and L2, not necessarily
equal.
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Lemma 7.3. (i) Fix λ < σΩ
1 [L1] and consider µ0(λ) > σΩ

1 [L2] such that

λ > σΩ
1 [L1 − bθ[L2,µ,d]] for each µ > µ0(λ) . (7.10)

Assume that there exists a sequence of coexistence states of (1.1), say (µn, un, vn), n ≥ 1,
such that µn > max{µ0(λ), 0} for each n ≥ 1 and limn↑∞ µn = ∞. Then, for any
compact subset K ⊂ Ω there exists a positive constant α = α(K) > 0 such that for each
n ≥ 1

vn

µn
≥ α in K . (7.11)

(ii) Similarly, if we fix µ < σΩ
1 [L2], consider λ0(µ) > σΩ

1 [L1] such that

µ > σΩ
1 [L2 − cθ[L1,λ,a]] for each λ > λ0(µ) ,

and assume that there exists a sequence of coexistence states of (1.1), say (λn, un, vn),
n ≥ 1, such that λn > max{λ0(µ), 0} for each n ≥ 1 and limn↑∞ λn = ∞. Then, for
any compact subset K ⊂ Ω there exists a positive constant β = β(K) > 0 such that for
each n ≥ 1

un

λn
≥ β in K . (7.12)

Proof. Part (ii) follows by symmetry from Part (i). So, it suffices to prove Part (i). Pick
up λ < σΩ

1 [L1]. The existence of µ0(λ) satisfying (7.10) is guaranteed from Proposition
4.2. Let (µn, un, vn), n ≥ 1, be a sequence of coexistence states of (1.1) with µn >
max{µ0(λ), 0}, n ≥ 1, and limn↑∞ µn = ∞. Then, the second equation of (1.1) gives

L2vn = µnvn − dv2
n + cunvn > µnvn − dv2

n

and hence vn is a strict positive supersolution of

L2w = µnw − dw2 in Ω , w|∂Ω = 0 .

Thus, thanks to Lemma 3.2,
vn ≥ θ[L2,µn,d] . (7.13)

Substituting (7.13) into the first equation of (1.1) and repeating the previous argument
gives

un ≥ θ[L1−bθ[L2,µn,d],λ,a] . (7.14)

Note that the function on the right hand side of this inequality is well defined (and
strongly positive), because of (7.10). Relation (7.14) yields

lim inf
n→∞

un

µn
≥ lim inf

n→∞
θ[L1−bθ[L2,µn,d],λ,a]

µn
. (7.15)
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We now show that

lim inf
n→∞

θ[L1−bθ[L2,µn,d],λ,a]

µn
≥ bL

aMdM
, (7.16)

uniformly on compact subsets of Ω. Let Ω1, Ω2 two arbitrary subdomains of Ω such
that

Ω1 ⊂ Ω2 , Ω2 ⊂ Ω . (7.17)

Set

Θn :=
θ[L1−bθ[L2,µn,d],λ,a]

µn
.

By definition, Θn is the unique positive solution of

1
µn
L1w =

(
λ

µn
+ b

θ[L2,µn,d]

µn

)
w − aw2 in Ω , w|∂Ω = 0 . (7.18)

By Theorem 3.4,

lim
n→∞

θ[L2,µn,d]

µn
= d−1 uniformly in Ω2 .

Hence,

lim
n→∞

(
λ

µn
+ b

θ[L2,µn,d]

µn

)
= bd−1 uniformly in Ω2 .

Thus, for any ε > 0 there exists n0 = n0(ε) such that for each n ≥ n0 we have

λ

µn
+ b

θ[L2,µn,d]

µn
≥ bL

dM
− ε in Ω2 . (7.19)

Now, since Θn is the unique positive solution of (7.18), it follows from (7.19) that for
each n ≥ n0 the function Θn is a strict positive supersolution of the following problem

1
µn
L1w =

(
bL

dM
− ε

)
w − aw2 in Ω2 , w|∂Ω2 = 0 . (7.20)

Suppose that ε > 0 has been chosen so that bL

dM
− ε > 0. Then, for n sufficiently large

we have that

bL

dM
− ε > σΩ2

1 [
1
µn
L1] =

σΩ2
1 [L1]
µn

→ 0 as n →∞ ,

and hence, it follows from Theorem 3.1 that (7.20) possesses a unique positive solution,
say ΘΩ2

n . By Lemma 3.2 we have

Θn ≥ ΘΩ2
n in Ω2
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for all n sufficiently large. Moreover, thanks to Theorem 3.4, we find from (7.17) that

lim
n→∞

ΘΩ2
n =

bL

adM
− ε

a
uniformly in Ω1 .

Thus,

lim inf
n→∞

Θn ≥ bL

aMdM
− ε

aL
uniformly in Ω1 .

As this is valid for any ε > 0, (7.16) holds uniformly in Ω1. As Ω1 is an arbitrary
subdomain of Ω with Ω1 ⊂ Ω, it is clear that (7.16) holds uniformly on any compact
subset of Ω. Therefore, it follows from (7.15) that

lim inf
n→∞

un

µn
≥ bL

aMdM
, (7.21)

uniformly on any compact subset of Ω and, in particular, uniformly on Ω1. Now, setting

ûn :=
un

µn
, v̂n :=

vn

µn
,

it follows from the second equation of (1.1) that

1
µn
L2v̂n = v̂n − dv̂2

n + cûnv̂n

and hence we find from (7.21) that given ε > 0, there exists n0 = n0(ε) such that v̂n is
a strict positive supersolution of

1
µn
L2w =

(
1 +

cLbL

aMdM
− ε

)
w − dw2 in Ω1 , w|∂Ω1 = 0 (7.22)

for each n ≥ n0. Suppose that ε > 0 has been chosen sufficiently small so that

1 +
cLbL

aMdM
> ε .

Then, thanks to Theorem 3.1, for n sufficiently large (7.22) possesses a unique positive
solution, denoted by ΘΩ1

n , and, due to Lemma 3.2, we find that

v̂n =
vn

µn
≥ ΘΩ1

n , (7.23)

except at most for a finite number of n’s.
Let K be an arbitrary compact subset of Ω and choose Ω1, Ω2 satisfying (7.17) and

K ⊂ Ω1. Then, by Theorem 3.4,

lim
n→∞

ΘΩ1
n = (1 +

cLbL

aMdM
− ε)d−1 uniformly in K ,
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and since this limit is positive and bounded away from zero, the existence of α > 0
satisfying (7.11) is easily obtained from (7.23). This completes the proof. ¤
Proof of Theorem 7.1. (i) Assume (7.1), (7.2) and pick µ ≥ λ > σΩ

1 [L]. If (1.1) possesses
a coexistence state, say (u, v), then we find from the first equation of (1.1) that

λ = σΩ
1 [L+ au− bv] ≤ σΩ

1 [L+ aMu− bLv] . (7.24)

Moreover, thanks to Lemma 7.2(i), we find from (7.2) that

u ≤ bM + dM

cL + aL
v ≤ bL

aM
v .

Thus,
aMu− bLv ≤ 0 ,

and (7.24) gives λ ≤ σΩ
1 [L], which is impossible. Therefore, (1.1) can not admit a

coexistence state. This completes the proof of Part (i). Part (ii) follows by symmetry,
interexchanging the roles of λ, a and b by µ, d and c, respectively.

We now prove (iii). Assume (7.1), (7.4) and fix λ < σΩ
1 [L]. We argue by contradiction

assuming that there exists a sequence of coexistence states of (1.1), say (µn, un, vn),
n ≥ 1, such that µn > max{µ0(λ), 0}, n ≥ 1, and limn↑∞ µn = ∞. Without loss
of generality we can assume that µn ≥ λ for each n ≥ 1. Let Ω1 ⊂ Ω an arbitrary
subdomain of Ω with Ω1 ⊂ Ω. By lemma 7.3(i), there exists α = α(Ω1) > 0 such that
for each n ≥ 1

vn

µn
≥ α in Ω1 .

Moreover, by Lemma 7.2(i), we have that for each n ≥ 1

un

µn
≤ bM + dM

cL + aL

vn

µn
.

Thus, by (7.4) there exists ε > 0 such that for each n ≥ 1

un

µn
≤ bL

aM

vn

µn
− ε in Ω1 .

Hence,
aMun − bLvn ≤ −εaMµn in Ω1 ∀n ≥ 1 . (7.25)

On the other hand, we find from the first equation of (1.1) that

λ = σΩ
1 [L+ aun − bvn] ≤ σΩ1

1 [L+ aMun − bLvn]

and therefore, (7.25) gives

λ ≤ σΩ1
1 [L]− εaMµn ↓ −∞ as n →∞ .

This contradiction shows that (1.1) does not admit a coexistence state for µ large and
completes the proof of this part. Part (iv) follows by symmetry. ¤
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7.2. A priori bounds for N ≤ 5. The following result provides us with uniform a
priori bounds in L∞ for the coexistence states of (1.1).

Theorem 7.4. Under condition (7.1), if N ≤ 5, bLcL > aMdM and for some α > 0

max { |λ| , |µ| } ≤ α ,

then there exists a constant C = C(α, Ω, a, b, c, d) such that

‖u‖L∞(Ω) ≤ C , ‖v‖L∞(Ω) ≤ C ,

for any coexistence state (u, v) of (1.1).

This result is optimal in the sense that if N > 5, then there are choices of the
several coefficients and of Ω for which the uniform a priori bounds are lost (cf. the final
comments in Section 5 of [21] and Theorem 1.4 of [27]). For instance, if a, b, c, d are
constants and λ = µ, then for any coexistence state (u, v) of (1.1) it is easily seen that

(L − λ + au + dv)((b + d)v − (c + a)u) = 0

and hence,

v =
c + a

b + d
u , (7.26)

since σΩ
1 [L − λ + au + dv] > 0. Therefore, (u, v) is a coexistence state of (1.1) if, and

only if, (7.26) holds and u is a positive solution of

Lu = λu +
bc− ad

b + d
u2 in Ω , u|∂Ω = 0 . (7.27)

If bc < ad, then the coefficient of u2 in (7.27) is negative and hence the positive solutions
of (7.27) possesses uniform a priori bounds on compact subintervals of λ. On the
contrary, when bc > ad the coefficient of u2 in (7.27) is positive and therefore (7.27) is
a superlinear problem. In this case it is well known that a priori bounds are available if
2 < N+2

N−2 (cf. [13]), i.e. if N ≤ 5, while in the case when N ≥ 6 the a priori bounds are
in general lost and the structure of the set of positive solutions can change drastically
as either the geometry of Ω changes or the spatial dimension N increases. Being the
higher dimensional case outside the scope of this work we send to the interested reader
in further details to [4] and [8].

In the special case when L = −∆ and a, b, c and d are constants Theorem 7.4 is
given by Lemma 4.3 of [27], but the proof of [27] can not be adapted to cover our
current situation here, as it will become clear later. The main difficulty coming from
the fact that now the coefficients are not constant. To prove Theorem 7.4 we will argue
by contradiction using the blowing up argument introduced in [13] for the case of one
single equation. It should be noted that our blowing up argument is somewhat different
from the corresponding argument used in [27].
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Proof of Theorem 7.4. We shall prove the result in case λ ≥ µ. By symmetry, the result
is also true when µ ≥ λ. If the conclusion of Theorem 7.4 is false, then there exists a
sequence of coexistence states (λk, µk, uk, vk), k ≥ 1, with −α ≤ µk ≤ λk ≤ α, such
that

lim sup
k→∞

(‖uk‖L∞(Ω) + ‖vk‖L∞(Ω)) = ∞ . (7.28)

We claim that
lim sup

k→∞
‖uk‖L∞(Ω) = lim sup

k→∞
‖vk‖L∞(Ω) = ∞ . (7.29)

Indeed, if {‖vk‖L∞(Ω)}k≥1 is bounded by some positive constant β, then we find from
the first equation of (1.1) that

Luk ≤ (α + bMβ)uk − au2
k

and therefore, it follows from Lemma 3.2 and Corollary 3.3, that {‖uk‖L∞(Ω)}k≥1 is
also bounded. By (7.28) this is impossible. Similarly, if {‖uk‖L∞(Ω)}k≥1 is bounded,
then {‖vk‖L∞(Ω)}k≥1 is also bounded. Therefore, (7.29) is satisfied. By chosing a
subsequence, if necessary, we can assume that

lim
k→∞

‖uk‖L∞(Ω) = ∞ , lim
k→∞

(λk, µk) = (λ∞, µ∞) , (7.30)

for some (λ∞, µ∞) ∈ R2 satisfying −α ≤ µ∞ ≤ λ∞ ≤ α. Note that thanks to Lemma
7.2(ii) we have that

vk ≤ cM + aM

bL + dL
uk ∀k ≥ 1 . (7.31)

For each k ≥ 1, pick xk ∈ Ω such that

Mk := uk(xk) = ‖uk‖L∞(Ω) . (7.32)

Since Ω is bounded, without loss of generality we can assume that

lim
k→∞

xk = x∞ ∈ Ω . (7.33)

Now, we consider two different situations, accordingly with whether x∞ ∈ Ω or x∞ ∈
∂Ω.

Assume that x∞ ∈ Ω. Then,

δ := d(x∞, ∂Ω)/2 > 0 .

Moreover, setting
ρk := M

−1/2
k , k ≥ 1 ,
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we have limk→∞ ρk = 0, since thanks to (7.30) and (7.32) limk→∞Mk = ∞. Now, it is
easily seen that the change of variables

y :=
x− xk

ρk
, (zk, wk) := ρ2

k(uk, vk) , k ≥ 1 , (7.34)

transforms the system of (1.1) into

Akzk = ρ2
kλkzk − a(xk + ρky)z2

k + b(xk + ρky)zkwk ,

Akwk = ρ2
kµkwk − d(xk + ρky)w2

k + c(xk + ρky)zkwk ,
(7.35)

where

Ak = −
N∑

i,j=1

aij(xk + ρky)∂i∂j + ρk

N∑

j=1

bj(xk + ρky)∂j + ρ2
ke(xk + ρky) , (7.36)

provided xk + ρky ∈ Ω. By definition of δ, for k sufficiently large, |x− xk| ≤ δ implies
x = xk + ρky ∈ Ω. Hence, |y| ≤ δ

ρk
implies x = xk + ρky ∈ Ω and so (7.35) holds.

Since limk→∞ δ
ρk

= ∞, given R > 0 arbitrary BR ⊂ Bδ/ρk
for k sufficiently large, where

for any τ > 0 Bτ stands for the ball of radius τ centered at the origin. Now, from the
definition of ρk we have that

zk = ρ2
kuk =

uk

Mk

and hence,
‖zk‖L∞(BR) = 1 , zk(0) = 1 , ∀k ≥ 1 . (7.37)

Moreover, thanks to (7.31) and (7.37), we find that

‖wk‖L∞(BR) ≤
cM + aM

bL + dL
∀k ≥ 1 . (7.38)

Now the same compactness argument of the proof of Theorem 1.1 in [13] shows that
given any p > N and passing to a suitable subsequence, again relabeled by k, there
exists (z, w) ≥ (0, 0) in W 2,p(BR) ∩ C1,ν(BR), 0 < ν < 1, such that

lim
k→∞

(zk, wk) = (z, w) in (W 2,p(BR) ∩ C1,ν(BR))2 .

By Hölder continuity z(0) = 1. Moreover, passing to the limit as k →∞ in (7.35) gives

−
N∑

i,j=1

aij(x∞)∂i∂jz = −a(x∞)z2 + b(x∞)zw ,

−
N∑

i,j=1

aij(x∞)∂i∂jw = −d(x∞)w2 + c(x∞)zw ,

(7.39)
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in BR, for any R > 0. By a standard diagonal sequence argument it is easily seen that
z, w ∈ W 2,p

loc (RN ) and that (7.39) holds true in the whole of RN . Moreover, standard
elliptic regularity theory implies that z, w ∈ C2(RN ). Furthermore, by a linear change
of coordinates (cf. [13] pg. 890), (7.39) can be reduced to

−∆z = −a(x∞)z2 + b(x∞)zw

−∆w = −d(x∞)w2 + c(x∞)zw
in RN . (7.40)

¿From (7.40), it is easily seen that

(−∆ + a(x∞)z + d(x∞)w)(w − c(x∞) + a(x∞)
b(x∞) + d(x∞)

z) = 0 .

Since (z, w) ≥ (0, 0) and z(0) = 1, the potential

V := a(x∞)z + d(x∞)w

satisfies V ≥ 0 and V 6= 0. Therefore, due to the following lemma, whose proof we
postpone up to conclude the proof of Theorem 7.4, we find that

w =
c(x∞) + a(x∞)
b(x∞) + d(x∞)

z . (7.41)

Lemma 7.5. Assume that either D = RN or D = RN
+ , where

RN
+ = {x ∈ RN : xN ≥ 0} .

If V ∈ L∞(D) ∩ Cν(D), V ≥ 0, V 6= 0, then θ = 0 is the only bounded solution of

(−∆ + V )θ = 0 in D . (7.42)

Substituting (7.41) into the first equation of (7.40) and rearranging terms gives

−∆z =
b(x∞)c(x∞)− a(x∞)d(x∞)

b(x∞) + d(x∞)
z2 in RN . (7.43)

Since bLcL > aMdM , b(x∞)c(x∞) > a(x∞)d(x∞) and hence, thanks to Theorem 1.1
of [13], z = 0 is the unique non-negative solution of (7.43), because N ≤ 5. This is a
contradiction with z(0) = 1. Therefore, x∞ ∈ ∂Ω. Now, the same argument as in Case
2 of the proof of Theorem 1.1 in [13] shows that the problem

−∆z = −a(x∞)z2 + b(x∞)zw

−∆w = −d(x∞)w2 + c(x∞)zw
in RN

+ . (7.44)
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possesses a non-negative solution couple (z, w) with z(0) = 1. The same argument as
above shows that this is impossible. This contradiction shows the existence of uniform
a priori bounds and completes the proof of the theorem. ¤

We now prove Lemma 7.5, which is a Liouville type result interesting in its own right.
In the proof we use the concepts and results in Chapter 4 of [31].

Proof of Lemma 7.5. Thanks to Theorem 3.3(iii) in page 148 of [31], the Schrödinger
operator ∆ − V is subcritical on D, i.e. it possesses a Green function G(x, y) on D.
Therefore, thanks to Theorem 3.8(i) in page 151 of [31] for each non-negative p ∈ Cν

0 (D),
p 6= 0, there exists positive solutions u ∈ C2,ν(D) of

(−∆ + V )u = p . (7.45)

Moreover, (7.45) possesses a minimal solution u0, given by

u0(x) =
∫

D

G(x, y)p(y) dy ,

and any other solution of (7.45) must be given by

u = u0 + θ ,

for some some positive solution θ of (7.42). The minimality of u0 shows that θ = 0 is
the unique solution of (7.42). This completes the proof. ¤
Remark 7.6. (a) Although (7.31) implies w ≤ cM+aM

bL+dL
z, this does not necessarily entails

w ≤ c(x∞) + a(x∞)
b(x∞) + d(x∞)

z (7.46)

and hence, Lemma 4.5 of [27] can not be applied to show that (z, w) = (0, 0) is the
unique solution of (7.40). In fact, our corresponding Liouville type result is substantially
sharper than Lemma 4.5 of [27], as we do not need assuming (7.46) to infer z = w = 0.

(b) By the Lp estimates of Agmon, Douglis & Nirenberg and Morrey’s Theorem,
Theorem 7.4 provides us with a uniform a priori bounds in C1

0 (Ω) × C1
0 (Ω) for the

coexistence states of (1.1) on any compact subset of the (λ, µ)-plane.

7.3. On the existence of coexistence states in case N ≤ 5. As an immediate
consequence, from Theorem 5.1, Theorem 7.1 and Theorem 7.4 we obtain the following
result.

Theorem 7.7. (i) If N ≤ 5, (7.4) and

λ < σΩ
1 [L − bθ[L,µ,d]] , (7.47)

are satisfied, then (1.1) possesses a coexistence state.
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(ii) If N ≤ 5, (7.5) and
µ < σΩ

1 [L − cθ[L,λ,a]] , (7.48)

are satisfied, then (1.1) possesses a coexistence state.
(iii) If N ≤ 5 and either (7.4) or (7.5) is satisfied, then (1.1) possesses a coexistence

state provided
λ < σΩ

1 [L] , µ < σΩ
1 [L] . (7.49)

Proof. We first show Part (i). Fix λ < σΩ
1 [L] and consider µ as the main bifurcation

parameter. By Theorem 7.1 (iii) there exists µ = µ(λ) such that λ > σΩ
1 [L− bθ[L,µ(λ),d]]

and (1.1) does not admit a coexistence state for µ > µ(λ).
Moreover, by Theorem 5.1 the continuum C+

(µ,0,v) of coexistence states emanating
from (0, θ[L,µ,d]) at µλ is unbounded, where µλ is the unique value of µ > σΩ

1 [L] for
which λ = σΩ

1 [L − bθ[L,µ,d]]. Furthermore, (7.4) implies bLcL > aMdM and hence, we
conclude from Theorem 7.4 that (1.1) possesses a coexistence state for each µ < µλ.
This completes the proof of Part (i). Part (ii) follows by symmetry and Part (iii) is an
easy consequence from Parts (i), (ii). ¤

In practice, the verification of conditions (7.47) and (7.48) is far from easy, as each
of them involves the evaluation of the principal eigenvalue of a second order elliptic op-
erator whose associated potential is given through by a positive solution of a semilinear
elliptic boundary value problem. The next results provide us with some easily com-
putable sufficient conditions in terms of the several coefficients involved in the setting of
(1.1) so that (7.47), or (7.48), holds. Our analysis extends to the case of general second
order elliptic operators the estimates of Theorem 2.3 (c) in [26], found for the special
case of operators in divergence form.

Lemma 7.8. Assume that L is a differential operator of the form (2.1) whose coef-
ficients satisfy (2.2). For γ > σΩ

1 [L], let θ[L,γ,f ] denote the positive solution of (3.1).
Then, there exists a positive constant

K = K(L, f, Ω) ≥ max
{‖ϕ‖∞

mf,1
,

1
fL

}
(7.50)

such that
‖θ[L,γ,f ]‖∞ ≤ K(γ − σΩ

1 [L]) ∀ γ ≥ σΩ
1 [L] ,

where ϕ is the principal eigenfunction associated with L, normalized so that
∫

Ω

ϕ2 = 1 ,

and mf,1 is the constant defined in the statement of Lemma 4.3.

Proof. Thanks to Lemma 4.3

dθ[L,γ,f ]

dγ
c{γ=σΩ

1 [L]} =
ϕ

mf,1
,
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and hence, there exist δ > 0 and a constant C > 0 such that

‖θ[L,γ,f ]‖∞ ≤ C(γ − σΩ
1 [L]) (7.51)

for each γ ∈ [σΩ
1 [L], σΩ

1 [L] + δ].
On the other hand, it follows from Corollary 3.3 that

θ[L,γ,f ] ≤
γ − eL

fL
.

Thus, there exists a constant Ĉ > 0 such that
‖θ[L,γ,f ]‖∞
γ − σΩ

1 [L]
≤ γ − eL

γ − σΩ
1 [L]

· 1
fL

≤ Ĉ
1
fL

for each γ ≥ σΩ
1 [L] + δ. This completes the proof. ¤

Theorem 7.9. Assume that L is a differential operator of the form (2.1) whose coeffi-
cients satisfy (2.2), and let K1 := K(L, a,Ω), K2 := K(L, d, Ω) denote the two constants
whose existence was shown by Lemma 7.8. Then, the following assertions are true:

(i) If N ≤ 5, (7.4) and

λ < σΩ
1 [L] , λ < min{σΩ

1 [L]− bMK2(µ− σΩ
1 [L]) , σΩ

1 [L]− bM

dL
(µ− eL)}

are satisfied, then (1.1) possesses a coexistence state.
(ii) If N ≤ 5, (7.5) and

µ < σΩ
1 [L] , µ < min{σΩ

1 [L]− cMK1(λ− σΩ
1 [L]) , σΩ

1 [L]− cM

aL
(λ− eL)}

are satisfied, then (1.1) possesses a coexistence state.

Proof. By Lemma 7.8, we have that

‖θ[L,λ,a]‖∞ ≤ K1(λ− σΩ
1 [L]) , ‖θ[L,µ,d]‖∞ ≤ K2(µ− σΩ

1 [L]) .

Thus, it follows from Theorem 2.3 that
σΩ

1 [L − bθ[L,µ,d]] ≥σΩ
1 [L − bM‖θ[L,µ,d]‖∞] ≥ σΩ

1 [L − bMK2(µ− σΩ
1 [L])]

=σΩ
1 [L]− bMK2(µ− σΩ

1 [L]) .

Similarly,
σΩ

1 [L − cθ[L,λ,a]] ≥ σΩ
1 [L]− cMK1(λ− σΩ

1 [L]) .

On the other hand, Corollary 3.3 implies

θ[L,λ,a] ≤
λ− eL

aL
, θ[L,µ,d] ≤

µ− eL

dL
,

and the same argument as above shows that

σΩ
1 [L − cθ[L,λ,a]] ≥ σΩ

1 [L]− cM

aL
(λ− eL) ,

σΩ
1 [L − bθ[L,µ,d]] ≥ σΩ

1 [L]− bM

dL
(µ− eL) .

Theorem 7.7 completes the proof. ¤
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8. The maximum principle. Multiplicity results. In this section we use the
abstract theory of [2] to show that the method of sub and supersolutions is valid for
(1.1). Then, we use it to analyze the structure of the set of λ’s (or µ’s) for which (1.1)
possesses a coexistence state and to get some multiplicity results of coexistence states.
The basic technical tool to prove these results is the strong maximum principle for linear
cooperative systems. The validity of the strong maximum principle is guaranteed if, for
instance, we assume that

b(x) > 0 , c(x) > 0 , ∀x ∈ Ω . (8.1)

So, for the rest of this section we shall assume that this condition is satisfied.

8.1. The strong maximum principle for cooperative systems. If (u0, v0) is a
coexistence state of (1.1), then its linearized stability is given by the eigenvalues of the
linearization of (1.1) at (u0, v0), i.e. by the τ ’s for which the following problem has some
solution (u, v) ∈ W 2,p

0 (Ω)×W 2,p
0 (Ω), (u, v) 6= (0, 0), p > N ,

(L1 0
0 L2

)(
u
v

)
= A

(
u
v

)
+ τ

(
u
v

)
, (8.2)

where

A =
(

λ− 2au0 + bv0 bu0

cv0 µ− 2dv0 + cu0

)
. (8.3)

Note that thanks to (8.1) the off-diagonal entries of this matrix are positive and so
the coupling matrix A is of cooperative type. More generally, we consider the linear
cooperative eigenvalue problem (8.2) with (u, v) ∈ W 2,p

0 (Ω)×W 2,p
0 (Ω) for some p > N

and

A =
(

α(x) β(x)
γ(x) ρ(x)

)
, (8.4)

where α, β, γ, ρ ∈ C(Ω) and the off-diagonal entries, β and γ, are positive almost
everywhere in Ω. In the sequel we set

L :=
(L1 0

0 L2

)
−A (8.5)

and suppose that p > N . Now, to state the maximum principle we need some of
notation. Given (u, v) ∈ Lp(Ω) × Lp(Ω), it is said that (u, v) ≥ 0 if u ≥ 0 and v ≥ 0.
If in addition u 6= 0 or v 6= 0, then it is said that (u, v) > 0. A couple (u, v) ∈
W 2,p

0 (Ω) ×W 2,p
0 (Ω) is said to be strongly positive if u(x) > 0, v(x) > 0 for all x ∈ Ω

and ∂nu(x) < 0, ∂nv(x) < 0 for all x ∈ ∂Ω, where n is the outward unit normal at x.

Definition 8.1. The operator L defined by (8.5) is said to satisfy the strong maximum
principle in Ω if x := (u, v) ∈ W 2,p

0 (Ω)×W 2,p
0 (Ω) and Lx > 0 imply that x is strongly

positive.
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Definition 8.2. A function x := (u, v) ∈ W 2,p(Ω) ×W 2,p(Ω) is said to be a superso-
lution of L in Ω if x|∂Ω ≥ 0 and Lx ≥ 0. If in addition Lx > 0, or x|∂Ω > 0, then it is
said that x is a strict supersolution.

Now, using Theorems 2.1, 2.2 of Section 2, the proof of Theorem 2.1 in [24] can
be easily adapted to cover our general setting providing us with the following general
versions of Theorems 2.1, 2.2 of Section 2.

Theorem 8.3. There exists a least eigenvalue of (8.2), denoted by σΩ
1 [L] and called

principal eigenvalue of L in Ω. This eigenvalue is simple and possesses a unique eigen-
function, up to multiplicative constants, which can be taken positive, the so called prin-
cipal eigenfunction of L in Ω. Moreover, the principal eigenfunction is strongly positive
and σΩ

1 [L] is the only eigenvalue of (8.2) possessing a positive eigenfunction. Further-
more, any other eigenvalue σ of (8.2) satisfies

Re σ > σΩ
1 [L]

and (L+ν)−1 ∈ L(Lp(Ω)×Lp(Ω)) is positive, compact and irreducible for ν > −σΩ
1 [L].

Theorem 8.4. The following assertions are equivalent:
(i) σΩ

1 [L] > 0;
(ii) L possesses a positive strict supersolution in W 2,p(Ω)×W 2,p(Ω);
(iii) L satisfies the strong maximum principle.

Moreover, the following generalized maximum principle holds.

Theorem 8.5. If L satisfies the strong maximum principle, then any strict superso-
lution x := (u, v) ∈ W 2,p(Ω) × W 2,p(Ω) of L is positive in Ω. In fact, u(x) > 0 and
v(x) > 0 for all x ∈ Ω. It will simply said that L satisfies the generalized maximum
principle in Ω.

Proof. It is based upon Theorem An of [34]. Thanks to Theorem 8.4, σΩ
1 [L] > 0. Let

h > 0 denote the principal eigenfunction associated with σΩ
1 [L] > 0. We have that

Lh > 0 in Ω. Therefore, thanks to Theorem An of [34], some of the following options
occurs: Either (i) x > 0 in Ω, or (ii) x = 0 in Ω, or (iii) x = αh for some α < 0. Since,
we are assuming that x is a strict supersolution, the options (ii) and (iii) are excluded.
Therefore, x > 0 in Ω. Corollary 2 of [34] completes the proof. ¤

Thanks to these results, for any operator L of the type (8.5) there exists ω such that
L+ν satisfies the the generalized maximum principle for all ν > ω. Therefore, the proof
of Theorem 9.4 of [2] carries over mutatis mutandis to our present situation, showing
that the method of sub and supersolutions works out for the nonlinear model (1.1). To
state our result we need to introduce the concept of sub and supersolution.

Definition 8.6. A positive function x = (u, v) ∈ W 2,p(Ω) × W 2,p(Ω) is said to be a
subsolution of (1.1) if

L1u ≤ λu− a(x)u2 + b(x)u v

L2v ≤ µv − d(x)v2 + c(x)u v
in Ω ,
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and x|∂Ω ≤ 0. Similarly, a positive function x = (u, v) ∈ W 2,p(Ω)×W 2,p(Ω) is said to
be a supersolution of (1.1) if

L1u ≥ λu− a(x)u2 + b(x)u v

L2v ≥ µv − d(x)v2 + c(x)u v
in Ω ,

and x|∂Ω ≥ 0.

Theorem 8.7. Suppose that there exists a subsolution x = (u, v) and a supersolution
x = (u, v) of (1.1) such that x ≤ x. Then, (1.1) possesses a minimal solution x∗ =
(u∗, v∗) and a maximal solution x∗ = (u∗, v∗) in the order interval [x, x]. In particular,
if u > 0 and v > 0, then (1.1) possesses a coexistence state.

Notice that this result is valid for any number of symbiotic species as well and there-
fore it provides us with a substantial generalization of Theorem 3 in [28].

8.2. Structure of the set of λ’s for which (1.1) possesses a coexistence
state. Here, we use Theorem 8.7 to analyze the structure of the set of λ’s (resp. µ’s)
for which (1.1) possesses a coexistence state, denoted by Λ (resp. M). In the case of
small interaction coefficients we have the following result.

Theorem 8.8. Assume (6.1). Then, the following assertions are true:
(i) Assume µ > σΩ

1 [L2]. Then, either Λ = (σΩ
1 [L1 − bθ[L2,µ,d]],∞), or there exists

λ∗ ≤ σΩ
1 [L1 − bθ[L2,µ,d]] such that Λ = [λ∗,∞).

(ii) Assume λ > σΩ
1 [L1]. Then, either M = (σΩ

1 [L2 − cθ[L1,λ,a]],∞) or there exists
µ∗ ≤ σΩ

1 [L2 − cθ[L1,λ,a]] such that M = [µ∗,∞).

Proof. We shall prove (i). Part (ii) follows by symmetry. Assume (6.1) and µ > σΩ
1 [L2].

Then, thanks to Theorem 6.2,

(σΩ
1 [L1 − bθ[L2,µ,d]],∞) ⊂ Λ . (8.6)

Now, suppose that (1.1) possesses a coexistence state (u0, v0) for some λ0 < σΩ
1 [L1 −

bθ[L2,µ,d]]. Then, (u0, v0) is a subsolution of (1.1) for each

λ ∈ (λ0, σ
Ω
1 [L1 − bθ[L2,µ,d]]] . (8.7)

On the other hand, by assumption (6.1) it is rather clear that we can choose a couple
of positive constants (C1, C2) such that for each λ satisfying (8.7)

−aLC1 + bMC2 ≤ (c1)L − λ , cMC1 − dLC2 ≤ (c2)L − µ ,

and u0 < C1, v0 < C2 in Ω. Such couple provides us with a supersolution of (1.1). Thus,
thanks to Theorem 8.7, for each λ satisfying (8.7) problem (1.1) possesses a coexistence
state. Therefore, using (8.6) we find that

[λ0,∞) ⊂ Λ .
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Let λ∗ denote the infimum of the set of λ0 < σΩ
1 [L1−bθ[L2,µ,d]] for which (1.1) possesses

a coexistence state. We have that (λ∗,∞) ⊂ Λ and that

λ∗ < σΩ
1 [L1 − bθ[L2,µ,d]] . (8.8)

Moreover, by Lemma 6.1, λ∗ > −∞ and due to the existence of a priori bounds, there
exists a sequence of positive solutions of (1.1), say (λn, un, vn), n ≥ 1, such that

lim
n→∞

(λn, un, vn) = (λ∗, u∗, v∗) ,

for some non-negative solution (u∗, v∗) of (1.1) with λ = λ∗. Necessarily u∗ > 0 and
v∗ > 0. To show this we argue by contradiction. Indeed, if u∗ = v∗ = 0, then the new
sequences ûn = un

‖un‖ and v̂n = vn

‖vn‖ satisfy

L1ûn = λnûn − a(x)ûnun + b(x)ûnvn

L2v̂n = µv̂n − d(x)v̂nvn + c(x)v̂nun

in Ω , (8.9)

ûn = v̂n = un = vn = 0 on ∂Ω ,

and, since (ûn, v̂n) is uniformly bounded, we can apply a standard bootstrapping argu-
ment and extract a convergent subsequence of (ûn, v̂n), again labeled by n, such that
ûn → w and v̂n → z, as n → ∞, for some w, z ∈ C1

0 (Ω). Necessarily w > 0, z > 0 and
passing to the limit in (8.9) we find that

L1w = λ∗w

L2z = µz
in Ω ,

w = z = 0 on ∂Ω .

By the uniqueness of the principal eigenvalue,

λ∗ = σΩ
1 [L1] , µ = σΩ

1 [L2] ,

and this is impossible, since we are assuming that µ > σΩ
1 [L2].

If u∗ > 0 and v∗ = 0, then we take the sequence (un, v̂n) and the same compactness
argument as above shows that u∗ = θ[L1,λ,a] and that

µ = σΩ
1 [L2 − cθ[L1,λ∗,a]] < σΩ

1 [L2] ,

which is not possible either. Finally, if u∗ = 0 and v∗ > 0, then v∗ = θ[L2,µ,d] and

λ∗ = σΩ
1 [L1 − cθ[L2,µ,d]] ,

which contradicts (8.8). Therefore, u∗ > 0, v∗ > 0 and

Λ = [λ∗,∞) .

This completes the proof. ¤
Similarly, for the case of large interaction coefficients we have the following result.
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Theorem 8.9. Assume L1 = L2 and N ≤ 5. Then the following assertions are true:
(i) Assume (7.4) and λ < σΩ

1 [L1]. Then, either M = (−∞, µλ) or M = (−∞, µ∗] for
some µ∗ ≥ µλ, where µλ is the unique value of µ satisfying λ = σΩ

1 [L1 − bθ[L1,µλ,d]].

(ii) Assume (7.5) and µ < σΩ
1 [L1]. Then, either Λ = (−∞, λµ) or Λ = (−∞, λ∗] for

some λ∗ ≥ λµ, where λµ is the unique value of λ satisfying µ = σΩ
1 [L1 − cθ[L1,λµ,a]].

Proof. We shall prove (i). Part (ii) follows by symmetry. Assume (7.4) and λ < σΩ
1 [L1].

By Theorem 7.7,
(−∞, µλ) ⊂ M . (8.10)

Now, suppose that (1.1) possesses a coexistence state (u0, v0) for some µ0 > µλ. We
now show that (1.1) possesses a coexistence state for each µ ∈ (µλ, µ0]. Assume that

µλ < µ ≤ µ0 .

Then,
λ > σΩ

1 [L1 − bθ[L1,µ,d]] , (8.11)

and hence,
θ[L1−bθ[L1,µ,d],λ,a] > 0 .

Moreover, since λ < σΩ
1 [L1], we have µλ > σΩ

1 [L1] and hence, for each µ ∈ (µλ, µ0] we
find that

θ[L1,µ,d] > 0 .

Now, observe that the couple

(θ[L1−bθ[L1,µ,d],λ,a], θ[L1,µ,d])

provides us with a subsolution of (1.1), and that, thanks to Lemma 3.2, for any coexis-
tence state (u, v) of (1.1) we have

(θ[L1−bθ[L1,µ,d],λ,a], θ[L1,µ,d]) < (u, v) .

In particular,
(θ[L1−bθ[L1,µ0,d],λ,a], θ[L1,µ0,d]) < (u0, v0) .

Thus, thanks again to Lemma 3.2, for each µ ∈ (µλ, µ0) we find that

(θ[L1−bθ[L1,µ,d],λ,a], θ[L1,µ,d]) < (θ[L1−bθ[L1,µ0,d],λ,a], θ[L1,µ0,d]) < (u0, v0) ,

and therefore, it follows from Theorem 8.7 that (1.1) possesses a coexistence state for
each µ ∈ (µλ, µ0].

To complete the proof it suffices to show that (1.1) possesses a coexistence state for
µ = µλ. In the sequel we fix λ and regard to µ as the main bifurcation parameter. By
the last part of Theorem 5.1,

(µ, u, v) = (µλ, 0, θ[L1,µλ,d]) ,
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is the only bifurcation point to coexistence states from the semi-trivial curve (u, v) =
(0, θ[L1,µ,d]) and the maximal component (closed and connected) of coexistence states
emanating from (0, θ[L1,µ,d]) at µ = µλ, denoted by C+

(µ,0,v), is unbounded in R×C1
0 (Ω)×

C1
0 (Ω). Moreover, by the local bifurcation theorem of [7], there exist a neighborhood

N := N (µλ, 0, θ[L1,µλ,d]) of (µλ, 0, θ[L1,µλ,d]) in R×C1
0 (Ω)×C1

0 (Ω), a real number s0 > 0
and an analytic mapping

(µ, u, v) : (−s0, s0) → R× C1
0 (Ω)× C1

0 (Ω)

such that
(µ(0), u(0), v(0)) = (µλ, 0, θ[L1,µλ,d])

and
N ∩ C+

(µ,0,v) = { (µ(s), u(s), v(s)) : s > 0 } .

In fact, the unique coexistence states of (1.1) close to the bifurcation point are those lying
on the curve (µ(s), u(s), v(s)). Since µ(s) is analytic, s0 can be reduced, if necessary, so
that either µ(s) < µλ for each s ∈ (0, s0), or µ(s) = µλ for each s ∈ (0, s0), or µ(s) > µλ

for each s ∈ (0, s0). If µ(s) = µλ for each s ∈ (0, s0) the proof is completed.
Assume that µ(s) < µλ for each s ∈ (0, s0). Since (1.1) possesses a coexistence

state for each µ ∈ (µλ, µ0] and thanks to Theorem 7.4 uniform a priori bounds for the
coexistence states of (1.1) are available in the range µ ∈ [µλ, µ0], from any sequence of
coexistence states of (1.1), say (µn, un, vn), with µn > µλ and µn ↓ µλ, we can substract
a convergent subsequence, relabeled by n, such that

lim
n→∞

(un, vn) = (u∗, v∗)

for some non-negative solution couple (u∗, v∗) of (1.1) with µ = µλ. By the uniqueness
obtained from the application of Crandall Rabinowitz theorem [7],

(µn, un, vn) 6∈ N

for n sufficiently large. Hence, (u∗, v∗) 6= (0, θ[L1,µλ,d]). Moreover, the same compactness
argument as in the proof of Theorem 8.8 shows that (u∗, v∗) 6= (0, 0). Therefore, (u∗, v∗)
must be a coexistence state. This completes the proof in this case.

Finally, assume that µ(s) > µλ for each s ∈ (0, s0) and let C+
1 denote the maximal

subcontinuum of C+
(µ,0,v) outside N . It is clear that C+

1 is unbounded. Thanks to
Theorem 7.4 uniform a priori bounds on compact intervals of µ are available. Moreover,
thanks to Theorem 7.1 (iii), (1.1) does not admit a coexistence state if µ is sufficiently
large. Therefore, C+

1 must go backwards and (1.1) possesses a coexistence state for
µ = µλ as well.

The previous analysis shows that

(−∞, µ0] ⊂ M . (8.12)
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Let µ∗ denote the supremum of the set of µ0 > µλ for which (1.1) possesses a coexistence
state for each µ ∈ (−∞, µ0]. By Theorem 7.1, µ∗ ∈ R. Moreover, µ∗ > µλ and due to
the existence of a priori bounds, there exists a sequence of positive solutions of (1.1),
say (µn, un, vn), n ≥ 1, such that

lim
n→∞

(µn, un, vn) = (µ∗, u∗, v∗) ,

for some non-negative solution (u∗, v∗) of (1.1) with µ = µ∗. The same argument as in
the proof of Theorem 8.8 shows that u∗ > 0 and v∗ > 0. Therefore,

M = (−∞, µ∗] .

This completes the proof. ¤

8.3. Multiplicity results. Here, we use the theory of Section 20 in [2] to give some
multiplicity results. Our main result is the following.

Theorem 8.10. Assume L1 = L2 and N ≤ 5. Then the following assertions are true:
(i) Assume (7.4), λ < σΩ

1 [L1] and M = (−∞, µ∗] with µ∗ > µλ. Then, (1.1) possesses
at least two coexistence states for each µ ∈ (µλ, µ∗).

(ii) Assume (7.5), µ < σΩ
1 [L1] and Λ = (−∞, λ∗] with λ∗ > λµ. Then, (1.1) possesses

at least two coexistence states for each λ ∈ (λµ, λ∗).

Proof. To prove this result we use the fixed point index in cones. It suffices to prove
Theorem 8.10(i), since Part (ii) follows by symmetry. Notice that thanks to the proof
of Theorem 8.9, under the assumptions of Theorem 8.10, Theorem 8.7 guarantees the
existence of a minimal coexistence state, which will be denoted by (uµ, vµ). If not,
from (0, 0) or some of the semi-trivial positive solutions should bifurcate a sequence
of coexistence states and this is not possible by our assumptions on the coefficients of
the model. We now show that (1.1) fits into the abstract setting of [2]. Fix α < µλ,
β > 0 and consider I := [α, µ∗ + β]. Since we have uniform a priori bounds for the
non-negative solutions of (1.1), there exists K > 0 such that

au− bv < λ + K , dv − cu < µ + K ,

for each µ ∈ I and any non-negative solution (u, v) of (1.1). Enlarge K, if necessary, so
that

K > −σΩ
1 [L1] ,

and let e denote the unique solution of

(L1 + K)e = 1 in Ω , e|∂Ω = 0 .

We have e(x) > 0 for each x ∈ Ω and ∂ne(x) < 0 for each x ∈ ∂Ω, where n stands for
the outward unit normal on ∂Ω. Let Ce(Ω) denote the ordered Banach space consisting
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of all functions u ∈ C(Ω) for which there exists a positive constant κ > 0 such that
−κe ≤ u ≤ κe, endowed with the norm

‖u‖e := inf {κ > 0 : −κe ≤ u ≤ κe }

and ordered by its cone of positive functions, P . Then, the operators

Kµ : Ce(Ω)× Ce(Ω) → Ce(Ω)× Ce(Ω)

defined by

Kµ(u, v) =
(

(L1 + K)−1[(λ + K)u− au2 + buv]
(L1 + K)−1[(µ + K)v − dv2 + cuv]

)
,

for each µ ∈ I, are compact and strongly order preserving. Moreover, the solutions of
(1.1) are the fixed points of Kµ. Let Be denote the unit ball of Ce(Ω)×Ce(Ω) and, for
each ρ > 0, Pρ the positive part of ρBe. Since by Theorem 7.4 we have uniform a priori
bounds for the non-negative solutions of (1.1), the fixed point index of Kµ in Pρ makes
sense for sufficiently large ρ. Moreover, we have the following result.

Lemma 8.11. Assume µ ∈ (µλ, µ∗+β]. Then, (0, 0) and (0, θ[L1,µ,d]) are isolated fixed
points of Kµ in P 2 and

i(Kµ, (0, 0)) = i(Kµ, (0, θ[L1,µ,d])) = 0 . (8.13)

Moreover,
i(Kµ, Pρ) = 0 , (8.14)

provided ρ is sufficiently large.

Since µ > µλ, (0, θ[L1,µ,d]) is linearly unstable by Proposition 4.1 in Section 4, and so
i(Kµ, (0, θ[L1,µ,d])) = 0 (cf. [23]). On the other hand, from Lemma 13.1(ii) of [2] follows
that i(Kµ, (0, 0)) = 0 and therefore (8.13) holds. Relation (8.14) follows by homotopy
invariance, taking into account that (0, 0) and (0, θ[L1,µ,d]) are the only non-negative
solutions of (1.1) for µ ∈ (µ∗, µ∗ + β].

Now, we compute the fixed point index of the minimal solution (uµ, vµ) of (1.1). To
do this computation, we use the following lemmas, which are immediate consequences
from Propositions 20.4 and 20.8 of [2], respectively.

Lemma 8.12. If µ ∈ (µλ, µ∗], then the minimal coexistence state (uµ, vµ) of (1.1) is
weakly stable, i.e.

σΩ
1 [Lµ] ≥ 0 , (8.15)

where Lµ is the operator defined by (8.5) with A(x) given by (8.3) and (u0, v0) = (uµ, vµ).
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Lemma 8.13. (i) Let (µ, u, v) = (µ0, u0, v0) be a coexistence state of (1.1) such that

σΩ
1 [Lµ0 ] > 0 , (8.16)

where Lµ0 is the operator defined by (8.5) with A(x) given by (8.3). Then, there ex-
ists ε > 0 and a differentiable mapping (u, v) : (µ0 − ε, µ0 + ε) → P 2 such that
(u(µ0), v(µ0)) = (u0, v0) and (µ, u(µ), v(µ)) is a coexistence state of (1.1) for each
µ ∈ (µ0 − ε, µ0 + ε). Moreover, the mapping µ → (u(µ), v(µ)) is strictly increasing and
there exists a neighborhood Q of (µ0, u0, v0) in R × (Ce(Ω))2 such that if (µ, u, v) ∈ Q
is a solution of (1.1), then (u, v) = (u(µ), v(µ)).

(ii) Assume σΩ
1 [Lµ0 ] = 0, instead of (8.15), and let Φ denote the principal eigen-

function associated with σΩ
1 [Lµ0 ]. Then, there exists ε > 0 and a differentiable mapping

(µ, u, v) : (−ε, ε) → R × P 2 such that (µ(0), u(0), v(0)) = (µ0, u0, v0) and for each
s ∈ (−ε, ε) (µ(s), u(s), v(s)) is a coexistence state of (1.1). Moreover,

µ(s) = µ0 + µ̂(s) , (u(s), v(s)) = (u0, v0) + sΦ + (û(s), v̂(s)) , (8.17)

where µ̂(s) = 0(s), û(s) = o(s) and v̂(s) = o(s) as s → 0, and there exists a neighborhood
Q of (µ0, u0, v0) in R× (Ce(Ω))2 such that if (µ, u, v) ∈ Q is a solution of (1.1), then

(µ, u, v) = (µ(s), u(s), v(s))

for some s ∈ (−ε, ε). Furthermore,

sgn µ′(s) = sgn σΩ
1 [Ls] , (8.18)

where

Ls =
(L1 0

0 L2

)
−

(
λ− 2au(s) + bv(s) bu(s)

cv(s) µ(s)− 2dv(s) + cu(s)

)
.

If σΩ
1 [Lµ] > 0, then the Leray-Schauder formula implies that the local index

i(Kµ, (uµ, vµ)) = 1

and therefore, thanks to Lemma 8.11, (1.1) must have a further coexistence state.
Therefore, in this case the proof is completed.

Now, assume that σΩ
1 [Lµ] = 0 and let (µ(s), u(s), v(s)) denote the curve of coexistence

states through by (µ, uµ, vµ), for s = 0, whose existence is guaranteed by Lemma 8.13.
Since Φ > 0, (u(s), v(s)) is strictly increasing and hence, if µ(s) = µ for some s 6= 0,
then (1.1) possesses two coexistence states. Namely, (uµ, vµ) and (u(s), v(s)). Thus,
without loss of generality we can assume that

µ(s) 6= µ ∀ 0 < |s| < ε . (8.19)
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We claim that
µ(s) < µ ∀ s ∈ (−ε, 0) . (8.20)

Indeed, if there exists s1 < 0 such that µ1 := µ(s1) ≥ µ, then

(u(s1), v(s1)) < (u(0), v(0)) = (uµ, vµ) ≤ (uµ1 , vµ1) , (8.21)

since (u(s), v(s)) is increasing in s and the minimal solution is non-decreasing in µ. Here,
(uµ1 , vµ1) stands for the minimal coexistence state of (1.1) for µ = µ1. Relation (8.21)
contradicts the minimality of (uµ1 , vµ1). Thus, (8.20) get shown. Moreover, by (8.19),
either µ(s) < µ for all s ∈ (0, ε), or µ(s) > µ for all s ∈ (0, ε), so we can distinguish two
cases:

Case a: Assume that µ(s) < µ for all s ∈ (0, ε). Then, since µ < µ∗ and (1.1)
possesses a coexistence state for each value of the parameter in [µ, µ∗], there exists a
sequence of coexistence states (µn, un, vn), n ≥ 1, such that limn→∞ µn = µ and µn > µ
for all n ≥ 1. By the existence of uniform a priori bounds, without loss of generality we
can assume that

lim
n→∞

(un, vn) = (u0, v0) ,

for some non-negative solution (u0, v0) of (1.1). Since λ < σΩ
1 [L1] and µ > µλ, with a

similar argument as in the proof of Theorem 8.8, it is easily seen that (µ, u0, v0) is a
coexistence state. Moreover, by the uniqueness obtained as an application of Lemma
8.13(ii), (µn, un, vn) 6∈ Q for each n ≥ 1 and hence, (µ, u0, v0) 6∈ Q. In particular,
(µ, u0, v0) 6= (µ, uµ, vµ) and therefore, (1.1) possesses at least two coexistence states.

Case b: Now, assume that

µ(s) > µ ∀s ∈ (0, ε) . (8.22)

Then, thanks to Lemma 8.13(ii), (µ, uµ, vµ) is an isolated solution of (1.1) and so
i(Kµ, (uµ, vµ)) is well defined. By Lemma 8.11, to complete the proof of Theorem
8.10, it suffices to show that

i(Kµ, (uµ, vµ)) = 1 . (8.23)

By (8.22) there exists s1 ∈ (0, ε) for which µ′(s1) > 0. By (8.18), σΩ
1 [Ls1 ] > 0 and there-

fore, we find from Theorem 8.3 and the linearized stability principle that (u(s1), v(s1))
is exponentially asymptotically stable. Thus, Leray-Schauder’s formula implies

i(Kµ(s1), (u(s1), v(s1))) = 1 . (8.24)

Since (µ(s1), u(s1), v(s1)) is non-degenerate and s → (u(s), v(s)) is increasing there
exists δ > 0 such that if

ρ1 := ‖(u(s1), v(s1))‖e − δ , ρ2 := ‖(uµ, vµ)‖e − δ ,

then (1.1) does not admit a coexistence state in

[µ(s1), µ(s1) + δ]× ∂(Pρ1 \ P ρ2) .
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Moreover, by the uniqueness of Lemma 8.13(ii), δ > 0 can be chosen so that (1.1) does
not have a coexistence state in Pρ1 \ P ρ2 for µ = µ(s1) + δ either. Thus, the homotopy
invariance implies

i(Kµ(s1), Pρ1 \ P ρ2) = 0 . (8.25)

Now, for δ > 0 sufficiently small set

ρ := ‖(u(s1), v(s1)‖e + δ .

By (8.24), (8.25), we find that

i(Kµ(s1), Pρ \ P ρ2) = 1 .

Moreover, by the monotonicity of (u(s), v(s)) and the uniqueness given by Lemma
8.13(ii), (1.1) does not admit a coexistence state on

[µ, µ(s1)]× ∂(Pρ \ Pρ2) .

This implies (8.23) and completes the proof of the theorem. ¤
Similarly, for the case of small interaction coefficients we have the following result.

Theorem 8.14. Assume (6.1). Then following assertions are true:
(i) Assume µ > σΩ

1 [L2] and Λ = [λ∗,∞) with λ∗ < σΩ
1 [L1 − b(x)θ[L2,µ,d]]. Then,

(1.1) possesses at least two coexistence states for each λ ∈ (λ∗, σΩ
1 [L1 − b(x)θ[L2,µ,d]]).

(ii) Assume λ > σΩ
1 [L1] and M = [µ∗∞) with µ∗ < σΩ

1 [L2 − c(x)θ[L1,λ,a]]. Then,
(1.1) possesses at least two coexistence states for each µ ∈ (µ∗, σΩ

1 [L2 − c(x)θ[L1,λ,a]]).

Proof. Being the proof rather similar to the proof of Theorem 8.10, we are only to sketch
it. By symmetry, it suffices to show Part (ii).

Let (µ∗, u∗, v∗) be a coexistence state of (1.1). Then, it is easily seen that for each
µ ∈ (µ∗, σΩ

1 [L2 − c(x)θ[L1,λ,a]])

x = (u∗, v∗) , x = (K1,K2),

is an ordered sub-supersolution pair of (1.1) provided K1 and K2 are sufficiently large
positive constants. Moreover, thanks to Lemma 6.2, if K1 and K2 are sufficiently large,
then any coexistence state of (1.1) lies in the order interval [0, x]. Therefore, (1.1)
possesses a maximal coexistence state within the interval [x, x], denoted by (uµ, vµ).
Thanks to Proposition 7.8 of [2], (uµ, vµ) is weakly stable and so σΩ

1 [Lµ] ≥ 0 where Lµ

is the operator defined by (8.5) with A(x) given by (8.3) and (u0, v0) = (uµ, vµ).
If σΩ

1 [Lµ] > 0 the same argument of the proof of Theorem 8.10 completes the proof
of Theorem 8.11.
If σΩ

1 [Lµ] = 0 arguing as in the proof of Theorem 8.10 we find that

µ(s) > µ ∀s ∈ (0, ε) ,
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and two different situations may arise:
Case a. If µ(s) > µ for s ∈ (−ε, 0), then the same argument of the proof of Theorem

8.10 applies to complete the proof of this one.
Case b. If µ(s) < µ for s ∈ (−ε, 0), then there exists s1 < 0 such that µ′(s1) > 0 and

hence,
i(Kµ(s1), (u(s1), v(s1))) = 1 .

Now, setting

ρ1 := ‖(uµ, vµ)‖e + δ, ρ2 := ‖(u(s1), v(s1))‖e + δ, ρ := ‖(u(s1), v(s1))‖e − δ.

yields

i(Kµ(s1), Pρ1 \ P ρ2) = 0 , i(Kµ(s1), Pρ1 \ P ρ) = 1 , i(Kµ, Pρ1 \ P ρ) = 1 ,

and therefore,
i(Kµ, (uµ, vµ)) = 1 .

This completes the proof. ¤

9. On the uniqueness of the coexistence state. In this section we give a unique-
ness result in the case of small interaction coefficients. When the interaction coefficients
are large we already know that (1.1) exhibits a superlinear character and so its number
of coexistence states might vary drastically when the geometry of the support domain
Ω changes, [8]. Our main uniqueness result is the following.

Theorem 9.1. Assume that (6.1), (6.8) and (8.1) are satisfied and that for any coex-
istence state (u0, v0) of (1.1)

(
u0

v0

)

M

(
v0

u0

)

M

<
(a

b

)
L

(
d

c

)

L

. (9.1)

Then, (1.1) possesses a unique coexistence coexistence. Moreover, it is exponentially
asymptotically stable.

After the proof of this theorem we shall use Theorem 8.7 to get some upper estimates
of the left hand side of (9.1), giving rise to very simple easily computable sufficient
conditions, in terms of the several coefficients involved in the model setting, for the
uniqueness of the coexistence state.

Proof. Under conditions (6.1) and (6.8) we have uniform a priori bounds for the non-
negative solutions of (1.1) and hence the fixed point index in cones can be used as
in Section 8.3. By Proposition 4.1 the semi-trivial positive solutions (θ[L1,λ,a], 0) and
(0, θ[L2,µ,d]) are linearly unstable, if they exist, and a rather standard index computation
shows that each of them has local index zero (cf. [23] for details). Moreover, the state
(0, 0) has index zero and the global index equals one. Therefore, by the principle
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of linearized stability, it suffices to show that under condition (9.1) any coexistence
state is linearly asymptotically stable, since by Leray-Schauder formula any linearly
asymptotically stable solution has local index one. Let (u0, v0) be a coexistence state
of (1.1). Then, the spectrum of the linearization of (1.1) at (u0, v0) is given by the
τ ’s for which the following problem has some solution (u, v) ∈ W 2,p

0 (Ω) × W 2,p
0 (Ω),

(u, v) 6= (0, 0), p > N ,

(L1 + 2au0 − bv0 − λ)u =bu0v + τu ,

(L2 + 2dv0 − cu0 − µ)v =cv0u + τv .
(9.2)

By Theorem 8.3 if we are able to show that there exist u > 0 and v > 0 such that

(L1 + 2au0 − bv0 − λ)u > bu0v , (L2 + 2dv0 − cu0 − µ)v > cv0u , (9.3)

then the principal eigenvalue of (9.2) will be positive and therefore, the linearized sta-
bility of (u0, v0) will follow from Theorem 8.3. Taking (u, v) = (αu0, βv0), where α > 0
and β > 0 have to be found, (9.3) becomes into

αau0 > βbv0 , βdv0 > αcu0 . (9.4)

Now, due to (9.1), it is rather clear that there exist α > 0 and β > 0 satisfying (9.4).
This completes the proof. ¤

The following result provides us with a sufficient condition for (9.1) to be hold.

Proposition 9.2. Assume L1 = L2, b(x) > 0 and c(x) > 0 for each x ∈ Ω,

σΩ
1 [L1] > 0 , bMcM < aLdL , λ > σΩ

1 [L1] , µ > σΩ
1 [L1] , (9.5)

and

aMdM

16aLdL(aLdL − bMcM )2
· (dLλ2 + bMµ2)(aLµ2 + cMλ2)

(λ− σΩ
1 [L1])(µ− σΩ

1 [L1])
·
(

sup
Ω

ψ

ϕ

)2

<
1

bMcM
, (9.6)

where ϕ > 0 is the principal eigenfunction associated with σΩ
1 [L1], normalized so that

‖ϕ‖L∞(Ω) = 1 and ψ > 0 is the unique solution of

L1ψ = 1 in Ω , ψ|∂Ω = 0 .

Then (1.1) has exactly one coexistence state.

Proof. We claim that for each t > 1 the couple (ut, vt) defined by

ut :=
t(dLλ2 + bMµ2)
4(aLdL − bMcM )

ψ , vt :=
t(aLµ2 + cMλ2)
4(aLdL − bMcM )

ψ ,
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is a strict supersolution of (1.1). To prove this it suffices to show that

1 ≥ ψ · [λ− t(a(x)K1 − b(x)K2)ψ] ,

1 ≥ ψ · [µ− t(d(x)K2 − c(x)K1)ψ] ,
(9.7)

where

K1 =
dLλ2 + bMµ2

4(aLdL − bMcM )
, K2 =

aLµ2 + cMλ2

4(aLdL − bMcM )
.

Since

sup
ξ≥0

(A−Bξ)ξ =
A2

4B
,

we find that for each t ≥ 1,

ψ · [λ− t(a(x)K1 − b(x)K2)ψ] ≤ λ2

4t(a(x)K1 − b(x)K2)
≤ λ2

4(aLK1 − bMK2)
.

Similarly,

ψ · [µ− t(d(x)K2 − c(x)K1)ψ] ≤ µ2

4(aLK2 − bMK1)
.

Thus, the following conditions imply (9.7)

λ2 = 4(aLK1 − bMK2) , µ2 = 4(aLK2 − bMK1) .

Since these conditions are satisfied by the choice of K1 and K2 itself, the claim above
get shown.

Now, we need the following generalized version of the sweeping maximum principle
of [28], whose proof is postponed up to the end of the proof of Proposition 9.2.

Lemma 9.3. Let x = (u, v) ∈ W 2,p
0 (Ω)×W 2,p

0 (Ω), p > N , be a solution of the problem

L1u = f(x, u, v)

L2v = g(x, u, v)
in Ω ,

u = v = 0 on ∂Ω ,

where f and g are two continuous functions in x and of class C1 in (u, v), f increasing
in v, and g increasing in u. For each t ∈ (t0, t1], let xt = (ut, vt) ∈ W 2,p

0 (Ω)×W 2,p
0 (Ω)

be a strict supersolution of this problem. Assume that xt is continuous and strictly
increasing in t, that xt1 −x is strongly positive, and that ∂nxt is continuous in t, where
n stands for the outward unit normal to Ω. Then,

x ≤ xt0 .
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Thanks to Lemma 9.3, we find that

u0 ≤ dLλ2 + bMµ2

4(aLdL − bMcM )
ψ , v0 ≤ aLµ2 + cMλ2

4(aLdL − bMcM )
ψ , (9.8)

for any coexistence state (u0, v0) of (1.1). Similarly, it follows from Lemma 3.2 that

u0 ≥ θ[L1,λ,a] ≥
λ− σΩ

1 [L1]
aM

ϕ , v0 ≥ θ[L1,µ,d] ≥
µ− σΩ

1 [L1]
dM

ϕ . (9.9)

Finally, using (9.8) and (9.9), it is easily seen that (9.6) implies (9.1). Theorem 9.1
completes the proof. ¤
Proof of Lemma 9.3. Let t∗ denote the infimum of the set of t ∈ (t0, t1) for which x−xt

is strongly positive. We claim that t∗ = t0. On the contrary, assume that t∗ > t0.
By our assumptions it is rather clear that there exists K > 0 such that each of the
mappings

u → f(·, u, v) + Ku , v → g(·, u, v) + Kv ,

is increasing and K > −min{σΩ
1 [L1], σΩ

1 [L2]}. Since xt∗ is a strict supersolution of the
problem, some of its components, say ut∗ , satisfies

(L1 + K)(ut∗ − u) > f(·, ut∗ , vt∗) + Kut∗ − f(·, u, v)−Ku > 0 .

Thus, the strong maximum principle implies that ut∗ − u is strongly positive. This
contradicts the minimality of t∗ and completes the proof. ¤

Note that, thanks to the strong maximum principle, ϕ and ψ are strongly positive
and hence, supΩ

ψ
ϕ is well defined.

The estimates given by the following result will be used to find out another sufficient
condition for (9.1).

Lemma 9.4. Assume L1 = L2, b(x) > 0 and c(x) > 0 for each x ∈ Ω, and

bMcM < aLdL , λ ≥ µ > σΩ
1 [L1] .

Then, for any coexistence state (u, v) of (1.1) the following estimates hold

M1 θ[L1,µ,d] ≤ u ≤ N1 θ[L1,λ,a] , (9.10)

M2 θ[L1,µ,d] ≤ v ≤ N2 θ[L1,λ,a] , (9.11)

where

N1 =
aM (dL + bM )
aLdL − cMbM

, N2 =
aM (aL + cM )
aLdL − cMbM

,

M1 = max
{

dL(bL + dM )
aMdM − cLbL

,
(bL + dL)[dM (aM + cM )− cLdL]
aM [dM (aM + cM )− cL(bL + dL)]

}
,
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M2 = max
{

dL(cL + aM )
aMdM − cLbL

,
dM (aM + cM )

dM (aM + cM )− cL(bL + dL)

}
.

Proof. Since
N1aL − bMN2 = aM , N2dL −N1cM = aM ,

for each t ≥ 1 we have that

t(N1aL −N2bM )− aM ≥ 0 , t(N2dL −N1cM )− aM ≥ 0 . (9.12)

Now, thanks to (9.12) it is easily seen that for each t > 1 the couple (ut, vt) defined by

(ut, vt) := t (N1θ[L1,λ,a], N2θ[L1,λ,a])

is a strict supersolution of (1.1). Therefore, thanks to Lemma 9.3, the upper estimates
in (9.10) and (9.11) get shown.

Now, in order to prove the validity of the lower estimates in (9.10), (9.11) we will
adapt a device coming from [17]. A reiterative application of Lemma 3.2 shows that

αnθ[L1,µ,d] ≤ u , βnθ[L1,µ,d] ≤ v , (9.13)

for each n ≥ 1, where

αn =
dL + bLβn−1

aM
, βn =

dL + cLαn−1

dM
, α0 = dL/aM , β0 = 1 .

Thus, passing to the limit as n →∞ yields

αθ[L1,µ,d] ≤ u , βθ[L1,µ,d] ≤ v ,

where

α =
dL(bL + dM )
aMdM − bLcL

, β =
dL(cL + aM )
aMdM − bLcL

.

This provides us with half of the lower estimates in (9.10), (9.11). Now, it follows from
Lemma 7.2 (ii) that v/K ≥ θ[L1,µ,d], where

K =
dM (cM + aM )

dM (aM + cM )− cL(bL + dL)
.

Thus,
L1 = λu− a(x)u2 + b(x)uv ≥ µu− a(x)u2 + bLKθ[L1,µ,d]u

and hence, u is a supersolution of

L1w = (µ + bLKθ[L1,µ,d])w − a(x)w2 in Ω ,
w = 0 on ∂Ω .

(9.14)
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Therefore, Theorem 3.1 implies

θ[L1−bLKθ[L1,µ,d],µ,a] ≤ u .

Finally, a further application of Lemma 3.2 shows that

Bθ[L1,µ,d] ≤ θ[L1−bLKθ[L1,µ,d],µ,a] ,

where

B =
(bL + dL)[dM (aM + cM )− cLdL]
aM [dM (aM + cM )− cL(bL + dL)]

.

This completes the proof. Note that K and B are positive constants. ¤
Now, as an immediate consequence from Theorem 9.1 and Lemma 9.4 we obtain the

following result.

Corollary 9.5. Assume L1 = L2, b(x) > 0 and c(x) > 0 for each x ∈ Ω,

bMcM < aLdL , λ ≥ µ > σΩ
1 [L1] ,

and
N1

M2
· N2

M1

(
sup
Ω

θ[L1,λ,a]

θ[L1,µ,d]

)2

<
aLdL

bMcM
. (9.15)

Then, (1.1) possesses a unique coexistence state.

Note that since θ[L1,λ,a] and θ[L1,µ,d] are strongly positive, supΩ

θ[L1,λ,a]

θ[L1,µ,d]
is well defined.

Remark 9.6. (i) If a, b, c and d are assumed to be constant, then

M1 =
d(b + d)
ad− cb

, M2 =
d(c + a)
ad− cb

,

although in case a = b = c = 1 there are choices of d(x) for which some of these relations
fails.

(ii) If a, b, c and d are constant, then (9.15) becomes into the condition found in
Theorem 3.3 of [17].

(iii) As a consequence from Proposition 9.2 and Corollary 9.5, it follows that if one
of the interaction coefficients (b or c) is small, then (1.1) possesses a unique coexistence
state. For some special classes of domains and differential operators, how small should
be b or c to have uniqueness can be estimated in terms of the several coefficients of the
model. For instance, if Ω = (0, π), L1 = L2 = − d2

dx2 and a = d = 1, then σΩ
1 [L1] = 1,

ϕ(x) = sin(x), ψ(x) = x(π − x)/2, supΩ
ψ
ϕ = π/2 and the estimate (9.15) becomes into

R(λ, µ) := sup
Ω

θ[L1,λ,1]

θ[L1,µ,1]
<

1√
bc

. (9.16)
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Some explicit estimates of R(λ, µ) were found in [17] and [1]. Namely, in [17] it was
shown that

R2(λ, µ) ≤ λ3

(µ− 1)2
. (9.17)

Therefore, thanks to Corollary 9.5, (1.1) possesses a unique coexistence state provided

bc <
(µ− 1)2

λ3
. (9.18)

(iv) In many cases Proposition 9.2 is sharper than Corollary 9.5. Indeed, in the
previous example (9.6) becomes into

bc <
64
π2
· (λ− 1)(µ− 1)(1− bc)2

(λ2 + bµ2)(µ2 + cλ2)
. (9.19)

Thus, if λ = 2, µ = 1.5 and c = 1, (9.18) becomes into b < 1/32 ' 0.031, while (9.19)
becomes into b < b0 with b0 ' 0.099. Therefore, in this case (9.19) is sharper than
(9.18).

Under the assumptions of Theorem 9.1, the problem of the global attractivity of
the coexistence state with respect to the cone of positive functions in both components
is very difficult to handle with. This is in strong contrast with the competing species
counterpart of (1.1), where due to the compressivity of the model (cf [14]) the uniqueness
of a stable coexistence state implies its global attractivity as a result from the abstract
theory of [9]. Nevertheless, the presence of uniform a priori bounds in the context of
Theorem 9.1 allows us to apply the following result of [15] to the parabolic system
associated with (1.1).

Theorem 9.7. Assume that T is a strongly positive monotone continuous dynamical
system on X where the cone K has non-empty interior and X is separable. Moreover,
assume that O(x) (the positive semi-orbit of x) is compact for each x ∈ X. Then,
there exists a dense subset A of X such that if x ∈ A, then ω(x) (the ω-limit of x), is
contained in the set of stationary points.

Using this result we obtain the following one.

Theorem 9.8. Assume that bMcM < aLdL, λ > σΩ
1 [L1], µ > σΩ

1 [L2], b(x) > 0,
c(x) > 0, for each x ∈ Ω, and that (1.1) possesses a unique coexistence state, say
(uc, vc). Consider the following parabolic reaction diffusion problem

∂tu + L1u =λu− au2 + buv ,

∂tv + L2v =µv − dv2 + cuv ,
in Ω× (0,∞) ,

u|∂Ω = v|∂Ω = 0 , t > 0 ,

u(x, 0) = u0(x) , v(x, 0) = v0(x) , x ∈ Ω ,
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where u0 , v0 ∈ C(Ω). Then, the solution of this problem (u(x, t; u0, v0), v(x, t; u0, v0))
is defined for all t > 0 and there exists a dense subset A of (C(Ω))2 such that if u0 > 0,
v0 > 0 and (u0, v0) ∈ A, then

lim
t→∞

‖u(x, t; u0, v0)− uc‖L∞(Ω) = lim
t→∞

‖v(x, t; u0, v0)− vc‖L∞(Ω) = 0 .

Proof. By Theorem 9.7 we know that if (u0, v0) ∈ A, then the solution of the previous
parabolic problem, denoted by (u(x, t; u0, v0), v(x, t;u0, v0)), converges to some steady
state. It suffices to show that if u0 > 0 and v0 > 0, then it converges to a coexistence
state. Indeed, it follows from the parabolic maximum principle that

u(x, t;u0, v0) ≥ Φ[L1,λ,a](x, t; u0) , v(x, t; u0, v0) ≥ Φ[L2,µ,d](x, t; v0) ,

where Φ[L,γ,f ](x, t; z0) stands for the unique positive solution of

∂tz + L = γz − fz2 in Ω× (0,∞) ,

z|∂Ω = 0 , t > 0 ,

z(x, 0) = z0(x) , x ∈ Ω .

Since for γ > σΩ
1 [L] the positive steady state of this problem, θ[L,γ,f ], is a global attractor

for any positive solution, we have that

lim
t→∞

‖Φ[L1,λ,a](x, t; u0)− θ[L1,λ,a]‖L∞(Ω) = lim
t→∞

‖Φ[L2,µ,d](x, t; u0)− θ[L2,µ,d]‖L∞(Ω) = 0 .

Thus,

lim inf
t→∞

u(x, t;u0, v0) ≥ θ[L1,λ,a] > 0 , lim inf
t→∞

v(x, t; u0, v0) ≥ θ[L2,µ,d] > 0 ,

and therefore, the solution must converge to a coexistence state; necessarily (uc, vc),
since it is unique. ¤

10. Local bifurcation analysis. In this section we analyze the local structure of the
set of positive solutions of (1.1) near

(λ, µ, u, v) = (σΩ
1 [L1], σΩ

1 [L2], 0, 0) .

To make this analysis we will find out the bifurcation equations at this singularity
through by a Lyapunov-Schmidt decomposition of (1.1). In the special case when L1

and L2 are perturbations of the Laplacian by some continuous potentials this analysis
has been already done in [10], [11], and [12].
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10.1. The bifurcation equations. Throughout this section we will consider the
Banach spaces

U = W 2,p(Ω) ∩W 1,p
0 (Ω) , V = Lp(Ω) , p > N .

Let ϕj , ϕ∗j denote the principal eigenfunctions associated with Lj and L∗j , respectively,
j = 1, 2, normalized so that

∫

Ω

ϕ2
j = 1 ,

∫

Ω

ϕjϕ
∗
j = 1 , j = 1 , 2 .

Let Li : U → V, i = 1 , 2, be the differential operators defined by

L1 = −L1 + σΩ
1 [L1] , L2 = −L2 + σΩ

1 [L2] ,

and consider the operator L : U2 → V2 defined by

L(u, v) = (L1u, L2v) .

The null space of L, denoted by N [L], is given by

N [L] = { (rϕ1, sϕ2) : r , s ∈ R } .

To short notations, we will denote by (λold, µold) the original parameters (λ, µ) in (1.1)
and introduce the new parameters

(λ, µ) = (λold, µold)− (σΩ
1 [L1], σΩ

1 [L2]) .

Then, the solutions of (1.1) can be regarded as the zeros of the nonlinear mapping
F : U2 × R2 → V2 defined by

F (u, v, λ, µ) :=
(

L1u + λu− au2 + buv
L2v + µv − dv2 + cuv

)
.

Let P : V2 → N [L] denote the projection

P (u, v) := (P1u, P2v) :=
(

(
∫

Ω

ϕ∗1u)ϕ1 , (
∫

Ω

ϕ∗2v)ϕ2

)
.

Then, Q := IV2 − P is a projection of V2 onto the complement of N [L], denoted by
W = W1×W2, where Wi stands for the complement of N [Li] in V, i = 1 , 2. Once fixed
the projection P , each element (u, v) ∈ U2 ⊂ V2 admits a unique decomposition of the
form (u, v) = Φ + w with Φ ∈ N [L] and w ∈ W. Namely,

Φ = (Φ1, Φ2) := P (u, v) , w = (w1, w2) := (I − P )(u, v) .
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Since L(u, v) = Lw and for each w ∈ W QLw = Lw, setting

N(u, v, λ, µ) = (λu− au2 + buv, µv − dv2 + cuv)

it is easily seen that the equation F (u, v, λ, µ) = 0 is equivalent to the system

PLw + PN(Φ1 + w1, Φ2 + w2, λ, µ) = 0 , Lw + QN(Φ1 + w1, Φ2 + w2, λ, µ) = 0 .

Since the operator L : W ∩U2 → V2 is a topological isomorphism, the implicit function
theorem implies that there exists a neighborhood N of 0 ∈ N [L]×R2 and a real analytic
function w : N → W such that w(0) = 0 and for each (Φ1,Φ2, λ, µ) ∈ N

L(w(Φ1,Φ2, λ, µ)) + QN((Φ1, Φ2) + w(Φ1,Φ2, λ, µ), λ, µ) = 0 . (10.1)

Thus, there exists a neighborhood M of 0 ∈ U2 × R2 such that the solutions of (1.1)
within M are in one-one correspondence with the solutions of the following equation

f(r, s, λ, µ) := PN((Φ1, Φ2) + w(Φ1, Φ2, λ, µ), λ, µ) = 0 (10.2)

withinN×R2. Notice that PLw = 0. Equation (10.2) is often referred as the bifurcation
equation. Computing the Taylor series of f := (f1, f2) up to third order terms, gives

f1(r, s, λ, µ) =λr + r(−a1r + a2s)

+ r(−b1r
2 + b2rs− b3s

2 + d1λr − d2λs)

+ O(3, (r, s, λ, µ))) ,

f2(r, s, λ, µ) =µs + s(a3r − a4s)

+ s(−b4r
2 + b5rs− b6s

2 − d3µr + d4µs)

+ O(3, (r, s, λ, µ))) ,

(10.3)

where Φ = (rϕ1, sϕ2), O(3, (r, s, λ, µ)) stands for terms of order three in the variables
(r, s, λ, µ), as (r, s, λ, µ) → 0, and the several coefficients involved in (10.3) are given by

a1 =
∫

Ω

aϕ2
1ϕ
∗
1 , a2 =

∫

Ω

bϕ1ϕ2ϕ
∗
1 , a3 =

∫

Ω

cϕ1ϕ2ϕ
∗
2 , a4 =

∫

Ω

dϕ2
2ϕ
∗
2 ,

b1 = 2
∫

Ω

aβ1ϕ1ϕ
∗
1 , b2 =

∫

Ω

(2aβ2ϕ1+bβ1ϕ2−bβ3ϕ1)ϕ∗1 , b3 =
∫

Ω

b(β2ϕ2−β4ϕ1)ϕ∗1 ,

b4 =
∫

Ω

c(β3ϕ1−β1ϕ2)ϕ∗2 , b5 =
∫

Ω

(2dβ3ϕ2−cβ2ϕ2+cβ4ϕ1)ϕ∗2 , b6 = 2
∫

Ω

dϕ2β4ϕ
∗
2 ,

d1 =
∫

Ω

β1ϕ
∗
1 , d2 =

∫

Ω

β2ϕ
∗
1 , d3 =

∫

Ω

β3ϕ
∗
2 , d4 =

∫

Ω

β4ϕ
∗
2 ,
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where the βi’s i = 1, . . . , 4 are the unique solutions of the following linear boundary
value problems

L1β1 = Q1aϕ2
1 , β1|∂Ω = 0 ,

∫

Ω

β1ϕ1 = 0 ,

L1β2 = Q1bϕ1ϕ2 , β2|∂Ω = 0 ,

∫

Ω

β2ϕ1 = 0 ,

L2β3 = Q2cϕ1ϕ2 , β3|∂Ω = 0 ,

∫

Ω

β3ϕ2 = 0 ,

L2β4 = Q2dϕ2
2 , β4|∂Ω = 0 ,

∫

Ω

β4ϕ2 = 0 .

Observe that the bifurcation equation (10.2) is of the form

λr + rp(r, s, λ, µ) = 0

µs + sq(r, s, λ, µ) = 0
(10.4)

where p and q are given by (10.3). Thus, as it occurs with (1.1), there are three types
of non-negative solutions of (10.4). Those on the manifold of trivial solutions

M0 := {(0, 0, λ, µ) : λ, µ ∈ (−ε, ε)} ,

where ε > 0 is sufficiently small, those lying on the manifolds of semi-trivial solutions

Mλ := {(t, 0, λ1(t, µ), µ) : t ∈ (0, σ) , µ ∈ (−ε, ε)} ,

Mµ := {(0, t, λ, µ2(t, λ)) : t ∈ (0, σ) , µ ∈ (−ε, ε)} ,

for some σ > 0 small enough, where λ1 and µ2 are the unique solutions around the
origin of

λ1(t, µ) + p(t, 0, λ1(t, µ), µ) = 0 , µ2(t, λ) + q(0, t, λ, µ2(t, λ)) = 0 ,

respectively, and finally, those on the manifold of coexistence solutions

Mco := {(t, τ, λ(t, τ, µ), µ(t, τ, λ)) : t, τ ∈ (0, σ)} ,

where λ(t, τ, µ) and µ(t, τ, λ) are the unique solutions around the origin of the system

λ(t, τ, µ) + p(t, τ, λ(t, τ, µ), µ) = 0 , µ(t, τ, λ) + q(t, τ, λ, µ(t, τ, λ)) = 0 .

As in the situation described by Theorem 6.2 of [10], Mco bifurcates from the mani-
folds Mλ and Mµ along the coexistence curves Λ1,0(t) := (λ1(t), µ1(t)) and Λ0,1(t) :=
(λ2(t), µ2(t)), where µ1 and λ2 are the local solutions of

µ1(t) + q(t, 0, λ1(t, µ1(t)), µ1(t)) = 0 , λ2(t) + p(0, t, λ2(t), µ2(t, λ2(t))) = 0 .

In fact, Λ1,0 and Λ0,1 provide us with a local parametrization at (σΩ
1 [L1], σΩ

1 [L2]) of
the curves of change of stability of the semi-trivial positive solutions µ = σΩ

1 [L2 −
c(x)θ[L1,λ,a]] and λ = σΩ

1 [L1 − b(x)θ[L2,µ,d]], respectively.
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10.2. Finding out the bifurcation directions. As in [10], [11] and [12] we can
use some techniques from singularity theory to analyze the bifurcation equation (10.2).
We point out that in our current situation we are not interested in the problem of
ascertaining whether or not the curve of change of stability of the semi-trivial states
meet or not, since except at (σΩ

1 [L1], σΩ
1 [L2])) when we deal with (1.1) these curves

never meet, in strong contrast with the case of competing species. Now, our interest
will be focused toward the problem of analyzing the bifurcation directions to coexistence
states from the manifolds of semi-trivial states.

The following result is an immediate consequence from our previous analysis and
Theorem 5.1 (i) of [11], where we refer for any further detail.

Theorem 10.1. If
A :=

a2a3

a1a4
6= 1 , (10.5)

then, f is K-equivalent in the sense of [11] to

(r(λ− r + As), s(µ + r − s)) . (10.6)

Moreover, f is its own universal unfolding and A is a modal parameter.

Under condition (10.5), the curves Λ1,0(t) and Λ0,1(t) can be easily calculated. More-
over, the bifurcation directions to coexistence states from the semi-trivial states can be
easily found. As in [10], it suffices finding out the signs of the Jacobian of the mapping
(p, q) along each of the curves of change of stability Λ1,0(t) and Λ0,1(t). These Jacobians
have the values

(prqs − qrps)(t, 0, λ1(t), µ1(s)) = 1−A ,

(prqs − qrps)(0, t, λ2(t), µ2(t)) = 1−A ,

and therefore, the bifurcation is supercritical if A < 1, while it is subcritical if A > 1.
In Figure 3 we describe each of the possible local bifurcation µ-diagrams for a given

λ > σΩ
1 [L1]; the horizontal line represents the semitrivial states Mλ, and the other

curve is filled in by coexistence states Mco. The value of µ where Mco bifurcates from
Mλ is given by µold = σΩ

1 [L2 − c(x)θ[L1,λold,a]]. Stable (resp. unstable) solutions are
represented by solid (resp. dashed) lines. The local qualitative behavior of the solutions
in Mλ is given by Proposition 4.1. Figures 3 (a), (b) show the generic bifurcation
diagrams for A < 1 and A > 1 respectively. By the symmetry of the problem, the
corresponding results are true by fixing µ > σΩ

1 [L2] and using λ as the main bifurcation
parameter.

A priori, the global behavior ofMco is unknown, being strongly dependent on the size
of the interaction coefficients, the geometry of the domain Ω and the spatial dimension
N . Thanks to Theorem 6.2, if bMcM < aLdL, then Mco goes to the right and it is
defined for all values of µ above the bifurcation value, while thanks to Theorem 7.7,
if N ≤ 5 and (7.5) holds, then Mco goes back, being defined for all parameter values
below the critical one. If in the latest case we assume that N > 5, instead of N ≤ 5,
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Mco might not be defined for all these values of the parameter. This is the case if we
make the choice L1 = L2 = −∆, λ = µ, and assume all the coefficients to be constant.
In this example it is easily seen that the lack of a priori bounds forces Mco to blow up
at a finite value of the parameter.

µ

M λ

(a)

M λ

µ(b)

Figure 3: Local bifurcation µ-diagrams.

The following result provides us with a sufficient condition so that A < 1 for all values
of (λ, µ) on the curves of change of stability of the semi-trivial states.

Lemma 10.2. Assume that
bMcM < aLdL, (10.7)

and that either L1 = L2, or both, L1 and L2, are selfadjoint. Then,

A < 1 .

Proof. In case L1 = L2 the result follows readily and so we omit the details. Now,
assume that both L1 and L2 are selfadjoint operators and that (10.7) holds. Then,
ϕj = ϕ∗j , j = 1, 2, and hence,

a2a3 =
(∫

Ω

bϕ2
1ϕ2

)(∫

Ω

cϕ1ϕ
2
2

)
≤ bMcM

(∫

Ω

ϕ2
1ϕ2

)(∫

Ω

ϕ1ϕ
2
2

)

< aLdL

(∫

Ω

ϕ3
1

)2/3 (∫

Ω

ϕ3
2

)1/3 (∫

Ω

ϕ3
2

)2/3 (∫

Ω

ϕ3
1

)1/3

= aLdL

(∫

Ω

ϕ3
1

)(∫

Ω

ϕ3
2

)
≤

(∫

Ω

aϕ3
1

)(∫

Ω

dϕ3
2

)
= a1a4 .

This completes the proof. ¤
Similarly, if instead of (10.7), we assume (7.5) and L1 = L2, then A > 1.
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We should point out that all the previous information is of local nature, i.e. it provides
us with the bifurcation directions to coexistence states from the semi-trivial states for
values of the parameters close to the co-dimension two singularity (σΩ

1 [L1], σΩ
1 [L2]).

Being the problem of finding out global information about the nature of these local
bifurcations very difficult to handle with in our general setting, in the next section we
will restrict ourselves to the consider the very special case when L1 = L2 = −∆ and
all the coefficients are constant. In particular, it will be shown that there are ranges of
the parameters for which there is a change of the bifurcation direction to coexistence
states provided ad−bc > 0 is sufficiently small. This will provide us with some sufficient
conditions so that the model exhibits at least two coexistence states accordingly to the
multiplicity results of Section 8.

If A = 1, then Theorem 10.1 can not be applied and the complexity of the bifurcation
diagrams increase. In this case, Theorem 5.1 (ii) of [11] gives the following result.

Theorem 10.3. Assume A = 1, and set

ε = sign a′ , c = −a2
3a2c

′|a′|−1 ,

where

a′ = −1
2

a4

a3
b2 + b3 − 1

2
a2

a3
b5 +

a2

a4
b6 +

1
2

a2a4

a3
(d1 + d3)− 1

2
a2(d2 + d4) ,

c′ =
a4

a2
b1 − 1

2
a3

a2
b2 + b4 − 1

2
a3

a4
b5 − 1

2
a3(d1 + d3) +

1
2

a2
3

a4
(d2 − d4) .

Then, if a′c′((c′)2 − (a′)2) 6= 0, f is K-equivalent to
(

r(λ− r + s− εs2)

s(µ + r − s− cr2)

)
.

Moreover, the universal unfolding of f is given by
(

r(λ− r + (1 + β)s− εs2)
s(µ + r − s− cr2)

)
(10.8)

and c is a modal parameter. Here, β ' 0 is an unfolding parameter.

From (10.8), the bifurcation directions to coexistence states can be very easily found
out. In our present situation, the signs of the prqs − qrps depend on the parameter t,
as shown by the following identities

(prqs−qrps)(Λ1,0(t)) = −β+2(1+β)ct+ ... , (prqs−qrps)(Λ0,1(t)) = −β+2εt+ ... .

Notice that since Λ1,0(0) = Λ0,1(0) = 0, when t grows Λ1,0(t) and Λ0,1(t) separate from
(σΩ

1 [L1], σΩ
1 [L2]).
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The list bellow provides us with all the bifurcation directions as s grows from zero.
Without lost of generality, we can assume that ε = 1.

1. Bifurcation directions along Λ0,1

1.1- If β > 0, then for values of the parameters sufficiently close to (σΩ
1 [L1], σΩ

1 [L2])
the bifurcation to coexistence states is subcritical, up to some value of the parameter
where it becomes into supercritical.

1.2- If β < 0, then the bifurcation is always supercritical.

2. Bifurcation directions along Λ1,0

2.1- If c > 0 and β > 0, then the situation described in case 1.1 occurs.
2.2- If c > 0 and β < 0, then the bifurcation direction is supercritical.
2.3- c < 0 and β > 0, then the bifurcation direction is subcritical.
2.4- If c < 0 and β < 0, then for values of the parameters sufficiently close to

(σΩ
1 [L1], σΩ

1 [L2]) the bifurcation is supercritical, while after some critical value becomes
subcritical.

We should point out that, due to the symmetry of the problem, if L1 = L2 = −∆
and a′ = c′ = 0, then f is much more degenerate than (10.8). To treat these degenerate
situations we refer to the Appendix of [10].

11. The special case L1 = L2 = −∆ with constant coefficients. Throughout this
section we assume that L1 = L2 = −∆ and that a, b, c and d are constant. After a
change of variables we can assume that

a = d = 1 .

In the sequel we use the notation

σ1[q] := σΩ
1 [−∆ + q] , σ1 := σ1[0] , θγ := θ[−∆,γ,1] ,

and extend the definition of θγ taking θγ := 0 for γ ≤ σ1. As an immediate consequence
from the results in the previous sections we obtain the following global theorem, which
is a substantial improvement of all the previous results in the references.

Theorem 11.1. (i) Assume bc < 1. Then, the following assertions are true:
(i.1) If any of the semi-trivial positive solutions is linearly unstable, then (1.1) possesses
a coexistence state. If in addition λ > σ1, µ > σ1, then there exists I0 > 0 such
that if either b < I0 or c < I0, then the coexistence state is unique and exponentially
asymptotically stable.
(i.2) If for (λ, µ) = (λ0, µ0) some of the semi-trivial positive solutions is linearly stable
and (1.1) possesses a coexistence state, then it possesses a coexistence state for each
(λ, µ) satisfying λ ≥ λ0, µ ≥ µ0, and at least two coexistence states if λ > λ0, µ > µ0

and some of the semi-trivial positive solutions is linearly stable.
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(i.3) For each λ ∈ R, there exists µext(λ) ∈ R such that (1.1) does not admit a coexis-
tence state if µ ≤ µext(λ). Similarly, for each µ ∈ R, there exists λext(µ) ∈ R such that
(1.1) does not admit a coexistence state if λ ≤ λext(µ). Moreover, thanks to Lemma
6.2,

µext(λ) ≥ (1− bc)σ1 − cλ , λext(µ) ≥ (1− bc)σ1 − bµ . (11.1)

(ii) Assume bc > 1. Then, the following assertions are true:

(ii.1) If N ≤ 5 and some of the semi-trivial positive solutions is linearly stable, then
(1.1) possesses a coexistence state.

(ii.2) If N ≤ 5 and there exists (λ, µ) = (λ0, µ0) for which (1.1) possesses a coexistence
state being any of the semi-trivial states linearly unstable, then (1.1) possesses a coex-
istence state for each (λ, µ) satisfying λ ≤ λ0 and µ ≤ µ0, and at least two coexistence
states if λ < λ0 and µ < µ0 and any of the semi-trivial states is linearly unstable.

(ii.3) For each λ ∈ R, there exists µext(λ) ∈ R such that (1.1) does not admit a coexis-
tence state if µ ≥ µext(λ). Similarly, for each µ ∈ R, there exists λext(µ) ∈ R such that
(1.1) does not admit a coexistence state if λ ≥ λext(µ).

The first goal of this section is finding out sharper estimates than (11.1) for the values
of λext(µ) and µext(λ) in the case bc < 1. Our main result in this direction reads as
follows:

Theorem 11.2. Assume bc < 1 and

λ > σ1 , λ ≥ µ > σ1[−c
1 + b

1− bc
θλ] . (11.2)

Then,

u ≤ 1 + b

1− bc
θλ , v ≤ θ[−∆−c 1+b

1−bc θλ,µ,1] , (11.3)

for any coexistence state (u, v) of (1.1). Therefore, if λ > σ1 and

µ ≤ max{σ1[−c
1 + b

1− bc
θλ] , σ1(1− bc)− cλ } (11.4)

then (1.1) does not admit a coexistence state. By symmetry, the same result holds if
µ > σ1 and

λ ≤ max{σ1[−b
1 + c

1− bc
θµ] , σ1(1− bc)− bµ }.

Proof. Thanks to Lemma 7.2, (1+b)v ≤ (1+c)u and hence, we find from the u-equation
of the system that

−∆u ≤ λu− 1− bc

1 + b
u2 .
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Thus, Lemma 3.2 implies the first upper estimate of (11.3). Substituting this estimate
into the v-equation of the system gives

(−∆− c
1 + b

1− bc
θλ)v ≤ µv − v2 ,

and Lemma 3.2 completes the proof of (11.3). The remaining assertions follow readily
from Theorem 3.1 and Theorem 11.1 (i.3). ¤
Remark 11.3. The curve defined by the right hand side of (11.4) meets (σ1, σ1) at the
value λ = σ1, since limλ↓σ1 θλ = 0 and hence,

lim
λ↓σ1

max{σ1[−c
1 + b

1− bc
θλ] , σ1(1− bc)− cλ } = lim

λ↓σ1
σ1[−c

1 + b

1− bc
θλ] = σ1 ,

thanks to the continuous dependence of the principal eigenvalue with respect to the
potential. Therefore, the estimate of the extinction region given by (11.4) is optimal for
values of λ ' σ1.

Moreover, (11.4) is also optimal for values of λ varying on compact subintervals of
[σ1,∞) provided b is sufficiently small, as the following result shows.

Theorem 11.4. Assume bc < 1, λ > σ1 and µ < σ1[−cθλ]. Then, there exists b0 =
b(λ) > 0 such that (1.1) does not admit a coexistence state if b ∈ [0, b0]. Moreover, b(λ)
varies continously with λ.

Proof. The function

h(b) := −c
1 + b

1− bc
,

is decreasing and it satisfies

h(0) = −c , lim
b↑c−1

h(b) = −∞ .

Thus, there exists a unique b0 = b(λ) > 0 such that

µ = σ1[−c
1 + b0

1− b0c
θλ] < σ1[−cθλ] .

Therefore, for b ∈ [0, b0] we have that

µ ≤ σ1[−c
1 + b

1− bc
θλ] ≤ σ1[−cθλ]

and Theorem 11.2 completes the proof. ¤
Remark 11.5. Thanks to the estimate (4.10) in the proof of Theorem 4.1 in [25], we find
that

σ1[−c
1 + b

1− bc
θλ] ≤ σ1 − c

1 + b

1− bc
(λ− σ1)
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and therefore, the following estimate for µext(λ) is obtained

µext(λ) ≥
{

σ1 − c 1+b
1−bc (λ− σ1) if λ ≤ σ1

b(2−bc)+1
b(c+1) ,

σ1(1− bc)− cλ if λ > σ1
b(2−bc)+1

b(c+1) .

This estimate provides us with some very readily computable sufficent condition in
terms of the several coefficients involved in the model setting for the extinction of the
species v.

In Figure 4 we have represented the curve of change of stability of (θλ, 0) together
with the boundary of the extinction region given by the estimate (11.4); for values of
(λ, µ) in the bright grey region the model possesses a coexistence state, while for the
values of (λ, µ) in the darker region the species v is driven to extinction by u.

λ

µ

µ=

(σ

F

1

(λ)

,σ 1 )

Figure 4: The coexistence and extinction regions.

In the next result we complete the local analysis of Section 10 by giving some sufficient
conditions for completely ascertaining the bifurcation directions to coexistence states in
the case bc > 1.
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Theorem 11.6. Assume bc > 1, bc ≥ 2 + c and fix λ > σ1. Then the bifurcation
direction to coexistence states from (µ, u, v) = (σ1[−cθλ], θλ, 0) is subcritical. By sym-
metry, if bc > 1, bc ≥ 2 + b and we fix µ > σ1, then the bifurcation direction from
(λ, u, v) = (σ1[−bθµ], 0, θµ) is subcritical.

Proof. Let (µ(s), u(s), v(s)) denote the local curve of coexistence states emanating from
(θλ, 0) at µ = σ1[−cθλ]. The main theorem of [7] guarantees that µ(s) is real analytic
in s and hence it possesses an expansion of the form

µ(s) = σ1[−cθλ] + sµ1(λ) + O(s2) , as s → 0 ,

for some µ1(λ) ∈ R. A rather standard calculation shows that (cf. [6] and [10] for
details)

µ1(λ) = (2 + c)−1[(2 + c− bc)
∫

Ω

ϕ3
λ − bc(λ− σ1[−cθλ])

∫

Ω

ϕ2
λR(λ)ϕλ] , (11.5)

where R(λ) := (−∆ + 2θλ − λ)−1 and ϕλ > 0 is the principal eigenfunction associated
with σ1[−cθλ] normalized so that ‖ϕλ‖2 = 1. This completes the proof. ¤

Modulo the change of b and c by −b and −c, respectively, the formula (5.2) of [10]
provides us with the sign of µ1(λ) for λ ' σ1.

Lemma 11.7. (i) If λ is sufficiently close to σ1, then

sign µ1(λ) = sign (1− bc) .

(ii) Similarly, for µ ' σ1,

sign λ1(µ) = sign (1− bc) ,

where λ1(µ) = dλ
ds |s=0. Here, λ(s) stands for the λ-component of the curve of coexistence

states emanating from (λ, u, v) = (σ1[−bθµ], 0, θµ), whose existence is guaranteed by
Theorem 5.1.

We now show how change the bifurcation directions to coexistence states along the
semi-trivial branches as bc grows from the critical value 1, so completing the results of
Section 10. For this we will use the local bifurcation analysis already done in Section 10.
Interexchanging the roles of b and c in [10] by −b by −c here, we obtain the bifurcation
equation

λr − rp(r, s, λ, µ, b, c) = 0 , µs− sq(r, s, λ, µ, b, c) = 0 , (11.6)

where q(r, s, λ, µ, b, c) = p(s, r, µ, λ, c, b) and

p(r, s, λ, µ, b, c) = M(r − bs) + N [2r2 − b(3− c)rs− b(1− b)s2]

+ K{5r3 − b(c2 − 4c + 10)r2s− 3b[(1− b)(1− c)− b]rs2

− b(b2 − 2b + 2)s3}
+ L[2λr2 − b(3λ− cµ)rs− b(µ− bλ)s2]

+ O(4, (r, s, λ, µ)) ,
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where M , N , K, L are the constants defined by (3.6) in [10]. We should point out that if
bc = 1, then the constants a′ and c′ of the statement of Theorem 10.2 equal zero, and so
Theorem 10.2 does not cover this case. This is why to analyze the change of criticality
of the local bifurcations from the semi-trivial branches third order terms are needed.
Our main result in this direction is the following, where the notations introduced in
Section 10 are kept.

Theorem 11.8. If bc− 1 > 0 is sufficiently small, then there exists a unique change of
criticality in a neighborhood of the origin along each of the curves Mλ and Mµ.

Proof. After some strightforward manipulations, we find that

λ1(t) = Mt + 2Nt2 + (5K + 2LM)t3 + O(t4) , (11.7a)

µ1(t) = −Mct−Nc(1− c)t2 − (Kc(c2 − 2c + 2) + LMc(1 + c2))t3 + O(t4) . (11.7b)

Thus, setting
Jac1(t) = (prqs − psqr)(t, 0, λ1(t), µ1(t)) ,

and substituting (11.7) in it gives

Jac1(t) = εM2 + ε(4− 3c)NMt + [2(c + 1)2(KM −N2) + εFc]t2 + O(t3) ,

where

ε := 1− bc , Fc = M2L(3c2 + 4) + KM(4c2 − 7c + 13) + N2(2c2 − 8c + 2) .

Making the change of variables

ε = −τ2 , s = s0τ ,

and setting

Jac1(τ, s0) :=
Jac1(−τ2, s0τ)

τ2
, P := 2(c + 1)2(KM −N2) ,

it is easily seen that

Jac1(τ, s0) = −M2 − (4− 3c)NMs0τ + Ps2
0 − τ2s2

0Fc + O(s3
0τ) ,

We already know that P > 0 (cf. [10], pg. 109). Moreover, we have that

Jac1(0,
M√
P

) = 0 , Ds0Jac1(0,
M√
P

) = 2
√

PM 6= 0 .

Thus, thanks to the implicit function theorem, there exists a unique function s0 such
that for each τ ' 0

s0(0) = M(P )−1/2 , Jac1(τ, s0(τ)) = 0 .

Henceforth,
Jac1(−τ2, s0(τ)τ) = 0 .

Therefore, there exists a unique t(ε) > 0 such that

Jac1(t(ε)) = 0 .

By symmetry, the remaining assertions get shown. This completes the proof. ¤
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Some further discussion. We now summarize the information given by the results in
the last two sections. For this, it is convenient regarding b and c as the main parameters
of the model. More precisely, we will fix c > 0 and vary b. Thanks to Lemma 10.2, if
b < c−1, then the bifurcation directions to coexistence states are supercritical. Thanks
to Theorem 11.8, there exists ε0 = ε0(c) > 0 such that if c−1 < b < (1 + ε0)c−1 then
the bifurcation directions are subcritical for (λ, µ) close to (σ1, σ1), in fact this holds
in a

√
bc− 1-neighborhood of (σ1, σ1), while they become supercritical outside this

neighborhood, within another slightly larger neighborhood of (σ1, σ1). Now, since the
curves bc = 2+b and bc = 2+c in the statement of Theorem 11.6 meet at (b, c) = (2, 2),
changing their relative positions as c acrosses 2, two different cases must be considered.
If c < 2, then we find from Theorem 11.6 that (1 + ε0)c−1 < 1 + 2

c , since for bc ≥ c + 2
all bifurcation directions from (θλ, 0) became subcritical. If c < 1, then our results
do not provide us with any further global information about the bifurcation directions
along (0, θµ), while in case 1 < c < 2 it follows from Theorem 11.6 that if b increases
up to acrossing some critical value, necessarily less than 2

c−1 , then all bifurcations to
coexistence states from (0, θµ) will change to subcritical either. In case c > 2 these
global changes in the nature of the bifurcations occur in the converse order. Now, any
bifurcation direction from (θλ, 0) is subcritical if b > 2

c+1 and moreover all bifurcation
directions from any of the semi-trivial states are subcritical if b > 1 + 2

c .

c

b

bc=1

bc=2+b

bc=2+cG

L

G

λ

Gµ

Figure 5: Varying b and c.

In Figure 5 we have summarized all the previous information. The first quadrant is
divided into four regions. The bright grey region stands for bc < 1, where we only have
local information; the black region, which is a thin streep above bc > 1, where we know
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that the local change of criticality occurs; the regions Gλ and Gµ, in between bc = 2+ c
and bc = 2+b, where we know that the bifurcation direction from one of the semi-trivial
branches, respectively (θλ, 0) and (0, θµ), is always subcritical but no global information
about the nature of the bifurcation along the remaining semi-trivial branch is available;
in the region G, thanks to Theorem 11.6 all bifurcation directions are subcritical, and
finally the region L, where only local information is supplied by our analysis. By the
continuous dependence of the bifurcation directions with respect to (λ, µ, b, c), if we
move away from L towards Gλ∪Gµ (or the region G), any point of change of criticality
on any of the semi-trivial branches should vary along this branch up to either meet with
another point of change of criticality or grow up to infinity. In the first case, both points
of change of criticality shrink at the meeting value and then dismiss. To complete our
discussion, in Figure 6 we have represented a typical bifurcation diagram for a value of
(b, c) lying the black area of Figure 5; a value of (b, c) where the points of change of
criticality are still close to the co-dimension two singularity (σ1, σ1).

λ

µ

µ= F (λ)

(σ 1 ,σ1 )

Figure 6: Local bifurcation diagrams along the curve of change of stability.
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