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‡Departamento de Matemátia Apliada,Universidad Complutense de Madrid, 28040,Instituto de Cienias MatemátiasCSIC-UAM-UC3M-UCM, MADRIDlanga�us.es arober�mat.um.es suarez�us.esAbstratIn this paper we study in detail the pullbak and forwards attrationsto non-autonomous ompetition Lotka-Volterra system. In partiular,under some onditions on the parameters, we prove the existene of aunique non-degenerate global solution for these models, whih attratsany other omplete bounded trajetory. For that we present thesub-supertrajetory tool as a generalization of the now lassial sub-supersolution method.Key words: Sub-supertrajetory method, Lotka-Volterra ompetition system,attrating omplete trajetories.AMS subjet lassi�ations: 35B40, 35K55, 92D25, 37L05.1 IntrodutionIn this paper we ollet some results from [6℄ and [7℄ to analyze the asymptotidynamis of the following non-autonomous Lotka-Volterra ompetition model





ut − ∆u = u(λ(t, x) − a(t, x)u − b(t, x)v) x ∈ Ω, t > s
vt − ∆v = v(µ(t, x) − c(t, x)u− d(t, x)v) x ∈ Ω, t > s
u = v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs.
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92 J.A. Langa, A. Rodríguez-Bernal, A. SuárezHere, u and v represent the population densities of two speies within a habitat
Ω, a bounded and smooth domain in IRN , N ≥ 1, whih ompete in the habitat.
λ, µ are the growth rates of the speies, b, c are the interation rates between thespeies, a, d desribe the limiting e�ets of rowding in eah population. We areassuming that Ω is fully surrounded by inhospitable areas, sine the populationdensities are subjet to homogeneous Dirihlet boundary onditions. us, vs areregular and positive funtions whih implies that the solution of (1) satis�es
u, v ≥ 0.In this work we are interested in determining the asymptoti behaviour ofsolutions of the system (1). This is a very ompliated task, and only partialresults are known. For example in the autonomous ase (all the oe�ients in(1) are onstants) and denoting by Λ0 the prinipal eigenvalue assoiated to−∆,then if λ or µ ≤ Λ0, then one of the two speies (or both of them) will be drivento extintion. However, there exist two inreasing maps F,G : [Λ0,∞) 7→ IRsuh that if

λ > G(µ) and µ > F (λ),then (1) is permanent and moreover there exists a positive equilibrium solution(see Cantrell et al. [2℄ and López-Gómez [9℄).When non-autonomous terms are allowed in the equations, this is usuallydone under the assumption of periodiity, quasiperiodiity or almost periodiity,and in this ase similar results an be obtained to those for autonomousequations (see Hess [4℄, Hetzer and Shen [5℄ and referenes there in).Cantrell and Cosner [1℄ assume general non-autonomous terms that arebounded by periodi funtions, and using a omparison method give onditionson λ and µ that guarantee that (1) is permanent.In [6℄ we show that, under a smallness ondition on the oupling oe�ients
bc, if there exists a bounded and bounded away from zero omplete trajetoriesof (1), it is the unique suh trajetory, and it also desribes the unique pullbakand forwards attrating for (1), i.e. (u∗, v∗) is a bounded trajetory suh that,for any s ∈ IR and for any positive solution (u(t, s), v(t, s)) of (1) de�ned for
t > s, one has

(u(t, s) − u∗(t), v(t, s) − v∗(t)) → (0, 0) as t→ ∞, or s→ −∞. (2)In this work (see [7℄) we show that this trajetory really exists. To thisend we introdue the sub-supertrajetory method as a tool to get existene ofintermediate omplete trajetories assoiated to (1). Note that our onstrutionis independent of whether or not (1) has monotoniity properties. Note alsothat the usual way in previous works (for instane [6℄, [11℄) to get existeneof omplete trajetories assoiated to a partiular system is by means of thepullbak attrator. The sub-supertrajetory method adopts a di�erent and, inthis ase, more fruitful strategy. Moreover, we also get the existene of minimaland maximal global bounded trajetories assoiated to ordered systems.In Setion 2 we present the sub-supertrajetory tool, Setion 3 is devotedto the logisti equation whih appears when one speies is absent. Finally, inSetion 4 we show the results of system (1).



Non-autonomous Lotka-Volterra ompetition model 932 The sub-supertrajetory method for omplete solutionsConsider the general problem




ut − ∆u = f(t, x, u, v) x ∈ Ω, t > s
vt − ∆v = g(t, x, u, v) x ∈ Ω, t > s
u = v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs,

(3)where f, g are bounded on bounded sets of IR × Ω × IR2 and are loally Hölderontinuous in time. We denote the solutions of (3) as
u(t, s;us, vs), v(t, s;us, vs), for t > s.De�nition 1 A pair of funtions (u, v) ∈ C1,2

t,x (IR×Ω) is a omplete trajetoryof (3), if for all s < t in IR, (u(t), v(t)) is the solution of (3) with initial data
us = u(s), vs = v(s).De�nition 2 A positive funtion u(t, x) is non�degenerate at ∞ (respetively
−∞) if there exists t0 ∈ IR suh that u is de�ned in [t0,∞) (respetively
(−∞, t0]) and there exists a C1

0 (Ω) funtion ϕ0(x) > 0 in Ω, suh that forall x ∈ Ω, u(t, x) ≥ ϕ0(x) for all t ≥ t0 (respetively for all t ≤ t0).The use of sub-supertrajetory pairs to onstrut omplete solutions an befound in Chueshov [3℄ or Langa and Suárez [8℄. Both referenes use monotoniityproperties of the equations, see Corollaries 2 and 3 below. In partiular thisapplies to salar equations. Here we use similar ideas to onstrut boundedomplete trajetories, without suh monotoniity assumptions.Given T0 ≤ ∞ and two funtions w, z ∈ C((−∞, T0) × Ω) with w ≤ z wedenote
[w, z] := {u ∈ C((−∞, T0) × Ω) : w ≤ u ≤ z}.Now we introdue the onept of omplete sub-supertrajetory pair.De�nition 3 Let T0 ≤ ∞ and (u, v), (u, v) ∈ X = C1,2

t,x ((−∞, T0) × Ω). Wesay that (u, v) − (u, v) is a omplete sub-supertrajetory pair of (3) if1. u(t) ≤ u(t) and v(t) ≤ v(t) in Ω, for all t < T0.2. u ≤ 0 ≤ u and v ≤ 0 ≤ v on ∂Ω, for all t < T0.3. For all x ∈ Ω, t < T0

ut − ∆u− f(t, x, u, v) ≤ 0 ≤ ut − ∆u− f(t, x, u, v), ∀v ∈ [v, v],
vt − ∆v − g(t, x, u, v) ≤ 0 ≤ vt − ∆v − g(t, x, u, v), ∀u ∈ [u, u].Note that the onept of a sub-supersolution pair, de�ned for t > s, hasbeen widely used and developed, see e.g. Pao [10℄, to onstrut solutions forthe initial value problem (3). The main result of this setion is:



94 J.A. Langa, A. Rodríguez-Bernal, A. SuárezTheorem 1 Assume that there exists a omplete sub-supertrajetory pair of(3), (u, v) − (u, v), in the sense of De�nition 3. Moreover, assume u, v, u and
v are bounded at −∞. Then, there exists a omplete trajetory (u∗, v∗) ∈ X of(3) suh that

(u∗, v∗) ∈ I := [u, u] × [v, v].When f and g have some monotoniity properties, we an go further:Corollary 2 Under the assumptions of Theorem 1, assume moreover that f isinreasing in v and g in u. Then, there exist two omplete trajetories (u∗, v∗)and (u∗, v∗) of (3) with (u∗, v∗), (u∗, v∗) ∈ I := [u, u] × [v, v] suh that theyare minimal and maximal in I in the following sense: for any other ompletetrajetory (u, v) ∈ I we have:
u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),
v(t) ≤ v∗(t) ≤ v(t) ≤ v∗(t) ≤ v(t),

for all t < T0. (4)Corollary 3 Under the assumptions of Theorem 1, assume moreover that f isdereasing in v and g in u. Then, there exist two omplete trajetories (u∗, v∗)and (u∗, v∗) of (3) with (u∗, v∗), (u∗, v∗) ∈ I := [u, u] × [v, v] and suh thatthey are minimal-maximal and maximal-minimal in the following sense: forany other omplete trajetory (u, v) ∈ I we have:
u(t) ≤ u∗(t) ≤ u(t) ≤ u∗(t) ≤ u(t),
v(t) ≤ v∗(t) ≤ v(t) ≤ v∗(t) ≤ v(t),

for all t < T0. (5)3 The non-autonomous logisti equationNote that (1) always admits semi-trivial trajetories of the form (u, 0) or (0, v).In this ase, when one speies is not present, the other one satis�es the logistiequation 



ut − ∆u = h(t, x)u − g(t, x)u2 in Ω, t > s
u = 0 on ∂Ω,
u(s) = us ≥ 0 in Ω. (6)It is well known that if

hM := sup
Q

h(t, x) <∞ and gL := inf
Q
g(t, x) > 0, (7)then, for every non-trivial us ∈ C(Ω), us ≥ 0, there exists a unique positivesolution of (6) denoted by Θ[h,g](t, s;us).On the other hand, for m ∈ L∞(Ω) we denote by Λ(m), the �rst eigenvalue of

−∆u = λu +m(x)u in Ω, u = 0 on ∂Ω.In partiular, we denote by Λ0 := Λ(0). It is well known that Λ(m) is asimple eigenvalue with a positive eigenfuntion, and a ontinuous and dereasingfuntion of m.



Non-autonomous Lotka-Volterra ompetition model 95Finally, for h, g ∈ L∞(Ω) with gL := inf{g(x), x ∈ Ω} > 0 onsider theellipti equation {
−∆u = h(x)u − g(x)u2 in Ω,
u = 0 on ∂Ω. (8)It is well known that (8) possesses a unique positive solution if, and only if,

Λ(h) < 0, whih we denote by ω[h,g](x).In the following result (see [12℄, [11℄ and [7℄ for a omplete study of (6)) weshow the existene and properties of a omplete nonnegative trajetory for (6).For this we will assume heneforth that h(t, x) and g(t, x) satisfy (7) and thereexist bounded funtions h±0 (x) and H±
0 (x) de�ned in Ω suh that

lim sup
t→±∞

sup
x∈Ω

(
h(t, x) −H±

0 (x)
)
≤ 0, 0 ≤ lim inf

t→±∞
inf
x∈Ω

(
h(t, x) − h±0 (x)

)
. (9)Proposition 4 Assume (7) and (9). Then:i) There exists a maximal bounded omplete trajetory, denoted by ϕ[h,g](t), of(6), in the sense that, for any other non-negative omplete bounded trajetory

ξ(t) of (6) we have
0 ≤ ξ(t) ≤ ϕ[h,g](t), t ∈ IR.Moreover, if ϕ[h,g](t, x) is nondegenerate at −∞ then it is the only one ofsuh solutions.ii) If Λ(H−

0 ) > 0, then ϕ[h,g](t) = 0 for all t ∈ IR. Therefore all non-negativesolutions of (6) onverge to 0, uniformly in Ω, in the pullbak sense.iii) If Λ(h−0 ) < 0 then ϕ[h,g] is the unique omplete bounded and non-degeneratetrajetory at −∞ of (6), and for t in ompat sets of IR, if s 7→ us ≥ 0 isbounded and non-degenerate, then
Θ[h,g](t, s;us) − ϕ[h,g](t) → 0 as s→ −∞ uniformly in Ω.iv) If Λ(H+

0 ) > 0, then for all us ∈ C(Ω), us ≥ 0, the positive solution of
(6) satis�es Θ[h,g](t, s;us) → 0 uniformly in Ω as t → ∞. In partiular,
ϕ[h,g](t) → 0 uniformly in Ω as t→ ∞.v) If Λ(h+

0 ) < 0 and ϕ[h,g] 6= 0, then ϕ[h,g] is non-degenerate at ∞ and for any
s and any non-trivial initial data us ≥ 0,

Θ[h,g](t, s;us) − ϕ[h,g](t) → 0 in C1(Ω) as t→ ∞.4 Appliations to the Lotka-Volterra ompetition modelWe assume from now on that λ, µ ∈ IR and
aL, dL, bL, cL > 0. (10)We will assume that there exist quantities a±I ≤ a±S , b±I ≤ b±S , c±I ≤ c±S and

d±I ≤ d±S suh that
0 < a±I ≤ a(t, x) ≤ a±S , 0 < b±I ≤ b(t, x) ≤ b±S ,
0 < c±I ≤ c(t, x) ≤ c±S , 0 < d±I ≤ d(t, x) ≤ d±S ,

(11)



96 J.A. Langa, A. Rodríguez-Bernal, A. Suárezfor all x ∈ Ω and for all t ≥ t0 or t ≤ t0. In the following result we show theexistene of a omplete trajetory of (1).Proposition 5 (Competitive ase) There exists a omplete trajetory
(u∗, v∗) of (1) with
ϕ[λ−bϕ[µ,d],a](t) ≤ u∗(t) ≤ ϕ[λ,a](t), ϕ[µ−cϕ[λ,a],d](t) ≤ v∗(t) ≤ ϕ[µ,d](t), t ∈ IR.Moreover, if (11) is satis�ed for very negative t and

λ > Λ(−b−Sω[µ,d−

I
]) and µ > Λ(−c−Sω[λ,a−

I
]), (12)then (u∗, v∗) is non-degenerate at −∞.If moreover (11) is satis�ed for large and very negative t, (12) and

λ > Λ(−b+Sω[µ,d+
I

]) and µ > Λ(−c+Sω[λ,a+
I

]) (13)holds, then (u∗, v∗) is non-degenerate at ∞.Proof . Note that in this ase f is dereasing in v and g in u. It is enoughto take
(u, u) = (ϕ[λ−bϕ[µ,d],a], ϕ[λ,a]) and (v, v) = (ϕ[µ−cϕ[λ,a],d], ϕ[µ,d]).Moreover, if λ and µ satisfy (12), resp. (13), then by Proposition 6 we obtainthat u and v are non-degenerate at −∞, resp. +∞. �Now, we an summarize the results for the system (1).Theorem 6 (Competitive ase)1. If λ < Λ0 and µ < Λ0

lim
s→−∞

(u(t, s;us, vs), v(t, s;us, vs)) = lim
t→∞

(u(t, s;us, vs), v(t, s;us, vs)) = (0, 0).2. If λ < Λ0 and µ > Λ0, then
lim

t→∞
u(t, s;us, vs) = 0,and for every nonnegative nontrivial ṽs we have

lim
t→∞

(
v(t, s;us, vs) − Θ[µ,d](t, s; ṽs)

)
= lim

t→∞

(
v(t, s;us, vs) − ϕ[µ,d](t)

)
= 0.3. If λ > Λ0 and µ < Λ0 , then

lim
t→∞

v(t, s;us, vs) = 0,and for every nonnegative nontrivial ṽs we have
lim

t→∞

(
u(t, s;us, vs) − Θ[λ,a](t, s; ṽs)

)
= lim

t→∞

(
u(t, s;us, vs) − ϕ[λ,a](t)

)
= 0.



Non-autonomous Lotka-Volterra ompetition model 974. If
λ > Λ(−b−Sω[µ,d−

I
]) and µ > Λ(−c−Sω[λ,a−

I
]), (14)there exists a omplete bounded non-degenerate at −∞ trajetory of (1)

(u∗(t), v∗(t)). Moreover, if b or c are small at −∞, that is,
lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ0for some suitable onstant ρ0 > 0, then this is the unique bounded non-degenerate at −∞ trajetory of (1) and it is pullbak attrating, that is
lim

s→−∞
(u(t, s;us, vs) − u∗(s), v(t, s;us, vs) − v∗(s)) = (0, 0).If moreover

λ > Λ(−b+Sω[µ,d+
I

]) and µ > Λ(−c+Sω[λ,a+
I

]), (15)then (u(t, s;us, vs), v(t, s;us, vs)) is non-degenerate at ∞. If additionally
b or c are small at ∞, that is,

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0for some suitable onstant ρ0 > 0, then all solutions of (1) have the sameasymptoti behavior as t→ ∞. If (14) is also satis�ed, then (u∗(t), v∗(t))is non-degenerate at ∞ and it is also forwards attrating, that is,
lim

t→∞
(u(t, s;us, vs) − u∗(t), v(t, s;us, vs) − v∗(t)) = (0, 0).Remark 1 Similar results an be presented for the prey-predator and symbiosisases.In Figure 1 we desribe the asymptoti dynamial regimes (pullbak -Casea)- and forwards -Case b)) when λ and µ are onstant funtions. Region A:extintion of both speies; Regions B and C: stability of semitrivial ompletetrajetories; Regions DP and DF : permanene regions (existene of global non-degenerate global solutions). The limiting urves are given in (14) and (15).Referenes[1℄ R. S. Cantrell and C. Cosner, Pratial persistene in eologial models viaomparison methods, Pro. Royal So. Edin., 126A (1996) 247-272.[2℄ R. S. Cantrell and C. Cosner, Spatial Eology via Reation-Di�usionEquations, John Wiley & Sons. Ltd. 2003.[3℄ I. Chueshov, Monotone random systems theory and appliations. LetureNotes in Mathematis, 1779. Springer-Verlag, Berlin, 2002.
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