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We have employed the density functional theory formalism to investigate the nematic–isotropic
capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid
crystal molecules~hybrid cell!. We analyze the behavior of the capillary transition as a function of
the fluid–substrate interactions and the pore width. In addition to the usual capillary transition
between isotropiclike to nematiclike states, we find that this transition can be suppressed when one
substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the
system presents interfacelike states which allow us to continuously transform the nematiclike phase
to the isotropiclike phase without undergoing a sharp phase transition. Two different mechanisms for
the disappearance of the capillary transition are identified. When the director of the nematiclike state
is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in
a critical point. This scenario is analogous to the observed in Ising models when confined in slit
pores with opposing surface fields which have critical wetting transitions. When the nematiclike
state has a linearly distorted director field, the capillary transition continuously transforms in a
transition between two nematiclike states. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1829041#

I. INTRODUCTION

The effect of the confinement on simple fluids has been
vastly investigated in the past. Most of studies are related to
the effect of the confinement on the vapor–liquid transition,
the so-called capillary transition. In the case of symmetric
walls, where both walls attract or repel the molecules with
the same strength, the capillary transition in large pores is
governed by the well-known Kelvin law.1 In addition, it may
appear surface phenomenology that can affect the global
phase diagram. Often this surface phenomenology is related
to wetting states found in the single wall cases. The latter
phenomenon is related to the spreading of drops of vapor
~liquid! on the surface in coexistence with the bulk liquid
~vapor!. The presence of these surface states can be consid-
ered in the description of the phase behavior in the confined
system. The generalized Kelvin law for small pores~where
surface phenomenology is more dominant! takes into ac-
count these effects so it is still possible to determine the
vapor–liquid transition for small pores.2 However, the pre-
dictions of the generalized Kelvin law reveal that the wetting
phenomena does not affect essentially the phase diagram of
the confined problem so they are often discarded. An inter-
esting system is thehybrid cell ~also known as asymmetric
cell! where one substrate or wall is repulsive and the other
attractive~competing walls!. In this case, the wetting prop-

erties present in the single wall cases play a crucial role in
the determination of the critical point in the confined prob-
lem. Here, given a pore width, the coexistence of two con-
fined phases characterized by distinct order parameter pro-
files can only occur for temperatures belowTW , which
corresponds to the total wetting temperature of the single
wall cases,3,4 provided the substrate–fluid interaction
strengths are equal in absolute value. A very good insight in
the confined phase diagram topology for the general case in
which the substrate–fluid interaction strengths are neither
equal nor opposing has been reported for a polymer model.5

These studies have elucidated which mechanisms are in-
volved in the surface transitions and how the properties of
the substrate can determine the phase behavior within the
pore. With respect to complex fluids like liquid crystal~LC!
there is an increasing interest in the understanding of the
surface phenomena due to its crucial role in the advance of
the LC technology. For the case of a single wall~semi-
infinite problem! and symmetric pores favoring an specific
orientation on the molecules, theoretical approaches6–12 as
well as computer simulations13–17 reveal that the interaction
wall–fluid particle can strongly affect the ordering not only
close to the surface but also far from it. Additionally to finite
size effects, novel phenomena often appear due to the com-
bined presence of anchoring and orientational wetting tran-
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sitions. The interplay between both surface phenomena and
its dependence on wall properties have been recently studied
by us employing a microscopic density functional theory
~DFT! approach for a simple model of liquid crystal.18 The
effect of confinement by symmetric walls on these surface
transitions was also studied.19 Our findings revealed that as
in the case of simple fluids, the finite-size effects for not very
narrow pores on the phase diagram are not of qualitative
significant importance and only the location of the capillary
transitions are affected by the confinement. However, recent
theoretical20,21 and simulation results20 for hard-sphero-
cylinder models show that for very narrow symmetrical
pores the NI capillary transition may end up in a critical
point.

In a recent paper,22 we extended the study to the case
with an hybrid cell where the surfaces favor antagonist ori-
entations. This geometry has in LCs a particular interest due
to the possible technological applications. This fact has
stimulated an increasing interest by experimentalists and
theoreticians.20,23,24In particular, different nematiclike states
with homogeneous and linearly distorted director fields were
found to coexist under confinement. In the present paper, our
goal is to complete this study with the investigation of the
nematic–isotropic~NI! transition within the hybrid cell.
Quintanaet al. investigated a similar problem employing a
Landau-type theory.25 They claimed that the NI transition
either appears unaffected and its temperatureTNI remains
unchanged or the transition disappears. Basically what deter-
mined the existence of the transition was the value of fluid–
wall interaction strength with respect to the value for the
first-order wetting transition for the semi-infinite systems.
For strength values below this threshold the transition occurs
for all wall separations. In contrast, above the threshold, the
transition disappears for large pore widths, where interfacial-
like states appear. The disappearance of the phase transition
must be understood as the gradual transformation from iso-
tropiclike states to nematiclike states when increasing the
chemical potential or decreasing the temperature, with no
singularities in the free energy associated to the transition.
However, for large pore widths it would be extremely diffi-
cult to distinguish this rounded transition from a true ther-
modynamic phase transition. The interfacial-like states are
related to the wetting states by isotropic and nematic phase
that each wall present in the semi-infinite geometry, respec-
tively.

In this paper we address the same problem of the behav-
ior of the NI capillary transition and its possible disappear-
ance from a more microscopic point of view by using a DFT
approach. Our paper is organized as follows: First, we briefly
present our liquid crystal model in Sec. II. In Sec. III we
revisit and complete the study of a substrate which favors
either planar or homeotropic anchoring in contact with a
nematogen fluid at its isotropic or nematic phase. In particu-
lar, the different wetting regimes are found. This phenom-
enology will be a crucial guide to understand the behavior of
the fluid under confinement. Section IV is devoted to the
study of the fluid adsorbed in a hybrid cell, paying special
attention to the disappearance of the NI capillary transitions

and the mechanisms involved in it. Finally we end up with
our conclusions.

II. THE MODEL

The theoretical model is a standard generalized van der
Waals theory based on a perturbative expansion, using a
hard-sphere~HS! fluid as reference system.8 Details on the
physical basis of the model and how to obtain its solutions
numerically can be found elsewhere.26,27Our starting point is
the grand potential functional per unit system areaA,
V@r#/A, whose functional minimum with respect to the one-
particle distribution function,r~r ,V̂!, which depends on both
molecular positionsr and orientationsV̂, gives the equilib-
rium structure of the interface. This function,r(r ,V̂)
[r(z) f (z,V̂), contains a mass distributionr(z) and an an-
gular distributionf (z,V̂). These quantities vary locally with
the distance fromz50 to z5H, whereH is the pore width.
The expression forV@r#, in a mean field approximation is,

V@r#5Fr@r#1 1
2E E E drdr 8dV̂dV̂8r~r ,V̂!

3r~r 8,V̂8!3v~r2r 8,V̂,V̂8!

2E E drdV̂r~r ,V̂!@m2vW~r ,V̂!#, ~1!

wherem is the chemical potential and

Fr@r#5E dr f hs~r~r !!1kBTE drr~r !^ ln~4p f ~z,V̂!!&

~2!

is the reference system free energy. In the above expression
f hs(r(r )) is the hard-sphere free energy density of a uniform
fluid with a density equal to the local density atr and^¯& is
an angular average. The attractive potentialv contains aniso-
tropic ~dispersion! forces driving the liquid-crystalline be-
havior of the model material:

v~r ,V̂,V̂8!5vA~r !1vB~r !P2~V̂•V̂8!1vC~r !

3@P2~V̂• r̂ !1P2~V̂8"r̂ !#, ~3!

wherer̂5r /r , andr is the center-of-mass distance. The func-
tions vA(r ), vB(r ), vC(r ) are the radial contribution to the
potential as a result of considering dispersion-type forces. In
this work we choose them to have a simple Yukawa form,
i.e., v i(r )52e i exp(2li(r2d))/r for r .d, and v i(r )50
otherwise, whered is the diameter of a hard sphere. ThevB

and vC terms are the responsible of the liquid-crystalline
behavior of our fluid model. So,vB determines the orienta-
tional order in bulk. The effect ofvC on the orientational
ordering is more subtle, since by symmetry its contribution
to the bulk nematic free energy is zero at mean-field level.
However, it plays an important role in determining the ori-
entation of the particles close to interfaces and walls. We
note that a positive value ofeC favors the molecules to ori-
entate parallel to the nematic–vapor~NV! interface and a
negative value favors the perpendicular orientation to NV
interface.28 As this behavior is caused by the absence of ori-
entational ordering in the vapor phase, it is also observed for
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a NI interface and a nematic fluid in contact with a hard wall.
This anisotropyin the orientational configuration of the nem-
atic molecules is essential to understand the phenomenology
in the problem with the walls.

The walls are modelled via the following potentials:

vW
~1!~z,u!5H 1` z,0

2eW
~1!e2lW~z2d!P2~cosu! z.0,

~4!

whereu is the angle between the molecule axis and thez-axis
normal to the substrate. ForeW

(1).0, this potential favors the
molecules to align perpendicularly to the surface~homeotro-
pic anchoring!. The potential corresponding to the other sub-
strate is:

vW
~2!~z,u!5H 1` z.H

eW
~2!e2lW~2~H2z!2d!P2~cosu! z,H,

~5!

which favors the molecules to align in a plane parallel to the
surface foreW

(2).0. However, this preferred alignment corre-
sponds to a random planar anchoring, since there is not a
preferred direction at thexy orientation plane. The param-
eters eW

(1) and eW
(2) measure the substrate–fluid interaction

strength of each substrate.
In our study, we will assume that the nematic director

orientation is embedded in thexz plane. The formalism per-
mits to define the orientation distribution of the molecules
referred to a laboratory reference system, described by three
extrinsicorder parameters,

h~z!5E df sinudu f ~z,V̂!P2~cosu!, ~6!

n~z!5E df sinudu f ~z,V̂!sin 2u cosf, ~7!

s~z!5E df sinudu f ~z,V̂!sin2 u cos 2f. ~8!

The order also can be referred to an intrinsic reference sys-
tem by threeintrinsic order parameters:c the tilt angle de-
fined like the angle formed by the director with thez axis,U
~uniaxial order parameter! the amount of order along the di-
rector andB ~biaxial order parameter! which measures the
amount of order along the perpendicular directions of the
director. The nematic ordering is essentially uniaxial (B
50) far from the substrate. The biaxiality induced by the
surfaces was already discussed in a previous paper.22

These intrinsic order parameters can be obtained in
terms of the set$h,s,n% by the following expressions:

tanc~z!5
n~z!

h~z!2
s~z!

2
1AFh~z!2

s~z!

2 G2

1n~z!2

,

~9!

U~z!5
h~z!

4
1

3

8
s~z!1

3

4
AFh~z!2

s~z!

2 G2

1n~z!2,

~10!

B~z!5
h~z!

2
1

3

4
s~z!2

1

2
AFh~z!2

s~z!

2 G2

1n~z!2.

~11!

It is convenient to define the average density and order pa-
rameter for the confined system as

r̄5
1

H E
0

H

r~z!dz, ~12!

Ū5
1

H E
0

H

U~z!dz. ~13!

As we will also make reference to the semi-infinite prob-
lems, the adsorption in the order parameter is defined as

G5E
0

`

~U2Ub!dz, ~14!

whereUb is the value of the intrinsic nematic order param-
eter of the bulk phase.

Numerical values for the potential parameters were
taken aseA51 ~which sets the temperature scale!, eB /eA

50.847 andeC /eA50.75. The range parametersl i are set,
in units ofd ~throughout we choose this unit to set the length
scale!, to l i52, 4, 1.75,i 5A, B, C respectively, andlW

51. In our calculations the temperature is fixed at the value
T* [kBT/eA50.57, that corresponds to a typical situation in
which vapor, isotropic and nematic phases can be observed.
At this temperature, the isotropic–nematic coexistence oc-
curs for a reduced chemical potentialbm[m/kBT
523.918.

III. THE SEMI-INFINITE CASE

In order to better understanding the behavior of the fluid
inside the pore, we have first considered the semi-infinite
cases of the fluid in presence of a single substrate where the
substrate–fluid interaction potentials given by Eq.~4! either
favor homeotropic or planar alignment, i.e.,eW

(1)[eW.0 or
eW,0, respectively. We are interested in the wetting behav-
ior, so the system will be at bulk nematic–isotropic coexist-
ence, unless stated otherwise. We have considered both situ-
ations in which the bulk fluid is either isotropic or nematic.

First we consider the case of a nematic bulk phase in
presence of the substrate. This situation was studied for sub-
strates that favor homeotropic anchoring in Ref. 18. We ex-
tend this analysis to substrates which favor planar alignment.
For both negative and small positive values ofeW the fluid
far from the substrate orientates parallel to the substrate. For
the case in whicheW,0, biaxiality is developed in a micro-
scopic layer close to the substrate, leading to the decay of the
orientational order in that area. If the substrate favors a ho-
meotropic alignment, we observe a microscopic isotropiclike
layer close to the substrate, corresponding to a partial wet-
ting situation of the substrate–nematic interface by the iso-
tropic phase. AseW is increased, the isotropic layer close to
the substrate becomes macroscopic as the isotropic phase
completely wets the nematic–substrate interface ateW

5eW
w1. Our calculations showed that the wetting transition is

continuous. The orientation far from the substrate remains
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planar in the complete wetting case. By further increasing
eW , an anchoring transition occurs foreW5eW

d , as the nem-
atic orientation changes from planar to homeotropic far from
the substrate, and the wetting becomes partial again since the
isotropic–nematic interface favors a planar anchoring in our
model. The anchoring transition is first order and continues
in the single nematic phase region. However, the complete
wetting with planar orientation state remains metastable up
to eW

m . This fact will be important for the discussion of the
confined cases. For the model parameters considered in this
paper,eW

w1/eA50.470,eW
d /eA50.527, andeW

m/eA50.72.
We turn to the case in which there is an isotropic phase

in bulk. For small values ofueWu, the inhomogeneities of the
density and order parameter profiles are restricted to a mi-
croscopic layer close to the substrate. Although the fluid is
isotropic far from the substrate, the anisotropic character of
the substrate–fluid potential induces a random planar order-
ing near the substrate, i.e., the particles orientate parallel to
the substrate but without any preferred direction in that ori-
entation plane~h,0, s5n50!. Such a condition can be seen
as an extreme biaxial case, whereB52U, i.e., the highest
eigenvalue of the orientational order parameter tensor is two-
fold degenerate. The layer width remains microscopically fi-
nite as the NI coexistence is approached, corresponding to a
partial wetting situation. For large enough values ofueWu, we
observe complete wetting situations. For negative values of
eW and at the NI coexistence, there is a sudden change at
eW5eW

w2 from the previous surface state to a complete wet-
ting state of the isotropic–substrate interface by the nematic
phase. This corresponds to a first order wetting transition.
For our model parameters,eW

w2/eA520.359. Due to its first
order character, there is a prewetting first-order transition for
eW,eW

w2 ~see Fig. 1!. At this transition the particles at the
first layer orientates along some direction parallel to the sub-
strate, breaking the rotational symmetry of the state~see in-
sets of Fig. 1 for the order parameter profiles!. Consequently,

the prewetting transition can be seen as a two-dimensional
isotropic to nematic transition at the fluid layer close to the
substrate. We will denoteI and I N to the surface states with
the random planar and nematic layer close to the wall, re-
spectively. For theI N state, there is also biaxiality near the
substrate, as occurred when there was a nematic fluid in bulk.
A similar behavior was found for the Zwanzig model and
hard spherocylinder fluids,20 although their ‘‘prewetting’’
transition is continuous~second order for the Zwanzig model
and it is expected to be Kosterlitz–Thoulesslike for the
spherocylinder system!. The prewetting surface nematization
transition shifts towards lower chemical potentials aseW is
decreased, and eventually disappears at a critical point.

For large positive values ofeW , i.e., eW /eA.eW
w3/eA

50.691, we also found that the nematic phase completely
wets the isotropic–substrate interface. We have checked in-
directly this by studying the numerically obtained profiles
that minimize our free energy functional. The order param-
eter profiles that we obtain in our numerical minimization are
inhomogeneous along the wetting layer~see Fig. 2!. This fact
is due to the mismatch of anchoring conditions at the inter-
faces. We first note that theintrinsic order parameters are
homogeneous along the wetting layer except close to the
interfaces~see inset in Fig. 2!. So the origin of the inhomo-
geneity of theextrinsicorder parameters is the change of the
orientation of the nematic director field along the wetting
layer. As previously mentioned, the molecules align parallel
to the interface between a nematic and isotropic phase. On
the other hand, the molecules anchor homeotropically close
to the substrate due to the strong anchoring coupling between
the substrate and the fluid. As the nematic layer width di-
verges, it is possible to fulfill both anchoring conditions by
slowly varying the nematic director from homeotropic to pla-
nar anchoring. However, any numerical calculation requires
minimization in a finite rangeR for the z coordinate, impos-
ing bulk isotropic conditions forz.R. In this situation, the
nematic director profile that corresponds to the minimum of

FIG. 1. The adsorptionG plotted vs the chemical potential for a semi-
infinite geometry where the fluid is isotropic in bulk and the substrate favors
homeotropic anchoring. The dashed line corresponds toeW /eA50.3 and the
continuous line toeW /eA50.66. TheI – I N transition for the latter case is
represented by the dotted line. The insets represent the reduced densityr*
[rd3 and extrinsic order parameter profilesh, s, andn for different chemi-
cal potentials andeW /eA50.66.

FIG. 2. Plot of the reduced densityrd3 and extrinsic order parameter pro-
files h, s, andn for eW /eA50.70 andbm523.918, obtained by numerical
minimization for R5435d. Inset: the intrinsic order parametersU and c
corresponding to the same state. The intrinsic order parameterB is zero
except close toz5R ~not shown for clarity!.
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the grand-canonical free energy is expected to be linear, as it
is indeed observed by numerical minimization~see inset of
Fig. 2!. This fact induces a 1/R dependence of the apparent
equilibrium excess grand-canonical free energy~or surface
tension S! due to the elastic deformation. Such decay is
much slower than the usual exponential correction when
elastic deformations are not involved, and we have to con-
sider much larger values ofR to obtain reliable values of the
true equilibrium free energies. AsR increases, the apparent
surface tension decreases and it is always larger than the
complete wetting state excess free energy, that it is the sum
of the surface tensionSwN corresponding to the interface
between substrate and a nematic phase oriented homeotropi-
cally far away, and the surface tensionSNI between corre-
sponding to the nematic-isotropic interface where the nem-
atic phase is planar-anchored with respect to the interface.
The latter surface tension is independent of the fluid-
substrate interactions, and its value isbSNId

2'0.0259 for
the NI coexistence atT* 50.57.

Figure 3 summarizes the results of this section. We rep-
resent the cosine of the contact angleu of a droplet of iso-
tropic phase in coexistence with bulk the nematic phase on a
planar substrate as a function ofeW . The Young equation
states that

cosu5
SwN2SwI

SNI
, ~15!

where SwN , SwI , and SNI are the surface tensions corre-
sponding to the substrate–nematic, substrate–isotropic, and
nematic–isotropic interfaces, respectively. ForeW,eW

d ~in-
cluding negative values!, the nematic director is parallel to
the substrate far from the substrate. Otherwise, the nematic
director is homeotropically anchored. The complete wetting
region corresponds to cosu51. The curve meets the cosu51

line at eW5eW
w1 with no change in slope. This fact is a sig-

nature of the second-order character of the wetting transition.
On the contrary, the curve departs from the cosu51 line at
eW5eW

d with nonzero slope, indicating the first-order char-
acter of the dewetting transition.

Figure 3 also gives information about the wetting prop-
erties when there is an isotropic phase in bulk. By reversing
the roles of the nematic and isotropic phases in Eq.~15!, it is
straightforward to see that the contact angleu8 of a nematic
droplet on a planar substrate is related tou via u85p2u.
Consequently, when cosu521 we observe complete wetting
by nematic phase of the isotropic–substrate interface. This
fact is clear foreW,eW

w2,0. However, fore.eW
w3 the appar-

ent values of cosu are less than21. As previously discussed,
this is a finite-size effect of our numerical calculations and
the predicted value is cosu521. Nevertheless, since the
nematic layer remains finite aseW→eW

w3 from below, the
localization of the wetting transition is quite accurate. For
both wetting transitions ateW

w2 andeW
w3 there is a change of

slope of the cosu curve, that it is in agreement with their
first-order character.

IV. THE CONFINED CASE

We turn to the case of the fluid confined in a hybrid slit
pore, where each substrate favors an antagonist anchoring,
i.e., homeotropic and planar, respectively. Under confine-
ment, it is well known that the bulk transitions have lower-
dimensional counterparts that are known as capillary transi-
tions. The thermodynamic conditions~temperature, pressure,
chemical potential! for such transitions are usually shifted
with respect to the bulk coexistence values. Before consider-
ing our DFT results, we consider the predictions of the
Kelvin equation, which gives the leading order for the shift
on chemical potentialDm5mNI

c 2mNI
b of the capillary

nematic–isotropic transitionmNI
c with respect to the bulk

value mNI
b at large pore widths H. Thermodynamic

considerations2,21,29 show that the chemical potential shift
Dm of a capillary transition with respect to the bulk one
between thea and b phases at a given temperature obeys
asymptotically

Dm'
Sab~cosu11cosu2!

~rb2ra!H
. ~16!

In this expression,Sab is the surface tension for ana–b
interface, andra andrb are the bulk densities of thea andb
phases, respectively. Finally,u1 andu2 are the contact angles
corresponding to the droplets ofa phase that nucleate on
each substrate when the fluid is in bulk in theb phase, re-
spectively. In our case, we can identifya as the isotropic
phase andb as the nematic phase. It is implicitely assumed
in Eq. ~16! that there is a partial wetting situation for both
substrates in semi-infinite geometries. However, if either
there is complete wetting only at one substrate or in both but
by the same phase (u15u250 or p!, the effective pore
width in Eq.~16! is reduced toH2k l , wherek is a constant
that depends on the range of the wall–fluid interactions andl
is the sum of the widths of the adsorbed wetting layers. Nev-
ertheless, this modification does not change qualitatively the

FIG. 3. Plot of the cosine of the contact angleu of an isotropic phase droplet
on the substrate–nematic interface as a function of the fluid–substrate inter-
action strengtheW ~thick continuous line!. The thick dashed line represents
the complete wetting metastable states corresponding to a planar anchoring
far from the substrate. The values ofeW

w1, eW
w2, eW

w3, eW
d , andeW

m are also
marked. The filled circles correspond to the numerical estimates foreW

.eW
w3 ~see text for explanation!.
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results. Its only effect is to observe the behavior predicted by
the Kelvin equation at larger values of the pore widthH than
for a partial wetting situation.

A different situation arises when both substrates are
completely wet by different phases at coexistence, i.e.,
cosu1 cosu2521. Studies for symmetrically opposing sur-
face fields Ising systems3,4 and Landau–de Gennes models
of liquid crystals25 show that in this situation there isno
capillary transition. Instead, an interfacelike state appears,
where half the pore is filled with ana-like layer, and the rest
by b-like phase. The position of the interface between both
layers is controlled by the deviation of chemical potential
with respect to the coexistence value. A rounded transition
from the confineda-like phase to theb-like phase~marked
by the disappearance of the free energy singularities associ-
ated to a sharp capillary transition! is building up, becoming
a sharp first-order transition only forH5`. When the op-
posing surface fields are not symmetrical~at least for near-
symmetrical!, it is expected to observe a similar behavior.3

Mean-field calculations for a confined polymer model with
asymmetrical opposing fields also support this picture.5

This analysis allows us to envisage different scenarios
for the confined case and largeH. For simplicity, we will
only consider the caseeW

(1)5eW
(2)[eW in Eqs.~4! and~5!. We

must note that this choicedoes notcorrespond to the sym-
metrical opposing fields, since the effect of each substrate is
qualitatively different. For largeH and eW /eA,0.48 and
eW /eA.0.53 we expect to have a nematic–isotropic capil-
lary transition. The transition point will shifted towards
lower or higher chemical potentials than the corresponding
to the bulk transition if cosu11cosu2 is negative or positive,
respectively. This dependence of the sign of the capillary
transition shift on the thermodynamic conditions of the fluid
~temperature, etc.!, which does not occur for simple fluids,
has been observed in our model under confinement between
symmetrical substrates that favor homeotropic anchoring,19

and also in confined spherocylinder model with the Onsager
approximation for a symmetrical slit pore.21 On the other
hand, if 0.48,eW /eA,0.53, no capillary transition is ex-
pected to be obtained forany pore width.

We present now our DFT calculations. For the sake of
clarity, we separate the results obtained foreW,eW

w1 and
eW.eW

d .

A. The case eWËeW
w1

We performed our first DFT calculations foreW /eA

50.30, which correspond to partial wetting situation in the
semi-infinite geometry for both substrates. Figure 4 shows
the behavior of the averaged intrinsic order parameterŪ as
the chemical potential is varied. We see that there is a tran-
sition from an isotropiclike state~lower branch! to a nemati-
clike state~upper branch!. The order of the transition is first-
order, and it is found as the coincidence point of the grand-
canonical free energies of the nematiclike and isotropiclike
states. We have shown also the metastable continuations of
each branch: nematiclike states on the left of the capillary NI
transition and isotropiclike states on the right of the transi-
tion. Examination of the order parameter profiles show that
the director field in the nematiclike state is oriented parallel

throughout the pore to the substrate with an intrinsic order
parameter similar to the bulk value, except in thin layers
around the substrates, where the density and order parameter
profiles are similar to the ones corresponding to the semi-
infinite cases. In particular a very thin layer close to thez
50 substrate is homeotropically anchored. This state corre-
sponds to theSstate in Ref. 22 and we will denote it byNS.
On the other hand, the isotropiclike state~which we will
denote asI! develops microscopic homeotropically and
random-planar layers close to thez50 andz5H substrates,
respectively, and the orientational ordering decays to zero in
the middle region of the pore. We have also compared our
DFT calculations with the Kelvin law prediction Eq.~16!
~see inset in Fig. 4!. Although the transition value departs
from this prediction for small pore widths, forH/d.20 the
agreement between our numerical estimations and the Kelvin
predicted value is quite reasonable. Note that the capillary NI
transition is shifted to larger chemical potentials than the
bulk NI transition value. However, aseW increases, this trend
is reversed~the Kelvin law predicts the turning point to oc-
cur ateW /eA50.329).

As eW exceedseW
w2, wetting in thez5H wall begins to

affect the pore adsorption. For small values ofH a single
transition between an isotropiclikeI state to a nematiclike
state occurs as foreW,eW

w2. However, asH increases the
order of the ‘‘nematiclike’’ state decreases and the chemical
potential for which this transition occurs converges to the
I – I N transition value for thez5H wall. The order-parameter
profiles make clear that the ‘‘nematiclike’’ state corresponds
to the formation of a nematic layer close to thez5H sub-
strate followed by an isotropic ordering along the pore. By
analogy with the semi-infinite situation, we callI N to the
confined state after this transition, which we can see as a
reminiscence of theI – I N transition in the semi-infinite phe-
nomenology.

As H increases, in addition to theI – I N transition, a new
phase transition between theI N to a proper nematiclike state
NS ~i.e., planar-anchored along the pore! is observed. This

FIG. 4. Plot of the averaged intrinsic order parameter throughout the poreŪ
as a function of the reduced chemical potentialbm for eW /eA50.3 and
H/d510 ~continuous line! and H/d520 ~dashed line!. The dotted lines
show the location of the capillary NI transition. Inset: the diamonds repre-
sent our DFT values of the chemical potential foreW /eA50.3 at the capil-
lary NI transition forH/d510, 20, and 35, and the continuous line is the
Kelvin law prediction, Eq.~16!.
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transition can be regarded as the true capillary NI transition.
Figure 5 shows our DFT calculations forH520d and differ-
ent values ofeW . It becomes clear that the difference be-
tween theI N and theNS states at the transition decreases as
eW increases, and eventually the NI capillary transition dis-
appears in a critical point~see inset of Fig. 5!. The value of
eW at which the NI capillary transition disappears islower
than eW

w1, i.e., the confinementdestabilizesthe two-phase
region with respect to the one-phase region. We have also
studied the effect of the pore width in the NI capillary tran-
sition. We seteW /eA50.465, slightly beloweW

w1. Figure 6
shows that the capillary NI transition does not exist for the
smallest values ofH and reappears forH.50d.

The disappearance of the NI capillary transition shown
by our model is not related to the critical points observed for
small values ofH in other models.20,21Actually, those cases
correspond to symmetrical slit-pores and consequently their

phenomenology is not related to wetting properties of the
substrates. In our model the NI capillary transition occurs at
least forH.20d when the substrates atz50 andz5H are
the same.19 However we cannot rule out the possibility of
critical points for very smallH, but we will not consider
them since the predictions of our model are not reliable in
that regime.

Our DFT results about the existence of the NI capillary
transition show the opposite trend to the one predicted by a
Landau–de Gennes model in Ref. 25, which predicted that
the confinementstabilizedthe two-phase region with respect
to the one-phase region. Moreover for large values ofH the
boundary for the nonexistence region of the capillary transi-
tion was a triple point rather than a critical point. Actually
the scenario shown by our DFT calculations is consistent
with the phenomenology that presents a confined Ising
model with opposing surface fields when the wetting transi-
tion is critical.3 This analogy can be explained heuristically.
For largeH and eW close toeW

w1, the typical configuration
close to bulk coexistence corresponds to an interfacial state
formed by an isotropic layer around thez50 and a nematic
layer around thez5H wall. In the first approximation the NI
interface positionI is given by the minimum binding poten-
tial which is the superposition of the contributions from the
two semi-infinite systems.3 As there is a complete wetting
situation at thez5H substrate, we can consider its binding
potential as a exponentially decreasing function of the inter-
facial position with respect to thez5H wall c exp@2(H
2l)/jb8#, wherec.0 andjb8 is the nematic phase correlation
length at bulk NI coexistence. Note that the local minimum
corresponding to the bounded state, if any, plays no role in
our argument as soon as we are far enough from the first-
order wetting transition corresponding to the semi-infinite
case with thez5H wall. On the other hand, the binding
potential corresponding to thez50 substrate takes the usual
form 2a exp(2l/jb)1bexp(22l/jb), wherea}eW

w12eW.0,
b.0 andjb is the isotropic phase correlation length at bulk
NI coexistence. So, the complete binding potential for the NI
interface, up to irrelevant constants, is

W~ l !5h~H2 l !2ae2~ l /jb!1be2~2l /jb!1ce@~H2 l !/jb8#, ~17!

whereh}Dm. A critical point must verify

h5
a

jb
e2~ l /jb!2

2b

jb
e2~2l /jb!1

c

jb8
e2@~H2t !/jb8#, ~18!

052
a

jb
2

e2~ l /jb!1
4b

jb
2

e2~2l /jb!1
c

~jb8!2
e2@~H2 l !/jb8#. ~19!

Instead of solving simultaneously Eqs.~18! and~19!, we will
study the spinodal line, which is the solution of Eq.~19!. We
consider solutions of the forml[xH1D l , where 0,x,1
and D l;jb , jb8 . Substituting this ansatz in Eq.~19!, we
obtain

FIG. 5. Plot of the averaged intrinsic order parameter throughout the poreŪ
as a function of the reduced chemical potentialbm for H/d520 and
eW /eA50.35 ~dashed line!, eW /eA50.41 ~continuous line!, and eW /eA

50.45~dotted–dashed line!. The dotted lines show the location of theI – I N

transition~left! and capillary NI transitions~right!. Inset: The symbols are
the coexistence values ofŪ at the I – I N and capillary NI transitions for
different values ofeW . The dotted line corresponds to theI – I N–NS triple
point ateW /eA'0.39. The continuous lines are to guide the eye.

FIG. 6. Plot of the averaged intrinsic order parameter throughout the poreŪ
as a function of the reduced chemical potentialbm for eW /eA50.465 and
H/d510, 20, 40, 50, and 60.
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052~ae2~xH/jb!!e2~D l /jb!1~4be2~2xH/jb!!e2~2D l /jb!

1S c
jb

2

~jb8!2
e2@~12x!H/jb8#D eD l /jb8. ~20!

In order to have two solutions for Eq.~20!, we need
all the factors in brackets in Eq.~20! to be of the same order.
Consequently we obtain thatx5jb /(2jb81jb) and a
5a8 exp@2H/(2jb81jb)#, wherea8;b;c. The value ofa8
for which the critical point occurs corresponds to the case
where the rescaled equation

052a8e2~D l /jb!14be2~2D l /jb!1c
jb

2

~jb8!2
e~D l /jb! ~21!

has an unique real solution. For simplicity, we assume that
jb5jb8 , but similar results are found when both correlation
lengths are different. We refrain to give explicit solutions and
we just mention that indeeda8/c;1 and the value ofD l at
the critical point isD l c;jb for reasonable values ofb andc.
Consequently, the interfacial position at the critical point
l c;H/3 and the NI capillary transition shifteW

w12eW

;exp(2H/3jb) and from Eq.~18! Dm;exp(22H/3jb).
A numerical comparison of these predictions with our

DFT calculations, although it would be very interesting, is
extremely difficult due to the limitations of our numerical
procedure and it will not be carried out in this work. How-
ever, at least qualitatively these predictions have been con-
firmed by the DFT calculations even for not so large values
of H.

B. The case eWÌeW
d

Now we turn to study the confined system foreW

.eW
d . We first considered the caseeW /eA50.70 andH

520d. Different confined states are obtained as the chemical
potential increases~see Fig. 7!. The first cases Figs. 7~a! and
7~b! clearly correspond to a vaporlike and isotropiclike
states, and we will denote them asV and I, respectively.

There is in both cases a homeotropically-anchored nematic
layer close to the substrate atz50 and a random planar layer
close to the substrate atz5H. As the chemical potential
increases, the random planar layer atz5H undergoes a tran-
sition to a planar biaxial state. Again this first-order transi-
tion is a reminiscence of theI – I N surface transition corre-
sponding to the substrate atz5H, and we will denote both
confined statesI and I N by analogy with the semi-infinite
phenomenology. As the chemical potential is further in-
creased, the nematic layer increases and a state in which an
isotropic and a nematic layer coexist is obtained@Fig. 7~c!#.
There is no phase transition between the isotropiclikeI N and
the nematiclikeNS states, but a smooth transformation simi-
lar to the expected one when both substrates are completely
wet by different bulk phases at coexistence. Finally, there is
a transition to a new nematiclike state~theL statein Ref. 22,
that we will denote asNL), characterized by an almost linear
distorsion from homeotropic to planar configuration on the
tilt angle through the pore, although theintrinsic order pa-
rameter takes essentially the bulk value except close to the
substrates@see Fig. 7~d!#. This transition between theNL and
NS state is first order and converges to the anchoring transi-
tion that is observed in the semi-infinite case with a substrate
that favors a homeotropic anchoring asH→`.18 A more
detailed discussion about this transition can be found in
Ref. 22.

For larger values ofH, the capillary NI transition ap-
pears as a transition between anI N state and aNL state for
chemical potentials smaller than the bulk NI transition value.
As eW approacheseW

d , the range of values ofH for which
capillary transition does not exist is wider. ForeW /eA

50.53 ~close to the dewetting transition point! the capillary
NI transition does not appear untilH/d.150. Figure 8
shows the continuous change of the nematic layer as the
chemical potential increases forH520d, which is analogous
to the behavior observed foreW /eA50.70. Figure 9 shows
how the curves of the averaged intrinsic order parameter as a

FIG. 7. Plot of the density (r* [rd3) and intrinsic uniaxial order parameter
~U! for the fluid confined in a pore of widthH520d andeW /eA50.70 and
chemical potentials:~a! bm524.7, ~b! bm524.45,~c! bm523.95 andbm
523.7.

FIG. 8. Density (r* [rd3) and intrinsic uniaxial order parameter profiles
~U! for H520d and eW /eA50.53. The chemical potentials run frombm
524.03 to bm523.64 with a step ofD~bm!50.01. The intrinsic order
parameter profiles at theNL –NS transition~left! and I – I N transition~right!
are highlighted.
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function of the chemical potential change for increasing pore
widths. For the narrowest pore (H510d), a single transition
is observed between an isotropic state to an state with some
nematic ordering. However, asH is increased, it becomes
clear that this transition is again a reminiscence of theI – I N

transition in the semi-infinite case. The localization of this
transition depends weakly on the pore widthH. For H
.13d, the NL –NS transition appears at chemical potentials
larger than the bulk NI coexistence value. This transition
does not appear forH510d, which is a clear indication of
the existence of a critical point for theNL –NS transition at
small values ofH. As H increases, the chemical potential
value for NL –NS transition shifts to lower values. Finally,
we observe that theŪ curve becomes increasingly steep at
the bulk NI transition asH→`. This fact is a consequence
of the formation of interfacial-like states@as Fig. 7~c!# in the
proximities of the bulk NI coexistence chemical potential.

The nonexistence of a capillary NI transition above the
dewetting transition as described above is unexpected. First,
the finite-width effects are much more pronounced foreW

.eW
d than beloweW

w1. As a consequence, we observe signifi-
cant departures from the bulk behavior for wider pores and in
a larger range ofeW than when we approach the complete
wetting situation from below~i.e., eW,eW

w1). This fact sug-
gests the emergence of a new relevant term in the free energy
of the system. On the other hand, as the dewetting transition
is first order, we could naively expect that under confinement
and large enoughH the capillary transition disappearance
point is shifted tolowervalues ofeW ~Refs. 4, 25! ~recall that
the role ofeW or the temperature is reversed in the dewetting
transition with respect to the wetting transition!. To under-
stand this situation we recall that the confinement in a hybrid
cell destabilizes theNL with respect to theNS. A simple
phenomenological argument can be used to explain this
fact.22 For large enough values ofH, the excess free-energy
per surface area of aNS state is given by the sum of the
surface free energies between each substrate and a nematic
fluid which is planar-anchored with respect to them. The
finite-width corrections are expected to decay exponentially.
On the other hand, the largeH behavior free energy of the
NL state is the sum of the surface tensions of the interface

between thez50 substrate and a homeotropically-anchored
nematic fluid and the corresponding between the planar-
anchored nematic fluid and thez5H substrate. For this state
the finite-width correction is dominated by the elastic defor-
mations contribution and decays asK3p2/8H as H→`,
where K3 is a Frank–Oseen elastic constant.22 So, for a
given temperature, theNS–NL transition is always shifted
towards higher chemical potentials than the anchoring tran-
sition, and the convergence to it for large values ofH is quite
slow. Although this argument implicitely assumes that the
inhomogeneities are restricted to microscopic regions around
each substrate, it is also valid if we allow theNS state to
develop an isotropic layer close to thez50 substrate~as
occurs close to the bulk NI coexistence!. Consequently, for
eW

d ,eW,eW
m and moderate values ofH, the most stable

nematiclike state close to the bulk NI coexistence isNS, and
therefore there is no capillary transition. AsH increases, the
NL state becomes more stable than theNS state near the NI
bulk transition, and eventually the capillary transition be-
tween aI N state and aNL occurs.

An interesting feature of the NI capillary transition in
this regime is that it is linked to thepurely surface transition
NS–NL. As explained before, for small values ofH there is
no NI capillary transition but ifH is not too small there is a
NS–NL transition. AsH increases, the chemical potential
corresponding to theNS–NL transition shifts to smaller val-
ues, and eventually crosses the value corresponding to the
bulk NI transition~see Fig. 10!. When this happens, the tran-
sition is between an isotropiclikeI N state to the nematiclike
NL state: the capillary NI transition is recovered. An analo-
gous smooth transformation from a prewetting to a capillary
condensation transition was observed in mean-field calcula-
tions of a confined polymer model under asymmetrical op-
posing surface fields.5 Finally, the Kelvin relationship Eq.
~16! predicts that the capillary transition value ofbm ap-
proaches the bulk NI value frombelow. The DFT results for

FIG. 9. Plot of the averaged intrinsic order parameterŪ throughout the pore
vs the reduced chemical potentialbm for eW /eA50.53 andH/d510, 13,
20, 30, 40, and 80. The discontinuities ofŪ(bm) correspond to theI – I N

~left! andNS–NL ~right! transitions.

FIG. 10. Plot of the reduced chemical potentialbm corresponding to the
NS–NL transition~or the NI capillary transition, see text for explanation! as
a function of the reduced inverse pore widthd/H for values of eW /eA

50.49 ~circles!, 0.53 ~diamonds!, 0.60 ~triangles up!, and 0.66~triangles
down!. For eW /eA50.49 the transition extrapolates to the anchoring transi-
tion corresponding to thez50 substrate~Ref. 18! as H→`, and to
the bulk NI transition for the other cases. The continuous lines are only to
guide the eye.
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largeH support this prediction. So, at fixed temperature and
chemical potential, and changingH, reentrance of the isotro-
piclike state is observed~see Fig. 10!.

V. CONCLUSIONS

In this paper we have reported a DFT study of the NI
capillary transition under confinement in a slit-pore where
each substrate favors a different anchoring condition. We
found that there is an interplay between the phenomenology
found in the semi-infinite problems with the phenomenology
which appeared in the confined problem. We have focused in
the nonexistence of the NI capillary transition as a result of
both substrates to be wet by different phases. If we approach
this region from below, we observe a destabilization of the
two-phase region with respect to the one-phase region.
Moreover, the capillary NI transition finishes in a critical
point. These findings are different from the ones reported by
Quintana and Robledo25 and this discrepancy can be traced
to the different order of the wetting transition. When we
approach the nonexistence range for the NI capillary transi-
tion from above, a different mechanism is involved in the
finite-size effects of the capillary NI transition. Although the
wetting transition which drives the disappearance of the cap-
illary transition is first-order, the two-phase region is still
destabilized with respect to the one-phase region. The expla-
nation for this is the existence of two nematiclike locally
stable phases with a relative stability dependent on the pore
width. One of them corresponds to a complete wetting situ-
ation, so links with the isotropiclike states without undergo-
ing a phase transition. So, asH increases, the phase transition
between two nematiclike states transforms continuously to
the NI capillary transition. As a consequence, a reentrant
behavior for the isotropiclike state is observed by varying the
pore width and keeping the temperature and chemical poten-
tial constant.

Although we have restricted our study to an isotherm
case, we anticipate that we would find a similar behavior if
the temperature is changed instead of the value ofeW . On
the other hand, the conditioneW

(1)5eW
(2) is not so restrictive as

soon as the wetting transition of thez5H wall precedes the
complete wetting at thez50 wall. If such a condition is not
fulfilled, our conclusions may change.
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