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Abstract. The k–Nearest Neighbor algorithm (k-NN) uses a classifica-
tion criterion that depends on the parameter k. Usually, the value of this
parameter must be determined by the user. In this paper we present an
algorithm based on the NN technique that does not take the value of
k from the user. Our approach evaluates values of k that classified the
training examples correctly and takes which classified most examples.
As the user does not take part in the election of the parameter k, the
algorithm is non–parametric. With this heuristic, we propose an easy
variation of the k-NN algorithm that gives robustness with noise present
in data. Summarized in the last section, the experiments show that the
error rate decreases in comparison with the k-NN technique when the
best k for each database has been previously obtained.

1 Introduction

In Supervised Learning, systems based on examples (CBR, Case Based Reason-
ing) are object of study and improvement from their appearance at the end of
the sixties. These algorithms extract knowledge by means of inductive processes
from the partial descriptions given by the initial set of examples or instances.
Machine learning process is usually accomplished in two functionally different
phases. In the first phase of Training a model of the hyperspace is created by the
labelled examples. In the second phase of Classification the new examples are
classified or labelled based on the constructed model. The classifier approached
in this paper belongs to the family of the nearest neighbor algorithm (from here
on NN) where the training examples are the model itself. NN assigns to each
new query the label of its nearest neighbor among those that are remembered
from the phase of Training (from here on the set T).

In order to improve the accuracy with noise present in data, the k-NN algo-
rithm introduces a parameter k so that for each new example q to be classified
the classes of the k nearest neighbors of q are considered: q will be labelled with
the majority class or, in case of tie, it is randomly broken. Another alternative
consists in assigning that class whose average distance is the smallest one or
introducing a heuristically obtained threshold k1 < k so that the assigned class
will be that with a number of associated examples greater than this thresh-
old [12]. Extending the classification criterion, the k-NNwv algorithms (Nearest
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Fig. 1. The chosen value for k is decisive to classify a new example q by k-NN when
this example is near the decision boundaries. For this example, the smaller value of the
parameter k that classifies q correctly is 5.

Neighbor Weighted Voted) assign weights to the prediction made by each exam-
ple. These weights can be inversely proportional to the distance with respect to
the example to be classified [5,7]. Therefore, the number k of examples observed
and the metric used to classify a test example are decisive parameters. Usually
k is heuristically determined by the user or by means of cross-validation [11].
The usual metrics of these algorithms are the Euclidean distance for continuous
attributes and the Overlap distance for nominal attributes (both metrics were
used in our experiments).

In the last years have appeared interesting approaches that test new met-
rics [15] or new data representations [3] to improve accuracy and computational
complexity. Nevertheless, in spite of having a wide and diverse field of applica-
tion, to determine with certainty when k-NN obtains higher accuracy than NN
[2] and viceversa [8] is still an open problem. In [6] it was proven that when the
distance among examples with the same class is smaller than the distance among
examples of different class, the probability of error for NN and k-NN tends to
0 and , respectively. But, not always this distribution for input data appears,
reason why k-NN and k-NNwv can improve the results given by NN with noise
present in the data.

In [13] the experimental results give rise to the two following hypotheses: a)
Noisy data need large values for k; b) The performance of k-NN is less sensitive
to the choice of a metric. Figure 1 illustrates this fact when the values of two
attributes from the Iris database are projected on the plane. The X-axis measures
the length of the petal and the Y-axis measures the width of the petal.

In [14] a study of the different situations in which k-NN improves the results
of NN is exposed, and four classifiers are proposed (Locally Adaptive Nearest
Neighbor, localKNNks) where for each new example q to be classified the pa-
rameter k takes a value kq which is similar to the values that classified the M
nearest neighbors eq of q. Using a similar approach to Wettschereck’s, we pro-
pose a classification criterion for new examples by taking different values for k
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according to the most frequent ones that classified the original examples cor-
rectly. To calculate such values the proximity of each example to its enemy is
analysed, being the enemy the nearest neighbor with different class. A priori,
if the example to be classified is near examples having different classes among
them, it might be classified by few values. But if this example is surrounded by
neighbors with the same class, it could be classified by different values.

This paper presents a method that reduces and classifies according to such
a criterion with no need to analyse each particular case. In this way, the impure
regions and the border instances are better analysed in order to provide greater
robustness with noise present in the data.

In section 2 the proposed method and their computational complexity are
detailed. Section 3 describes the experiments and the results from the UCI repos-
itory [4] and section 4 summarizes the conclusions.

2 Description of the Algorithm

2.1 Approach

By means of the k-NN algorithm, if a new example is near the decision bound-
aries, the resulting class depends on the parameter k. At worst, the percentages
of examples of each class are similar at these regions. In such situation, the set
formed by classifying values kei associated with each example ei at this region
can be large or zero, i.e. some examples will not have any associated value kei
which classify it correctly by k-NN. So, this information (the classifying values
associated with the nearest neighbors of a new query q) can be not relevant to
classify a new query q by k-NN.

We not assume that it is possible to determine the values of the parameter k
which allow to classify the examples in overlapped regions. However, we assume
that it is possible to improve the accuracy if several times the k-NN algorithm
is evaluated on these regions. The idea is as simple as to give more than one
opportunity to the example that is to be classified . If the example to be classified
is a central example this criterion will not have any effect. If it is a border
example, the accuracy can improve. Thus, the disturbing effect caused by the
noise and the proximity to enemies can be smoothed. The consequences of such
a bias can be explained in three cases:

– If q is a central example, the majority class might almost always be the same
one for each evaluation.

– If q is a noise example, either there will not be an associated value kq that
classifies q correctly or kq will be large.

– If q is a border example, several evaluations can avoid the errors of classifi-
cation.

Figures 2 and 3 illustrate these facts by means of projections on the plane of
the values of two attributes of the Horse-Colic database. In the first case (Figure
2) the value of k is slight relevant whereas in the second case (Figure 3) such
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Fig. 2. Horse Colic database. If the new
example to be classified is central, the
majority class in each evaluation might
be the same almost always.

Fig. 3. Horse Colic database. If the new
example to be classified is a border ex-
ample, several evaluations of the k-NN
algorithm can avoid some errors.

value is critical. Therefore, our problem is to find either the limits [kqmin , kqmax ]
between which the k-NN algorithm will be applied for each new example q or
the values, which are not necessarily continuous, {kq1 , kq2 , . . .} from which is
calculated the majority class. The method has been denominated fNN (k–
Frequent Nearest Neighbors) since it takes the most frequent values of k among
those that classified correctly the examples of each database. In this process,
there are no parameters given by the user since these values are calculated locally
for each database.

2.2 The Algorithm

Let n be the number of examples of the Training set T . Let kNN(e, i) the ith

nearest neighbor of an example e within T . We denote majorityClass(e, i..j) as
the majority class between the ith and the jth neighbors of e. fNN associates
with each example ei two values:

1. kCMini: The smallest k that classifies correctly the example ei by using the
k-NN algorithm, such that (see Figure 4):

∀j ∈ [1, kCMini) | Class (kNN (ei, j)) = Class (ei)⇒
⇒ majorityClass (ei, 1..j) �= Class (ei) (1)

2. kCMaxi: If kCMini was found, then kCMaxi ≥ kCMini and:

∀j ∈ [kCMini, kCMaxi]⇒ Class (ei) = Class (kNN (ei, j)) (2)

With these values, a new value kLim is calculated which satisfies the following
property:

∀ei ∈ T, j ∈ [min(kCMini), kLim]⇒ ∃ek ∈ T | kCMink = j (3)
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Fig. 4. Example of kCMin and kCMax for an example e with class A. The ties are
broken with the nearest class. Majority class is not A from k = 1 to k = 8. When k = 9
the majority class is A (kCMine = 9). All the examples have class A from k = 9 to
k = 12. Finally, the thirteenth neighbor of e has class C, so that kCMaxe = 12.

where min(kCMini) is the least kCMini value of each example.
Those examples ei that either have not any associated value kCMini or

have an associated value kCMini > kLim are considered outliers and they are
removed. The resulting reduced set (from here on Tf ) will be used as Training
model for our algorithm.

In order to classify a new example q, the k-NN algorithm is applied several
times to the same example q by varying the value of k. These values belong the
interval [min(kCMini), kLim]. The assigned label will be that among the nearest
to q that is most frequent in the kT evaluations of k-NN. Thus, the computational
complexity of fNN is: Θ

(
n2 · (log n+ 1) + n · (log n+ δ + 2) + kLim2

)
.

In the first phase the set Tf is generated. The n − 1 nearest neighbors for
the n examples of the Training set are ordered (Θ (n · (n+ n · log n))). So, for
each example it is computed the distance to all the neighbors (Θ (n)) and then
the associated list is ordered (Θ (n log n)). After this procedure kLim is found
(Θ (n · δ) , min(kCMini) ≤ δ ≤ kLim) and the outliers are removed (Θ (n)).

In the second phase a test example is classified (Θ
(
n · (log n+ 1) + kLim2

)
).

The pseudo code for the fNN algorithm is shown in Figure 5 where n is the
original number of examples and c the number of different labels for the class.

3 Results

To carry out the method and the test, the Euclidean distance for continuous
attributes and the Overlap distance for the nominal attributes were used. The
values of the continuous attributes were normalized in the interval [0,1]. Ex-
amples with missing-class was removed and attributes with missing-values was
treated with the mean or mode, respectively. fNN was tested on 20 databases
from the Machine Learning Database Repository at the University of California,
Irvine [4]. In order to reduce statistical variation, each experiment was executed
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function fNN(Train:SET; query:INSTANCE) return (label:Integer)
var

  T_f: Set;  k,k_Lim,label: Integer;  k_Vect: VECTOR[n][2] Of Integer
  frequencies: VECTOR[c] Of Integer

beginF
  // Calculating kCMin, kCMax for each example.

  Calculate_MinMax_Values_K(Train, k_Vect)

  // Finding the limits for the evaluations of kNN.
  Calculate_Limits(k_Vect,k_Lim)

  // Removing the examples whose kCMin does not belong to [1,k_Lim].
  T_f:= Delete_Outliers(Train, k_Lim)

  for k:= Min(kCMin) to k_Lim
   label:= Classify_KNN(query,T_f,k)

   frequencies[label]:= frequencies[label]+ 1/Average_Dist(query,label,k)
  return(frequencies.IndexOfMaxElement())

endF

Fig. 5. Pseudo code for fNN.

by means of 10-folds cross-validation. fNN was compared with k-NN using 25 dif-
ferent values of k (the odd numbers belonging to interval [1, 51]). This limit was
fixed after observing for all databases how the accuracy decreased from a value
near the best k for each database (being 33 the maximum value for Heart Cleve-
land) database. In Table 1 is reported the main results obtained. The average-
accuracy with the associated standard deviation and the computational cost by
means of fNN is showed in Columns 2a and 2b respectively. The k-NN algorithm
is included for comparison using the best k for each database (Column 3a) and
the best average-value (k=1) for all databases (Column 1a). Both computational
cost for k-NN were very similar and they are showed in Column 1b. Column 3b
shows the best value of k for each database by k-NN. Column 2c show the size
of Tf regarding the Training set and Column 2d show the values of kLim for
each database, i.e. the limit for k by fNN. The databases marked with * mean an
improvement of fNN regarding 1-NN by means of t-Student statical test using
α = 0.05. We can observe in Table 1 that fNN obtained better precision than
1-NN for 13 databases where the best k for the k-NN algorithm was a high value,
so that:

– If KLim < kbest for k-NN, then fNN provides higher accuracy than 1-NN.
– The percentage of examples that are excluded from Tf is a minimum error

bound for k-NN.

4 Conclusions

An easy variation of the k-NN algorithm has been explained and evaluated in
this paper. Experiments with commonly used databases indicate that exits do-
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Table 1. Results for 20 databases from the UCI repository by using 10-folds cross-
validation. Column 1 shows the average accuracy with the standard deviation and the
computational cost by k-NN with k=1 (the best value for all databases). Column 2
shows the same percentages obtained by fNN, the percentage of examples retained
from the Training set and the value of kLim, i.e. the limit for k by fNN . Column 3
shows the best accuracy with the standard deviation by the k-NN algorithm when the
best k is found. This best k was looked for in the odd numbers belonging to interval
[1,51].

1-NN fNN best k-NN
Domain Pred. Acc. Time Pred. Acc. Time %Ret. kLim Pred. Acc. best k
Anneal 91.76 ±2.4 1.10 90.32 ±1.8 15.7 96.5 9 91.76 ±2.4 1
Balance Scale* 77.76 ±4.8 0.25 89.44 ±1.5 4.0 89.7 11 89.76 ±1.4 21
B. Cancer (W) 95.56 ±2.2 0.20 96.57 ±1.7 2.91 92.1 9 96.85 ±2.0 17
Credit Rating* 80.72 ±2.2 0.56 87.11 ±1.8 7.59 91.9 7 87.68 ±1.6 13
German Credit 72.29 ±2.9 1.42 74.61 ±3.4 18.2 89.1 21 73.09 ±4.2 17
Glass 70.19 ±2.0 0.04 69.16 ±1.3 0.64 84.4 9 70.19 ±2.0 1
Heart D. (C)* 74.92 ±2.5 0.09 81.52 ±2.0 1.32 89.3 13 83.17 ±2.7 33
Hepatitis* 81.29 ±0.8 0.03 87.11 ±0.9 0.43 88.5 9 85.16 ±1.0 7
Horse Colic 67.93 ±3.0 0.22 69.02 ±1.6 2.90 83.7 11 70.38 ±2.6 7
Ionosphere 86.61 ±1.9 0.29 85.18 ±2.0 3.66 91.1 13 86.61 ±1.9 1
Iris 95.33 ±0.8 0.01 96.00 ±0.8 0.29 95.6 1 97.33 ±0.8 15
Pima Diabetes 71.21 ±5.0 0.56 74.09 ±3.9 7.62 87.7 15 75.52 ±4.2 17
Primary Tumor* 35.69 ±1.3 0.05 42.19 ±1.5 0.81 54.9 11 43.07 ±1.5 29
Sonar 86.54 ±1.5 0.16 86.06 ±1.2 1.91 94.1 5 86.54 ±1.5 1
Soybean 90.92 ±3.5 0.65 91.07 ±2.9 8.42 95.9 13 90.92 ±3.5 1
Vehicle 70.06 ±3.0 1.12 69.97 ±2.9 13.5 89.9 13 70.06 ±3.0 1
Voting 92.18 ±1.6 0.07 92.64 ±1.3 1.18 95.1 3 93.56 ±1.0 5
Vowel 99.39 ±0.9 1.19 98.79 ±1.3 16.1 99.1 1 99.39 ±0.9 1
Wine 96.07 ±1.1 0.03 96.63 ±0.7 0.54 98.1 5 97.75 ±0.7 31
Zoo* 97.03 ±0.6 0.01 93.07 ±1.1 0.19 95.6 1 97.03 ±0.6 1
Average 81.67 ±2.2 0.40 83.53 ±1.8 5.39 90.11 9 84.29 ±2.0 11

mains where classification is very sensitive to the parameter k by using the k-NN
algorithm. For these input data, we could summarize several aspects:

– Without the need of parameter, fNN is a reduction and classification tech-
nique that keeps the average accuracy of the k-NN algorithm.

– kLim and the size of Tf compared to the size of T are an approximated
indicator for the percentage of examples that cannot be correctly classified
by the k-NN algorithm.

– The reduction of the database is very similar to the reduction that makes
CNN [15], so that fNN is less restrictive than CNN. With large databases,
this reduction can accelerate the learning process for the k-NN algorithm.
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5 Future Work

Actually we are testing fNN with other classifiers. Particularly, we have chosen
two systems, C4.5 [9] and HIDER [10], which generate decision trees and axis–
parallel decision rules, respectively. Due to fNN makes a previous reduction,
we have chosen the method EOP [1], which reduces databases conserving the
decision boundaries that are parallel to the axis.
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