
An Application of Genetic Algorithms to
Membrane Computing

Gabi Escuela1, Miguel A. Gutiérrez-Naranjo2

1 Bio Systems Analysis Group
Friedrich Schiller University Jena
gabi.escuela@uni-jena.de

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
magutier@us.es

Summary. The process of designing a P system in order to perform a task is a hard
job. The researcher has often only an approximate idea of the design, but finding the
exact description of the rules is a heavy hand-made work. In this paper we introduce
PSystemEvolver, an evolutionary algorithm based on generative encoding, that could help
to design a P system to perform a specific task. We illustrate the use of PSystemEvolver
with a simple mathematical problem: the computation of squared numbers.

1 Introduction

Natural Computing studies computational paradigms inspired from various well
known natural phenomena in physics, chemistry and biology3. It abstracts the
way in which nature computes, conceiving new computing models. The field is
growing rapidly and there are many open research lines based on different aspects
in which nature acts. Among them, Cellular Automata [16] conceived by Ulam
and von Newman as a spatial distribution of cells able to reproduce the behav-
ior of complex systems; Genetic algorithms introduced by J. Holland [13] which
is inspired by natural evolution and selection in order to find a good solution in
a large set of feasible candidate solutions; Neural Networks introduced by W.S.
McCulloch and W. Pitts [15] it is based on the interconnections of neurons in
the brain; DNA-based molecular computing, that was born when L. Adleman [2]
published a solution to an instance of the Hamiltonian path problem by manip-
ulating DNA strands in a lab; Swarm Intelligence [6] based on the behavior of
mobile organisms as ants or bees communicating among them and acting in the
environment; Artificial Immune Systems [5] based on the natural immune system

3 An introduction on Natural Computing can be found in [12].



102 G. Escuela, M.A. Gutiérrez-Naranjo

of biological organisms; Amorphous computing [1] inspired from the development
of morphogenesis in biological organisms or Membrane Computing [17, 18] based
on the functioning and morphology of living cells and tissues.

Membrane Computing was introduced by Gh. Păun in [17] under the assump-
tion that the processes taking place in the compartmental structure of a living
cell can be interpreted as computations. The devices of this model are called P
systems. Roughly speaking, a P system consists of a membrane structure, in the
compartments of which one places multisets of objects which evolve according to
given rules in a synchronous nondeterministic maximally parallel manner.

The basic idea is to consider a distributed and parallel computing device struc-
tured in an arrangement of membranes which delimit compartments where various
chemicals evolve according to local reaction rules. The objects can be eventually
sent to the environment or to adjacent membranes under the control of specific
rules. Because the chemicals from the compartments of a cell are swimming in an
aqueous solution, the data structure we consider is that of a multiset – a set with
multiplicities associated with its elements. Also, in close analogy with what hap-
pens in a cell, the reaction rules are applied in a parallel manner, with the objects
to evolve by them and with the reactions themselves chosen in a non–deterministic
manner.

In this way, we can define transitions from a configuration to another configura-
tion of our system and hence we can define computations. A computation provides
a result, for instance, in the form of the number of objects present in the halting
configuration in a specified compartment, or in the form of a special object, yes
or no, sent to the environment at the end of the computation (thus answering a
decision problem that the system had to solve).

Evolutionary Algorithms (EAs) are generic population-based metaheuristics
inspired in biological evolution to deal with combinatorial optimization problems.
Four main EAs have been applied to different kind of problem domains: Genetic
Algorithms, Genetic Programming, Evolutionary strategies and Evolutionary pro-
gramming. Genetic Algorithms were introduced by J.H. Holland [13] an Ameri-
can psychologist and computer scientist who developed his theory to study self-
adaptiveness in biological processes as well as to solve optimization problems.
Concerning to functioning, a genetic algorithm is an iterative procedure which op-
erates on a population where individuals are evaluated according a certain fitness
value. Some individuals are selected according this value and produce offspring
candidates which form the next generation4. For producing new individuals, two
operators, namely crossover and mutation are used. Crossover takes two individu-
als called parents and produce one or two new individuals called offsprings. In its
simplest form, it works by swapping pieces of information from the parents. The
second operator is called mutation and it is applied by modifying an information
unit in one individual according to a mutation rate.

In this paper we present a case study where genetic algorithms are used for
designing a Membrane Computing device which performs a pre-fixed task. In the
4 For details, see, for example [3].



An Application of Genetic Algorithms to Membrane Computing 103

literature, one can find several joint approaches of Membrane Computing and
Genetic Algorithms as [14] or [4], but, to the best of our knowledge, this is the
first time in which genetic algorithms are used to find a P system which solves an
abstract computational problem.

The paper is organized as follows: Next we describe our case study for the ap-
plication of Genetic Algorithms to the design of P systems. We start by describing
an initial population of P systems and the genetic operators to act on them. In
Section 3 we provide a short description of the genetic algorithm PSystemEvolver
used in our experiments. In the following sections we provide the obtained experi-
mental results. The paper ends with some final remarks and open lines for further
research.

2 The Problem

The process of designing a P system in order to perform a task is a hard job.
In many cases, the designer has an approximate idea of the membrane structure,
initial multisets and set of rules necessary to describe the P system, but a little
mistake in the description of the initial configuration or in the set of rules can
leads to undesired consequences.

In this paper we present the case study of designing a P system which computes
the square of a given number, e.g., number 4. To this aim, we will consider an initial
population of P systems. Such population will evolve according to the natural
selection of the evolution of alive beings (by means the corresponding crossover
and mutation operations of a given genetic algorithm) and with the help of a fitness
function we will obtain a member of the population, i.e., a P system obtained from
the original ones, which performs the fixed task.

In order to perform our experiments, we consider that all the P systems have
the same initial configuration. The allowed set of rules are of the types:

• Evolution rules: [ o → u ]e. The object o evolves to the multiset u in mem-
brane with label e. Notice that u can be the empty multiset λ.

• Dissolution rules: [ r ]e → s. The object r dissolves the membrane e and goes
to the surrounding region as object s. All the remaining objects in e also go to
the surrounding region.

Our starting point is to consider a family of P systems Π = {Πi}i∈I where

Π = 〈Γ,H, µ,we, ws, Ri〉

• The alphabet Γ = {a, b, c, z1, . . . , z4}
• The set of labels H = {e, s}
• The membrane structure µ = [ [ ]e ]s
• The initial multisets we = a2 b z1 and ws = ∅



104 G. Escuela, M.A. Gutiérrez-Naranjo

The difference among the P systems in the family are the sets of rules Ri. In order
to give a formal definition of Π = {Πi}i∈I we will start with a set of rules R

R =





r1 ≡ [ a → a b ]e r7 ≡ [ z2 → z1 ]e r13 ≡ [ a → λ ]s
r2 ≡ [ b → b c ]e r8 ≡ [ z3 → z4 ]e r14 ≡ [ b → λ ]s
r3 ≡ [ c → b2 ]e r9 ≡ [ z1 ]e → b r15 ≡ [ b → c ]e
r4 ≡ [ a → b c ]e r10 ≡ [ z2 ]e → a r16 ≡ [ c → λ ]e
r5 ≡ [ z1 → z2 ]e r11 ≡ [ z3 ]e → c r17 ≡ [ z4 → z1 ]e
r6 ≡ [ z2 → z3 ]e r12 ≡ [ z4 ]e → a r18 ≡ [ z4 ]e → b





Our aim is to use genetic algorithms in order to find a P system which computes
the square of number 4, from an initial set of P systems. The genetic evolution
will only correspond to changes in the set of rules. The genetic operations in order
to develop a genetic algorithm on the P systems are the following:

• Crossover. Given two P systems Π1 and Π2 and their sets of rules R1 and
R2, let P 1

1 P 2
1 and P 1

2 P 2
2 two partitions of R1 and R2 respectively. Then, we

obtain two offsprings Π ′
1 and Π ′

2 by considering the set of rules R′1 = P 1
1 ∪ P 1

2

and R′2 = P 2
1 ∪ P 2

2 .
• Mutation. Given an evolution rule [u → v]h with u ∈ Γ and v ∈ Γ ∗, the

mutation operator changes the object u by one from Γ − {u} or the object w
in the multiset v by one object from Γ − {w} or by λ. For an dissolution rule
[u]h → w, the mutation operator changes the object u or w by a different one
from Γ .

Only for practical reasons, in this case study we will impose an extra condi-
tion. All the P systems considered as individuals in our genetic algorithm must
be deterministic. This is checked by ensuring that, for each P system and each
membrane, there are no two rules triggered by the same object.

Example 1. Let us consider two P systems Π1 and Π2 and their sets of rules
R1 = {r1

1, r
2
1} and R2 = {r1

2, r
2
2, r

3
2} with

r1
1 ≡ [ a → a b ]e r1

2 ≡ [ a → b c ]e
r2
1 ≡ [ c → b2 ]e r2

2 ≡ [ z4 → z1 ]e
r3
2 ≡ [ z1 ]e → b

Let P 1
1 and P 2

1 be a partition of R1, P 1
1 = {r1

1} and P 2
1 = {r2

1} and P 1
2 , P 2

2 a
partition of R2 with P 1

2 = {r2
2, r

3
2} and P 2

2 = {r1
2}. Then, we obtain two offsprings

Π ′
1 and Π ′

2 by considering the set of rules R′1 = P 1
1 ∪ P 1

2 = {r1
1, r

2
2, r

3
2} and

R′2 = P 2
1 ∪ P 2

2 = {r2
1, r

1
2}. Notice that, due to the restriction of determinism, we

cannot get a new offspring by joining P 1
1 and P 2

2 .
As example of the mutation operator, let us consider now the rule [ a → b c ]e.

By applying a mutation rule we can obtain, for example, the rules [ z1 → b c ]e
(changing a by z1), the rule [ a → b2 ]e (changing c by b) or [ a → c ]e (changing
b by λ).



An Application of Genetic Algorithms to Membrane Computing 105

Finally, we can describe the set of P systems Π considered as individu-
als for our genetic algorithm. A P system Π belongs to Π if it is a construct
〈Γ, H, µ, we, ws, Ri〉 as described above and the rules in Ri are from R or can be
derived by a finite number of applications of the operators crossover and mutation
from rules in R.

3 The Genetic Algorithm

In this section we will briefly describe the genetic algorithm, PSystemEvolver, used
in our case study. It follows the basic workflow:

Produce an initial population of individuals
Evaluate the fitness of all individuals
while termination condition not met do

Select the best individuals and produce new individuals (crossover and
mutation operators)
Evaluate the fitness of new individuals
Generate the new population inserting the best individual
from previous generations

end while

In order to apply the previous algorithm, we need to precise some details:

• The initial population consists on 30 individuals. In order to generate these
individuals, 30 different random subsets of R are considered. The number of
rules of each individual will not exceed 14, that is, the length of the alphabet
times the number of membranes that we are considering. Before evaluating a
possible solution using the fitness function, the P system is checked to assure
determinism. If more than one rule in a specific membrane has the same right
hand side (firing object), one of them is selected randomly to be active and the
others are deleted from this P system.

• The fitness function is probably the key point in the application of the genetic
algorithm for the design of P systems. In this case study we have considered
a simple function: The absolute value of the difference between the number of
objects c in the membrane s in the halting configuration of the P system and
the expected number of such objects in an ideal found solution, i.e., 16 objects
c. In order to prevent non-ending computations, we we limit to 20 the number
of steps.

• The crossover and mutation operators will be applied on some randomized
individuals with good score in the fitness function. For that, two parents are se-
lected according to their fitness and mated to produce two offsprings that later
could be mutated. Crossover and mutation rates of 0.8 and 0.8, respectively,
have been considered in order to perform our experiments. We also varied this
parameters to test the effect of this operators over the performance of the
algorithm.



106 G. Escuela, M.A. Gutiérrez-Naranjo

• As termination condition for the algorithm, a maximum of 30 generations has
been considered.

4 Experimental Results

The chosen fitness function for our experiments with PSystemEvolver evaluates
each P system according to its halting configuration. The computer simulations
of all the computations have been performed by using the P-lingua simulator [9].
To calculate the fitness of each individual, PSystemEvolver generates the corre-
sponding P-lingua file and call with it the simulator that produces a report file to
obtain the evaluation for that P system.

To test the behavior of the algorithm, we performed 30 runs for each EA
parameters setting. Table 1 shows the number of success for each experiment, that
is, the number of times that PSystemEvolver could find a P system that solve the
square(4) problem.

Experiment Crossover Rate Mutation Rate Successful Runs

1 0.0 0.5 0/30
2 0.5 0.5 0/30
3 0.8 0.8 1/30
4 1.0 0.8 1/30

Table 1. Number of successful runs for different parameter settings.

Results demonstrated that is difficult to evolve a P system, even though ini-
tial configuration and membrane structure are fixed, and rules are provided for
generating the initial population. This may be due to the fitness function that we
considered for this problem, that conforms a landscape with a unique peak.

High values for crossover and mutation rates resulted beneficial for this algo-
rithm, as can be seen in 1. Other types of mutations, as for example, rule activation
or inactivation would be considered in future implementations.

The best P system Pbest encountered by PSystemEvolver is described above
by the rules Rbest:

Rbest =





r1 ≡ [ a → a b ]e r5 ≡ [ z3 → z4 ]e
r2 ≡ [ b → b c ]e r6 ≡ [ z4 ]e → a
r3 ≡ [ z1 → z2 ]e r7 ≡ [ a → λ ]s
r4 ≡ [ z2 → z3 ]e r8 ≡ [ b → λ ]s





5 Final Remarks

The advances in the research in Membrane Computing requires the design of more
and more complex P systems. On the one hand, the theoretical research needs



An Application of Genetic Algorithms to Membrane Computing 107

sophisticated designs which allows prove the ability of P systems for solving dif-
ferent type of problems by using a fixed ingredients (see, e.g., [10, 11]). On the
other hand, Membrane Computing solutions to real-life problems needs to be quite
precise in the design in order to find a sharp simulation of the processes [7, 8].

The design of such P systems is a hard task which must be performed by hand
by the researcher. In this paper we explore the use of Genetic Algorithms as a
help for designing P systems. The key point is finding a good fitness function. P
systems are designed to make a computation and it is difficult to measure how far
is the current design from the desired when the result of the computation is not
the searched.

Many open questions arise from this work. As pointed above, the problem of
finding the features of a good fitness function is open, but this is not the only one.
A first research line involves a deeper study of the genetic algorithm operators, not
only for the fitness function, but operators able also to modify the initial multisets
or the membrane structures. A second line is related to the applications. In this
paper we use a small theoretical problem, but the final target is to apply genetic
algorithms for the design of complex P systems.

Acknowledgement

GE is supported by Universidad Simón Boĺıvar (Venezuela) and Deutscher
Akademischer Austausch Dienst (DAAD) Grant A/08/94489.
MAGN acknowledges the support of the projects TIN2008-04487-E and TIN-2009-
13192 of the Ministerio de Ciencia e Innovación of Spain and the support of the
Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta de An-
dalućıa, grant P08-TIC-04200.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight Jr., R. Nagpal, E.
Rauch, G. Sussman, and R. Weiss. Amorphous computing. Communications of the
ACM 43(5), (2000) 74-82.

2. L.M. Adleman. Molecular computations of solutions to combinatorial problems. Sci-
ence, 226 (1994) 1021–1024.

3. M. Affenzeller, S. Winkler, S. Wagner, A. Beham. Genetic Algorithms and Ge-
netic Programming - Modern Concepts and Practical Applications. Chapman &
Hall/CRC. (2009).

4. H. Cao, F.J. Romero-Campero, S. Heeb, M. Cámara, N. Krasnogor. Evolving cell
models for systems and synthetic biology. Systems and Synthetic Biology 4(1), (2010)
55–84.

5. L. de Castro and J. Timmis. Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, (2002).

6. A. Engelbrecht. Fundamentals of Computational Swarm Intelligence. Wiley and Sons,
(2005).



108 G. Escuela, M.A. Gutiérrez-Naranjo

7. G. Escuela, T. Hinze, P. Dittrich, S.Schuster, M. Moreno. Modelling Modified At-
mosphere Packaging for Fruits and Vegetables using Membrane Systems. Accepted
paper at Third International Conference on Bio-inspired Systems and Signal Pro-
cessing BIOSIGNALS 2010. Valencia, Spain. January 2010.

8. T. Hinze, T. Lenser, G. Escuela, I. Heiland, S. Schuster. Modelling Signalling Net-
works with Incomplete Information about Protein Activation States: A P System
Framework of the KaiABC Oscillator. Lecture Notes in Computer Science 5957,
(2010), 316-334.

9. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, A. Riscos-Núñez. An overview of P-Lingua 2.0. Lecture Notes in Computer
Science, 5957 (2010), 264-288.

10. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Solv-
ing Subset Sum in linear time by using tissue P systems with cell division. Lecture
Notes in Computer Science 4527 (2007), 170-179.

11. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. Computational efficiency of dissolution rules in membrane systems. In-
ternational Journal of Computer Mathematics 83(7), (2006) 593 - 611.

12. L. Kari and G. Rozenberg. The many facets of Natural Computing. Communications
of the ACM, 51(10), (2008) 72–83.

13. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Univer-
sity of Michigan Press. (1975)

14. L. Huang and N. Wang. An Optimization Algorithm Inspired by Membrane Com-
puting. Lecture Notes in Computer Science 4222, (2006) 49-52.

15. W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5 (1943) 115–133.

16. J. von Neumann. Theory of Self-Reproducing Automata. U. Illinois Press (1966).
17. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,

61, 1 (2000), 108–143.
18. Gh. Păun. Membrane Computing – An Introduction Springer-Verlag, Berlin, 2002.


