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Preface

These proceedings, consisting of two volumes, contain the papers emerged from the
Seventh Brainstorming Week on Membrane Computing (BWMC), held in Sevilla,
from February 2 to February 6, 2009, in the organization of the Research Group
on Natural Computing from the Department of Computer Science and Artificial
Intelligence of Sevilla University. The first edition of BWMC was organized at the
beginning of February 2003 in Rovira i Virgili University, Tarragona, and the next
five editions took place in Sevilla at the beginning of February 2004, 2005, 2006,
2007, and 2008, respectively.

In the style of previous meetings in this series, the seventh BWMC was con-
ceived as a period of active interaction among the participants, with the empha-
sis on exchanging ideas and cooperation; this time, however, there were much
more presentations than in the previous years, but still these presentations were
“provocative”, mainly proposing new ideas, open problems, research topics, results
which need further improvements. The efficiency of this type of meetings was again
proved to be very high and the present volumes prove this assertion.

As already usual, the number of participants was around 40, most of them
computer scientists, but also a few biologists were present. It is important to note
that several new names appeared in the membrane computing community, also
bringing new view points and research topics to this research area.

The papers included in these volumes, arranged in the alphabetic order of the
authors, were collected in the form available at a short time after the brainstorm-
ing; several of them are still under elaboration. The idea is that the proceedings are
a working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from these volumes will be considered for publication
in a special issues of International Journal of Computers, Control and Communi-
cation. After the first BWMC, a special issue of Natural Computing – volume 2,
number 3, 2003, and a special issue of New Generation Computing – volume 22,
number 4, 2004, were published; papers from the second BWMC have appeared in



vi Preface

a special issue of Journal of Universal Computer Science – volume 10, number 5,
2004, as well as in a special issue of Soft Computing – volume 9, number 5, 2005;
a selection of papers written during the third BWMC have appeared in a special
issue of International Journal of Foundations of Computer Science – volume 17,
number 1, 2006); after the fourth BWMC a special issue of Theoretical Computer
Science was edited – volume 372, numbers 2-3, 2007; after the fifth edition, a
special issue of International Journal of Unconventional Computing was edited –
volume 5, number 5, 2009; finally, a selection of papers elaborated during the sixth
BWMC has appeared in a special issue of Fundamenta Informaticae – volume 87,
number 1, 2008. Other papers elaborated during the seventh BWMC will be sub-
mitted to other journals or to suitable conferences. The reader interested in the
final version of these papers is advised to check the current bibliography of mem-
brane computing available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Alhazov Artiom, Hiroshima University, Japan,
aartiom@yahoo.com

2. Ardelean Ioan, Institute of Biology of the Romanian Academy, Bucharest,
Romania,
ioan.ardelean@ibiol.ro

3. Bogdan Aman, A.I.Cuza University, Iasi, Romania,
baman@iit.tuiasi.ro

4. Caravagna Giulio, University of Pisa, Italy,
caravagn@di.unipi.it

5. Ceterchi Rodica, University of Bucharest, Romania,
rceterchi@gmail.com

6. Colomer-Cugat M. Angels, University of Lleida, Spain,
Colomer@matematica.UdL.es

7. Cordón-Franco Andrés, University of Sevilla, Spain,
acordon@us.es

8. Csuhaj-Varjú Erzsébet, Hungarian Academy of Sciences, Budapest, Hungary,
csuhaj@sztaki.hu

9. Dı́az-Pernil Daniel, University of Sevilla, Spain,
sbdani@us.es

10. Frisco Pierluigi, Heriot-Watt University, United Kingdom,
pier@macs.hw.ac.uk

11. Garćıa-Quismondo Manuel, University of Sevilla, Spain,
mangarfer2@alum.us.es

12. Graciani-Dı́az Carmen, University of Sevilla, Spain,
cgdiaz@us.es

13. Gutiérrez-Naranjo Miguel Ángel, University of Sevilla, Spain,
magutier@us.es
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14. Gutiérrez-Escudero Rosa, University of Sevilla, Spain,
rgutierrez@us.es

15. Henley Beverley, University of Sevilla, Spain,
bhenley@us.es

16. Ipate Florentin, University of Pitesti, Romania,
florentin.ipate@ifsoft.ro

17. Ishdorj Tseren-Onolt, Abo Akademi, Finland,
tishdorj@abo.fi

18. Krassovitskiy Alexander, Rovira i Virgili University, Tarragona, Spain,
alexander.krassovitskiy@estudiants.urv.cat

19. Leporati Alberto, University of Milano-Bicocca, Italy,
leporati@disco.unimib.it

20. Mart́ınez-del-Amor Miguel Angel, University of Sevilla, Spain,
mdelamor@us.es

21. Mauri Giancarlo, University of Milano-Bicocca, Italy,
mauri@disco.unimib.it

22. Mingo Postiglioni Jack Mario, Carlos Tercero University, Madrid, Spain,
jmingo@inf.uc3m.es

23. Murphy Niall, NUI Maynooth, Ireland,
nmurphy@cs.nuim.ie

24. Obtu lowicz Adam, Polish Academy of Sciences, Poland,
A.Obtulowicz@impan.gov.pl

25. Orejuela-Pinedo Enrique Francisco, University of Sevilla, Spain,
eorejuela@us.es

26. Pagliarini Roberto, University of Verona, Italy,
roberto.pagliarini@univr.it

27. Pan Linqiang, Huazhong University of Science and Technology, Wuhan, Hubei,
China,
lqpan@mail.hust.edu.cn

28. Păun Gheorghe, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania, and University of Sevilla, Spain,
george.paun@imar.ro, gpaun@us.es

29. Pérez-Hurtado-de-Mendoza Ignacio, University of Sevilla, Spain,
perezh@us.es

30. Pérez-Jiménez Mario de Jesús, University of Sevilla, Spain,
marper@us.es

31. Porreca Antonio, University of Milano-Bicocca, Italy,
porreca@disco.unimib.it

32. Riscos-Núñez Agust́ın, University of Sevilla, Spain,
ariscosn@us.es

33. Rogozhin Yurii, Institute of Mathematics and Computer Science,
Chisinau, Moldova,
rogozhin@math.md
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34. Romero-Jiménez Alvaro, University of Sevilla, Spain,
Alvaro.Romero@cs.us.es

35. Sburlan Dragoş, Ovidius University, Constanţa, Romania,
dsburlan@univ-ovidius.ro

36. Sempere Luna José Maŕıa, Polytechnical University of Valencia, Spain,
jsempere@dsic.upv.es

37. Vaszil György, Hungarian Academy of Sciences, Budapest, Hungary,
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38. Woods Damien, University of Sevilla, Spain,
dwoods@us.es

39. Zandron Claudio, University of Milano-Bicocca, Italy,
zandron@disco.unimib.it

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all the
members of this group were enthusiastically involved in this (not always easy) work.
The meeting was supported from various sources: (i) Proyecto de Excelencia de la
Junta de Andalućıa, grant TIC 581, (ii) Proyecto de Excelencia con investigador de
reconocida vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200, (iii) Proyecto
del Ministerio de Educación y Ciencia, grant TIN2006 – 13425, (iv) IV Plan Propio
de la Universidad de Sevilla, (v) Consejeŕıa de Innovación, Ciencia y Empresa de la
Junta de Andalućıa, well as by the Department of Computer Science and Artificial
Intelligence from Sevilla University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, April 10, 2009)
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Deterministic Solutions to QSAT and Q3SAT by
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Tseren-Onolt Ishdorj1, Alberto Leporati2, Linqiang Pan3?,
Xiangxiang Zeng3, Xingyi Zhang3

1 Computational Biomodelling Laboratory
Department of Information Technologies
Åbo Akademi University, Turku 20520, Finland
tishdorj@abo.fi
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Huazhong University of Science and Technology
Wuhan 430074, Hubei, People’s Republic of China
lqpan@mail.hust.edu.cn, zxxhust@gmail.com, xyzhanghust@gmail.com

Summary. In this paper we continue previous studies on the computational efficiency
of spiking neural P systems, under the assumption that some pre-computed resources of
exponential size are given in advance. Specifically, we give a deterministic solution for
each of two well known PSPACE-complete problems: QSAT and Q3SAT. In the case of
QSAT, the answer to any instance of the problem is computed in a time which is linear
with respect to both the number n of Boolean variables and the number m of clauses
that compose the instance. As for Q3SAT, the answer is computed in a time which is at
most cubic in the number n of Boolean variables.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [7] in the
framework of Membrane Computing [15] as a new class of computing devices
which are inspired by the neurophysiological behavior of neurons sending electrical
impulses (spikes) along axons to other neurons. Since then, many computational
properties of SN P systems have been studied; for example, it has been proved
? Corresponding author. Tel.: +86-27-87556070. Fax: +86-27-87543130.
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that they are Turing-complete when considered as number computing devices [7],
when used as language generators [4, 2] and also when computing functions [13].

Investigations related to the possibility to solve computationally hard problems
by using SN P systems were first proposed in [3]. The idea was to encode the
instances of decision problems in a number of spikes, to be placed in an (arbitrarily
large) pre-computed system at the beginning of the computation. It was shown
that the resulting SN P systems are able to solve the NP-complete problem SAT
(the satisfiability of propositional formulas expressed in conjunctive normal form)
in a constant time. Slightly different solutions to SAT and 3-SAT by using SN P
systems with pre-computed resources were considered in [8]; here the encoding of
an instance of the given problem is introduced into the pre-computed resources in
a polynomial number of steps, while the truth values are assigned to the Boolean
variables of the formula and the satisfiability of the clauses is checked. The answer
associated to the instance of the problem is thus computed in a polynomial time.
Finally, very simple semi-uniform and uniform solutions to the numerical NP-
complete problem Subset Sum — by using SN P systems with exponential size
pre-computed resources — have been presented in [9]. All the systems constructed
above work in a deterministic way.

A different idea of constructing SN P systems for solving NP-complete prob-
lems was given in [11, 12], where the Subset Sum and SAT problems were consid-
ered. In these papers, the solutions are obtained in a semi-uniform or uniform way
by using nondeterministic devices but without pre-computed resources. However,
several ingredients are also added to SN P systems such as extended rules, the
possibility to have a choice between spiking rules and forgetting rules, etc. An
alternative to the constructions of [11, 12] was given in [10], where only standard
SN P systems without delaying rules, and having a uniform construction, are used.
However, it should be noted that the systems described in [10] either have an ex-
ponential size, or their computations last an exponential number of steps. Indeed,
it has been proved in [12] that a deterministic SN P system of polynomial size can-
not solve an NP-complete problem in a polynomial time unless P=NP. Hence,
under the assumption that P 6= NP, efficient solutions to NP-complete problems
cannot be obtained without introducing features which enhance the efficiency of
the system (pre-computed resources, ways to exponentially grow the workspace
during the computation, nondeterminism, and so on).

The present paper deals with QSAT (the satisfiability of fully quantified propo-
sitional formulas expressed in conjunctive normal form) and with Q3SAT (where
the clauses that compose the propositional formulas have exactly three literals),
two well known PSPACE-complete problems. For QSAT we provide a family
{ΠQSAT (2n,m)}n,m∈N of SN P systems with pre-computed resources such that
for all n,m ∈ N the system ΠQSAT (2n,m) solves all the instances of QSAT which
are built using 2n Boolean variables and m clauses. Each system ΠQSAT (2n,m)
is deterministic, and computes the solution in a time which is linear with respect
to both n and m; however, the size of ΠQSAT (2n,m) is exponential with respect
to the size of the instances of the problem. As for Q3SAT, we provide a family
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{ΠQ3SAT (2n)}n∈N of SN P systems with pre-computed resources, such that for all
n ∈ N the system ΠQ3SAT (2n) solves all possible instances of Q3SAT which can be
built using 2n Boolean variables. Also in this case the systems ΠQ3SAT (2n) are
deterministic and have an exponential size with respect to n. Given an instance of
Q3SAT, the corresponding answer is computed in a time which is at most cubic in
n.

An important observation is that we will not specify how our pre-computed
systems could be built. However, we require that such systems have a regular struc-
ture, and that they do not contain neither “hidden information” that simplify the
solution of specific instances, nor an encoding of all possible solutions (that is, an
exponential amount of information that allows to cheat while solving the instances
of the problem). These requirements were inspired by open problem Q27 in [15].
Let us note in passing that the regularity of the structure of the system is related
to the concept of uniformity, that in some sense measures the difficulty of con-
structing the systems. Usually, when considering families {C(n)}n∈N of Boolean
circuits, or other computing devices whose number of inputs depends upon an inte-
ger parameter n ≥ 1, it is required that for each n ∈ N a “reasonable” description
(see [1] for a discussion on the meaning of the term “reasonable” in this context) of
C(n), the circuit of the family which has n inputs, can be produced in polynomial
time and logarithmic space (with respect to n) by a deterministic Turing machine
whose input is 1n, the unary representation of n. In this paper we will not delve
further into the details concerning uniformity; we just rely on reader’s intuition,
by stating that it should be possible to build the entire structure of the system in a
polynomial time, using only a polynomial amount of information and a controlled
replication mechanism, as it already happens in P systems with cell division. We
will thus say that our solutions are exp-uniform (instead of uniform), since the
systems ΠQSAT (2n,m) and ΠQ3SAT (2n) have an exponential size.

The paper is organized as follows. In section 2 we recall the formal definition of
SN P systems, as well as some mathematical preliminaries that will be used in the
following. In section 3 we provide an exp-uniform family {ΠQSAT (2n,m)}n,m∈N of
SN P systems with pre-computed resources such that for all n,m ∈ N the system
ΠQSAT (2n,m) solves all possible instances of QSAT containing 2n Boolean variables
and m clauses. In section 4 we present an exp-uniform family {ΠQ3SAT (2n)}n∈N
of SN P systems with pre-computed resources such that for all n ∈ N the system
ΠQ3SAT (2n) solves all the instances of Q3SAT which can be built using 2n Boolean
variables. Section 5 concludes the paper and suggests some possible directions for
future work.

2 Preliminaries

We assume the reader to be familiar with formal language theory [16], computa-
tional complexity theory [5] as well as membrane computing [15]. We mention here
only a few notions and notations which are used throughout the paper.
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For an alphabet V , V ∗ denotes the set of all finite strings over V , with the
empty string denoted by λ. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we simply write a∗ and a+ instead of {a}∗,
{a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)+) = (L(E1))+, for all regular expressions E1, E2 over V . Non-necessary
parentheses can be omitted when writing a regular expression, and also (E)+∪{λ}
can be written as E∗.

For a string str = y1y2 . . . y2n, where y2k−1 ∈ {0, 1}, y2k ∈ {0, 1, x2k}, 1 ≤
k ≤ n, we denote by str|i the ith symbol of the string str, 1 ≤ i ≤ 2n. For given
1 ≤ i ≤ n, if str such that the 2jth symbol is x2j for all j ≤ i and the 2j′th
symbol equals to 1 or 0 for all j′ ≥ i, then we denote by str|2i ← x a string which
is obtained by replacing the 2ith symbol of str with x2i. In particular, for a binary
string bin ∈ {0, 1}2n, bin|i and bin|2 ← x2 are defined as the ith bit of bin and
the string obtained by replacing the second bit of bin with x2, respectively.

QSAT is a well known PSPACE-complete decision problem (see for exam-
ple [5, pages 261–262], where some variants of the problem Quantified Boolean
Formulas are defined). It asks whether or not a given fully quantified Boolean
formula, expressed in the conjunctive normal form (CNF), evaluates to true or
false. Formally, an instance of QSAT with n variables and m clauses is a formula
γn,m = Q1x1Q2x2 · · ·Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm) where each Qi, 1 ≤ i ≤ n, is
either ∀ or ∃, and each clause Cj , 1 ≤ j ≤ m, is a disjunction of the form
Cj = y1∨y2∨. . .∨yrj , with each literal yk, 1 ≤ k ≤ rj , being either a propositional
variable xs or its negation ¬xs, 1 ≤ s ≤ n. For example, the propositional formula
β = Q1x1Q2x2[(x1 ∨ x2)∧ (¬x1 ∨¬x2)] is true when Q1 = ∀ and Q2 = ∃, whereas
it is false when Q1 = ∃ and Q2 = ∀. The decision problem Q3SAT is defined ex-
actly as QSAT, the only difference being that all the clauses now contain exactly
three literals. It is known that even under this restriction the problem remains
PSPACE-complete (see, for example, [5, page 262]).

In what follows we require that no repetitions of the same literal may occur
in any clause. Without loss of generality we can also avoid the clauses in which
both the literals xs and ¬xs, for any 1 ≤ s ≤ n, occur. Further, we will focus our
attention on the instances of QSAT and Q3SAT in which all the variables having
an even index (that is, x2, x4, . . .) are universally quantified, and all the variables
with an odd index (x1, x3, . . .) are existentially quantified. We will say that such
instances are expressed in normal form. This may be done without loss of gener-
ality. In fact, for any instance γn,m = Q1x1Q2x2 · · ·Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm)
of QSAT having n variables and m clauses there exists an equivalent instance
γ′2n,m = ∃x′1∀x′2 . . . ∃x′2n−1∀x′2n(C ′1 ∧ C ′2 ∧ . . . ∧ C ′m) with 2n variables, where
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each clause C ′j is obtained from Cj by replacing every variable xi by x′2i−1 if
Qi = ∃, or by x′2i if Qi = ∀. Note that this transformation may require to intro-
duce some “dummy” variables, that is, variables which are quantified in γ′2n,m to
guarantee the alternance of even-numbered and odd-numbered variables, but that
nonetheless do not appear in any clause. For example, for the propositional formula
β1 = ∀x1∃x2[(x1∨x2)∧ (¬x1∨¬x2)] the normal form is β′1 = ∃x′1∀x′2∃x′3∀x′4[(x′2∨
x′3)∧(¬x′2∨¬x′3)]; for the propositional formula β2 = ∃x1∀x2[(x1∨x2)∧(¬x1∨¬x2)]
we have the normal form β′2 = ∃x′1∀x′2∃x′3∀x′4[(x′1 ∨ x′4) ∧ (¬x′1 ∨ ¬x′4)]. The same
transformation may be applied on any instance of Q3SAT defined on n Boolean
variables; in this case the result will be another instance of Q3SAT, defined on 2n
variables. From now on we will denote by QSAT (2n, m) the set of all possible
instances of QSAT, expressed in the above normal form, which are built using 2n
Boolean variables and m clauses. Similarly, we will denote by Q3SAT (2n) the set
of all possible instances of Q3SAT, expressed in normal form, which can be built
using 2n Boolean variables.

2.1 Spiking neural P systems

As stated in the Introduction, SN P systems have been introduced in [7], in the
framework of Membrane Computing. They can be considered as an evolution of P
systems, corresponding to a shift from cell-like to neural-like architectures.

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consists of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cell. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use one of its rules, then one
of such rules must be used. If two or more rules could be applied, then only one
of them is nondeterministically chosen. Thus, the rules are used in the sequential
manner in each neuron, but neurons function in parallel with each other. Note
that, as usually happens in Membrane Computing, a global clock is assumed,
marking the time for the whole system, and hence the functioning of the system
is synchronized. When a cell sends out spikes it becomes “closed” (inactive) for a
specified period of time, that reflects the refractory period of biological neurons.
During this period, the neuron does not accept new inputs and cannot “fire” (that
is, emit spikes). Another important feature of biological neurons is that the length
of the axon may cause a time delay before a spike arrives at the target. In SN
P systems this delay is modeled by associating a delay parameter to each rule
which occurs in the system. If no firing rule can be applied in a neuron, then there
may be the possibility to apply a forgetting rule, that removes from the neuron a
predefined number of spikes.

Formally, a spiking neural membrane system (SN P system, for short) of degree
m ≥ 1, as defined in [7], is a construct of the form
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Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the form E/ac → ap; d, where E is a regular

expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the restriction c ≥ p;
3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the

directed graph of synapses between neurons;
4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

A rule E/ac → ap; d with p ≥ 1 is an extended firing (we also say spiking) rule;
a rule E/ac → ap with p = 0 is written in the form E/ac → λ and is called an
extended forgetting rule. Rules of the types E/ac → a; d and ac → λ are said to be
standard.

If a rule E/ac → ap; d has E = ac, then we will write it in the simplified form
ac → ap; d; similarly, if a rule E/ac → ap; d has d = 0, then we can simply write
it as E/ac → ap; hence, if a rule E/ac → ap; d has E = ac and d = 0, then we can
write ac → ap.

The rules are applied as follows. If the neuron σi contains k spikes, and ak ∈
L(E), k ≥ c, then the rule E/ac → ap; d is enabled and can be applied. This means
consuming (removing) c spikes (thus only k − c spikes remain in neuron σi); the
neuron is fired, and it produces p spikes after d time units. If d = 0, then the spikes
are emitted immediately; if d = 1, then the spikes are emitted in the next step, etc.
If the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d− 1 the
neuron is closed (this corresponds to the refractory period from neurobiology), so
that it cannot receive new spikes (if a neuron has a synapse to a closed neuron and
tries to send a spike along it, then that particular spike is lost). In the step t + d,
the neuron spikes and becomes open again, so that it can receive spikes (which
can be used starting with the step t + d + 1, when the neuron can again apply
rules). Once emitted from neuron σi, the p spikes reach immediately all neurons
σj such that (i, j) ∈ syn and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form E/ac → λ, then, when it is applied, c ≥ 1 spikes are
removed.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2 can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in
a neuron; in such a case, only one of them is chosen in a nondeterministic way.
However it is assumed that if a firing rule is applicable then no forgetting rule is
applicable, and vice versa. Thus, the rules are used in the sequential manner in each
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neuron (at most one in each step), but neurons work in parallel with each other.
It is important to note that the applicability of a rule is established depending on
the total number of spikes contained in the neuron.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration is described by both the number of spikes
present in each neuron and the state of the neuron, that is, the number of steps
to count down until it becomes open again (this number is zero if the neuron is
already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neuron σi con-
tains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps, for i = 1, 2, . . . ,m; with
this notation, the initial configuration of the system is C0 = 〈n1/0, . . . , nm/0〉.
Using the rules as described above, one can define transitions among configura-
tions. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used.

Since in SN P systems the alphabet contains only one symbol (denoted by a),
the input information is sometimes encoded as a sequence of “virtual” symbols, λ
or ai, i ≥ 1, where λ represents no spike and ai represents a multiset of i spikes.
The input sequence is then introduced in the input neuron one virtual symbol at
one time unite, starting from the leftmost symbol of the sequence. For instance,
the sequence a2λa3 is composed of three virtual symbols: a2, λ and a3. When
providing this sequence as input to an SN P system, the virtual symbol a2 (that
is, two spikes) is introduced at the first computation step, followed by λ (0 spikes)
at the next step, and finally by a3 (three spikes) at the third step.

Another useful extension to the model defined above, already considered in
[10, 12, 11, 8], is to use several input neurons, so that the introduction of the
encoding of an instance of the problem to be solved can be done in a faster way,
introducing parts of the code in parallel in various input neurons. Formally, we
can define an SN P system of degree (m, `), with m ≥ 1 and 0 ≤ ` ≤ m, just like a
standard SN P system of degree m, the only difference being that now there are `
input neurons denoted by in1, . . . , in`. A valid input for an SN P system of degree
(m, `) is a set of ` binary sequences (where each element of the sequence denotes
the presence or the absence of a spike), that collectively encode an instance of a
problem.

Spiking neural P systems can be used to solve decision problems, both in a
semi–uniform and in a uniform way. When solving a problem Q in the semi–
uniform setting, for each specified instance I of Q we build in a polynomial time
(with respect to the size of I) an SN P system ΠQ,I , whose structure and initial
configuration depend upon I, that halts (or emits a specified number of spikes in
a given interval of time) if and only if I is a positive instance of Q. On the other
hand, a uniform solution of Q consists of a family {ΠQ(n)}n∈N of SN P systems
such that, when having an instance I ∈ Q of size n, we introduce a polynomial
(in n) number of spikes in a designated (set of) input neuron(s) of ΠQ(n) and the
computation halts (or, alternatively, a specified number of spikes is emitted in a
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given interval of time) if and only if I is a positive instance. The preference for
uniform solutions over semi–uniform ones is given by the fact that they are more
strictly related to the structure of the problem, rather than to specific instances.
Indeed, in the semi–uniform setting we do not even need any input neuron, as
the instance of the problem is embedded into the structure (number of spikes,
graph of neurons and synapses, rules) from the very beginning. If the instances
of a problem Q depend upon two parameters (as is the case of QSAT, where n is
the number of variables and m the number of clauses in a given formula), then
we will denote the family of SN P systems that solves Q by {ΠQ(n,m)}n,m∈N.
Alternatively, if one does not want to make the family of SN P systems depend
upon two parameters, it is possible to define it as {ΠQ(〈n,m〉)}n,m∈N, where 〈n,m〉
indicates the positive integer number obtained by applying an appropriate bijection
(for example, Cantor’s pairing) from N2 to N.

In the above definitions it is assumed that the uniform (resp., semi-uniform)
construction of ΠQ(n) (resp., ΠQ,I) is performed by using a deterministic Turing
machine, working in a polynomial time. As stated in the Introduction, the SN P
systems we will describe will solve all the instances of QSAT and Q3SAT of a given
size, just like in the uniform setting. However, such systems will have an exponen-
tial size. Since a deterministic Turing machine cannot produce (the description of)
an exponential size object in a polynomial time, we will say that our solutions are
exp-uniform.

3 An exp-Uniform Solution to QSAT

In this section we build an exp-uniform family {ΠQSAT (2n,m)}n,m∈N of SN P sys-
tems such that for all n,m ∈ N the system ΠQSAT (2n,m) solves all the instances
of QSAT (2n,m) in a polynomial number of steps with respect to n and m, in a
deterministic way.

The instances of QSAT (2n,m) to be given as input to the system
ΠQSAT (2n,m) are encoded as sequences of virtual symbols, as follows. For any
given instance γ2n,m = ∃x1∀x2 . . . ∃x2n−1∀x2n(C1∧C2∧. . .∧Cm) of QSAT (2n,m),
let code(γ2n,m) = α11α12 · · ·α12nα21α22 · · ·α22n · · ·αm1αm2 · · ·αm2n, where each
αij , for 1 ≤ i ≤ m and 1 ≤ j ≤ 2n, is a spike variable whose value is an amount
of spikes (a virtual symbol), assigned as follows:

αij =





a, if xj occurs in Ci;
a2, if ¬xj occurs in Ci;
λ, otherwise.

In this way the sequence αi1αi2 · · ·αi2n of spike variables represents the clause
Ci, and the representation of γ2n,m is just the concatenation of the repre-
sentations of the single clauses. As an example, the representation of γ2,2 =
∃x1∀x2[(x1 ∨ ¬x2) ∧ (¬x2)] is aa2λa2. The set of all the encoding sequences of
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all possible instances of QSAT (2n,m) is denoted by code(QSAT (2n,m)). For in-
stance, QSAT (2, 1) contains the following nine formulas (the existential and the
universal quantifiers are here omitted for the sake of readability): γ1

2,1 = no vari-
able appears in the clause, γ2

2,1 = x2, γ3
2,1 = ¬x2, γ4

2,1 = x1, γ5
2,1 = x1 ∨ x2,

γ6
2,1 = x1 ∨ ¬x2, γ7

2,1 = ¬x1, γ8
2,1 = ¬x1 ∨ x2, γ9

2,1 = ¬x1 ∨ ¬x2. Therefore,
code(QSAT (2, 1)) = {λλ, λa, λa2, aλ, aa, aa2, a2λ, a2a, a2a2}.

The structure of the pre-computed SN P system that solves all possible in-
stances of QSAT (2n,m) is illustrated in a schematic way in Figures 1 and 2. The
system is a structure of the form Π

(2n,m)
QSAT = (ΠQSAT (2n,m), code(QSAT (2n,m)))

with:

• ΠQSAT (2n,m) = (O, µ, in, out), where:
1. O = {a} is the singleton alphabet;
2. µ = (H,

⋃
i∈H{mi},

⋃
j∈H Rj , syn) is the structure of the SN P system,

where:
– H = H0 ∪H1 ∪H2 ∪H3 is a finite set of neuron labels, with

H0 = {in, out, d} ∪ {di | 0 ≤ i ≤ 2n},
H1 = {Cxi, Cxi1, Cxi0 | 1 ≤ i ≤ 2n},
H2 = {bin, Cbin | bin ∈ {0, 1}2n},
H3 = {y1y2 . . . y2n−1y2n | yi ∈ {0, 1} when i is odd and yi ∈ {0, 1, xi} when
i is even, and there exists at least one k ∈ {1, 2, . . . , n} such that y2k =
x2k} (we recall that even values of i correspond to universally quantified
variables).
All the neurons are injectively labeled with elements from H;

– md0 = 2, md = 1 and mi = 0 (i ∈ H, i 6= d0, d) are the numbers of spikes
that occur in the initial configuration of the system;

– Rk, k ∈ H, is a finite set of rules associated with neuron σk, where:
Rin = {a → a, a2 → a2}, Rd = {a → a; 2mn + n + 6},
Rdi = {a2 → a2}, for i ∈ {0, 1, . . . , 2n−1}, and Rd2n = {a2 → a2, a3 → λ},
RCxi = {a → λ, a2 → λ, a3 → a3; 2n − i, a4 → a4; 2n − i}, for i ∈
{1, 2, . . . , 2n},
RCxi1 = {a3 → a2, a4 → λ} and RCxi0 = {a3 → λ, a4 → a2}, for

i ∈ {1, 2, . . . , 2n},
RCbin = {(a2)+/a → a} ∪ {a2k−1 → λ | k = 1, 2, . . . , 2n}, for bin ∈
{0, 1}2n,
Rbin = {am → a}, for bin ∈ {0, 1}2n,
Rstr = {a2 → a}, where str ∈ H3 and there exists at least one i ∈
{1, 2, . . . , n} such that str|2i 6= x2i,
Rstr′ = {a2 → a2}, where str′ ∈ H3 and str′|2k = x2k, for all 1 ≤ k ≤ n,
Rout = {(a2)+/a → a};

– syn is the set of all the synapses between the neurons. The following
synapses are used in the input module (see Figure 1): (in, Cxi), (di−1, di),
(di, Cxi), (Cxi, Cxi1) and (Cxi, Cxi0), for all 1 ≤ i ≤ 2n, as well as
(d2n, d1) and (d, d2n).
The synapses connecting the other neurons are illustrated in Figure 2:
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(Cxij, Cbin), where bin ∈ {0, 1}2n and bin|i = j, 1 ≤ i ≤ 2n, j ∈ {0, 1},
(Cbin, bin), where bin ∈ {0, 1}2n,
(bin, str), where bin ∈ {0, 1}2n, str ∈ H3, and str = (bin|i ← x2),
(strj1 , strj2), where strj1 , strj2 ∈ H3 and strj2 = (strj1 |2i ← x2i), 2 ≤ i ≤
n,
(str, out), where str ∈ H3 and str|2k = x2k, for all 1 ≤ k ≤ n;

3. in, out indicate the input and output neurons, respectively;
• code(QSAT (2n, m)) is the set of all the encoding sequences for all the possible

instances of QSAT (2n,m), as defined above.

Fig. 1. The input module of ΠQSAT (2n, m)

The system is composed of four modules: input, satisfiability checking, quanti-
fier checking, and output. To simplify the description of the system and its working,
the neurons in the system are arranged in n + 7 layers in Figures 1 and 2. The
input module has three layers (the first layer contains three neurons σd0 , σd and
σin; the second layer contains 2n neurons σdi , 1 ≤ i ≤ 2n; the third layer contains
2n neurons σCxi , 1 ≤ i ≤ 2n). The satisfiability checking module has also three
layers (the fourth layer contains 4n neurons σCxij , 1 ≤ i ≤ 2n, j = 0, 1; the fifth
layer contains 22n neurons σCbin, bin ∈ {0, 1}2n; the sixth layer contains 22n neu-
rons σbin, bin ∈ {0, 1}2n). The quantifier checking module is composed of n layers,
from the 7th to the (n + 6)th layer, where a total of 22n − 2n neurons are used.
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Input module

a3�a2

a4��
Cx1 1

a3��
a4� a2

Cx1 0 Cx21 Cx20 Cx2 n 1 Cx2 n 0

�a2���a� a

a2k�1��

C 11111�1

k�1,� , 2n

C 10111�1 C 11101�1 C 10101�1 C 01�0 C 0�00

am�a

11111�1

am� a

10111�1

am� a

11101�1

am� a

10101�1

am� a

01�0

am� a

0�00

a2� a

1 x21�1

a2� a

1 x2101�1

a2� a

0 x2 0�0

a2� a

1 x21 x41�1

a2� a2

1 x21 x4�1 x2 n

a2� a2

1 x20 x41 x6�1 x2 n

a2� a2

0 x2�0 x2 n

out

�
a2���a�a

�

�

�

	 					

a3�a2

a4��
a3��
a4� a2

a3��
a4� a2

a3�a2

a4��

�a2���a� a

a2k�1��
k�1,� , 2n

�a2���a� a

a2 k�1��
k�1,� , 2n

�a2���a�a

a2 k�1��
k�1,� , 2n

�a2���a� a

a2 k�1��
k�1,� , 2n

�a2���a� a

a2 k�1��
k�1,� , 2n

�

��

�

���

Fig. 2. Structure of the SN P system ΠQSAT (2n, m)

The output module only contains one neuron σout, which appears in the last layer.
In what follows we provide a more detailed description of each module, as well as
its working when solving a given instance γ2n,m ∈ QSAT (2n,m).

• Input: The input module consists of 4n + 3 neurons, contained in the layers 1
– 3 as illustrated in Figure 1; σin is the unique input neuron. The values of the
spike variables of the encoding sequence code(γ2n,m) are introduced into σin
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one by one, starting from the beginning of the computation. At the first step of
the computation, the value of the first spike variable α11, which is the virtual
symbol that represents the occurrence of the first variable in the first clause,
enters into neuron σin; in the meanwhile, neuron σd1 receives two auxiliary
spikes from neuron σd0 . At this step, the firing rule in neuron σd is applied; as
a result, neuron σd will send one spike to neuron σd2n

after 2mn + n + 6 steps
(this is done in order to halt the computation after the answer to the instance
given as input has been determined). In the next step, the value of the spike
variable α11 is replicated and sent to neurons σCxi

, for all i ∈ {1, 2, . . . , 2n};
the two auxiliary spikes contained in σd1 are also sent to neurons σCx1 and
σd2 . Hence, neuron σCx1 will contain 2, 3 or 4 spikes: if x1 occurs in C1, then
neuron σCx1 collects 3 spikes; if ¬x1 occurs in C1, then it collects 4 spikes;
if neither x1 nor ¬x1 occur in C1, then it collects two spikes. Moreover, if
neuron σCx1 has received 3 or 4 spikes, then it will be closed for 2n− 1 steps,
according to the delay associated with the rules in it; on the other hand, if
2 spikes are received, then they are deleted and the neuron remains open. At
the third step, the value of the second spike variable α12 from neuron σin is
distributed to neurons σCxi , 2 ≤ i ≤ 2n, where the spikes corresponding to α11

are deleted. At the same time, the two auxiliary spikes are duplicated and one
copy of them enters into neurons σCx2 and σd3 , respectively. The neuron σCx2

will be closed for 2n − 2 steps only if it contains 3 or 4 spikes, which means
that this neuron will not receive any spike during this period. In neurons σCxi ,
3 ≤ i ≤ 2n, the spikes represented by α12 are forgotten in the next step.
In this way, the values of the spike variables are introduced and delayed in the
corresponding neurons until the value of the spike variable α12n of the first
clause and the two auxiliary spikes enter together into neuron σCx2n at step
2n + 1. At that moment, the representation of the first clause of γ2n,m has
been entirely introduced in the system, and the second clause starts to enter
into the input module. The entire sequence code(γ2n,m) is introduced in the
system in 2mn + 1 steps.

• Satisfiability checking: Once all the values of spike variables α1i (1 ≤ i ≤ 2n),
representing the first clause, have appeared in their corresponding neurons
σCxi in layer 3, together with a copy of the two auxiliary spikes, all the spikes
contained in σCxi are duplicated and sent simultaneously to the pair of neurons
σCxi1 and σCxi0, for i ∈ {1, 2, . . . , 2n}, at the (2n + 2)nd computation step.
In this way, each neuron σCxi1 and σCxi0 receives 3 or 4 spikes when xi or
¬xi occurs in C1, respectively, whereas it receives no spikes when neither xi

or ¬xi occurs in C1. In general, if neuron σCxi1 receives 3 spikes, then the
literal xi occurs in the current clause (say Cj), and thus the clause is satisfied
by all those assignments in which xi is true. Neuron σCxi0 will also receive
3 spikes, but it will delete them during the next computation step. On the
other hand, if neuron σCxi1 receives 4 spikes, then the literal ¬xi occurs in
Cj , and the clause is satisfied by those assignments in which xi is false. Since
neuron σCxi1 is designed to process the case in which xi occurs in Cj , it will
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delete its 4 spikes. However, also neuron σCxi0 will have received 4 spikes,
and this time it will send two spikes to those neurons which are bijectively
associated with the assignments for which xi is false. Note that all possible
22n truth assignments to x1, x2, . . . , x2n are represented by the neurons’ labels
Cbin in layer 5, where bin is generated from {0, 1}2n; precisely, we read bin,
where bin|i = j, j ∈ {0, 1}, as a truth assignment whose value for xi is j. In
the next step, those neurons σCbin that received at least two spikes send one
spike to the corresponding neurons σbin in layer 6 (the rest of the spikes will
be forgotten), with the meaning that the clause is satisfied by the assignment
bin. This occurs in the (2n + 4)th computation step. Thus, the check for the
satisfiability of the first clause has been performed; in a similar way, the check
for the remaining clauses can proceed. All the clauses can thus be checked to
see whether there exist assignments that satisfy all of them.
If there exist some assignments that satisfy all the clauses of γ2n,m, then the
neurons labeled with the values of bin ∈ {0, 1}2n that correspond to these
assignments succeed to accumulate m spikes. Thus, the rule am → a can
be applied in these neurons. The satisfiability checking module completes its
process in 2mn + 5 steps.

• Quantifier checking: The universal and existential quantifiers of the fully quan-
tified formula γ2n,m are checked starting from step 2mn + 6.
Since all the instances of QSAT (2n,m) are in the normal form, it is not difficult
to see that we need only to check the universal quantifiers associated to even-
numbered variables (x2, x4, . . .). These universal quantifiers are checked one
by one, and thus the quantifier checking module needs n steps to complete
its process. The module starts by checking the universal quantifier associated
with x2, which is performed as follows. For any two binary sequences bin1 and
bin2 with bin1|i = bin2|i for all i 6= 2 and bin1|2 = 1, bin2|2 = 0, if both
neurons σbin1 and σbin2 contain m spikes, then neuron σstr will receive two
spikes from them at step 2mn + 5, where str = (bin1|2 ← x2). This implies
that, no matter whether x2 = 1 or x2 = 0, if we assign each variable xj with
the value str|j , j 6= 2, 1 ≤ j ≤ 2n, then all the clauses of γ2n,m are satisfied.
As shown in Figure 2, in this way the system can check, in the 7th layer, the
satisfiability of the universal quantifier associated to variable x2. The system
is then ready to check the universal quantifier associated with variable x4,
which is performed in a similar way as follows. For any two sequences str1 and
str2 with str1|i = str2|i ∈ {0, 1}, for all i 6= 2, 4, and str1|2 = str2|2 = x2,
str1|4 = 1, str2|4 = 0, if both neurons σstr1 and σstr2 contain two spikes, then
σstr3 will receive two spikes, where str3 is obtained by replacing the fourth
symbol of str1 with x4 (i.e., str3 = (str1|4 ← x4)). In this way, we check
the (simultaneous) satisfiability of the universal quantifiers associated to the
two variables x2 and x4. Similarly, the system can check the satisfiability of
the universal quantifier associated with variable x6 by using the neurons in
the ninth layer. Therefore, after n steps (in the (n + 6)th layer) the system
has checked the satisfiability of all the universal quantifiers associated with
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the variables x2, x4, . . . , x2n. If a neuron σstr accumulates two spikes, where
str|2k = x2k for all 1 ≤ k ≤ n, then we conclude that this assignment not only
makes all the clauses satisfied, but also satifies all the quantifiers. Therefore,
the neurons which accumulate two spikes will send two spikes to the output
neuron, thus indicating that the instance of the problem given as input is
positive.

• Output: From the construction of the system, it is not difficult to see that the
output neuron sends exactly one spike to the environment at the (2mn+n+6)th
computation step if and only if γ2n,m is true. At this moment, neuron σd will
also send a spike to the auxiliary neuron σd2n (the rule is applied in the first
computation step). This spike stays in neuron σd2n

until two further spikes
arrive from neuron σd2n−1 ; when this happens, all three spikes are forgotten
by using the rule a3 → λ in neuron σd2n . Hence, the system eventually halts
after a few steps since the output neuron fires.

Note that the number m of clauses appearing in a QSAT (2n,m) problem may
be very large (e.g., exponential) with respect to n: every variable can occur negated
or non-negated in a clause, or not occur at all, and hence the number of all possible
clauses is 32n. This means that the running time of the system may be exponential
with respect to n, and also the rules am → a in some neurons of the system are
required to work on a possibly very large number of spikes. As we will see in the
next section, these “problems” (if one considers them as problems) do not occur
when considering Q3SAT, since each clause in the formula contains exactly three
literals, and thus the number of possible clauses is at most cubic in n.

3.1 An example

Let us present a simple example which shows how the system solves the instances
of QSAT (2n,m), for specified values of n and m, in an exp-uniform way. Let
us consider the following fully quantified propositional formula, which has two
variables and two clauses (i.e., n = 1,m = 2):

γ2,2 = ∃x1∀x2(x1 ∨ ¬x2) ∧ x1

Such a formula is encoded as the sequence code(γ2,2) = aa2aλ of virtual symbols.
The structure of the SN P system which is used to solve all the instances

of QSAT (2, 2) is pre-computed as illustrated in Figure 3. It is composed of 22
neurons; its computations are performed as follows.

Input: Initially, neuron σd0 contains two spikes and neuron σd contains one
spike, whereas the other neurons in the system contain no spikes. The computation
starts by inserting the leftmost symbol of the encoding sequence code(γ2,2) =
aa2aλ into the input neuron σin. When this symbol (a) enters into the system,
neuron σd0 emits its two spikes to neuron σd1 . At this moment, the rule occurring
in neuron σd also fires; as a result, it will send one spike to neuron σd2 after 11
steps. At the next step, two spikes from σd1 are sent to neurons σd2 and σCx1 ,
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Fig. 3. The pre-computed structure of the SN P system ΠQSAT (2, 2)
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while the symbol a is sent by σin to neurons σCx1 and σCx2 . At the same time,
the value a2 of the second spike variable α12 of code(γ2,2) is introduced into σin.

Neuron σCx1 has accumulated three spikes and thus the rule a3 → a2; 1 can be
applied in it, while the spike in neuron σCx2 is forgotten by using the rule a → λ
at the third computation step. Simultaneously, the value a2 of the second spike
variable α12 from σin and two spikes from σd2 enter together into σCx2 ; neuron
σCx1 does not receive any spike, as it has been closed for this step. Thus, at the
third computation step the representation of the first clause aa2 has appeared in
the input module. At this step, the value a of the first spike variable α21 of the
second clause also enters the input neuron, while neuron σd1 receives two spikes
again, which triggers the introduction of the representation of the second clause
(aλ) in the input module.

Satisfiability checking: Now, neuron σCx1 is open and fires, sending three spikes
to neurons σCx11 and σCx10. The three spikes in neuron σCx11 denote that literal
x1 occurs in the current clause (C1), and thus the clause is satisfied by all those
assignments in which x1 = 1. And, in fact, σCx11 sends two spikes to neurons σC11

and σC10, to indicate that the first clause is satisfied by the assignments bin whose
first value is 1. The three spikes in neuron σCx10 denote that the current clause
(C1) does not contain the literal ¬x1. Hence, no spike is emitted from neuron
σCx10; its three spikes are forgotten instead. Similarly, the presence of four spikes
in neuron σCx21 (resp., in σCx20) denotes the fact that literal x2 (resp., ¬x2)
does not occur (resp., occurs) in clause C1. Hence, the spikes in neuron σCx21 are
forgotten, whereas neuron σCx20 sends two spikes to neurons σC10 and σC00 to
denote that clause C1 is satisfied by those assignments in which x2 = 0.

At step 5, the configuration of the system is as follows. Three spikes occur
in neuron σCx1 , since literal x1 occurs in the second clause; no spikes occur in
σCx2 , as the clause does not contain variable x2; the two auxiliary spikes appear
alternately in neurons σd1 and σd2 in the input module. At the same time, neurons
σC11 and σC00 contain two spikes each, whereas neuron σC10 contains four spikes.

In the next step, neuron σCx1 sends three spikes to its two target neurons σCx11

and σCx10, while each of the neurons σC11, σC00 and σC10 sends one spike towards
their related neurons in the next layer, thus confirming that the first clause is
satisfied by the corresponding assignments. The rest of spikes in these neurons
will be forgotten in the following step. At step 7, neuron σCx11 sends two spikes
to neurons σC11 and σC10 by using the rule a3 → a2, whereas the three spikes in
neuron σCx10 are forgotten. Note that the spike in neurons σ11, σ10 and σ00, which
is received from their related neurons σC11, σC00 and σC10, remains unused until
one more spike is received. At step 8, neuron σC11 sends one spike to its related
neuron σ11 and neuron σC10 sends one spike to its related neuron σ10, while the
rest of spikes are forgotten. In this way, neurons σ11 and σ10 succeed to accumulate
a sufficient number (two) of spikes to fire. On the other hand, neuron σ00 fails to
accumulate the desired number of spikes (it obtains only one spike), thus the rule
in it cannot be activated.
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Quantifier checking: We now pass to the module which checks the universal and
existential quantifiers associated to the variables. At step 9 neuron σ1x2 receives
two spikes, one from σ11 and another one from σ10, which means that the formula
γ2,2 is satisfied when x1 = 1, no matter whether x2 = 0 or x2 = 1. On the other
hand, neuron σ0x2 does not contain any spike. At step 10 the rule a2 → a2 is
applied in neuron σ1x2 , making neuron σout receive two spikes.

Output: The rule occurring in neuron σout is activated and one spike is sent
to the environment, indicating that the instance of the problem given as input is
positive (that is, γ2,2 is true). At this step, as neuron σd2 will receive a “trap”
spike from neuron σd, the two auxiliary spikes circulating in the input module are
deleted as soon as they arrive in it, because of the rule a3 → λ. Thus, the system
halts after 13 computation steps since it has been started.

In order to illustrate how the system from Figure 3 evolves in detail, its tran-
sition diagram (generated with the software tool developed in [6]) is also given in
Figure 4. In this figure, 〈r1/t1, . . . , r21/t21, r22/t22〉 is the configuration in which
neurons σd, σd0 , σd1 , σd2 , σin, σCx1 , σCx2 , σCx11, σCx10, σCx21, σCx20, σC11, σC10,
σC01, σC00, σ11, σ10, σ01, σ00, σ1x2 , σ0x2 and σout contain r1, r2, . . . , r22 spikes,
respectively, and will be open after t1, t2, . . . , t22 steps, respectively. Between two
configurations we draw an arrow if and only if a direct transition is possible be-
tween them. For simplicity, the rules are indicated only when they are used, while
unused rules are omitted. When neuron σk spikes after being closed for s ≥ 0 steps,
we write rk,s. We omit to indicate s when it is zero. Finally, we have highlighted
the firing of σout by writing rout in bold.

4 Solving Q3SAT

As stated in section 2, the instances of Q3SAT are defined like those of QSAT, with
the additional constraint that each clause contains exactly three literals. In what
follows, by Q3SAT (2n) we will denote the set of all instances of Q3SAT which
can be built using 2n Boolean variables x1, x2, . . . , x2n, with the following three
restrictions: (1) no repetitions of the same literal may occur in any clause, (2)
no clause contains both the literals xs and ¬xs, for any s ∈ {1, 2, . . . , 2n}, and
(3) the instance is expressed in the normal form described in section 2 (all even-
numbered and odd-numbered variables are universally and existentially quantified,
respectively).

As stated in the previous section, the number m of possible clauses that may
appear in a formula γn,m ∈ QSAT (n,m) is exponential with respect to n. On the
contrary, the number of possible 3-clauses which can be built using 2n Boolean
variables is 4n · (4n− 2) · (4n− 4) = Θ(n3), a polynomial quantity with respect to
n. This quantity, that we denote by Cl(2n), is obtained by looking at a 3-clause
as a triple, and observing that each component of the triple may contain one of
the 4n possible literals, with the constraints that we do not allow the repetition
of literals in the clauses, or the use of the same variable two or three times in a
clause.
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Fig. 4. The transition diagram of the system illustrated in Figure 3
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Fig. 5. Sketch of a deterministic SN P system that solves all possible instances of
Q3SAT (2n)
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Figure 5 outlines an SN P system which can be used to solve any instance
γ2n,m of Q3SAT (2n). The input to this system is once again the instance of
Q3SAT we want to solve, but this time such an instance is given by specifying
— among all the possible clauses that can be built using n Boolean variables —
which clauses occur in the instance. The selection is performed by putting (in
parallel, in the initial configuration of the system) one spike in each of the input
neurons sel1, sel2, . . . , selCl(2n) that correspond to the selected clauses.

The system is a simple modification of the one used in [8] to uniformly solve
all the instances of the NP-complete problem 3-SAT of a given size. To see how it
works, let us consider the family {M (2n)}n∈N of Boolean matrices, where M (2n) has
22n rows — one for each possible assignment to the variables x1, x2, . . . , x2n — and
one column for each possible 3-clause that can be built using the same variables.
As stated above, the number of columns is Cl(2n) ∈ Θ(n3), a polynomial quantity
in n. In order to make the construction of the matrix M (2n) as regular as possible,
we could choose to list all the 3-clauses in a predefined order; however, our result is
independent of any such particular ordering, and hence we will not bother further
with this detail. For every j ∈ {1, 2, 3, . . . , 22n} and i ∈ {1, 2, . . . , Cl(2n)}, the

x1 x2 x3 x4 · · · x1 ∨ x2 ∨ ¬x4 · · · ¬x1 ∨ ¬x2 ∨ x3 · · ·
0 0 0 0 · · · 1 · · · 1 · · ·
0 0 0 1 · · · 0 · · · 1 · · ·
0 0 1 0 · · · 1 · · · 1 · · ·
0 0 1 1 · · · 0 · · · 1 · · ·
0 1 0 0 · · · 1 · · · 1 · · ·
0 1 0 1 · · · 1 · · · 1 · · ·
0 1 1 0 · · · 1 · · · 1 · · ·
0 1 1 1 · · · 1 · · · 1 · · ·
1 0 0 0 · · · 1 · · · 1 · · ·
1 0 0 1 · · · 1 · · · 1 · · ·
1 0 1 0 · · · 1 · · · 1 · · ·
1 0 1 1 · · · 1 · · · 1 · · ·
1 1 0 0 · · · 1 · · · 0 · · ·
1 1 0 1 · · · 1 · · · 0 · · ·
1 1 1 0 · · · 1 · · · 1 · · ·
1 1 1 1 · · · 1 · · · 1 · · ·
Assignments Clauses

Fig. 6. An excerpt of matrix M (4). On the left we can see the assignments which are
associated to the corresponding rows of the matrix. Only the columns corresponding to
the clauses x1 ∨ x2 ∨ ¬x4 and ¬x1 ∨ ¬x2 ∨ x3 are detailed

element M
(2n)
ji is equal to 1 if and only if the assignment associated with row j

satisfies the clause associated with column i. Figure 6 shows an excerpt of matrix
M (4), where each row has been labelled with the corresponding clause; only the
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Check Satisfiability(M (2n))

res ← [1 1 · · · 1] // 22n elements
for all columns C in M (2n)

do if C corresponds to a selected clause
then res ← res ∧ C // bit-wise and

return res

Fig. 7. Pseudocode of the algorithm used to select the assignments that satisfy all the
clauses of γ2n,m ∈ Q3SAT (2n)

columns that correspond to clauses x1 ∨ x2 ∨ ¬x4 and ¬x1 ∨ ¬x2 ∨ x3 are shown
in details.

Let us now consider the algorithm given in pseudocode in Figure 7. The variable
res is a vector of length 22n, whose components — which are initialized to 1
— are bijectively associated with all the possible assignments of x1, x2, . . . , x2n.
The components of res are treated as flags: when a component is equal to 1, it
indicates that the corresponding assignment satisfies all the clauses which have
been examined so far. Initially we assume that all the flags are 1, since we do not
have examined any clause yet. The algorithm then considers all the columns of
M (2n), one by one. If the column under consideration does not correspond to a
selected clause, then it is simply ignored. If, on the other hand, it corresponds to a
clause which has been selected as part of the instance, then the components of res
are updated, putting to 0 those flags that correspond to the assignments which
do not satisfy the clause. At the end of this operation, which can be performed in
parallel on all the components, only those assignments that satisfy all the clauses
previously examined, as well as the clause currently under consideration, survive
the filtering process. After the last column of M (2n) has been processed, we have
that the components of vector res indicate those assignments that satisfy all the
clauses of the instance γ2n,m of Q3SAT given as input. Stated otherwise, res is
the output column of the truth table of the unquantified propositional formula
contained in γ2n,m.

This algorithm can be easily transformed into an exponential size Boolean
circuit, that mimics the operations performed on the matrix M (2n), described by
the pseudocode given in Figure 7. Such a circuit can then be easily simulated using
the SN P system that we have outlined in Figure 5 (precisely, the left side of the
system, until the column of neurons that contain the final value of vector res).
This part of the system is composed of three layers for each possible 3-clause that
can be built using 2n Boolean variables. Two of these layers are used to store
the intermediate values of vector res and the values contained in the columns of
M (2n), respectively. The third layer, represented by the boxes marked with Filter
in Figure 5, transforms the current value of res to the value obtained by applying
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the corresponding iteration of the algorithm given in Figure 7. This layer is in turn
composed by three layers of neurons, as we will see in a moment.

The last part of the system is used to check the satisfiability of the universal and
existential quantifiers associated with the variables x1, x2, . . . , x2n. The neurons in
this part of the system compose a binary tree of depth 2n; the first layer of neurons
corresponds to the bottom of the tree, and checks the satisfiability of the quantifier
∀x2n; the second layer checks the satisfiability of ∃x2n−1 and so on, until the last
layer, whose only neuron is σout (the output neuron), that checks the satisfiability
of ∃x1. To see how the check is performed, let us consider the fully quantified

Fig. 8. Example of a quantified Boolean formula formed by one clause, built using two
Boolean variables. On the left, its truth table is reported with an indication of the truth
assignments that make the formula true. On the right, the tree which is used to check
the satisfaction of the quantifiers ∀ and ∃ is depicted

formula ∃x1∀x2(¬x1 ∨ x2). This formula is composed of a single 2-clause (hence it
is not a valid instance of Q3SAT), built using two Boolean variables. In Figure 8 we
can see the truth table of the clause, and an AND/OR Boolean circuit that can be
used to check whether the quantifiers associated with x1 and x2 are satisfied. This
circuit is a binary tree whose nodes are either AND or OR gates. Each layer of
nodes is associated with a Boolean variable: precisely, the output layer is associated
to x1, the next layer to x2, and so on until the input layer, which is associated
to xn. If Qi = ∀ then the nodes in the layer associated with xi are AND gates;
on the contrary, if Qi = ∃ then the nodes in such a layer are OR gates. The
input lines of the circuit are bijectively associated to the set of all possible truth
assignments. It is not difficult to see that when these input lines are fed with the
values contained in the output column of clause’s truth table, the output of the
circuit is 1 if and only if the fully quantified formula is true. Since in the first
part of the system we have computed the output column of the truth table of the
unquantified propositional formula contained in γ2n,m, we just have to feed these
values to an SN P system that simulates the above AND/OR Boolean circuit to
see whether γ2n,m is true or not. Implementing such a Boolean circuit by means
of an SN P system is trivial: to see how this can be done, just compare the last
two layers of the circuits illustrated in Figures 10 and 11.
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The overall system then works as follows. During the computation, spikes move
from the leftmost to the rightmost layer. One spike is expelled to the environment
by neuron σout if and only if γ2n,m is true. In the initial configuration, every
neuron in the first layer (which is bijectively associated with one of the 22n possible
assignments to the Boolean variables x1, x2, . . . , x2n) contains one spike, whereas
neurons sel1, sel2, . . . , selCl(2n) contain one or zero spikes, depending upon whether
or not the corresponding clause is part of the instance γ2n,m given as input. Stated
otherwise, the user must provide one spike — in the initial configuration of the
system — to every input neuron seli that corresponds to a clause that has to be
selected. In order to deliver these spikes at the correct moment to all the filters
that correspond to the ith iteration of the algorithm, every neuron seli contains
the rule a → a; 4(i− 1), whose delay is proportional to i. In order to synchronize
the execution of the system, also the neurons that correspond to the ith column
of M (2n) deliver their spikes simultaneously with those distributed by neurons
seli, using the same rules. An alternative possibility is to provide the input to the
system in a sequential way, for example as a bit string of length Cl(2n), where a
1 (resp., 0) in a given position indicates that the corresponding clause has to be
selected (resp., ignored). In this case we should use a sort of delaying subsystem,
that delivers — every four time steps — the received spike to all the neurons
that correspond to the column of M (2n) currently under consideration. Since the
execution time of our algorithm is proportional to the number Cl(2n) of all possible
clauses containing 2n Boolean variables, this modification keeps the computation
time of the entire system cubic with respect to n.

In the first computation step, all the inputs going into the first layer of filters are
ready to be processed. As the name suggests, these filters put to 0 those flags which
correspond to the assignments that do not satisfy the first clause (corresponding
to the first column of M (2n)). This occurs only if the clause has been selected as
part of the instance γ2n,m ∈ Q3SAT (2n) given as input, otherwise all the flags are
kept unchanged, ready to be processed by the next layer of filters. In either case,
when the resulting flags have been computed they enter into the second layer of
filters together with the values of the second column of M (2n), and the input sel2
that indicates whether this column is selected or not as being part of the instance.
The computation proceeds in this way until all the columns of M (2n) have been
considered, and the resulting flags (corresponding to the final value of vector res
in the pseudocode of Figure 7) have been computed.

Before looking at how the system checks the satisfiability of the universal and
existential quantifiers ∃x1,∀x2, . . . , ∀x2n, let us describe in detail how the filtering
process works. This process is performed in parallel on all the flags: if the clause
Ci has been selected then an and is performed between the value M

(2n)
ji (that

indicates whether the jth assignment satisfies Ci) and the current value of the
flag resj (the jth component of res); as a result, resj is 1 if and only if the jth
assignment satisfies all the selected clauses which have been considered up to now.
On the other hand, if the clause Ci has not been selected then the old value of
resj is kept unaltered. This filtering process can be summarized by the pseudocode
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Filter(seli, resj , Ci)

if seli = 0 then return resj

else return resj ∧ Ci

Fig. 9. Pseudocode of the Boolean function computed by the blocks marked with Filter
in Figure 5

given in Figure 9, which is equivalent to the following Boolean function:

(¬seli ∧ resj) ∨ (seli ∧ resj ∧ Ci)

Such a function can be computed by the Boolean circuit depicted in Figure 10,
that in turn can be simulated by the SN P system illustrated in Figure 11. Note
the system represented in this latter figure is a generic module which is used many
times in the whole system outlined in Figure 5, hence we have not indicated the
delays which are needed in neurons seli and Ci. Also neuron 1, which is used to
negate the value emitted by neuron seli, must be activated together with seli, that
is, after 4(i−1) steps after the beginning of the computation. The spike it contains
can be reused in the namesake neuron that occurs in the next layer of filters.

Fig. 10. The Boolean circuit that computes the function Filter whose pseudocode is
given in Figure 9

The last part of the system illustrated in Figure 5 is devoted to check the sat-
isfiability of the universal and existential quantifiers ∃x1, ∀x2, . . . , ∀x2n associated
to the Boolean variables x1, x2, . . . , x2n. As we have seen, the final values of vector
res represent the output column of the truth table of the unquantified proposi-
tional formula contained in γ2n,m. Hence, to check whether all the universal and
existential quantifiers are satisfied, it suffices to feed these values as input to an
SN P system that simulates a depth 2n AND/OR Boolean circuit that operates
as described in Figure 8. Each gate is simply realized as a neuron that contains
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Fig. 11. An SN P system that computes the function Filter given in Figure 9, simulating
the Boolean circuit of Figure 10

two rules, as depicted in the last two layers of Figure 11. At each computation
step, one quantifier is checked; when the check terminates, one spike is emitted
to the environment by the output neuron σout if and only if the fully quantified
formula γ2n,m ∈ Q3SAT (2n) given as input to the entire system is true. The total
computation time of the system is proportional to the number Cl(2n) of columns
of M (2n), that is, Θ(n3).

As we can see, the structure of the system that uniformly solves all the instances
of Q3SAT (2n) is very regular, and does not contain “hidden information”. For the
sake of regularity we have also omitted some possible optimizations, that we briefly
mention here. The first column of neurons in Figure 5 corresponds to the initial
value of vector res in the pseudocode given in Figure 7. Since this value is fixed, we
can pre-compute part of the result of the first step of computation, and remove the
entire column of neurons from the system. In a similar way we can also remove the
subsequent columns that correspond to the intermediate values of res, and send
these values directly to the next filtering layer. A further optimization concerns
the values M

(2n)
ji , which are contained in the neurons labelled with Ci. Since these

values are given as input to and gates, when they are equal to 1 they can be
removed since they do not affect the result; on the other hand, when they are
equal to 0 also the result is 0, and thus we can remove the entire and gate.

5 Conclusions and Remarks

In this paper we have shown that QSAT, a well known PSPACE-complete problem,
can be deterministically solved in linear time with respect to the number n of
variables and the number m of clauses by an exp-uniform family of SN P systems
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with pre-computed resources. We have also considered Q3SAT, a restricted (but still
PSPACE-complete) version of QSAT in which all the clauses of the instances have
exactly three literals; we have shown that in this case the problem can be solved
in a time which is at most cubic in n, independent of m. Each pre-computed SN
P system of the family can be used to solve all the instances of QSAT (or Q3SAT),
expressed in a normalized form, of a given size.

Note that using pre-computed resources in spiking neural P systems is a pow-
erful technique, that simplifies the solution of computationally hard problems. The
pre-computed SN P systems presented in this paper have an exponential size with
respect to n but, on the other hand, have a regular structure. It still remains open
whether such pre-computed resources can be constructed in a regular way by using
appropriate computation devices that, for example, use a sort of controlled dupli-
cation mechanism to produce an exponential size structure in a polynomial number
of steps. A related interesting problem is to consider whether alternative features
can be introduced in SN P systems to uniformly solve PSPACE-complete prob-
lems. Nondeterminism is the first feature that comes to mind, but this is usually
considered too powerful in the Theory of Computation.
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to SAT and Subset Sum by spiking neural P systems. Natural Computing, online
version (DOI: 10.1007/s11047-008-9091-y).

11. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: Solving numerical NP-complete
problem with spiking neural P systems. Membrane Computing, International Work-
shop, WMC8 (G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa,
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Summary. In this article we investigate insertion systems of small size in the framework
of P systems. We consider P systems with insertion rules having one symbol context and
we show that they have the computational power of matrix grammars. If contexts of
length two are permitted, then any recursively enumerable language can be generated.
In both cases an inverse morphism and a weak coding were applied to the output of the
corresponding P systems.

1 Introduction

The study of insertion-deletion operations on strings has a long history. We just
mention [18], [5], [7], [13], [15]. Motivated from molecular computing they have
been studied in [1], [6], [17], [19], [12]. With some linguistic motivation they may
be found in [11] and [3].

In general form, an insertion operation means adding a substring to a given
string in a specified (left and right) context, while a deletion operation means
removing a substring of a given string from a specified (left and right) context.
A finite set of insertion/deletion rules, together with a set of axioms provide a
language generating device: starting from the set of initial strings and iterating
insertion-deletion operations as defined by the given rules we get a language. The
number of axioms, the length of the inserted or deleted strings, as well as the
length of the contexts where these operations take place are natural descriptional
complexity measures of the insertion-deletion systems.

Some combinations of parameters lead to systems which are not computation-
ally complete [14], [8] or even decidable [20]. It was shown that the operations of
insertion and deletion considered in P systems framework can easily increase the
computational power with respect to ordinary insertion-deletion systems [9], [10].

Traditionally, language generating devices having only insertion rules were
studied. Early computational models based only on insertion appear already
in [11], and are discussed in [17] and [16] (with membrane tree structure). It was
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proved that pure insertion systems having one letter context are always context-
free. Yet, there are insertion systems with two letter context which generate non-
semilinear languages (see Theorem 6.5 in [17]). On the other hand, it appears
that by using only insertion operation the obtained language classes with context
greater than one are incomparable with many known language classes. For exam-
ple there is a simple linear language {anban | n ≥ 1} which cannot be generated
by any insertion system (see Theorem 6.6 in [17]).

In order to overcome this obstacle one can use some codings to “interpret”
generated strings. In [17], in a natural way, there were used two additional string
operations: a morphism h and a weak coding ϕ. The result is considered as a
product of application h−1 ◦ ϕ on the generated strings. Clearly, the obtained
languages have greater expressivity and the corresponding language class is more
powerful. It appears that with the help of morphisms and codings one can obtain
every RE language if insertion rules have sufficiently large context. It is proved
in [17] that for every recursively enumerable language L there exists a morphism
h, a weak coding ϕ and a language L′ generated by an insertion system with
rules using the length of the contexts at most 7, such that, L = h(ϕ−1(L′)). The
result was improved in [2], showing that rules having at most 5 letter context are
sufficient to encode every recursively enumerable language. Recently, in [4] it was
shown that the same result can be obtained with the length of contexts equal to
3.

In this article we consider the encoding as a part of insertion P systems. The
obtained model is quite powerful and has the power of matrix languages if con-
texts of length one are used. We also show that if no encoding is used, then the
corresponding family is strictly included in MAT and equals CF if no membranes
are used. If an insertion of two symbols in two letters contexts is used, then all
recursively enumerable languages can be generated (of course, using the inverse
morphism and the weak coding).

2 Prerequisites

All formal language notions and notations we use here are elementary and stan-
dard. The reader can consult any of the many monographs in this area (see details,
e.g., in [18]).

We denote by |w| the length of a word w and by card(A) the cardinality of the
set A, and ε denotes the empty string.

An insertion-deletion system is a construct ID = (V, T, A, I, D), where V is an
alphabet, T ⊆ V , A is a finite language over V , and I, D are finite sets of triples
of the form (u, α, v), where u, α, and v are strings over V . The elements of T
are terminal letters (in contrast, those of V \T are called nonterminals), those of
A are axioms, the triples in I are insertion rules, and those from D are deletion
rules. An insertion rule (u, α, v) ∈ I indicates that the string α can be inserted
in between u and v, while a deletion rule (u, α, v) ∈ D indicates that α can be
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removed from the context (u, v). As stated otherwise, (u, α, v) ∈ I corresponds to
the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds to the rewriting rule
uαv → uv. We denote by =⇒ins the relation defined by an insertion rule (formally,
x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and x1, x2 ∈ V ∗)
and by =⇒del the relation defined by a deletion rule (formally, x =⇒del y iff
x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and x1, x2 ∈ V ∗). We refer by
=⇒ to any of the relations =⇒ins, =⇒del, and denote by =⇒∗ the reflexive and
transitive closure of =⇒ (as usual, =⇒+ is its transitive closure).

The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w, x ∈ A}.

A (pure) insertion systems of weight (n, m,m′) is a construct ID = (V, A, I),
where V is a finite alphabet, I ⊆ V ∗ is a finite set of axioms, I is a finite set of
insertion rules of the form (u, α, v), for u, α, v ∈ V ∗, and

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I},
m′ = max{|v| | (u, α, v) ∈ I}.

We denote by INSm,m′
n corresponding families of languages generated by in-

sertion systems.
An insertion P system is the following construct:

Π = (V, µ, M1, . . . ,Mk, R1, . . . , Rk),

where

• V is a finite alphabet,
• µ is the membrane (tree) structure of the system which has n membranes

(nodes). This structure will be represented by a word containing correctly
nested marked parentheses.

• Mi, for each 1 ≤ i ≤ k, is a finite language associated to the membrane i.
• Ri, for each 1 ≤ i ≤ k, is a set of insertion rules with target indicators asso-

ciated to membrane i and which have the following form: (u, x, v; tar), where
(u, x, v) is an insertion rule, and tar, called the target indicator, is from the set
{here, inj , out}, 1 ≤ j ≤ k.

Any k-tuple (N1, . . . , Nk) of languages over V is called a configuration of Π. For
two configurations (N1, . . . , Nk) and (N ′

1, . . . , N
′
k) of Π we write

(N1, . . . , Nk) =⇒ (N ′
1, . . . , N

′
k) if we can pass from (N1, . . . , Nk) to (N ′

1, . . . , N
′
k)

by applying nondeterministically the insertion rules, to all possible strings from
the corresponding regions, and following the target indications associated with the
rules. We assume that every string represented in a membrane has arbitrary many
copies. Hence, by applying a rule to a string we get both arbitrary many copies of
resulted string as well as old copies of the same string. More specifically, if w ∈ Ni
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and r = (u, x, v; tar) ∈ Ri, such that w =⇒r w′ then w′ will go to the region
indicated by tar. If tar = here, then the string remains in Ni, if tar = out, then
the string is moved to the region immediately outside the membrane i (maybe, in
this way the string leaves the system), if tar = inj , then the string is moved to
the region j.

A sequence of transitions between configurations of a given insertion P system
Π, starting from the initial configuration (M1, . . . , Mn), is called a computation
with respect to Π. The result of a computation consists of all strings over V which
are sent out of the system at any time during the computation. We denote by
L(Π) the language of all strings of this type. We say that L(Π) is generated by
Π.

The insertion-deletion tissue P systems are defined in an analogous manner. As
the tissue P systems use arbitrary graph structure we write the target indicator in
the form tar = goj , j = 1, . . . , k. The result of a computation consists of all strings
over V which are sent to one selected output cell.

The weight of insertion rules (n,m,m′) and the membrane degree k describe
the complexity of an insertion P system. We denote by LSPk(insm,m′

n ) (see, for
example [16]) the family of languages L(Π) generated by insertion P systems
of degree at most k ≥ 1 having the weight at most (n,m, m′). If some of the
parameters n,m, m′, or k is not specified we write “ * ” instead.

We say that a language L′ is from hINSm,m′
n (from hLSPk(insm,m′

n ), corre-
spondingly) if there exist a morphism h, weak coding ϕ and L(Π) ∈ INSm,m′

n

(L(Π) ∈ LSPk(insm,m′
n ) such that ϕ(h−1(L(Π))) = L′.

We write an instance of the system hLSP in the form

(V, µ, M1, . . . ,Mn, R1, . . . , Rn, h, ϕ),

where

• h is a morphism h : V → V +,
• ϕ is a weak coding ϕ : T → T ∪ {ε},
• other components are defined as for insertion P system.

We insert “t” before P to denote classes corresponding to the tissue cases (e.g.,
hLStP ). Insertion (t) holds for both tissue and tree membrane structure.

We say that a letter a is marked in a sentential form waw′ if it is followed
by #, i.e., |w′| > 0, and # is the prefix of w′. In the following proofs we use a
marking technique introduced in [16]. The technique works as follow: in order to
simulate rewriting production A → B we add adjacently right from A the word
#B specifying that letter A is already rewritten. And, as soon as the derivation is
completed, every pair A# in the sentential form is subject to the inverse morphism.
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3 Main Results

Let us consider insertion systems (without membranes) with one letter context
rules hINS1,1

∗ . Applying the marking technique we get a characterization of
context-free languages.

Theorem 1 hINS1,1
∗ = CF

Proof. First we show that CF ⊆ hINS1,1
3 .

Let G = (V, T, S, P ) be a context-free grammar in Chomsky normal form.
Consider the following system from hINS1,1

3

Π = (T ∪ V ∪ {#}, R, {S}, h, ϕ),

where R = {(A, #BC, α) | α ∈ T ∪ V, A → BC ∈ P}, the morphism h

h(a) = a#, if a ∈ V, and h(a) = a, if a ∈ T,

and the weak coding ϕ

ϕ(a) → ε, if a ∈ V, ϕ(a) → a, if a ∈ T.

We claim that L(Π) = L(G). Indeed, each rule (A,#BC, α) ∈ R can be
applied in the sentential form wAαw′ if A is unmarked (not rewritten). Thus, the
production A → BC ∈ P can be applied in the corresponding derivation G. Hence,
by applying the counterpart rules we get equivalent derivations.

At the end of derivation, by applying the inverse morphism h−1 we warranty
that every nonterminal is marked. Finally, we delete every nonterminal by the
weak coding ϕ. Hence L(Π) = L(G), and we get CF ⊆ hINS1,1

3 .
The equivalence of the two classes follows from Theorem 6.4 in [17] stating

INS1,1
∗ ⊆ CF and the fact that context-free languages are closed under inverse

morphisms and weak codings.

Now we consider insertion systems with contexts controlled by membranes (P sys-
tems). It is known from Theorem 5.5.1 in [16] that LSP2(ins1,1

2 ) contains non
context-free languages. We show that this class is bounded by matrix grammars:

Lemma 2 LStP∗(ins1,1
∗ ) ⊂ MAT .

Proof. The proof uses the similar technique presented in [17], Theorem 6.4 for
context-free grammars.

Let Π = (V, µ,M1, . . . , Mn, R1, . . . , Rn) be a system from LStPn(ins1,1
∗ ) for

some n ≥ 1.
Consider a matrix grammar G = (D ∪ Q ∪ {S}, V, S, P ), where

Q = {Qi | i = 1, . . . , n} , D = {Da,b | a, b ∈ V ∪ {ε}}, and P is constructed
as follows:
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1. For every rule (a, b1 . . . bk, c, goj) ∈ Ri, a, b1, . . . , bk, c ∈ V ∪ {ε}, k > 0 we add
to P (Qi → Qj , Da,c → Da,b1Db1,b2 . . . Dbk−1,bk

Dbk,c), where

a =
{

a, if a ∈ V,
t,∀t ∈ V ∪ {ε}, if a = ε

c =
{

c, if c ∈ V,
t, ∀t ∈ V ∪ {ε}, if c = ε

2. For every rule (a, ε, c, inj) ∈ Ri, a, c ∈ V ∪ {ε}, k > 0 we add to P
(Qi → Qj , Da,c → Da,c), where a and c defined as in the previous case.

3. Next, for every w = b1 · · ·k ∈ Mi, i = 1, . . . , n, k > 0 we add to P the matrix
(S → QiDε,b1Db1,b2 . . . Dbk−1,bk

Dbk,ε).
4. In special case if ε ∈ Mi we add (S → QiDε,ε) to P.
5. Also, for every Da,b ∈ D, a, b ∈ V ∪ {ε} we add (Da,b → a) to P.
6. Finally, we add (p1 → ε) to P (we assume that the first cell is the output cell).

The simulation of Π by the matrix grammar is straightforward. We store the
label of current cell by nonterminals Q. Every nonterminal Da,c ∈ D, a, c ∈ V ∪{ε},
represents a pair of adjacent letters, so we can use them as a context. A rule
(a, b1 . . . bk, c, inj) ∈ Ri, a, c ∈ V, b1 . . . bk ∈ V k, can be simulated by the grammar
iff the sentential form contains both Qi and Da,c. It results the label of current cell
is rewritten to Qj and Da,c is rewritten to the string Da,b1Db1,b2 . . . Dbk−1,bk

Dbk,a.
Clearly, the string preserves one symbol context. In order to treat those rules
which have no context we introduce productions that preserve arbitrary context
(a ∈ V ∪ {ε} and c ∈ V ∪ {ε}).

The simulation of the grammar starts with a nondeterministic choice of the
axiom. Then, during the derivation any rule corresponding to the context (a, b)
have to be applied (in a one to one correspondence with grammar productions).
Finally, the string over V is produced by the grammar iff Q1 has been deleted
from the simulated sentential form. The deletion of Q1 specifies that Π reached
the output cell. So, we obtain L(Π) = L(G). Hence, LStP∗(ins1,1

∗ ) ⊆ MAT.
The strictness of the inclusion follows from the fact there are languages from

MAT which cannot be generated by any insertion P system from
LStP∗(ins1,1

n ), for any n ≥ 1. Indeed, consider La = {cakcakc | k ≥ 1}. One
may see that the matrix grammar ({Sl, Sr, S}, {a, b}, S, P ′) generates La, where

P ′ ={(S → cSlcSrc),
(Sl → ε, Sr → ε),
(Sl → aSl, Sr → aSr)}.

On the other hand, La /∈ LStP∗(ins1,1
n ), for any n ≥ 1. For the contrary, assume

there is such a system. We note that the system cannot delete or rewrite any letter
so every insertion is terminal. And, as the language of axioms is finite, we need
an insertion rule of letter a. Consider alternatives for a final insertion step in a
derivation which has at most one step and derives a word cakcakc, for some k > n:
(1) the last applied rule inserts the central letter c, or (2) it does not insert the
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central letter c. (1) The central c can be inserted between any two letters a. So we
get a contradiction because the prefix capc may not be equal to the suffix caqc.
(2) The last applied rule can (2.1) either insert the letter c(at the end or start of
the string) or, (2.2) no c is inserted by the final rule.
(2.1) We get a contradiction because c can be alternatively inserted in between
two a as we assumed k > n.
(2.2) The last rule cannot distinguish whether to insert a before the central c or
after the central c. So, again, we get a contradiction because the prefix capc may
not be equal to the suffix caqc.

So we proved La /∈ LStP∗(ins1,1
n ), for any n ≥ 1 and hence

LStP∗(ins1,1
∗ ) ⊂ MAT.

Corollary 3 LSP∗(ins1,1
∗ ) ⊂ MAT.

Proof. A tree is a special case of a graph.

Lemma 4 MAT ⊆ hLSP∗(ins1,1
2 ).

Proof. We prove the theorem by a direct simulation of a matrix grammar
G = (N,T, S, P ). We assume that G is in binary normal form, i.e., every ma-
trix has the form i : (A → BC, A′ → B′C ′) ∈ P , where A,A′ ∈ N, B, B′, C, C ′ ∈
N ∪ T ∪ {ε} and i = 1, . . . , n.

Consider a system Π ∈ hLSPn+3(ins1,1
2 ),

Π = (V, [1 [2 [3


 ∏

i=1,...,n

[i+3 ]i+3


]3 ]2 ]1, {S$}, ∅, . . . , ∅, R1, . . . , Rn+3, h, ϕ),

where V = N ∪ T ∪ {Ci, C
′
i | i = 1, . . . , n} ∪ {#, $}.

For every matrix i : (A → BC, A′ → B′C ′) we add

r.1.1 : (A, #Ci, α, in2), to R1;
r.2.1 : (Ci, BC, α, in3), r.2.2 : (C ′i, #, α, out) to R2;
r.3.1 : (Ci, #, α, ini+3), r.3.2 : (C ′i, B

′C ′, α, out) to R3;
r.i + 3.1 : (A′, #C ′i, α, out), to Ri+3

for every α ∈ V \{#}. In addition we add (ε, $, ε, out) to R1.
We also define the morphism h and the weak coding ϕ by:

h(a) =
{

a, if a ∈ T,
a# if a ∈ V

ϕ(a) =
{

a, if a ∈ T,
ε if a ∈ V ∪ {$}.

We claim that L(Π) = L(G). To do so it is enough to prove that w ∈ L(G) iff
w′ ∈ L(Π) and w′ = ϕ(h−1(w)).
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First we show that for every w ∈ L(G) there exists w′ ∈ L(Π) and
w′ = ϕ(h−1(w)). Consider the simulation of the i-th matrix (A → BC,
A′ → B′C ′) ∈ P. The simulation is controlled by letters Ci and C ′i. First,
we insert #Ci in the context of a unmarked A and send the obtained string to
the second membrane. Then we use Ci as a context to insert adjacently right the
word BC. After that, we mark the control letter Ci and send the sentential form
to the i + 3 membrane. Here we choose nondeterministically one letter A′, mark
it, write adjacently right new control letter C ′i, and, after that, send the obtained
string to the third membrane. We mention that it is not possible to apply the rule
r.i + 3.1 : (A′,#C ′i, α; out)e in the i + 3 membrane and to reach the skin mem-
brane if the sentential form does not contain the unmarked A′. So, this branch of
computation cannot influence the result and may be omitted in the consideration.
Next, in the third membrane, B′C ′ is inserted in the context of unmarked C ′i and
the sentential form is sent to the second membrane. Finally, we mark C ′i and send
the resulting string back to the skin membrane.

We assume that at the beginning of this simulation the sentential form in
the skin membrane does not contain unmarked Ci, C

′
i. Hence, the insertions in

the second and third membranes are deterministic. The derivation preserves the
assumption, as after the sentential form is sent back to the skin membrane the
introduced Ci, and C ′i are marked. At the end of computation we send the obtained
sentential form out of the system by the rule (ε, $, ε, out).

Let w be a string in the skin region which contains some unmarked A and A′. If
the letter A precedes B, then we can write w = w1Aα1w2A

′α1w3. The simulation
of the matrix is the following

w1Aα1w2A
′α1w3

r.1.1,r.2.1,r.3.1
=⇒ w1A#Ci#BCα1w2A

′α1w3
r.3+i.1,r.3.2,r.2.2

=⇒
w1A#Ci#BCα1w2A

′#C ′i#B′C ′α1w3,

where w1, w2, w3 ∈ V ∗, α1, α2 ∈ V \{#}. We can write the derivation similarly if
B precedes A.

Hence, as a result of the simulation of i-th matrix we get both A and A′

marked and BC, B′C ′ inserted in the right positions. The derivation in Π may
terminate by the rule (ε, $, ε, out) only in the first membrane. This guarantees that
the simulation of each matrix has been finished. According to the definition of Π
the string w′ belongs to the language if w′ = ϕ(h−1(w)), where w is the generated
string. This is the case only if the resulting output of Π does not contain unmarked
nonterminals. Hence we proved L(G) ⊆ ϕ(h−1(L(Π))).

The inverse inclusion is obvious since every rule in Π has its counterpart in
G. The case when the derivation in Π is blocked corresponds to the case a matrix
cannot be finished.

Hence, we get MAT ⊆ hLSP∗(ins1,1
2 ).

Remark 5 One can mention that a similar result can be obtained with a smaller
number of membranes at the cost of increasing the maximal length of inserted
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words. I.e., for any grammar G′ from MAT there is a P insertion system Π ′

corresponding to hLSPn+1(ins1,1
3 ) such that L(G) = L(Π ′), and n is the number

of matrices in G′. To prove this we can use the same argument as in the previous
theorem and replace rules (r. ∗ .∗) by

(A,#BC, α, ini+1), α ∈ V \{#} to R1

(A′, #B′C ′, α, in1), α ∈ V \{#} to Ri+1.

Corollary 6 MAT ⊆ hLStP∗(ins1,1
2 ).

Proof. Obvious, since a tree is a special case of a graph.

Taking into account Lemma 4, Lemma 2, and the fact that the class of matrix
grammars is closed under inverse morphisms and weak codings we get the following
characterization of MAT :

Theorem 7 hLS(t)P∗(ins1,1
∗ ) = MAT .

Next we consider computationally complete insertion P systems. In order to use
concise representations of productions in 0-type grammars we need an auxiliary
lemma.

Lemma 8 For every 0-type grammar G′ = (N ′, T, S′, P ′) there exists a grammar
G = (N, T, S, P ) such that L(G) = L(G′) and every production in P has the form

AB → AC or AB → CB or (1)
A → AC or A → CA or (2)

A → δ, (3)

where A,B and C are from N and δ ∈ T ∪N ∪ {ε}.
Proof. To prove the lemma it is enough to show that for any grammar in Pentton-
nen normal form there is an equivalent grammar having productions of the form
(1)–(3). To do so it is enough to simulate the context-free productions A → BC
by productions of the form (1)–(3).

Let G = (N, T, S, P ) be a grammar in Penttonnen normal form whose produc-
tion rules in P are of the form:

AB → AC or
A → BC or

A → α

where A,B, C and D are from N and α ∈ T ∪N ∪ {ε}.
Let PCF ⊆ P denotes the set of all context-free productions A → BC ∈ P

such that B 6= C. Suppose that rules in PCF are ordered and n = card(PCF ).
Consider a grammar G′ = (N ′, T, S, P ′), where N ′ = N ∪

{Xi, Yi, Zi | i = 1, . . . , n}, P ′ = (P\PCF ) ∪ P ′CF , and P ′CF is constructed as
follows: for every i : A → BC ∈ PCF add to P ′CF the following productions
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r.i.1 : A → Xi, r.i.2 : Xi → XiYi,

r.i.3 : XiYi → ZiYi, r.i.4 : ZiYi → ZiC

r.i.5 : ZiC → BC

Clearly, the obtained grammar has the form specified by (1)–(3). Now we prove
that L(G) = L(G′). The inclusion L(G) ⊆ L(G′) is obvious as for every derivation
in G we use its counterpart derivation in G′ replacing i-th context-free production
from PCF by the sequence of productions r.i.1, r.i.2, r.i.3, r.i.4, r.i.5:

wAw′ r.i.1=⇒ wXiw
′ r.i.2=⇒wXiYiw

′ r.i.3=⇒
wZiYiw

′ r.i.4=⇒ wZiCw′ r.i.5=⇒ wBCw′.

In order to prove that L(G′) ⊆ L(G) we show that for every terminal derivation
in G′ we can construct a derivation in G so that they both produce the same word.
We use the counterpart productions from P\PCF to mimic analogous production.
For the productions PCF ′ we show that any deviation from the above defined
sequence does not produce any new terminal derivation. First, we mention that
the sequence of productions corresponding to i : A → BC starts by rewriting A
on the new nonterminal, so, other productions not in r.i.∗ cannot interfere the
sequence. Yet, the production rule r.i.2 may generate extra Yi (for simplicity, we
assume one extra Yi generated).

wAw′ r.i.1=⇒ wXiw
′ (r.i.2)2

=⇒ wXi(Yi)2w′
r.i.3,r.i.4

=⇒
r.i.5=⇒ wBCYiw

′.

As we need to consider only terminal derivations we may assume that Yi

will be necessary rewritten. The only rule to rewrite Yi is r.i.4. In order to per-
form it the letter Zi must precede by the letter Yi. It implies that the letter A
must appear adjacently left from the letter Yi. Then the sequence of productions
r.i.1, r.i.3, r.i.4, r.i.5 results to the same sentential form as if r.i.2 is applied once
per every rewriting of A.

wBCYiw
′ =⇒∗ w1AYiw

′
1

r.i.1=⇒
wXiYiw

′
1

r.i.3,r.i.4,r.i.5
=⇒ w1BCw′1.

Therefore, it can be produced by rules from PCF . We also mention that in
r.i.1− r.i.5 we start rewriting letters from N\N ′ by corresponding letters from N
only after the letter Xi is rewritten. This imply that after r.i.4, we cannot insert
additional Yi adjacently left from Ci. So, Zi can be rewritten unambiguously.

Finally, consider the case when the production r.i.4 is followed by some pro-
duction from P\PCF which rewrites C.

. . .
r.i.4=⇒ wZiCiw

′ =⇒∗ w2ZiCiw
′
2

r.i.5=⇒ w2BCiw
′
2.
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As Zi can be rewritten only if Ci appears to the right we may consider the equiva-
lent derivation with the production r.i.5 applied directly after r.i.4. So the deriva-
tion is equivalent to the derivation with i : A → BC ∈ PCF . Hence we proved
L(G′) ⊆ L(G), and hence L(G′) = L(G).

Every grammar in the normal form has the following property: every production
can rewrite/add at most one (nonterminal) letter.

Now we increase the maximal size of the context of insertion rules to two letters.
It is known from [17] that the class INS2,2

2 contains non-semilinear languages.
Considering these systems with membrane regulation we get

Theorem 9 hLSP3(ins2,2
2 ) = RE.

Proof. We prove the theorem by simulating a 0-type grammar in the normal form
from Lemma 8. Let G = (N,T, S, P ) be such a grammar. Suppose that rules in P
are ordered and n = card(P ).

Now consider the following insertion P system,

Π = (V, [1 [2 [3 ]3 ]2 ]1, {S$}, ∅, ∅, R1, R2, R3, h, ϕ), where

V = T ∪N ∪ F ∪ F ∪ {#, #, $}, F = {FA, |A ∈ N}, F = {FA, |A ∈ N}.
We include into R1 the following rules:

(AB, #C, α, here), if AB → AC ∈ P ;
(A, #C, Bα, here), if AB → CB ∈ P ;

(A,C, α, here), if A → AC ∈ P ;
(ε, C, Aα, here), if A → CA ∈ P ;
(A, #δ, α, here), if A → δ ∈ P ;

($, ε, ε, out),

where α ∈ V \{#}. It may happen that the pair of letters AB subjected to be
rewritten by a production AB → AC or AB → CB ∈ R is separated by letters
that have been marked. We use two additional membranes to transfer a letter over
marked ones. In order to transfer A ∈ N we add

r.1.1 : (A, #FA, α, in2), α ∈ V \{#}
to the skin membrane. Then we add to the second membrane

r.2.1 : (FA,#A,α′, out), r.2.2 : (FA, #A,α′, out),

r.2.3 : (FAX, #FA, #, in3), r.2.4 : (FAFB , #FA, #, in3)

r.2.5 : (FAX, #FA, #, in3), r.2.6 : (FA FB , #FA, #, in3)

r.2.7 : (FA#, FA, α, in3), r.2.8 : (FA#, FA, α, in3),

r.2.9 : (FA#, FA, #, in3), r.2.10 : (FA#, FA, #, in3),

r.2.11 : (FA#, FA, #, in3), r.2.12 : (FA#, FA, #, in3),
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for every

X ∈ F ∪N, FB ∈ F , α ∈ V \{#, #},
α′ ∈ {ab | a ∈ N ∪ T, b ∈ N ∪ T ∪ {$}} ∪ {$}.

Finally, we add to the third membrane the rules

r.3.1 : (FA, #, α, out), α ∈ V \{#}, r.3.2 : (FA,#, α, out), α ∈ V \{#}

The morphism h is defined by

h(a) =
{

a, if a ∈ V \N,
a# if a ∈ N.

The weak coding ϕ is defined by

ϕ(a) =
{

a, if a ∈ T,
ε if a ∈ V \T.

We simulate the productions of P in the skin membrane by marking nonterminals
from N and inserting corresponding letters of the productions. This is possible to
do with insertion rules of weight (2, 2, 2) since the grammar has such a form so
every production rewrite/add at most one letter.

The simulation of the transfer is done in the second and the third membranes.
The idea of the simulation is (1) to mark nonterminal we want to transfer, (2) jump
over the marked letters with help of one special letter, at the end (3) mark the
special letter and insert the original nonterminal. Since we use two letter contexts,
in one step we can jump only over a single letter. Also we need to jump over the
marking letter # as well as over marked nonterminals, and the letters inserted
previously. We use letters FA ∈ F and FA ∈ F to keep information about the
letter A we want to transfer. In order to jump over # we introduce one additional
marking symbol #. We mark letters from F by #, and all other letters in V \{#, #}
by #. E.g., in a words FA#, letter FA is unmarked.

(1) The rule r.1.1 : (A,#FA, α, in2), specifies that every unmarked letter from
N may be used for the transfer.

(2) The rules r.2.3 − r.2.12 in the second membrane specify that FA or FA is
copied to the right in such a way that the inserted letter would not be marked.
In order to do so, the appropriate rule chooses to insert either the overlined copy
FA or the simple copy FA. The rules r.2.3− r.2.6 describe the possible jumps over
one letter not in {#,#}, and r.2.7 − r.2.12 describe the possible jumps over the
marking letters #, #. These rules send the sentential form to the third membrane.
The rules in the third membrane mark one symbol FA ∈ F or FA ∈ F and send
the sentential form back to the second membrane.

(3) The rules r.2.1 and r.2.2 may terminate the transferring procedure and
send the sentential form to the first membrane if letter $ or two letters from
{ab | a ∈ N ∪ T, b ∈ N ∪ T ∪ {$}} appear in the the right context.
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For example, consider the transfer of A in the string AX#C$ (here, we under-
line inserting substrings)

AX#C$ r.1.1=⇒ A#FAX#C$ r.2.3=⇒ $A#FAX#FA#C$ r.3.1=⇒
A#FA#X#FA#C$ r.2.6=⇒A#FA#X#FA#FAC$ r.3.2=⇒

A#FA#X#FA ##FAC$ r.2.1=⇒A#FA#X#FA ##FA#AC$

The sentential form preserves the following invariant:

• The first membrane does not contain unmarked letters from F ∪ F.
• There is exactly one unmarked letter F ∪ F in the second membrane.
• There are always two unmarked letters from F ∪ F in the third membrane.

We mention that the invariant is preserved by every derivation. Indeed, we
start derivation from the axiom S$ that satisfies the invariant, then one unmarked
symbol is inserted by r.1.1. Rules r.2.3 − r.2.12 always add one more unmarked
letter. And rules r.2.1, r.2.2, r.3.1, r.3.2 always mark one letter from F ∪ F.

In order to verify that Π simulates the same language as G we note that every
reachable sentential form in G will be reachable also in Π by simulating the same
production.

Also we note that the derivation in Π may terminate by the rule ($, ε, ε, out)
only in the first membrane. Hence it guarantees that every transfer will be com-
pleted. It follows from the invariant that the simulation of the transfer is deter-
ministic in the second membrane. There is a nondeterministic choice in the third
membrane, where corresponding rules may mark one of the two unmarked letters.
In the case the rule marks the rightmost letter, the derivation has to “jump” again
over the inserted letter. The transfer satisfies the property that every terminating
sequence replaces a nonterminal via arbitrary large string of marked letters, if it
starts (by r.1.1) adjacently left from it. And in case the rule r.1.1 starts the trans-
fer of a letter next to unmarked letter then it produces two marked symbols which
do not affect on the result of the simulation.

The output string w is in the language only if w′ = ϕ(h−1(w)) is defined.
This is the case only if the resulting output of Π does not contain unmarked
nonterminals. On the other hand, every final derivation in Π has its counterpart
in G. By applying the inverse morphism h−1 we filter out every sentential form
with unmarked nonterminals from N . Hence, the corresponding derivation in G is
terminated. Finally, the weak coding ϕ filters away supplementary letters. Hence
we have L(G) = L(Π).

Remark 10 One may mention that there is a trade-off between the number of
membranes and the maximal length of productions. By introducing additional non-
terminals and fitting the grammar into the normal form we decrease the amount
of used membranes. It is also the case in the other way: by growing the number of
membranes we can simulate larger production rules.
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4 Conclusion

This article investigates the expressive power of insertion P systems with encod-
ings. The length of insertion rules and number of membranes are used as a measure
of descriptional complexity of the system. In the article we use the fact that mor-
phisms and weak codings are incorporated to insertion P systems. The obtained
family hLS(t)P∗(ins1,1

∗ ) serves to characterize matrix languages. When no mem-
branes are used, the class hINS1,1

∗ equals the family of context-free languages.
We proved the universality for the family hLSP∗(ins2,2

∗ ). More precisely, for every
recursively enumerable language we can construct an insertion P system of weight
(2, 2, 2) and degree 3, so that applying an inverse morphism and a weak coding we
generate the same language. Also, we want to mention that computational com-
pleteness of considered families indicates some trade-offs between descriptional
complexity measures. Moreover, the descriptional complexity used in the paper
may be extended by internal system parameters as, e.g., the size of alphabet, the
number of rules per membrane, etc.

Also, it seems quite promising to investigate decidable computational proper-
ties of the language family LS(t)P∗(ins∗,∗∗ ). We conjecture that it is incomparable
with many known language families.

We recall the open problem posed in [4], namely, whether hLSP1(ins2,2
∗ ) equals

RE One may see that in order to solve the problem by the technique used in the
article, it is enough to find a concise way to transfer a letter over a marked context.
In our case this can be reduced to the question whether it is possible to compute
the membrane regulation in the skin membrane.
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Summary. Software development for cellular computing is growing up yielding new
applications. In this paper, we describe a simulator for the class of recognizer P systems
with active membranes, which exploits the massively parallel nature of the P systems
computations by using a massively parallel computer architecture, such as Compute
Unified Device Architecture (CUDA) from Nvidia, to obtain better performance in the
simulations. We illustrate it by giving a solution to the N-Queens problem as an example.

1 Introduction

Membrane computing (or cellular computing) is an emerging branch within natural
computing that was introduced by Gh. Păun [20]. The main idea is to consider
biochemical processes taking place inside living cells from a computational point
of view, in a way that gives us a new nondeterministic model of computation by
using cellular machines.

Since the model was presented, many software applications have been produced
[9]. The common purpose of all these software applications is to simulate P systems
devices (cellular machines), and hence the designers have faced similar difficulties.
However, these systems were usually focused on, and adapted for, particular cases,
making it difficult to work on generalizations.

P systems simulators are tools that help the researchers to extract results from
a model. These simulators have to be as much efficient as possible when handling
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large problem sizes. The massively-parallel nature of the P systems computations
points out to looking for a massively-parallel technology where the simulator can
run efficiently.

The newest generation of graphics processor units (GPUs) are massively par-
allel processors which can support several thousand of concurrent threads. Many
general purpose applications have been designed on these platforms due to its huge
performance [12], [15], [23]. Current NVIDIA GPUs, for example, contain up to
240 scalar processing elements per chip [14], and they are programmed using C
and CUDA [26], [17].

In this paper we present a massively parallel simulator for the class of recog-
nizing P systems with active membranes using CUDA. The simulator executes the
P system which is defined by using the P-Lingua [4] programming language. The
simulator is divided in two main stages: the selection stage and the execution stage.
At this development stage, the selection stage is executed, in a parallel fashion, on
the GPU and the execution stage is executed on the CPU.

The rest of the paper is structured as follows. In Section 2 several definitions
and concepts are given for a correct understanding of the paper. Section 3 intro-
duces the Compute Unified Device Architecture (CUDA) and some concepts of
programming on GPUs are specified. In Section 4 we explain the design of the
simulator. In Section 5 we implement a solution to the N-Queens problem using
the simulator and P-Lingua. Finally, in Section 6 we show some results and com-
pare them with the sequential version of the simulator. The paper ends with some
conclusions and ideas for future work in Section 7.

2 Preliminaries

Polynomial time solutions to NP-complete problems in membrane computing are
achieved by trading time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes in polynomial time. There
are many ways a living cell can produce new membranes: mitosis (cell division),
autopoiesis (membrane creation), gemmation, etc. Following these inspirations a
number of different models of P systems has arisen, and many of them proved to
be computationally universal [4].

For the sake of simplicity, we shall focus in this paper on a model, P systems
with active membranes. It is a construct of the form Π = (O, H, µ, ω1, . . . , ωm, R),
where m ≥ 1 is the initial degree of the system; O is the alphabet of objects, H
is a finite set of labels for membranes; µ is a membrane structure, consisting of m
membranes injectively labeled with elements of H, ω1, . . . , ωm are strings over O,
describing the multisets of objects placed in the m regions of µ; and R is a finite
set of rules, where each rule is of one of the following forms:

(a) [a → v]αh , where h ∈ H, α ∈ {+,−, 0} (electrical charges), a ∈ O and v is a
string over O describing a multiset of objects (object evolution rules).
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(b) a [ ]αh → [b]βh, where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-in communication
rules). An object is introduced in the membrane, possibly modified, and the
initial charge α is changed to β.

(c) [a]αh → [ ]βhb, where h ∈ H, α, β ∈ {+,−, 0}, a, b ∈ O (send-out communication
rules). An object is sent out of the membrane, possibly modified, and the initial
charge α is changed to β.

(d) [a]αh → b, where h ∈ H, α ∈ {+,−, 0}, a, b ∈ O (dissolution rules). A mem-
brane with a specific charge is dissolved in reaction with a (possibly modified)
object.

(e) [a]αh → [b]βh [c]γh, where h ∈ H,α, β, γ ∈ {+,−, 0}, a, b, c ∈ O (division rules). A
membrane is divided into two membranes. The objects inside the membrane
are replicated, except for a, that may be modified in each membrane.

Rules are applied according to the following principles:

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• Rules associated with label h are used for all membranes with this label, no
matter whether the membrane is an initial one or whether it was generated by
division during the computation.

• Rules from (a) to (e) are used as usual in the framework of membrane com-
puting, i.e., in a maximal parallel way. In one step, each object in a membrane
can only be used by at most one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated
below).

• Rules (b) to (e) cannot be applied simultaneously in a membrane in one com-
putation step.

• An object a in a membrane labeled with h and with charge α can trigger a
division, yielding two membranes with label h, one of them having charge β
and the other one having charge γ. Note that all the contents present before
the division, except for object a, can be the subject of rules in parallel with
the division. In this case we consider that in a single step two processes take
place: “first” the contents are affected by the rules applied to them, and “after
that” the results are replicated into the two new membranes.

• If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin is never dissolved.

Recognizing P systems were introduced in [21], and constitute the natural
framework to study the solvability of decision problems, since deciding whether an
instance has an affirmative or negative answer is equivalent to deciding if a string
belongs or not to the language associated with the problem.

In the literature, recognizing P systems are associated in a natural way with
P systems with input. The data representing an instance of the decision problem
has to be provided to the P system to compute the appropriate answer. This is
done by codifying each instance as a multiset placed in an input membrane. The
output of the computation, yes or no, is sent to the environment [4].
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In this paper, we present a simulation tool to simulate recognizer P systems
with active membranes. The act of simulating something generally entails repre-
senting certain key characteristics or behavior of some physical, or abstract, sys-
tem. On the other hand, an emulation tool duplicates the functions of one system
by using a different system, so that the second system behaves like (and appears
to be) the first system.

With the current technology, we can not emulate the functionality of a cellular
machine by using a conventional computer to solve NP-complete problems in
polynomial time, but we can simulate these cellular machines, not necessarily in
polynomial time, in order to aid researchers. However, depending on the underlying
technology where the simulator is executed, the simulations can take too much
time.

The technology used for this work is called CUDA (Compute Unified Device
Architecture). CUDA is a co-designed hardware and software solution to make eas-
ier developing general-purpose applications on the Graphics Processor Unit (GPU)
[28]. The GPUs, that are one of the main components of traditional computers,
originally were specialized for math-intensive, highly parallel computation which
is the nature of graphics applications. These characteristics of the GPU were very
attractive to accelerate scientific applications whose have massively parallel appli-
cations. However, the problem was the way to program applications on the GPU.
This way involved to deal with GPUs designed for video games, so they have had to
tune their applications using programming idioms tied to computer graphics, pro-
gramming environment tightly constrained, etc [15], [12]. The CUDA extensions
developed by Nvidia provides an easier environment to program general-purpose
applications onto the GPU because it is based on ANSI C supported by several
keywords and constructs. ANSI C is the standard published by the American Na-
tional Standards Institute (ANSI) for the C programming language, which is one
of the most used.

The P system devices are massively parallel which fits into massively parallel
nature of the GPUs with thousands of threads running in parallel. These threads
are units of execution which execute the same code concurrently on different piece
of data. This idea of thread is very important and used in parallel computing.

3 Underlying Architecture

This work uses a graphics processor unit (GPU) from Nvidia as hardware target
for its study: Tesla C1060. This section introduces the Tesla C1060 computing ar-
chitecture, and it shows architecture parameters that can affect the performance.
In addition, it analyzes the threading model of Tesla architectures depending on
its computing capability, and also the most important issues in the CUDA pro-
gramming environment.
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3.1 Tesla 10 Base Microarchitecture

The Tesla C1060 [14] is based on scalable processor array which has 240 streaming-
processor (SP) cores organized as 30 streaming multiprocessor (SMs). The appli-
cations start at the host side (the CPU) which communicates with the device side
(the GPU) through a bus, which is a PCI Express bus standard (see Figure 1).

Fig. 1. Tesla Unified Architecture. TPC: Texture/processor cluster. SM: Streaming Mul-
tiprocessor, distributed among TPCs. SP: Streaming Processor.

The SM is the processing unit and it is unified graphics and computing multi-
processor. The parallel computing programs are programmed using ANSI C pro-
gramming language along with CUDA extensions [28].

Every SM contains the following units: eight SPs arithmetic cores, one dou-
ble precision unit, an instruction cache, a read only constant cache, 16-Kbyte
read/write shared memory, a set of 16384 registers, and access to the off-chip
memory (device/local memory).

The local and global (device) memory spaces are not cached, which means that
every memory access to global memory (or local memory) generates an explicit
memory access. A multiprocessor takes four clock cycles to issue one memory
instruction for a “Warp” (see next subsection). Accessing local or global memory
incurs an additional 400 to 600 clock cycles of memory latency [26], that is more
expensive than accessing share memory and registers that incurs 4 cycles.
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The Tesla C1060 achieves 102 GB/sec of bandwidth to the off-chip memory
(running at 800 MHz). This bandwidth is not enough for the big set of cores and the
possibilities to saturate it are high. To obtain the maximum bandwidth available
it is needed to coalesce accesses to the device memory. The coalesced accesses are
obtained whenever the accesses are contiguous 16-word lines, otherwise a fraction
of this bandwidth it is obtained. Coalesced accesses will be a critical point in the
optimization process.

In addition, the threads can use other memories like constant memory or tex-
ture memory. Reading from constant cache is as fast as reading from a registers,
as long as all threads in the same warp read the same address. Texture Memory
is optimized for 2D spatial locality (see Table 1).

Table 1. Memory System on the Tesla C1060

Memory Location Size Latency Access

Registers On-Chip 16384 32-bits Registers per SM ' 0 cycles R/W

Shared Memory On-Chip 16 KB per SM ' registers R/W

Constant On-Chip 64 KB ' registers R

Texture On-Chip Up to Global > 100 cycles R

Local Off-Chip 4 GB 400-600 cycles R/W

Global Off-Chip 4 GB 400-600 cycles R/W

3.2 Threading Model

A SM is a hardware device specifically designed with multithreaded capabilities.
Each SM manages and executes up to 1024 threads in hardware with zero schedul-
ing overhead. Each thread has its own thread execution state and can execute an
independent code path. The SMs execute threads in a Single-Instruction Multiple-
Thread (SIMT) fashion [14]. Basically, in the SIMT model all the threads execute
the same instruction on different piece of data. The SMs create, manage, schedule
and execute threads in groups of 32 threads. This set of 32 threads is called Warp.
Each SM can handle up to 32 Warps (1024 threads in total, see Table 2). Individ-
ual threads of the same Warp must be of the same type and start together at the
same program address, but they are free to branch and execute independently.

The execution flow begins with a set of Warps ready to be selected. The in-
struction unit selects one of them, which is ready for issue and execute instructions.
The SM maps all the threads in an active Warp to the SP cores, and each thread
executes independently with its own instructions and register state. Some threads
of the active Warp can be inactive due to branching or predication, and this is also
another critical point in the optimisation process. The maximum performance is
achieved when all the threads in an active Warp takes the same path (the same
execution flow). If the threads of a Warp diverge, the Warp serially executes each
branch path taken, disabling threads that are not on that path, and when all the
paths complete, the threads reconverge to the original execution path.
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Table 2. Major Hardware and Software Limitations programming on CUDA

Configuration Parameters Limitation

Threads/SM 1024

Thread Blocks/SM 8

32-bit Registers/SM 16384

Shared Memory/SM 16KB

Threads/Block 512

Threads/Warp 32

Warps/SM 32

3.3 Parallel Computing with CUDA

The GPU is, nowadays, a single-chip massively parallel system which is inexpensive
and readily available. However, programming a highly-parallel system has histori-
cally been a domain of few experts [25]. The emergence of Compute Unified Device
Architecture (CUDA) has helped develop highly-parallel applications easier than
before. CUDA programming toolkit is an extension of ANSI C including several
keywords and constructs.

The GPU is seen as a coprocessor that executes data-parallel kernel functions.
The user creates a program encompassing CPU code (Host code) and GPU code
(Kernel code). These are separated and compiled by nvcc (Nvidia’s compiler for
CUDA code). The host code is responsible for transfer data to and from the GPU
memory (device memory) via API calls, to initiates the kernel code executed on
the GPU.

The threads executes the kernel code, and they are organized into a three-level
hierarchy. At the highest level, each kernel creates a single grid that consists of
many thread blocks. Besides, each thread block can contain up to 512 threads
which can share data through Shared Memory and can perform barrier synchro-
nization by invoking the --syncthreads primitive [25]. On the other hand, blocks
can not perform synchronization. The synchronization across blocks can only be
obtained by terminating the kernel. Finally, the threads within the block are or-
ganized into warps of 32 threads.

Each block within the grid have their own identifier[18]. This identifier can
be one, two or three dimensions depending on how the programmer has declared
the grid. In the same way, each thread within the block have their own identifier
which can be one, two or three dimensions as well. Combining thread and block
identifiers, the threads can access to different data address and also select the work
that they have to do.
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4 A Design of the Simulator for the Class of Recognizing P
Systems

4.1 Algorithm Design

Whenever we design algorithms in the CUDA programming model, our main effort
is dividing the required work into processing pieces, which have to be processed
by TB thread blocks of T threads each. Using a thread block size of T=256, we
have empirically determined to obtain the overall best performance on the Tesla
C1060. Each thread block access to one different set of input data, and assigns a
single or small constant number of input elements to each thread.

Each thread block can be considered independent to the other, and it is at
this level at which internal communication (among threads) is cheap using explicit
barriers to synchronize, and external communication (among blocks) becomes ex-
pensive, since global synchronization only can be achieved by the barrier implicit
between successive kernel calls. The need of global synchronization in our designs
requires successive kernel calls even to the same kernel.

4.2 P System Simulator with Active Membranes

The simulator simulates a recognizer P system with active membranes, i.e Π =
(O, H, µ, ω1, . . . , ωm, R) according to the notation described in section 2.

The simulator is executed into two main stages: selection stage and execution
stage. The selection stage consists of the search for the rules to be executed in
each membrane. Once the rules have been selected, the execution stage consists
of the execution of these rules. The selection stage takes the major part of the
simulation time in the sequential code, since this part of the algorithm implies to
check all the rules of the system in every membrane. So we have parallelized the
selection stage on the GPU, and the execution stage is still executed on the CPU
at this point of the implementation.

The input data for the selection stage consists of the description of the mem-
branes with their multisets (strings over O, labels associated with the membrane
in H, etc...) and the set of rules R to be selected. The output data of this stage
will be the set of selected rules per membrane. Only the execution stage changes
the information of the configuration.

Besides, we have identified each membrane as a thread block where each thread
represents an element of the alphabet O. Each thread block runs in parallel looking
for the set of rules that has to execute, and each individual thread is responsible for
identifying if there are some rules associated with the element that it represents,
and if so, send it back to the execution stage. Finally, the CPU takes the control
and executes the rules previously selected.

As result of the execution stage, the membranes can vary including news el-
ements, dissolving membranes, dividing membranes, etc. Therefore, we have to
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modify the input data for the selection stage with the newest structure of mem-
branes, and then call the selection again. It is an iterative process until a system
response is reached.

Our simulator presents two restrictions: it can handle only two levels of mem-
brane hierarchy for simplicity (the skin and the rest of elementary membranes),
what is enough for solving lots of NP-complete problems; moreover, the number
of objects in the alphabet must be divisible by a number smaller than 512 (the
maximum thread block size), in order to distribute the objects among the threads
equally.

5 A Case Study: Implementing a Solution to the N-Queens
Problem

In this section, we present a solution to the N-Queens problem, given by Miguel
A. Gutiérrez–Naranjo et al [8], using our simulator. The N-Queens problem is
expressed as a formula in conjunctive normal form, in such way that one truth
assignment of the formula is considered as N-Queens solution. A family of recog-
nizer P system for the SAT problem [22] can state whether exists a solution to the
formula or not sending yes or no to the environment.

However, the yes ot no answer from the recognizer P system is not enough.
Besides, the system needs to give us the way to encode the state of the N-Queens
problem.

The P system designed for solving the N-Queens problem is a modification
of the P system for the SAT problem. It is an uniform family of deterministic
recognizer P system which solves SAT as a decision problem (i.e., the P system
sends yes or no to the environment in the last computation step), but it also stores
the truth assignments that makes true the formula encoded in the elementary
membranes of the halting configuration.

5.1 Implementation

P-Lingua 1.0[4] is a programming language useful for defining P system models
with active membranes. We use P-Lingua to encode a solution to the N-Queens
problem, and also to generate a file that our simulator can use as input. Figure 2
shows the P-Lingua process to generate the input for our simulator.

P-Linga 2.0[5] translates a model written in P-Lingua language into a binary
file. A binary file is a file whose information is encoded in Bytes and bits (not
understandable by humans like plain text), which is suitable for trying to compress
the data. This binary file contains all the information of the P system (Alphabet,
Labels, Rules, . . . ) which is executed by our simulator.

In our tests, we use the recognizer P system for solving the 3-Queens problem.
This problem creates 512 membranes and up to 1300 different objects. For the
4-Queens problem, the system would create 65536 membranes and up to 8000
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Fig. 2. Generation of the simulator’s input

different objects. Currently, our simulator can not handle this example due to
memory space limitation (requires up to 8GB in device memory). This problem
can be solved with overlays of data and subsequent calls to the GPU. We are
working on this solution, and also in other solutions to make possible execute
problems with bigger memory size constraints on our simulator. On the other
hand, note that 2-Queens is a system with only 4 membranes, what is not enough
for exploiting the parallelism in P systems.

6 Performance Analysis

We now examine the experimental performance of our simulator. Our performance
test are based on the solution to 3-Queen problem previously explained 5.1. Al-
though this problem does not cover all the NP-complete problems that we want
to simulate in our simulator, it states an example of how a NP-complete problem
can be solved on the P system with active membranes simulator. We report the
selection stage time which is executed on the GPU, and compare it with the selec-
tion stage for the sequential code. We do not include the cost of transferring input
data from host CPU memory across the PCI-Express bus to the GPU’s on board
memory. Selection is one building block of larger-scale computation. Our aim is to
get a full implementation of the simulator on the GPU. In such case, the transfers
across PCI-Express bus will be close to zero.

The selection stage on the GPU takes about 195 msec. This is 12 times faster
than the selection stage on the CPU which takes 2345 msec. We have used the
NVIDIA GPU Tesla C1060 which has 240 execution cores and 4GB of device
memory, plugged in a computer server with a Intel Core2 Quad CPU and 8GB of
RAM, using the 32bits ubuntu server as Operating System.

Our experimental results demonstrate the results we expect to see: a massively-
parallel problem such as selection of the rules in a P system with active membranes
achieves faster running times on a massively-parallel architecture such as GPU.
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7 Conclusions and Future Work

In this paper, we have presented a simulator for the class of recognizer P systems
with active membranes using CUDA. The membrane computation has double par-
allel nature. The first level of parallelism is presented by the objects inside the
membranes, and the second one is presented between membranes. Hence, we have
simulated these P systems in a platform which provides those levels of parallelism.
This platform is the GPU, with parallelism between thread blocks and threads.
Besides, we have used a programming language called P-Lingua to generate a
solution to the N-Queens problem, in order to test our simulator.

Using the power and parallelism that provides the GPU to simulate P systems
with active membranes is a new concept in the development applications for mem-
brane computing. Even the GPU is not a cellular machine, its features help the
researches to accelerate their simulations allowing the consolidation of the cellular
machines as alternative to the traditional machines.

The first version of the simulator is presented for P systems with active mem-
branes, specifically, we have developed the selection stage of the simulator. In
forthcoming versions, we will try to include the execution version in the GPU.
This issue allows a completely parallel execution on the GPU, avoiding CPU-GPU
transfers in every step, which degrades system performance.

On the other hand, we shall adapt our simulator to use the resources available
on the GPU at maximum. To develop general purpose programs on the GPU
is easier than several years ago with tools such as CUDA. However, extracting
the maximum performance on the GPU is still hard, so we need to make a deep
analysis to obtain the maximum performance available for our simulator.

It is also important to point out that this simulator is limited by the resources
available on the GPU as well as the CPU (RAM, Device Memory, CPU, GPU).
This limits the size of the instances of NP-complete problems whose solutions can
be successfully simulated. In the following version of the simulator, we will try to
reduce the memory requirements for the simulator in order to be able to simulate
bigger instances of NP-complete problems. Moreover, it would be interesting to
design heuristics to accelerate the computations of our simulator.

Although, the massively parallel environment that provides the GPUs is good
enough for the simulator, we need to go beyond. The newest cluster of GPUs
provides a higher massively parallel environment, so we will attempt to scale to
those systems to obtain better performance in our simulated codes.
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Summary. Spiking Neural P Systems are a kind of Membrane Systems developed with
the aim of incorporating ideas from biological systems, known as spiking neurons, in
the computational field. Initially, these systems were designed to take concepts of the
neural science based on action potentials with the purpose of testing its possibilities
from a computational point of view and not to be used as neurological models. In this
work, a basic approach in the opposite sense is reviewed by means of the application
of such systems on a well-known biological phenomenon. This phenomenon refers to the
fluctuations among neural circuits which are responsible for swapping between awake-
asleep states. This basic approach is analyzed and new issues are exposed.

1 Introduction

Sleep is a highly organized and actively induced cerebral state with different stages
[11]. It has been observed two kinds of sleep: REM-sleep and non-REM sleep, each
one with a number of specific features. Specifically, non-REM sleep comprises four
stages. Each stage is defined according to its activity in the electroencephalogram
(EGG). Stage 1 contains alternative periods of alpha activity (8-12Hz), irregular
speed activity and theta activity (3.5-7.5Hz). Stage 2 does not show alpha activity
in the EGG although in this stage appears a phenomenon called sleep spindles
(bursts of 12-14Hz sinusoidal waves) and, sometimes, high-voltage biphasic waves
called K complexes. Stage 3 consists of delta activity (less than 3.5Hz) during part
of its time (20-50%) and stage 4 consists of delta activity during the most time
(more than 50%). Approximately 90 minutes after sleep starts human beings fall
in non-REM sleep which is characterized by rapid eye movements, unsynchronize
EGG, a nearly complete inhibition of skeletal muscle tone (atonia). The brain
temperature and metabolic rate are high, equal to or greater than during the
waking state and some sexual activity can be present as well.

From a neural point of view, although sleep is controlled by the great part
of the encephalon [4], there is a particularly important zone. It is the ventrolat-
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eral preoptic nucleus (VLPO)which is located rostral to the hypothalamus. Some
anatomical studies have shown that VLPO contains neurons that inhibit the sys-
tem responsible of activating the brainstem and the forebrain. On the other hand,
VLPO receives inhibitory afferents from the same regions that it inhibits. As Saper
suggested [12] this reciprocal inhibition might be the basis to establish the tran-
sition between sleep and wake states. Reciprocal inhibition also is a feature in an
electronic circuit called flip-flop switch. A flip-flop switch can be either on or off.
According to Saper and collaborators’ model, either VLPO is active and inhibits
regions which induce wakefulness or regions that induce wakefulness are actives
and inhibit VLPO. Like these regions are reciprocally inhibited it would not be
possible that they were active at the same time.

There are some models that show how this switch might perform. On one hand,
for example, Carlson’s model [4] and Saper’s model [12] are further schemes that
show the information flow among neural groups along the circuits. On the other
hand, several mathematical models have been proposed. A good review about
these models is presented in [9]. With the aim to include some dynamical and
structural aspects of the flip-flop switch a computational model that claim to
describe the Saper’s model is reviewed and analyzed in this paper. The model is
based on Spiking Neural P Systems [6]. This type of computational model is part of
the Membrane Computing [10] and its starting point consists on adding concepts
typical of the neuronal computation based on spiking with the goal of testing
its possibilities from a computational viewpoint. Nevertheless, this paper shows
a Spiking Neural P system oriented in the opposite way. The system describes a
specific neurophysiological mechanism called the sleep-wake switch.

The paper is organized as follows. Section 2 describes the neural control of
slow waves sleep and the sleep-wake switch. Section 3 reviews a basic model of the
sleep-wake switch with Spiking Neural P Systems. Section 4 shows results of the
basic model. Finally, section 5 analyzes the proposed basic model and comments
new issues to develop in the future.

2 Neural Control of Slow Waves Sleep

2.1 Non-REM stages

In non-REM sleep there is a low neuronal activity and both the metabolic function
and the temperature of the brain are on its lowest level [11]. Besides, the sympa-
thetic flow, heart rate and blood pressure decreases. Inversely, parasympathetic
activity is increased while the muscle tone and reflexes remain intact.

Non-REM sleep is divided in four stages. Stage 1 represents the transition from
wakefulness to sleep state. It lasts several minutes. When an individual is awoken
shows an activity in the EGG with low voltage (10 − 30µV and 16-25Hz). As
they relax, individuals show alpha activity around of 20 − 40µV and 10Hz. This
stage shows some activity on the muscles but there is no rapid eye movement,
rather the sleeper shows slow eye movement and his EGG is characterized by a
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low voltage and mixed frequencies. Stage 2 reveals bursts of sinusoidal waves called
sleep spindles and biphasic waves called K complexes. These impulses are presented
in an episodic way in front of a continuous activity in the EGG with low voltage.
Stage 3 is characterized by a EGG which shows slow delta waves (0.5-2Hz) and
high amplitude. Finally, in stage 4 this slow waves are increased and domain the
EGG. In human beings stage 3 and stage 4 are known as slow wave sleep.

2.2 The sleep switch

The circuits in the brain that are responsible to regulate sleep and to produce
wakefulness include cell groups in the brainstem, the hypothalamus and the basal
forebrain [13] which are very important to activate the cerebral cortex and the
thalamus. Neurons of these groups are inhibited during the sleep by a neural group
that produces GABA (gammaminobutiric acid; an inhibitory neurotransmitter
that seems to be widely distributed by all the encephalon and the spinal cord.
It appears in many synaptic communications). This group corresponds with the
ventrolateral preoptic nucleus. The reciprocal inhibition between both circuits acts
like a switch and defines sleep and awake states. These states are discreet and they
have sharp transitions among them.

To understand better how this switch performs it is very useful to look at the
awake system and sleep system separately. We cite here the Saper’s works [12]
[13]. Regarding the first system, several studies carried out in the 70’s and 80’s
showed an ascending activation pathway which induce the wakefulness state. The
pathway has two main branches. The first one is an ascending branch directed to-
ward the thalamus and it activates the thalamic relay neurons that are crucial for
transmission of information to the cerebral cortex [13]. A mayor input of this thala-
mic relay neurons comes from a pair of neuron groups that produce acetylcholine
(ACh): the pedunculopontine tegmental nuclei (PPT) and the laterodorsal tegmen-
tal nuclei (LDT). Neurons on these groups are more active during wakefulness and
REM sleep and much less active during non-REM sleep when cortical activity is de-
creased. The second branch in the ascending activation system avoids the thalamus
and activates neurons in the lateral hypothalamus (LHA) and the basal forebrain
(BF). This second route starts from monoaminergic neurons in the upper brain-
stem and the caudal hypothalamus including the locus coeruleus (LC) which con-
tains noradrenaline (NA), the dorsal and median raphe nuclei (DR) which contains
serotonin (5-HT), the ventral periaqueductal grey matter which contains dopamine
(DA) and the tuberomammillary nucleus containing histamine (HIS). The input to
the cerebral cortex is augmented thanks to the lateral hypothalamic peptidergic
neurons containing orexine or hypocretin (ORX), the melanin-concentrating hor-
mone (MCH) and the basal forebrain neurons which contain GABA. Neurons in
the monoaminergic nuclei have the property to fire faster during the wakefulness,
slowing down during the non-REM sleep and stopping during REM sleep. Figures
1 and 2 show a schematic drawing with the mentioned systems.

During the 80’s and 90’s several researchers began to show interest for the
inputs to the monoaminergic cells and found out that VLPO sent signals toward
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Fig. 1. Scheme with the main items in the Ascending Arousal System (AAS). Please see
[13] for details

the main cells of the hypothalamus and the brainstem that are active during the
wakefulness. Neurons in the VLPO are mainly active during sleep and they contain
inhibitory neurotransmitters like GABA. These neurons form a dense group and
a extended part more diffuse. Some of the studies showed that lesions in the dense
group disrupted the non-REM sleep and lesions in the extended group did the
same with the REM sleep. Experiments also showed that VLPO was innervated
by the very monoaminergic systems that it innervates during sleep.

Reciprocal inhibition between sleep system and ascending arousal system acts
like a circuit usually known as flip-flop in engineering [12]. A switch can be on
or off. So, either VLPO is active and inhibits regions that induce wakefulness or
these regions are actives and inhibit VLPO. This oscillator mechanism tries to
avoid intermediate states because it is considered an adaptive advantage whether
an animal is either asleep or awake. Saper and collaborators [12] suggested that an
important function of hypocretinergic neurons situated in the lateral hypothalamus
consist in helping to stabilize the oscillator. When these neurons are actives they
induce wakefulness and inhibit sleep. The following schematic drawing in figure 3
shows the model proposed by Saper [13] in order to explain the sleep switch.

2.3 Homeostatic control of sleep

Nowadays is known that hypocretinergic neurons do not receive inhibitory affer-
ents from each part of the oscillator, so that activation of these parts do not affect



Sleep-Awake Switch with Spiking Neural P Systems 63

Fig. 2. Scheme with the projections from VLPO to (AAS). Please see [13] for details

Fig. 3. Schematic drawing of the sleep switch proposed by Saper. Please see [13] for
details

them [4]. If these neurons induce wakefulness they would hold the oscillator on.
A question arise: how is sleep induced? Benington and cols. [3] suggested that a
neurotransmitter called adenosine might play an essential role on the sleep con-
trol system. Its theory means that when neurons are getting especially actives
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adenosine is accumulated. This substance acts like an inhibitory modulator and it
produces an effect opposite to wakefulness. As Carlson suggests [4], if the VLPO
is a critic region to generate sleep and the accumulated adenosine is a key factor
to produce sleepiness it could be possible that this substance activates the VLPO.
The proposed hypothesis suggests that adenosine favor sleep because it inhibits
the neurons that usually inhibit the VPLO.

2.4 Circadian control of sleep

Several neurophysiological studies have confirmed a strong impact of 24-hour circa-
dian cycle on the sleep control system. As Saper writes [13] ”The suprachiasmatic
nucleus (SCN) serves as the brain’s master clock”. Neurons in the SCN fire fol-
lowing a 24-hours cycle. The relation between SCN and the sleep control system
has been studied [4] and the results show that SCN has projections to the VLPO
or neurons containing orexin. However, the most outputs are directed toward the
adjacent subparaventricular zone (SPZ) and the dorsomedial nucleus of the hy-
pothalamus (DMH). The SPZ contains a ventral part (vSPZ) and a dorsal part
(dSPZ) and it presents limited projections toward the VLPO, the neurons con-
taining orexin and other elements in the sleep-wake system. Nevertheless, DMH
is a main target because that region receives a lots of the afferents from the SPZ.
Finally, the DMH is a main source of inputs to the VLPO and neurons containing
orexin and it is very important in the sleep-wake regulatory system. The projec-
tions from DMH to VLPO comes from neurons containing GABA (therefore, they
inhibit the sleep) while the projections toward the LHA are originated in neurons
that contain glutamate (they act like exciters). Figure 4 shows the projections
between all cited items as was proposed in [4].

Fig. 4. Relation between the SCN and the sleep-wake regulatory system
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3 Sleep-Wake Cycle with Spiking Neural P Systems:
A Basic Model

Spiking Neural P Systems (SN P systems) were defined in [6] with the aim of intro-
ducing concepts typical of the spiking neurons [7], [5] into membrane computing.
The standard model of SN P systems only considered excitatory rules but this con-
figuration is not realistic to model the sleep-wake system because of the inhibitory
nature of some synapses between neural groups. Starting from the standard model
some variants has been proposed with the aim of modeling different situations. For
example, in [1] an SN P system with extended rules was defined. A extended rule
considers the possibility to send spikes along the axon with different magnitudes
at different moments of time. Another idea about inhibitory connections among
cells was slightly described in the same work. Bearing in mind these ideas in [8]
an SN P System with inhibitory rules is described in the following way.

Definition 1. A SN P System with inhibitory rules of degree m is a construct

Π = (O, σ1, . . . , σm, syn, out1, . . . , outn)

where

• O = {a} is the alphabet (the object a is called spike);
• σ1, . . . , σm are neurons such as σi = (ni, Ri), with 1 ≤ i ≤ m, means:

– ni ≥ 0 is the initial number of spikes inside the neuron
– Ri is a finite set of rules with the general form:

E/ac → ap; d; t

where E is a regular expression and it only uses the symbol a, c ≥ 1 and p,
d ≥ 0, with c ≥ p; besides, if p = 0 then d = 0. If the rule is excitatory then
t = 1 and if the rule is inhibitory then t = −1

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m, are the
synapses

• out1, . . . , outn represents output neurons with 1 ≤ n ≤ m.

As is usual in the SN P Systems literature these models can be represented by
means of a graph with arcs between nodes. In an SN P System with inhibitory
rules we can draw inhibitory rules with discontinuous lines and excitatory rules
with continuous lines. Main differences between standard SN P systems and SN
P systems with inhibitory rules as they have been defined are: a) the possibility
of several output neurons, and b) the definition of inhibitory rules. Excitatory
rules act like they do it in a standard SN P system and the inhibitory rules are
interpreted in the following way: if a neuron σi has an inhibitory connection with
a neuron σj then spikes arriving from σi close the neuron σj during a step of time
(because of t = −1 in an inhibitory rule).

In the basic model proposed in [8] there are established the following simplifi-
cations:
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• The ascending arousal system in the brainstem and the forebrain are necessaries
to accumulate adenosine as consequence of a long activity of their neurons. This
means that when the organism is awoken the adenosine is accumulated. The
neural groups which are responsible to accumulate this necessity are called
Accumulator System.

• The dorsomedial nucleus of the hypothalamus (DMH) is the most active part in
the suprachiasmatic nucleus (SCN) and it is responsible to control sleep-wake
transitions following a 24-hour cycle. This neural group is called DMH System
and its goal is to provide a motivation to awake.

• The Acumulator System and the DMH system act as activators for the asleep
and awake states but once they have activated their neural groups they stop to
fire and neurons in the activation system (neurons of the groups LHA, TMN,
LC and DR) and neurons in the regulator-VLPO combined system start to fire
while the system remains sleeping or awakening.

• Bearing in mind the previous suppositions the DMH system and the LHA are
the neural groups that control the awake state and the Acumulator system and
the Regulator System are the neural groups that control the asleep state.

Figure 5 shows the possible connections that control sleep-wake switch from a
neurological viewpoint. The connections were explained in Section 2.

Fig. 5. Schematic drawing of the flip-flop circuit

In Figure 5, LHA, DMH, TMN, LC, DR, VLPO (VLPO dense group), eVLPO
(VLPO extended group) are neural groups defined previously in section two. Acu-
mulator represents the region where the necessity to sleep is accumulated and
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Regulator would be a component of the Acumulator and its goal is to feed neu-
rons in the VLPO. Both, accumulator and regulator groups are suppositions in
the model because, from a neural point of view, regions that are responsible of
accumulating adenosine are not known.

Starting from the previous figure and the SN P system with inhibitory rules a
basic model for sleep-wake system is shown in Figure 6 where the inhibitory rules
are represented as discontinuous lines and the excitatory rules as continuous lines.

Fig. 6. Sleep-Wake basic switch with a Spiking P System

4 Results of the Basic Model

To analyze conveniently the system several suppositions must be taken into ac-
count:

• The system supposes that an individual is awoken during 16 hours and is
sleeping during 8 hours. Another configurations, for example, 18 hours awake/6
hours sleep, are possible but always a fixed period is maintained.

• Each step of time in the system represents one hour of real time.

The basic model described previously can be applied starting from an initial
configuration. Table 7 shows results when the system starts in awake state. First
row on each square shows initial spikes and the second one represents the rule
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applied. An exclamation symbol close to spikes means that the spike gets out
from the network to the environment and it is useful to identify two states: on
or off. When neurons in the LHA are firing the system represents wakefulness
and if neurons in the regulator system are actives the system falls asleep. A brief
explanation shows these situations. In wakefulness the neurons in the activation
system (LHA, TMN, LC and DR) are firing and they select and execute a rule
(a+/a → a; 0 is selected in LHA and a2/a → a; 0 in TMN, LC and DR). The
activated rule in LHA, TMN and LC locks during a step of time neurons in the
VLPO, both the dense group and the extended group, because of inhibitory rules
among them. A lock is shown in the table with the B symbol. DMH system acts
like the system’s clock. In t = 0 DMH contains m spikes (m >> 16 is a necessary
supposition if system does not finish) and it applies its only rule (a16 → a16; 23).
This rule sends 16 spikes after 23 step of time because a daily cycle lasts 24 hours
and the system tries to simulate that situation. This way, a complete cycle in
the system lasts 24 steps of time (from 0 to 23). The only rule in DMH serves
out to activate neurons in the LHA each 24 hours (steps of time). For its part,
neurons in LHA are actives during 16 hours (steps of time). Along this period
the necessity of sleep is accumulated in the accumulator system. When 15 steps
of time have been consumed a state switch is started, the system gets to sleep
and the accumulator system sends 8 spikes to the regulator system (it uses the
rule a15 → a8; 0). To use this rule means that 7 spikes are losts and sleep state
only lasts 8 hours (steps of time). Now, the regulator system controls sleep state
executing its rule a+/a → a; 0. Once the system is sleeping, neurons of the dense
and extended group are actives and execute the rule a2/a → a; 0. Besides, this rule
locks neurons in TMN, LC and DR groups during a step of time. When t = 23,
DMH is open again and it emits 16 spikes to LHA. Then, the system comes back
to wakefulness and the process is repeated.

Notation: n: neural groups, t: steps of time, ACU: accumulator system,
REG: regulator system, DMH: dorsomedial nucleus of the hypothalamus, VPO:
dense group of the ventrolateral preoptic nucleus, eVLPO: extended group of the
ventrolateral preoptic nucleus, LHA: neurons in the lateral hypothalamus, TMN:
neurons in the tuberomammillary nucleus, LC: neurons in the locus coeruleus and
DR: neurons in the dorsal and median raphe nuclei

5 Comments and New Issues

A computational basic model for sleep-wake switch is examined in this paper.
The goal was to model a neurophysiological process by means of a computational
device such as Spiking Neural P Systems. Traditionally, this type of computational
mechanisms include biological concepts in order to test its possibilities from a
computational point of view but this paper tries to apply them in a well-known
neural process. In order to apply SN P Systems to this process a new definition
of extended rules was necessary and this work proposes a definition for inhibitory
rules with the aim of modeling the inhibitory connections among neural groups
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Fig. 7. Results of SN P System simulating the sleep-awake switch
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which are involved in the sleep-awake transitions. Starting from an SN P System
with inhibitory rules a basic model is built with two important constraints:

1. the system supposes that an individual is slept or is awoken during fixed pe-
riods previously established.

2. the system splits the sleep control in two subsystems: accumulator and regu-
lator. This supposition produces a delay in transition between states. Specif-
ically, a step of time is lost from sleep to wakefulness and vice versa because
accumulator and regulator subsystems can not start to perform at the same
time. This is the reason why the rule a15 → a8; 0 in the accumulator uses 15
as number instead of 16.

In spite of this constraints the system can represent in a clear way a complex
biological process and it defines formally such process. This formally definition
would let possible implementations once an appropiate software was developed.
Clarity of reading is also an advantage feature of SN P Systems in front of other
alternatives like mathematical models based on equations, for example.

However, a number of interesting questions arises about the natural process
and the basic model that it would be precise to analyze and solve in order to come
near the model and the biological reality.

• The sleep and wakefulness states with fixed period are a very simplification
because, obviously, neither human beings nor animals maintain along their life
an established amount of time on each activity. Moreover, an individual does
not sleep at all a day or more if really he or she cannot do it. This kind of
flexibility is difficult to implement in the basic model even in SN P Systems as
they are currently defined.

• Because the system considers one hour as step of time, the transition between
sleep and wakefulness is completed slower than it occurs really in the biological
process. Shorter steps can be defined in the model but then the model would
be larger and tedious to show results in a table format. A possibility would
be implement steps of time with different magnitudes but this question is not
considered by currents SN P Systems.

• The inhibitory mechanism proposed by the model has several constraints and
their effects are easily visible looking at the table. When a transition sleep-
awake is produced either the regulator system or the LHA neuron groups fires
(an exclamation symbol appears close to spikes). That way, the system repre-
sents that a state is active but, during one or two steps, the other main neuron
groups in the dominant state does not fire because they still are locked by
neurons in the opposite control system. For example, when t = 16 and t = 17,
which is a sleep state, neurons in VLPO (dense and extended group) are locked
(a B symbol appears in the square) because neurons in TMN, LC and DR are
executing their rules yet. A similar situation occurs when t = 24 and t = 25
for the wakefulness state. This is a problem originated in the definition of the
SN P System because a step of time is consumed since a spike gets out of a
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neuron and comes in another one. Maybe, a best definition of inhibitory rules
should be attended.

• Sleep or wakefulness states in the biological processes are a behavior but in the
model they are simulated as firing in neuron groups. The model associates LHA
neurons and regulator system as the output neurons in a way that is different
of usual SN P systems. A best approach would be if a special cell or item in
the SN P system performed this function.

• SN P systems generally send and receive signals from a state to another one
but the system performs like a closed system in the sense that everything must
be in the system. This is a drawback in this case because, for example, the
suprachiasmatic nucleus does not receive only inputs of the considered neurons
but other items. The basic model has replaced this fact with the delay property
that SN P systems incorporate and the axiom (m >> 16) to simulate a non
finite execution but better ideas on this matter would be a great contribution.

• SN P systems usually work with individual neurons and the basic model rep-
resents neuron groups as a single cell. A complex and interesting question to
solve is concerned with how the model would be modified to work with several
neurons on each group, for example, several LHA, TMN, LC, DR and VLPO
cells.

• Besides the sleep-wake switch another biological process that has been studied
from a neurological point of view are the transitions between non-REM and
REM sleep. This transition involves practically the same neuron groups but it
adds more complexity and connections among items. Contributions about this
topic would also be interesting.
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Summary. We investigate computing models that are presented as families of finite
computing devices with a uniformity condition on the entire family. Examples include
circuits, membrane systems, DNA computers, cellular automata, tile assembly systems,
and so on. However, in this list there are actually two distinct kinds of uniformity condi-
tions.

The first is the most common and well-understood, where each input length is mapped
to a single computing device that computes on the finite set of inputs of that length. The
second, called semi-uniformity, is where each input is mapped to a computing device for
that input. The former notion is well-known and used in circuit complexity, while the
latter notion is frequently found in literature on nature-inspired computing models, from
the past 20 years or so.

Are these two notions distinct or not? For many models it has been found that these
notion are in fact the same, in the sense that the choice of uniformity or semi-uniformity
leads to characterisations of the same complexity classes. Here, we buck this trend and
show that these notions are actually distinct: we give classes of uniform membrane sys-
tems that are strictly weaker than their semi-uniform counterparts. This solves a known
open problem in the theory of membrane systems.

1 Introduction

In his famous 1984 paper on DNA computing [1], Adleman mapped a specific
instance of the travelling salesman problem (TSP) to a set of DNA strands, and
then used well-known biomolecular techniques to solve the problem. To assert
generality for his algorithm, one would define a (simple) mapping from arbitrary
TSP instances to sets of DNA strings. Then, in order to claim that this mapping
is not doing the essential computation, it would have to be easily computable
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(e.g. logspace computable). Circuit uniformity provides a well-established frame-
work where we map each input length n ∈ N to a circuit cn ∈ C, with a suitably
simple mapping. However, Adleman did something different, he mapped a specific
instance of the problem to a computing device. We call this notion semi-uniformity,
and in fact a large number of computation models use semi-uniformity. This raises
the immediate question of whether the notions of uniformity and semi-uniformity
are equivalent.

It has been shown in a number of models that whether one chooses to use
uniformity or semi-uniformity does not affect the power of the model. However, in
this paper we show that these notions are not equivalent. We prove that choosing
one notion over another gives characterisations of completely different complexity
classes, including known distinct classes.

We prove this result for a computational model called membrane systems (also
known as P-systems) [15]. Membrane computing is a branch of natural computing
which defines computation models that are inspired by the structure and function
of living cells. The membrane computing model is sufficiently formal that this
question can be clearly stated, e.g. it is stated as Open Problem C in [16].

Why is this result surprising? Every class of problems solved by a uniform
family of devices is contained in the analogous semi-uniform class, since one is a
restriction of the other. However, in all membrane system models studied to date,
the classes of problems solved by semi-uniform and uniform families turned out to
be equal [4, 10, 19]. Specifically, if we want to solve some problem, by specifying
a family of membrane systems (or some other model), it is often much easier to
first use the more general notion of semi-uniformity, and then subsequently try to
find a uniform solution. In almost all cases where a semi-uniform family was given
for some problem [3, 11, 13, 19], at a later point a uniform version of the same
result was published [2, 4, 13]. Here we prove that this improvement is not always
possible.

Since our main result proves something general about families of finite devices
we would hope that, in the future, it can be applied to other computational mod-
els, besides membrane systems. Why? Firstly, our results are proved by convert-
ing the membrane system into a directed acyclic graph. Input acceptance is then
rephrased as a graph reachability problem and this gives a very general tool that
can be applied to other computational models (where we can find analogous graph
representations). Secondly, the result concerns a general concept (uniformity/semi-
uniformity) that is independent of particular formalisms. Besides membrane sys-
tems and circuits, some other models that use notions of uniformity and semi-
uniformity include families of neural networks, molecular and DNA computers,
tile assembly systems and cellular automata [6, 8, 12, 17, 18]. Our results could
conceivably be applied to these models.

We now briefly observe what happens when we relate the notion of semi-
uniformity to circuit complexity. We can easily define semi-uniformity for circuits.
If the complexity class of the semi-uniformity function contains the prediction
problem for circuits in the resulting family, then the semi-uniformity condition



Uniformity and Semi-uniformity in Membrane Systems 75

C
h
a
ra

ct
er

is
a
ti

o
n

Power of (semi-)uniformity condition

A
C
0

AC0

N
C
1

NC1

L

L

N
L

NL

N
C
2

NC2

P

P

N
P

NP

P
S
P
A
C
E

PSPACE

Fig. 1. Complexity classes that are characterised by the membrane systems studied in
this paper. Characterisations by uniform systems are denoted by , and semi-uniform
by . For example, Theorem 1 is illustrated by the fact that AC0-uniform systems
characterise AC0, and that AC0-semi-uniform systems characterise NL. The previously
known P [10] (indicated by ) and PSPACE [4, 20] (indicated by ) results, where
semi-uniform and uniform classes have the same power are also shown.

characterises the power of the model. If the semi-uniformity function is computable
in the class that is characterised by the prediction problem for circuits in the result-
ing family, then we get the known characterisations for the analogous uniformity
condition. However, in the uniform case it is not obvious what happens when we
increase the uniformity beyond the power of the circuit, for example P-uniform
AC0 = AC0 is an open problem [5]. Furthermore we should note that the unifor-
mity condition in membrane systems preprocesses the input (as well as creating
the device) and so is a seemingly different notion than circuit uniformity. If we add
an analogous preprocessing step to circuits we see similar results as proven here
for membrane systems: as soon as the preprocessing goes beyond the power of the
circuit, we can ignore the circuit and let the preprocessing solve the problem. With
preprocessing below the power of the circuit, the answer depends on the particular
circuit model. In fact, if we restrict ourselves to polynomially sized circuits with
only OR gates, we would see analogous results to those presented here, (i.e. our
work shows that this circuit model is computationally equivalent to the AM0

−d

membrane systems discussed in this work).
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1.1 Statement of result

We show that a class of problems, that is characterised by AC0-uniform membrane
systems of a certain type, is a strict subset of another class that is characterised
by AC0-semi-uniformity systems of the same type. Besides their respective use of
uniformity and semi-uniformity, both models are identical, so this shows that for
the membrane systems we consider, semi-uniformity is a strictly stronger notion
than uniformity. Specifically, we show that the uniform systems characterise AC0

and the semi-uniform systems characterise NL, two classes known to be distinct.
In the notation of membrane systems this is written as follows (explanations of
notation are found in Section 2).

Theorem 1. AC0 = (AC0,AC0)–PMCAM0
−d

( (AC0)–PMC∗AM0
−d

= NL

The left hand equality is proved in this paper, while the right hand equality was
given in [11]. In Figure 1, Theorem 1 is illustrated by the leftmost pair of tri-
angles. Essentially, the figure shows that if we use AC0 uniformity, the systems
characterise AC0, while with AC0 semi-uniformity they characterise NL.

In fact we can also state a more general result for a number of complexity
classes below NL, for brevity we keep the list short.

Theorem 2. Let C ∈ {AC0,NC1,L} and assuming NC1 ( L ( NL then C =
(C,C)–PMCAM0

−d
( (C)–PMC∗AM0

−d
= NL

This shows that, roughly speaking, uniform membrane systems are essentially
powerless, they are as weak and as strong as their uniformity condition. In Fig-
ure 1, Theorem 2 is illustrated by the triangles to the left of (and including) the
uniformity condition L.

The essential ideas behind the proof of these theorems are as follows. First,
we convert the (complicated looking) membrane systems into a directed acyclic
graph called a dependency graph. Acceptance of an input word in some membrane
system is equivalent to reachability in the corresponding dependency graph. We
observe that for the class of systems that we consider, it is possible to make a num-
ber of simplifications to the model (and the dependency graph) without changing
the power. In the semi-uniform case, even with these simplifications, the mem-
brane systems have NL power. We then go on to prove that in the uniform case,
the systems are severely crippled. We show this by proving that even though an
arbitrary membrane system’s dependency graph may have an NL-complete reach-
ability problem, in fact there is an equivalent membrane system where reachability
on the dependency graph is in AC0. This, along with some other tools, is used to
show that if the power of the uniformity notion is AC0 or more, then the power
of the entire family of systems is determined by the power of the uniformity.

2 Preliminaries

In this section we define membrane systems and some complexity classes, these
definitions are based on those from [9, 13, 14, 15, 20].
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The set of all multisets over a set A is denoted by MS(A). Let G = (V,E)
be a directed graph with x, y, z ∈ V . Then let path(x, y) be true if x = y, or
∃ z s.t path(x, z) and path(z, y). Otherwise path(x, y) is false.

2.1 Active membrane systems

Active membrane systems are a class of membrane systems with membrane division
rules. Here division rules act only on elementary membranes, which are membranes
that do not contain other membranes (i.e. leaves in the membrane structure).3 To
prove the results in this paper, we convert membrane systems into directed graphs.
Thus, in this section, we provide some necessary membrane system definitions, but
omit specific example of membrane systems.

Definition 3. An active membrane system without charges is a tuple

Π = (O,H, µ,w1, . . . , wm, R)

where,

1. m ≥ 1 is the initial number of membranes;
2. O is the alphabet of objects, Σ is the input alphabet, Σ ⊂ O;
3. H is the finite set of labels for the membranes;
4. µ is a membrane structure in the form of a tree, consisting of m membranes

(nodes), labelled with elements of H. The parent of all membranes (the root
node) is called the “environment” and has label env ∈ H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the
m regions of µ.

6. R is a finite set of developmental rules, of the following forms:
a) [ a → u ]h, for h ∈ H, a ∈ O, u ∈ O∗ (object evolution)
b) a[ ]h → [ b ]h, for h ∈ H, a, b ∈ O (communication in)
c) [ a ]h → [ ]h b, for h ∈ H, a, b ∈ O (communication out)
d) [ a ]h → b, for h ∈ H, a, b ∈ O (membrane dissolution)

(e) [ a ]h → [ b ]h [ c ]h, for h ∈ H, a, b, c ∈ O (elementary membrane
division).

These rules are applied according to the following principles:

• All the rules are applied in a maximally parallel manner. That is, in one step,
one object of a membrane is used by at most one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

3 The more complicated non-elementary membrane division rule is also considered in the
literature (where membranes containing other membranes can divide and replicate all
of their substructure). All results in this paper hold when we permit non-elementary
division, however we omit this detail as it adds unnecessary complications to our
definitions and proofs.
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• If at the same time a membrane labelled with h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules of
type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. This process takes only one step.

• The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule
of types (b)–(e).

2.2 Recogniser membrane systems

We recall [9] that a computation of a membrane system is a sequence of config-
urations such that each configuration (except the initial one) is obtained from
the previous one by a transition (one-step maximally parallel application of the
rules). Membrane systems are non-deterministic, therefore on a given input there
are multiple possible computations. A computation that reaches a configuration
where no more rules are applicable to the existing objects and membranes is called
a halting computation.

Definition 4 ([9]). A recognizer membrane system is a membrane system that,
on each computation, outputs either object yes or object no (but not both), this
occurs only when no further rules are applicable.

2.3 Complexity classes

Consider a decision problem X, i.e. a set of instances X = {x1, x2, . . .} over some
finite alphabet such that to each xi there is an unique answer “yes” or “no”. We
say that a family of membrane systems solves a decision problem if each instance
of the problem is solved by some family member. We denote by |x| = n the length
of any instance x ∈ X. Throughout this paper, AC0 circuits are DLOGTIME-
uniform, polynomial sized (in input length n), constant depth, circuits with AND,
OR and NOT gates, and unbounded fanin [7].

Definition 5. Let D be a class of membrane systems and let t : N → N be a total
function. The class of problems solved by (e, f)-uniform families of membrane
systems of type D in time t, denoted (e, f)–MCD(t), contains all problems X such
that:

• There exists an f-uniform family of membrane systems,
ΠX = {ΠX(1),ΠX(2), . . .} of type D: that is, there exists a function f : {1}∗ →
ΠX such that f(1n) = ΠX(n).

• There exists an input encoding function e : X → MS(Σ) such that e(x) is the
input multiset, where |x| = n, and the input multiset is placed in a specific
(input) membrane of ΠX(n).

• ΠX is sound and complete with respect to problem X: ΠX(n) starting with the
encoding e(x) of input x ∈ X, |x| = n, accepts iff the answer to x is “yes”.
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• ΠX is t-efficient: ΠX(n) always halts in at most t(n) steps.

Definition 5 describes (e, f)-uniform families (i.e. with input) and we gen-
eralise this to define (h)-semi-uniform families of membrane systems ΠX =
{ΠX(x1),ΠX(x2), . . .} where there exists a function h : X → ΠX such that
h(x) = ΠX(x). Here a single function (rather than two) is used to construct
the semi-uniform membrane family, and so the problem instance is encoded us-
ing objects, membranes, and rules. Also, for each instance of x ∈ X we have a
(potentially unique) membrane system, a clear departure from the spirit of circuit
uniformity. The resulting class of problems is denoted by (h)–MC∗D(t).

We often refer to AC0 uniform or logspace uniform (or semi-uniform) families
of membrane systems which indicates that the functions e and f (or h) are AC0

or logspace computable functions.
We define (e, f)–PMCD (and (h)–PMC∗D) as the class of problems solvable

by (e, f)-uniform (respectively (h)-semi-uniform) families of membrane systems in
polynomial time. We let AM0 denote the class of membrane systems that obey
Definitions 3 and 4. We let AM0

−d denote the class of membrane systems that
obey Definition 3 but where rule (d) is forbidden, and Definition 4.

We let (AC0)–PMC∗AM0
−d

denote the class of problems solvable by AC0-semi-
uniform families of membrane systems in polynomial time with no dissolution
rules.

Remark 6. A membrane system is said to be confluent if it is both sound and
complete. That is, a membrane system Π is confluent if all computations of Π
with the same input x (properly encoded) give the same result; either always
accepting or else always rejecting.

In a confluent membrane system, given a fixed initial configuration, the system
non-deterministically chooses one from a number of valid configuration sequences,
but all of the reachable configuration sequences must lead to the same result, either
all accepting or all rejecting.

3 Dependency graphs

A dependency graph (first introduced in [9]) represents the rules of membrane
systems as a directed acyclic graph (DAG). For many proofs, this representa-
tion is significantly simpler and as such is an indispensable tool for characterising
the computational complexity of membrane systems (without type (d) dissolution
rules).

The dependency graph for a membrane system Π (without type (d) dissolution
rules) is a directed graph G = (VG , EG , in, yes, no) where in ⊆ VG represents the
input multiset, and yes, no ∈ VG , represent the accepting and rejecting objects
respectively. Each vertex a ∈ VG is a pair a = (o, h) ∈ O × H, where O is the
set of objects in Π, and H is the set of membrane labels in Π. An edge (a, b)
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exists in EG if there is a developmental rule in Π such that the left hand side
of the rule has the same object-membrane pair as a and the right hand side has
an object-membrane pair matching b. In this paper, no membrane dissolution
(type (d)) rules are allowed, and so the parent/child relationships of membranes
in the structure tree cannot change during the computation. Thus when creating
the edges for communication rules (types (b) and (c)) we can find the parent and
child membranes for these rules and these choices remain correct for the entire
computation (for example, to represent the rule a[ ]h → [a]h, that communicates
an object a into a membrane of label h, it is only necessary to calculate the parent
of h one time in the construction of the dependency graph).

For a number of previous results, it was sufficient to construct the graph G
from Π in polynomial time [9]. For the results in this paper, we make the obser-
vation that G can be constructed from Π in AC0 (see Appendix A).

4 Proof of main result

The equality on the right hand side of Theorem 1 states that certain (AC0)-semi-
uniform systems characterise NL. This was shown in [11], we quote the result:

Theorem 7 ([11]). (AC0)–PMC∗AM0
−d

= NL

In rest of this paper, we prove the left hand side equality of Theorem 1, that is,
we show that the analogous (AC0,AC0)-uniform systems characterise AC0. We
begin by giving two normal forms for the membrane systems that are considered
in this paper.

4.1 Normal forms

Lemma 8. Any confluent AM0
−d membrane system Π, with m membranes, is

simulated by a AM0
−d membrane system Π ′, that (i) has exactly one membrane

and (ii) uses only rules of type (a). (By simulate we mean that the latter system
accepts x iff the former does.)

Proof (sketch). Given membrane system Π we construct its dependency graph
G = (VG , EG , in, yes, no). We observe that we can convert G into a new mem-
brane system Π ′ = ΠG by simply converting the edges of the graph into ob-
ject evolution rules. Specifically, the set of objects of ΠG is OG = VG , and
there is a single (environment) membrane of label env. The rules of ΠG are
{[ v → str(v)]env | v ∈ VG} where str(v) is the string formed by concatenating the
elements of the set {s | (v, s) ∈ EG}. The vertices yes, no are mapped to the yes
and no objects respectively, and the set of vertices in becomes the input multiset
of objects (actually an input set). This construction of ΠG (from G) is AC0-
computable.

For correctness, notice that the dependency graphs of Π and ΠG are isomor-
phic, so one accepts iff only the other does. Furthermore, Π ′ = ΠG has exactly
one membrane with label env, and uses only type (a) rules (object evolution). ut
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Lemma 9. Any confluent AM0
−d membrane system Π, which has, as usual, multi-

sets of objects in each membrane is simulated by another AM0
−d membrane system

Π ′, which has sets of objects in each membrane. (By simulate we mean that the
latter system accepts x iff the former does.)

Proof (sketch). We observe that in a dependency graph, G, the multiset of objects
is encoded as a set of vertices, so no information is stored regarding object multi-
plicities. Thus if we convert G into a new membrane system, Π ′ (as in the proof
of the previous lemma), there are no rules in Π ′ with a right hand side with more
than one instance of each object. The resulting system Π ′ accepts iff Π accepts
since the dependency graphs of both systems are isomorphic. ut

4.2 Uniformity is not equal to semi-uniformity

The following theorem is key to the proof of our main results (Theorems 1 and 2).
Roughly speaking, Theorem 10 states that in uniform membrane systems of the
type we consider, the uniformity condition dominates the computational power
of the system. By letting E = F = AC0, the statement of Theorem 10 gives us
the left hand side equality in Theorem 1. By letting E = F ∈ {AC0,NC1,L} we
get the left hand side of Theorem 2. The remaining classes quoted in the theorem
serve to illustrate Figure 1.

Theorem 10. Let E,F ∈
{
AC0,NC1,L,NL,NC2,P,NP,PSPACE

}
and let

F ⊆ E. Then (E,F )–PMCAM0
−d

= E.

Proof. Let G = (VG , EG) be the dependency graph of confluent recogniser mem-
brane system Π from the class AM0

−d. We define the following subsets of the
vertices of VG . Let VGyes = {v | v ∈ VG , path(v, yes)}, VGno = {v | v ∈
VG , path(v, no)}, and VGother = VG\(VGyes ∪ VGno).

We claim that VGyes ∩ VGno = ∅. Assume otherwise, and let vertex v ∈
VGyes∩VGno. This implies that path(in, yes) and path(in, no) are both true, which
contradicts Definition 4 which states that only a yes or only a no object may be
output by the system Π.

Next we claim that for confluent recogniser membrane systems Π from the class
AM0

−d, a size-two input alphabet Σ = {a, b} is both necessary and sufficient, in
the sense that this restriction does not alter the computing power of the system Π.
Again, consider G = (VG , EG), the dependency graph of Π. The “input” vertices
in ⊆ VG , represent the input objects of Π. On the one hand, it is necessary that
| in |≥ 2. This follows from the fact that it is necessary that both yes and no are
reachable, and the fact that VGyes ∩ VGno = ∅. Thus we need one vertex in VGyes
and another vertex in VGno. On the other hand, it can be seen that a single vertex
from each set VGyes, VGno is sufficient as follows. Given a set S of input vertices
in VGyes, there is another system with an extra vertex, where all edges from this
extra vertex lead to all vertices in S. A vertex can be analogously added for VGno.
So even though membrane system Π may have multiple input objects, there is a
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Π ′ that is equivalent in all respects except that there are exactly two input objects
some extra rules. In particular, Π ′ accepts input x iff Π does.

The previous argument permits us to consider only those systems that have
two input objects {a, b}. Thus we restrict attention to the case that the input
encoding function is of the form e : X → {a, b}. We say that e is a characteristic
function with range {a, b}.

Let (e, f) –P be a (e, f)-uniform family of confluent recogniser membrane sys-
tems from the class AM0

−d that solves problem X. We claim that there exists
a family (e, f ′)–P that also solves X but uses a uniformity function f ′ that pro-
duces membrane systems of a very restricted form. Consider the dependency graph
of the membrane system f(n) = ΠX(n). In terms of reachability from {a, b} to
{yes, no} in this graph (which corresponds to accepting/rejecting in the mem-
brane system), the essential property is whether path(a, yes) is true or path(a, no)
is true. However, this essential property is captured by the following (extremely
simple) pair of dependency graphs: G1 = (VG , EG1) and G2 = (VG , EG2) where
VG = {a, b, yes, no}, EG1 = {(a, yes) , (b, no)}, and EG2 = {(a, no) , (b, yes)}.
Therefore if there is a family (e, f) –P that solves X, where f represents valid, but
arbitrary, dependency graphs, then there is another family of the form (e, f ′) –P
that also solves X and is identical in every way except that f ′ represents depen-
dency graphs of the restricted form just described.

Now we prove the upper bound (e, f)–PMCAM0
−d

⊆ E, where e, f are re-
spectively computable in E, F , with F ⊆ E, and the classes E, F are as
given in the statement. As we have just shown, for each problem X in the
class (e, f)–PMCAM0

−d
there is a family of the restricted form (e, f ′) –P that

solves X. To simulate (e, f ′) –P with a given input x ∈ X we compute the pair(
e(x), f ′(1|x|)

)
. The range of the function f ′ is two membrane systems, which cor-

respond to the two (restricted) dependency graphs G1 and G2 from above, and
whose reachability problems are (trivially) in the weakest E that we consider
(E = AC0). Furthermore, since we only consider the case where F ⊆ E then we
know that f ′ itself is computable in E and we have (e, f)–PMCAM0

−d
⊆ E.

The lower bound E ⊆ (e, f)–PMCAM0
−d

is easy to show. We use the fact,
shown above, that e is a characteristic function with access to the input word.
Thus the following simple family computes any problem from E: function e(x)
outputs a if x is a positive instance of X and b if x is a negative instance of X,
and f simply maps a to yes and b to no. ut
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Appendix A

A.1 Constructing dependency graphs in AC0

We are given a binary string x that encodes a membrane system, Π. To make a
dependency graph from a membrane system requires a constant number of parallel
steps that are as follows. First, a row of circuits identifies all communication (type
(b) and (c)) rules and uses the (static) membrane structure to determine the correct
parent membranes, then writes out (a binary encoding of) edges representing these
rules. Next, a row of circuits writes out all edges representing division (type (e))
rules, for example a rule [ a ]h → [ b ][ c ] becomes the edges (ah, bh), (ah, ch) in the
dependency graph. In the final step we deal with evolution (type (a) rules) where
it is possible to have polynomially many copies of polynomially many distinct
objects on the right hand side of a rule (e.g. [ a ]h → [ bcbbcdee · · · z ]h). To write
out edges for these rules in constant time we take advantage of the fact that we
require at most one edge for each object-membrane pair in O × H. We have a
circuit for each element of {oh | o ∈ O, h ∈ H}. The circuit for oh takes as input
(an encoding of) all rules in R whose left hand side is of the form [o]h. The circuit
then, in a parallel manner, masks (an encoding of) the right hand side of the rule
(for example [bbcdc]h) with the encoding of each object in O, (in the example,
masking for (encoded) b would produce (encoded) bb000). All encoded objects in
the string are then ORed together so that if there was at least one copy of that
object in the system we obtain a single instance of it. The circuit being unique for
a specific left hand side [o]h now writes out an encoding of the edge (oh, bh) and
an encoding of all other edges for objects that existed on the right hand side of
this rule in parallel.



Structured Modeling with Hyperdag P Systems:
Part A

Radu Nicolescu, Michael J. Dinneen, Yun-Bum Kim

Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand
radu.nicolescu@cs.auckland.ac.nz

Summary. P systems provide a computational model based on the structure and in-
teraction of living cells [9]. A P system consists of a hierarchical nesting of cell-like
membranes, which can be visualized as a rooted tree.

Although the P systems are computationally complete, many real world models, e.g.,
from socio-economic systems, databases, operating systems, distributed systems, seem to
require more expressive power than provided by tree structures. Many such systems have a
primary tree-like structure completed with shared or secondary communication channels.
Modeling these as tree-based systems, while theoretically possible, is not very appealing,
because it typically needs artificial extensions that introduce additional complexities,
nonexistent in the originals.

In this paper we propose and define a new model that combines structure and flex-
ibility, called hyperdag P systems, in short, hP systems, which extend the definition of
conventional P systems, by allowing dags, interpreted as hypergraphs, instead of trees,
as models for the membrane structure.

We investigate the relation between our hP systems and neural P systems. Despite
using an apparently less powerful structure, i.e., a dag instead of a general graph, we
argue that hP systems have essentially the same computational power as tissue and neural
P systems. We argue that hP systems offer a structured approach to membrane-based
modeling that is often closer to the behavior and underlying structure of the modeled
objects.

Additionally, we enable dynamical changes of the rewriting modes (e.g., to alternate
between determinism and parallelism) and of the transfer modes (e.g., the switch be-
tween unicast or broadcast). In contrast, classical P systems, both tree and graph based
P systems, seem to focus on a statical approach.

We support our view with a simple but realistic example, inspired from computer
networking, modeled as a hP system with a shared communication line (broadcast chan-
nel). In Part B of this paper we will explore this model further and support it with a
more extensive set of examples.
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1 Introduction

P systems provide a distributed computational model, based on the structure and
interaction of living cells, first introduced by G. Păun in 1998 [8]. The model was
initially based on transition rules, but was later expanded into a large family of
related models. Essentially, all versions of P systems have a structure consisting
of cell-like membranes and a set of rules that govern their evolution over time.

Many of the “classical” versions use a structure where membranes correspond to
nodes in a rooted tree. Such a structure is often visualized as Venn diagram where
nesting denotes a parent/child relationship. For example, Figure 1 [10] shows the
same P system structure with 9 membranes, labeled as 1, . . . , 9, both as a rooted
tree and as a Venn diagram.

2 3
4

5
6

7

8 9

1

1
2

3

4
5

6

7

8 9

Fig. 1. A P system structure represented as a tree and as a Venn diagram.

More, recently, tissue P systems [7] and neural P systems [9], here abbreviated
as tP and nP systems, respectively, have been introduced, partially to overcome
the limitations of the tree model. Essentially, these systems organize their cells in
an arbitrary digraph. For example, ignoring for the moment the actual contents
of cells (states, objects, rules), Figure 2 illustrates the membrane structure of a
simple tP or nP system, consisting of 3 cells, σ1, σ2, σ3, where cell σ1 is designated
as the output cell.

A large variety of rules have been used to describe the operational behavior
of P systems, the main ones being: multiset rewriting rules, communication rules
and membrane handling rules. Essentially, transition P systems and nP systems
use multiset rewriting rules, P systems with symport/antiport operate by commu-
nicating immutable objects, P systems with active membranes combine all three
type rules. For a comprehensive overview and more details, we refer the reader to
[9, 10].
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σ1

σ2 σ3

Fig. 2. A tP/nP system structure represented as a digraph.

Besides theoretical computer science and biology, P systems have been applied
to a variety of other domains, ranging from linguistics [5] to theoretically efficient
solutions of NP-complete problems [14], or to model distributed algorithms [3, 6].
The underlying tree structure provides good support for reasoning and formal ver-
ification, good potential for efficient implementation on multi-core architectures,
and an excellent visualization, very appealing to practitioners.

Although the P systems are computationally complete, many real world models
seem to require more expressive power, essentially trees augmented by shared or
secondary communication channels. For example, the notion of a processing node
having an unique parent is not true for (a) computer networks where a computer
could simultaneously be attached to several subnets (e.g., to an Ethernet bus and to
a wireless cell), (b) living organisms may be the result of multiple inheritance (e.g.,
the evolutionary “tree” is not really a tree, because of lateral gene transfer [4]) and
(c) socio-economic scenarios where a player is often connected to and influenced
by more than one factors [11, 12, 13].

Modeling these as tree-based systems, while theoretically possible, is not very
appealing. Simulating shared or secondary channels requires artificial mechanisms
that will ripple data up and down the tree, via a common ancestor. This could of
course limit the merits of using a formal model. Tissue and neural P systems have
been introduced to model such cases [7, 9]; details on neural P systems, in short,
nP systems, are given in Section 3. However, these extensions are based on general
graphs and, while allowing any direct communications, they also tend to obscure
the structures already present in the modeled objects, limiting the advantages that
a more structured approach could provide. Verification is more difficult without a
clear modularization of concerns, practical parallel implementation could be less
efficient, if the locality of reference is not enforced, and visualizations are not very
meaningful, unless the primary structure is clearly emphasized.

We do not think that we have to choose between structure and flexibility. We
propose a solution that seems to combine both, i.e., flexibility without sacrificing
the advantages of a structured approach.



88 R. Nicolescu, M.J. Dinneen, Y.-B. Kim

Our main contribution in this paper is to propose a new model for P sys-
tems, called hyperdag P systems, in short, hP systems, that allows more flexible
communications than tree-based models, while preserving a strong hierarchical
structure. This model, defined in Section 4, (a) extends the tree structure of clas-
sical P systems to directed acyclic graphs (dags), (b) augments the operational
rules of nP systems with broadcast facilities (via a go-sibling transfer tag), and
(c) enables dynamical changes of the rewriting modes (e.g., to alternate between
determinism and parallelism) and of the transfer modes (e.g., to switch between
unicast or broadcast). In contrast, classical P systems, both tree and graph based
P systems, seem to focus on a statical approach.

We investigate the relation between our hP systems and neural P systems.
Despite using an apparently less powerful structure, we show in Section 5 that our
simple dag model has the same computational power as graph-based tissue and
neural P systems.

We argue that hP systems offer a structured approach to membrane-based
modeling that is often closer to the behavior and underlying structure of the mod-
eled objects. Because our extensions address the membrane topology, not the rules
model, they can be applied to a variety of P system flavors, including transition
systems and symport/antiport systems.

We support our view with a realistic example (see Examples 8 and 9), inspired
from computer networking, modeled as a hP system with a shared communication
line (broadcast channel).

Classical P systems allow a “nice” planar visualization, where the parent/child
relationships between membranes are represented by Venn-like diagrams. We show
in Section 6 that the extended membrane structure of hP systems can still be
visualized by hierarchically nested planar regions.

In this article we will restrict ourselves to P systems based on multiset rewriting
rules, such as used by transition P systems and nP systems. However, because
our extensions address the membrane topology, not the rules model, they can be
applied to a variety of other P system flavors.

2 Preliminaries

A (binary) relation R over two sets X and Y is a subset of their Cartesian product,
R ⊆ X × Y . For A ⊆ X and B ⊆ Y , we set R(A) = {y ∈ Y | ∃x ∈ A, (x, y) ∈ R},
R−1(B) = {x ∈ X | ∃y ∈ B, (x, y) ∈ R}.

A digraph (directed graph) G is a pair (X,A), where X is a finite set of el-
ements called nodes (or vertices), and A is a binary relation A ⊆ X × X, of
elements called arcs. For an arc (x, y) ∈ A, x is a predecessor of y and y is a suc-
cessor of x. A length n − 1 path is a sequence of n distinct nodes x1, . . . , xn,
such that {(x1, x2), . . . , (xn−1, xn)} ⊆ A. A cycle is a path x1, . . . , xn, where
n ≥ 1 and (xn, x1) ∈ A.

A dag (directed acyclic graph) is a digraph (X,A) without cycles. For x ∈
X, A−1(x) = A−1({x}) are x’s parents, A(x) = A({x}) are x’s children, and
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A(A−1(x))\{x} = A(A−1({x}))\{x} are x’s siblings (siblings defines a symmetric
relation). A node x ∈ X is a source iff |A−1(x)| = 0, and x ∈ X is a sink iff
|A(x)| = 0. The height of a node x is the maximum length of all paths from x to a
sink node. An arc (x, y) is transitive if there exists a path x1, . . . , xn, with x1 = x,
xn = y and n > 2. dags without transitive arcs are here called canonical.

A (rooted unordered) tree is a dag with exactly one source, called root, and all
other nodes have exactly one parent (predecessor). Sinks in a tree are also called
leaves. A topological order of a dag is a linear reordering of vertices, in which each
vertex x comes before all its children vertices A(x).

Dags and trees are typically represented with parent-child arcs on the top-down
axis, i.e., sources/roots up and sinks/leaves down. Figure 3 shows a simple dag.

Fig. 3. A simple dag. The parent-child axis is up-down. Here, plain lines indicate parent-
child relations and dashed lines indicate siblings.

We consider a variant hypergraph definition, based on multisets, as an exten-
sion of the classical definition [1], which is based on sets. A hypergraph is here a
pair (X,E), where X is a finite set of elements called nodes (or vertices), and E is
a finite multiset of subsets of X, i.e., e ∈ E ⇔ e ⊆ X. By using a multiset of edges,
instead of a more conventional set of edges, we introduce an intensional element,
where two extensionally equivalent hyperedges (i.e., hyperedges containing the
same nodes) are not necessarily equal. A graph is a set based hypergraph where hy-
peredges are known as edges and contain exactly two nodes. Alternatively, a graph
(X,E) can be interpreted as a digraph (X,A), where A = {(x, y) | {x, y} ∈ E}.
Hypergraphs (set or multiset based) can be represented by planar diagrams, where
hyperedges are represented as regions delimited by images of Jordan curves (simple
closed curves) [2].

With the above hypergraph definition, a height 1 dag (X,A) can be interpreted
as a hypergraph (X,E), where E is the multiset E = {A(x) | |A−1(x)| = 0}.
For example, Figure 4 represents, side by side, the dag D = ({a, b, c, d, e, f},
{(d, a), (d, b), (d, c), (e, b), (e, c), (f, b), (f, c)}) and its corresponding hypergraph
H = ({a, b, c}, {d, e, f}), where d = {a, b, c}, e = {b, c}, f = {b, c}. Note that the
apparently empty differences of regions are needed in the case of multiset based
hypergraphs, to support the intensional (as opposed to the extensional) aspect:
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here e 6= f , despite containing the same nodes, b and c, and neither e nor f is
included in d.

d e

a b c

a b c

d

e

f

f

Fig. 4. A simple height 1 dag and its corresponding hypergraph representation.

Generalizing the above hypergraph definition, a height n generalized hyper-
graph is a system (X,E), recursively built via a sequence of n hypergraphs
(X1, E1), . . . , (Xn, En) where X1 = X, Xi ∩ Ei = ∅, Xi+1 = Xi ∪ Ei, e ∩ Ei 6=
∅ for ∀e ∈ Ei+1 and E =

⋃
i∈{1,...,n}Ei. An arbitrary height n dag can be repre-

sented by a height n generalized hypergraph, where the hypergraph nodes corre-
spond to dag sinks, and height i hyperedges correspond to height i dag nodes, for
i ∈ {1, . . . , n}.

We will later see that any generalized hypergraph that corresponds to a non-
transitive dag can also be represented by hierarchically nested planar regions delim-
ited by Jordan curves, where arcs are represented by direct nesting. For example,
Figure 5 shows a height 2 dag and its corresponding height 2 hypergraph (X,E),
where X = X1 = {a, b, c, d, e}, E1 = {f, g, h}, E2 = {i}, E = {f, g, h, i}.

a b c d e

a b c d e

f g h

i

f

g

h

i

Fig. 5. A height 2 dag and its corresponding height 2 hypergraph.

An alphabet O is a finite non-empty sets of objects. We will assume that these
alphabets are implicitly ordered. Multisets over an alphabet O are represented as
strings over O, such as on1

1 . . . onk

k , where oi ∈ O, ni ≥ 0, and, in the canonical
form, letters appear in sorted order, i.e., o1 < · · · < ok, and ni ≥ 1. The set of all
multisets is denoted by O∗. For this representation, two strings are equivalent if
they become equal after sorting, e.g., a2cbd0a and a3bc are equivalent representa-
tions of the same multiset {a, a, a, b, c}. Under this convention, the empty string λ
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represents the empty multiset, and string concatenation represents multiset union,
e.g., (a2c) · (ab) = a3bc.

3 Neural P Systems

In this paper we present the definition of neural P systems as given in [9], that
coincide with an early definition of tissue P systems as given in [7]. We define the
following sets of tagged objects: Ogo = {(a, go) | a ∈ O}, Oout = {(a, out) | a ∈
O}, and we set Otot = O ∪ Ogo ∪ Oout. For simplicity, we will use subscripts for
these tagged objects, such as ago for (a, go) and aout for (a, out). We also define
projection homomorphisms, here denoted in postfix notation: |O, |go, |out : O∗

tot →
O∗, by o|O = o, ogo|go = o, oout|out = o for o ∈ O, and otherwise λ. For example,
a2a3

gob
4bgo|go = a3b.

Definition 1 (Neural P systems [9, 7]). A neural P system (of degree m ≥ 1)
is a system: Π = (O, σ1, . . . , σm, syn, iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set (of states),
• si,0 ∈ Qi is the initial state,
• wi,0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewriting rules of the form sx → s′x′ygozout,

where s, s′ ∈ Qi, x, x′ ∈ O∗, ygo ∈ O∗
go and zout ∈ O∗

out, with the restriction
that zout = λ for all i ∈ {1, . . . ,m}\{iout}.

3. syn is a set of digraph arcs on {1, . . . ,m}, i.e., syn ⊆ {1, . . . ,m}×{1, . . . ,m},
representing unidirectional communication channels between cells, known as
synapses;

4. iout ∈ {1, . . . ,m} indicates the output cell, the only cell allowed to send objects
to the “environment”.

Example 1. To illustrate the operational behavior of nP systems, consider again the
example of Figure 2, expanded now with states, rules and objects, see Figure 6.
For simplicity, in this example only cell σ1 provides rules. More formally, this
nP system can be defined as the system Π1 = (O, σ1, σ2, σ3, syn, iout), where:

• O = {a, b, c, d};
• σ1 = ({s, t}, s, a2, {sa→ sdbgocgo, sa→ sd, s→ t, td→ tdout});
• σ2 = ({s}, s, λ, ∅);
• σ3 = ({s}, s, λ, ∅);
• syn = {(1, 2), (1, 3), (2, 3), (3, 1)};
• iout = 1.
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sa→ sdbgocgo

s, aa

s→ t

σ1

σ2

s, λ s, λ

σ3

sa→ sd

td→ tdout

Fig. 6. Π1, a simple nP system with states, objects and rules.

Neural P systems operate as indicated by multiset rewriting rules. A rewriting
rule takes the existing state and objects and generates a new state and new objects,
where some of the generated objects are tagged for communication, i.e., for transfer
to neighboring cells along existing synapses. Objects that need to be transferred
to a neighboring cell are tagged with go and objects that need to be output in the
environment are tagged with out (in this definition, this is only possible from the
iout node).

Definition 2 (Configurations [9, 7]). A configuration of the nP system Π is an
m-tuple of the form (s1w1, . . . , smwm), with si ∈ Qi and wi ∈ O∗, for 1 ≤ i ≤ m.
The m-tuple (s1,0w1,0, . . . , sm,0wm,0) is the initial configuration of Π.

Example 2. For example, the initial configuration of the nP system Π1 in Figure 6,
is C0 = (saa, sλ, sλ).

Definition 3 (Rewrite and transfer modes [9, 7]). Neural P systems have
three modes of rewriting objects, inside a cell, min (minimum), par (parallel),
max (maximum), and three modes of transferring objects, from a given cell to
another cell, repl (replicate), one, spread. For each nP system, the rewriting and
transfer modes are fixed from start and apply to all rewriting and transition steps,
as defined below.

Definition 4 (Rewriting steps [9, 7]). For each cell σi with s, s′ ∈ Qi, x ∈ O∗,
y ∈ O∗

tot, we define a rewriting step, denoted by ⇒α, where α ∈ {min, par,max}:

• sx⇒min s
′y iff sw → s′w′ ∈ Pi, w ⊆ x, and y = (x− w) ∪ w′;
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• sx ⇒par s
′y iff sw → s′w′ ∈ Pi, wk ⊆ x, wk+1 * x, for some k ≥ 1, and

y = (x− wk) ∪ w′k;
• sx ⇒max s′y iff sw1 → s′w′

1, . . . , swk → s′w′
k ∈ Pi, k ≥ 1, such that

w1 . . . wk ⊆ x, y = (x−w1 . . . wk) ∪w′
1 . . . w

′
k, and there is no sw → s′w′ ∈ Pi,

such that w1 . . . wkw ⊆ x (note that rules selected arbitrarily can be combined
only if they start from the same state s and end in the same state s′).

Example 3. As an example, considering cell 1 from the nP system Π1, illustrated
in Figure 6, the following rewriting steps are possible:

• sandk ⇒min sa
n−1bgocgod

k

• sandk ⇒min sa
n−1dk+1

• sandk ⇒min ta
ndk

• tandk ⇒min ta
ndk−1dout

• sandk ⇒par sb
n
goc

n
god

k+n

• sandk ⇒par sd
k+n

• sandk ⇒par ta
ndk

• tandk ⇒par ta
ndk

out

• sandk ⇒max sb
l
goc

l
god

k+n with 0 ≤ l ≤ n

• sandk ⇒max ta
ndk

• tandk ⇒max ta
ndk

out

We now define a transition step between two configurations, denoted by ⇒α,β ,
where α is an object processing mode and β is an object transfer mode. Essentially,
for a transition step we apply a rewriting step in each cell and we send to the
neighbors all objects tagged for transfer.

Definition 5 (Transition steps, adapted from [9, 7]). Given two configura-
tions C1 = (s1w1, . . . , smwm) and C2 = (s′1w

′′
1 , . . . , s

′
mw

′′
m), we write C1 ⇒α,β C2,

for α ∈ {min, par, max}, β ∈ {repl, one, spread}, if the conditions below are met.
First, we apply rewriting steps (as defined in Definition 4) on each cell, i.e.,

siwi ⇒α s
′
iw

′
i, 1 ≤ i ≤ m.

Secondly, we define zj,k, the outgoing object multisets from j to k, where j ∈
{1, . . . ,m} and k ∈ syn(j):

• If β = repl, then
◦ zj,k = w′

j |go, for k ∈ syn(j);
• If β = one, then

◦ zj,kj
= w′

j |go, for an arbitrary kj ∈ syn(j), and zj,k = λ for k ∈
syn(j)\{kj};

• If β = spread, then
◦ {zj,k}k∈syn(j) is an arbitrary multiset partition of w′

j |go.

Finally, we set w′′
i = w′

i|O ∪
⋃

j∈syn−1(i)

zj,i, for i ∈ {1, . . . ,m}.
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Example 4. As an illustration, considering again the nP system Π1, given in Fig-
ure 6, the following are examples of possible transfer steps:

• (sandk, s, s) ⇒min,repl (san−1dk+1, sbc, sbc)
• (sandk, s, s) ⇒min,repl (san−1dk+1, s, s)
• (sandk, s, s) ⇒min,one (san−1dk+1, sbc, s)
• (sandk, s, s) ⇒min,one (san−1dk+1, s, sbc)
• (sandk, s, s) ⇒min,spread (san−1dk+1, sbc, s)
• (sandk, s, s) ⇒min,spread (san−1dk+1, sb, sc)
• (sandk, s, s) ⇒min,spread (san−1dk+1, sc, sb)
• (sandk, s, s) ⇒min,spread (san−1dk+1, s, sbc)

Definition 6 (Halting and results [9, 7]). If no more transitions are possible,
the nP system halts. For halted nP system Π, the computational result is the multi-
set that was cumulatively sent out (to the “environment”) from the output cell iout.
The numerical result is the vector Nα,β(Π) consisting of the object multiplicities
in the multiset result, where α ∈ {min, par,max} and β ∈ {repl, one, spread}.

Example 5. For example, if a nP system Π, over the alphabet {a, b, c, d}, sends out
the multiset a2cd3 and then halts, then its numerical result is vector Nα,β(Π) =
(2, 0, 1, 3).

Example 6. We replicate here another, perhaps more interesting example, orig-
inally given in [7]. Consider the following nP system, see Figure 7, Π2 =
(O, σ1, σ2, σ3, syn, iout), where:

• O = {a};
• σ1 = ({s}, s, a, {sa→ sago, sa→ saout});
• σ2 = ({s}, s, λ, {sa→ sago});
• σ3 = ({s}, s, λ, {sa→ sago});
• syn = {(1, 2), (1, 3), (2, 1), (3, 1)};
• iout = 1.

The following results are straightforward:

Nmin,repl(Π2) = {(n) | n ≥ 1},
Nmin,β(Π2) = {(1)}, for β ∈ {one, spread},

Npar,repl(Π2) = {(2n) | n ≥ 0},
Npar,β(Π2) = {(1)}, for β ∈ {one, spread},

Nmax,repl(Π2) = {(n) | n ≥ 1},
Nmax,β(Π2) = {(1)}, for β ∈ {one, spread}.
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s, a
sa→ sago

sa→ saout

s, λ

sa→ sago

s, λ

sa→ sago

σ1

σ2 σ3

Fig. 7. Π2, another simple nP system.

4 Hyperdag P Systems

We define hP systems as essentially nP systems (see Section 3), where the under-
lying digraph is a dag, with several adjustments. Besides the existing go, out tags,
we consider three other object tags:

1. go-parent, abbreviated by the symbol ↑, indicating objects that will be sent to
parents;

2. go-child, abbreviated by the symbol ↓, indicating objects that will be sent to
children;

3. go-sibling, abbreviated by the symbol ↔, indicating objects that will be sent
to siblings;

The precise semantics of these tags will be explained below when we detail the
hP object transfer modes. In fact, we could also discard the go tag, as it corre-
sponds to the union of these news tags (go-parent, go-child, go-sibling); however,
we will keep it here, for its concise expressive power. We use similar notation as
nP systems for these new tags O↑, O↓, O↔, and postfix projections |↑, |↓, |↔.

Other extension tags, including addressing mechanisms (such as from/to/via
tags) are possible, and indeed seem natural, but this is beyond the scope of this
article.

Definition 7 (Hyperdag P systems). A hP system (of degree m) is a system:
Π = (O, σ1, . . . , σm, δ, Iout), where:

1. O is an ordered finite non-empty alphabet of objects;
2. σ1, . . . , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:
• Qi is a finite set (of states),
• si,0 ∈ Qi is the initial state,
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• wi,0 ∈ O∗ is the initial multiset of objects,
• Pi is a finite set of multiset rewriting rules of the form sx →

s′x′u↑v↓w↔ygozout, where s, s′ ∈ Qi, x, x′ ∈ O∗, u↑ ∈ O∗
↑ , v↓ ∈ O∗

↓ ,
w↔ ∈ O∗

↔ , ygo ∈ O∗
go and zout ∈ O∗

out, with the restriction that zout = λ
for all i ∈ {1, . . . ,m}\Iout,

3. δ is a set of dag parent/child arcs on {1, . . . ,m}, i.e., δ ⊆ {1, . . . ,m} ×
{1, . . . ,m}, representing bidirectional communication channels between cells;

4. Iout ⊆ {1, . . . ,m} indicates the output cells, the only cells allowed to send
objects to the “environment”.

The essential novelty of our proposal is to replace the arbitrary arc set syn
by a more structured arcs set δ (dag), or, otherwise interpreted, as a generalized
multiset-based hypergraph. This interpretation has actually suggested the name
of our proposal, hyperdag P systems, and their abbreviation hP.

The changes in the rules format are mostly adaptations needed by the new
topological structure. Here we have reused and enhanced the rewriting rules used
by nP systems [9]. However, we could adopt and adapt any other rule set, from
other variants or extensions of P systems, such as, rewriting, antiport/symport or
boundary rules [10].

Definitions of configurations, transitions, computations and results of compu-
tations in hP systems are similar to definitions used for nP systems (Section 3),
with the following essential additions/differences, here informally stated:

• The rewrite mode α and transfer mode β could but need not be fixed from the
start—they may vary, for each cell σi and state s ∈ Qi.

• If object transfer mode is repl (this is a deterministic step):
◦ the objects tagged with ↑ will be sent to all the parents, replicated as

necessary
◦ the objects tagged with ↓ will be sent to all the children, replicated as

necessary
◦ the objects tagged with ↔ will be sent to all the siblings, of all sibling

groups, replicated as necessary
• If object transfer mode is one (this is a nondeterministic step):

◦ the objects tagged with ↑ will be sent to one of the parents, arbitrarily
chosen

◦ the objects tagged with ↓ will be sent to one of the children, arbitrarily
chosen

◦ the objects tagged with ↔ will be sent to one of the siblings, of one of the
sibling groups, arbitrarily chosen

• If object transfer mode is spread (this is a nondeterministic step):
◦ the objects tagged with ↑ will be split into submultisets and distributed

among the parents, in an arbitrary way
◦ the objects tagged with ↓ will be split into submultisets and distributed

among the children, in an arbitrary way
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◦ the objects tagged with ↔ will be split into submultisets and distributed
among the siblings and sibling groups, in an arbitrary way

Figure 8 schematically shows the possible transfers of objects from a membrane
i, having two children, two parents, hence two sibling groups, with one sibling in
the first group and two siblings in the other. The above mentioned transfer modes
will select one, some or all the illustrated transfer targets, deterministically (repl)
or nondeterministically (one, spread).

go-parent (↑) go-parent (↑)

go-sibling (↔)

go-child (↓) go-child (↓)

go-sibling (↔)

go-sibling (↔)

i

Fig. 8. Transfer modes in a hP system. The parent-child axis is top-down. Plain lines
indicate parent-child relations and dashed lines indicate siblings. Arrows at the end of
long thick lines, plain or dashed, indicate possible transfer directions from node i.

More formal definitions follow.

Definition 8 (Configurations). A configuration of the hP system Π is an m-
tuple of the form (s1w1, . . . , smwm), with si ∈ Qi and wi ∈ O∗, for 1 ≤ i ≤ m.
The m-tuple (s1,0w1,0, . . . , sm,0wm,0) is the initial configuration of Π.

Definition 9 (Rewrite and transfer modes). For a hP system of degree m,

• the object rewriting mode is a function

α :
⋃

i∈{1,...,m}

{i} ×Qi → {min, par,max} .

• the object transfer mode is a function

β :
⋃

i∈{1,...,m}

{i} ×Qi → {repl, one, spread} .

Definition 10 (Rewriting steps). For each cell σi with s, s′ ∈ Qi, x ∈ O∗,
y ∈ O∗

tot, we define a rewriting step, denoted by ⇒α, where α = α(i, s) ∈
{min, par,max}.
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• sx⇒min s
′y iff sw → s′w′ ∈ Pi, w ⊆ x, and y = (x− w) ∪ w′;

• sx ⇒par s
′y iff sw → s′w′ ∈ Pi, wk ⊆ x, wk+1 * x, for some k ≥ 1, and

y = (x− wk) ∪ w′k;
• sx ⇒max s′y iff sw1 → s′w′

1, . . . , swk → s′w′
k ∈ Pi, k ≥ 1, such that

w1 . . . wk ⊆ x, y = (x−w1 . . . wk) ∪w′
1 . . . w

′
k, and there is no sw → s′w′ ∈ Pi,

such that w1 . . . wkw ⊆ x (note that rules can be combined only if they start
from the same state s and end in the same state s′).

Definition 11 (Transition steps). Given two configurations C1 = (s1w1, . . . ,
smwm) and C2 = (s′1w

′′
1 , . . . , s

′
mw

′′
m), we write C1 ⇒α,β C2, for α and β (as

defined in Definition 9) if the conditions below are met.
First, we apply rewriting steps (as defined in Definition 10) on each cell, i.e.,

siwi ⇒α(i,si) s
′
iw

′
i, 1 ≤ i ≤ m.

Secondly, we define z↑j,k, z
↓
j,k, z

↔
j,k, the outgoing multisets from j to k, where

j ∈ {1, . . . ,m} and, respectively, k ∈ δ−1(j), k ∈ δ(j), k ∈ δ(δ−1(j))\{j}:

• If β(j, sj) = repl, then
◦ z↑j,k = w′

j |↑, for k ∈ δ−1(j);
◦ z↓j,k = w′

j |↓, for k ∈ δ(j);
◦ z↔j,k = w′

j |↔, for k ∈ δ(δ−1(j))\{j}.
• If β(j, sj) = one, then

◦ z↑j,kj
= w′

j |↑, for an arbitrary kj ∈ δ−1(j), and z↑j,k = λ for k ∈ δ−1(j)\{kj};
◦ z↓j,kj

= w′
j |↓, for an arbitrary kj ∈ δ(j), and z↓j,k = λ for k ∈ δ(j)\{kj};

◦ z↔j,kj
= w′

j |↔, for an arbitrary kj ∈ δ(δ−1(j))\{j}, and z↔j,k = λ for k ∈
δ(δ−1(j))\{j, kj}.

• If β(j, sj) = spread, then
◦ {z↑j,k}k∈δ−1(j) is an arbitrary multiset partition of w′

j |↑;
◦ {z↓j,k}k∈δ(j) is an arbitrary multiset partition of w′

j |↓;
◦ {z↔j,k}k∈δ(δ−1(j))\{j} is an arbitrary multiset partition of w′

j |↔.

Finally, we set w′′
i = w′

i|O ∪
⋃

j∈δ−1(i)

z↑j,i ∪
⋃

j∈δ(i)

z↓j,i ∪
⋃

j∈δ(δ−1(i))\{i}

z↔j,i, for i ∈

{1, . . . ,m}.

Definition 12 (Halting and results). If no more transitions are possible, the
hP system halts. For halted hP system, the computational result is the multiset
that was cumulatively sent out (to the “environment”) from the output cells Iout.
The numerical result is the set of vectors consisting of the object multiplicities in
the multiset result.

Example 7. As examples, consider two hP systems, Π3 and Π4, both functional
equivalent a functional equivalent of the earlier Π2 nP system.

Π3 = (O, σ1, σ2, σ3, δ, Iout), see Figure 9, where:
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• O = {a};
• σ1 = ({s}, s, a, {sa→ sa↓, sa→ saout});
• σ2 = ({s}, s, λ, {sa→ sa↑});
• σ3 = ({s}, s, λ, {sa→ sa↑});
• δ = {(1, 2), (1, 3)};
• Iout = {1}.

s, a
sa→ sa↓
sa→ saout

s, λ

sa→ sa↑

s, λ

sa→ sa↑

σ1

σ2 σ3

Fig. 9. Π3, a simple hP system (equivalent to the Π2 nP system of Figure 7).

Π4 = (O, σ1, σ2, σ3, σ4, σ5, δ, Iout), see Figure 10, where:

• O = {a};
• σ1 = ({s}, s, a, {sa→ sa↔, sa→ saout});
• σ2 = ({s}, s, λ, {sa→ sa↔});
• σ3 = ({s}, s, λ, {sa→ sa↔});
• σ4 = ({s}, s, λ, ∅);
• σ5 = ({s}, s, λ, ∅);
• δ = {(4, 1), (4, 2), (5, 1), (5, 3)};
• Iout = {1}.

5 Relations Between P Systems, Neural P Systems and
Hyperdag P Systems

Theorem 1 (Hyperdag P systems include non-dissolving P systems).
Any non-dissolving transition P system can be simulated by a hP system, with the
same number of steps and object transfers.
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s, a
sa→ sa↔
sa→ saout

s, λ

sa→ sa↔

s, λ

sa→ sa↔

σ1σ2 σ3

σ4 σ5

s, λ s, λ

Fig. 10. Π4, another simple hP system (equivalent to the Π2 nP system of Figure 7).

Proof. Given a non-dissolving, transition P system Π [10], we build a functionally
equivalent hP system H by the following transformation f . Essentially, we use the
same elements, with minor adjustments. As the underlying structure, we can reuse
the rooted tree structure of the P systems, because any rooted tree is a dag.

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, io), f(Π) = (O′, σ′1, . . . , σ
′
m, δ, Iout).

• O′ = O;
• σ′i = (Q′

i, s
′
i,0, w

′
i,0, P

′
i ), 1 ≤ i ≤ m, where:

◦ Q′
i = {s}, where s is any symbol /∈ O;

◦ s′i,0 = s;
◦ w′

i,0 = wi;
◦ P ′

i = {su→ sv′ | u→ v ∈ Ri}, where v′ is a translation of v by the following
homomorphism: (O ∪ O × Tar)∗ → O∗, such that a → a, (a, here) → a,
(a, out) → a↑, (a, in) → a↓;

• δ = µ;
• Iout = {io};
• The object rewrite mode is the max constant function, i.e., α(i, s) = max, for

i ∈ {1, . . . ,m}, s ∈ Qi;
• The object transfer mode is the spread constant function, i.e., β(i, s) = spread,

for i ∈ {1, . . . ,m}, s ∈ Qi.

Tags go-child(↓), go-parent(↑) correspond to P system target indications
in, out, respectively. An empty tag corresponds to P system target indication here.
Object rewrite and transfer modes of hP systems are a superset of object rewrite
and transfer mode of P systems.

We omit here the rest of the proof which is now straightforward but lengthy.

Remark 1. We leave open the case of dissolving P systems, which can be simulated,
but not properly subsumed by hP systems.

Proving that hP systems also cover nP systems appears more daunting. How-
ever, here we will use a natural interpretation of hP systems, where the bulk of
the computing will be done by the sink nodes, and the upper nodes (parents) will
function mostly as communication channels.
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Remark 2. The combination of go-sibling (↔) with repl object transfer mode en-
able the efficient modeling of a communication bus, using only one hyperedge or,
in the corresponding dag, n arcs. In contrast, any formal systems that use graph
edges (or digraph arcs) to model 1:1 communication channels will need n(n − 1)
separate edges (or 2n(n − 1) arcs) to model the associated complete subgraph
(clique). It is expected that this modeling improvement will also translate into a
complexity advantage, if we use the number of messages measure. In hP systems,
a local broadcast needs only one message to siblings, while needing n−1 messages
in graph/digraph based systems.

Example 8. Figure 11 shows the structure of an hP system that models a com-
puter network. Four computers are connected to “Ethernet Bus 1”, the other four
computers are connected to “Ethernet Bus 2”, while two of the first group and
two of the second group are at the same time connected to a wireless cell. In this
figure we also suggest that “Ethernet Bus 1” and “Ethernet Bus 2” are themselves
connected to a higher level communication hub, in a generalized hypergraph.

Example 9. Figure 12 shows the computer network of Figure 11, modeled as a
graph (if we omit arrows) or as a digraph (if we consider the arrows). Note that
the graph/digraph models, such as nP, do not support the grouping concept, i.e.,
there is no direct way to mark the nodes a, b, c, d as being part of the “Ethernet
Bus 1”, etc.

We can now sketch the proof of the theorem comparing hP systems and nP sys-
tems.

Theorem 2 (Hyperdag P systems can simulate bidirectional nP sys-
tems).
Any bidirectional nP system can be simulated by a hP system, with the same num-
ber of steps and object transfers.

Proof. Given a bidirectional nP system Π, we build a functionally equivalent
hP system H by the following transformation f . As the underlying structure,
we use a dag of height 1, where the cells are sink nodes, and the syn arcs are
reified as height 1 nodes.

Without loss of generality, we assume that in the nP systems synapses are
distinct from cells.

Π = (O, σ1, . . . , σm, syn, iout), f(Π) = (O′, σ′1, . . . , σ
′
m+|syn|, δ, Iout).

• O′ = O;
• σ′i = f(σi), for i ∈ {1, . . . ,m}, where:

◦ Q′
i = Qi;

◦ s′i,0 = si,0;
◦ w′

i,0 = wi,0;
◦ P ′

i = {u→ v′ | u→ v ∈ Pi}, where v′ is a translation of v by the following
homomorphism: O∗

tot → O∗, such that a→ a, ago → a↔, aout → aout ;
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Ethernet Bus 1 Ethernet Bus 2

Wireless Bus

Ethernet Bus 1 Ethernet Bus 2

a b c d e f g h

a b c d e f g h

Wireless Bus

Fig. 11. A computer network and its corresponding hP/hypergraph representation.

a b c d e f g h

(Ethernet Bus 1) (Ethernet Bus 2)(Wireless Bus)

Fig. 12. The graph/digraph representations of the computer network of Figure 11.

• σ′m+1, . . . , σ
′
m+|syn| is an arbitrary ordering of elements in syn;

• δ = {(e, u), (e, v) | e = (u, v) ∈ syn};
• Iout = {iout};
• The object rewrite mode is a constant function, i.e., α(i, s) = α0, for i ∈

{1, . . . ,m+ |syn|}, s ∈ Qi, where α0 ∈ {min, par,max};
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• The object transfer mode is a constant function, i.e., β(i, s) = β0, for i ∈
{1, . . . ,m+ |syn|}, s ∈ Qi, where β0 ∈ {repl, one, spread}.

Here the nodes corresponding to synapses are inactive as they just link neigh-
boring cells.

Essentially, the cells keep their original nP rules, with minor adjustments. A
go tag in nP rules corresponds to a sibling(↔) tag in hP rules. Object rewrite and
transfer modes of hP systems are a superset of object rewrite and transfer modes
of nP systems.

We omit here the rest of the proof which is now straightforward but lengthy.

Remark 3. We leave open the case of non-bidirectional nP systems, which can be
simulated, but not properly subsumed by hP systems.

6 Planar Representation of hP Systems

Classical tree-based P systems allow a “nice” planar representation, where the par-
ent/child relationships between membranes are represented by Venn-like diagrams.
Can we extend this representation to cover our dag-based hP systems?

In this section we will show that any hP system structurally based on a canon-
ical dag can still be intensionally represented by hierarchically nested planar re-
gions, delimited by Jordan curves (simple closed curves). Conversely, we also show
that any set of hierarchically nested planar regions delimited by Jordan curves can
be interpreted as a canonical dag, which can form the structural basis of a number
of hP systems.

We will first show how to represent a canonical dag as a set of hierarchically
nested planar regions.

Algorithm 3 (Algorithm for visually representing a canonical dag)
Without loss of generality, we consider a canonical dag (V, δ) of order n, where

vertices are topologically ordered according to the order implied by the arcs, by
considering parents before the children, i.e., V = {vi | i ∈ {1, . . . , n}}, where
(vi, vi+1) ∈ δ. Figure 13 shows side by side a simple height 1 canonical dag and
its corresponding hypergraph representation. Note the intensional representation
(as opposed to the extensional one): v2 is not totally included in v1, although all
vertices included in v2, i.e., v4 and v5, are also included in v1. A possible topological
order is v1, v2, v3, v4, v5.

For each vertex vi, we associate a distance ψi = 1
2(n−i+1) , for i ∈ {1, . . . , n}.

For Figure 13, ψi = 1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2 , for i ∈ {1, . . . , n}.

We process the vertices in reverse topological order vn, . . . , v1, at each step i
representing the current vertex vi by a planar region Ri.

First, we set parallel horizontal axisXo andXp, vertically separated by distance
3(n − 1). Secondly, we set points o1, . . . , on on Xo, such that oi and oi+1 are
separated by distance 3, for 1 ≤ i ≤ n− 1. We define oi as the origin point of vi,
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v3 v4 v5

v1

v2

1 2

3 4 5

Fig. 13. A simple canonical dag and its corresponding hypergraph representation.

and write oi = origin(vi). Finally, we set points p1, . . . , pn on Xp, such that pi and
pi+1 are separated by distance 3, for 1 ≤ i ≤ n − 1. We define pi as the corridor
point of vi.

Figure 14 shows the construction of Xo, Xp, oi and pi, for the dag of Figure 13,
where n = 5.

o3 o4 o5o1 o2

p1 p2 p3 p4 p5

Xo

Xp

Fig. 14. Construction of Xo, Xc, oi and pi, for the dag of Figure 13, where n = 5.

If the current vertex vi is a sink, then Ri is a circle with with radius 1
2 centered

at oi.
If the current vertex vi is a non-sink, then Ri is constructed as follows: Assume

that the children of vi are w1, . . . , wni
, and their (already created) regions are

S1, . . . , Sni
. Consider line segments l0, l1, . . . , lni

, where l0 is bounded by oi and
pi, and lj is bounded by pi and origin(wj), for j ∈ {1, . . . , ni}. Let L0, L1, . . . , Lni

,
T1, . . . , Tni be the regions enclosed by Jordan curves around l0, l1, . . . , lni ,
S1, . . . , Sni , at a distance ψi, and let R′

i = L0 ∪
⋃

j=1,...,ni
Lj ∪

⋃
j=1,...,ni

Tj . We
define Ri as the external contour of R′

i. This definition will discard all internal
holes, if any, without introducing any additional containment relations between
our regions. The details of our construction guarantee that no internal hole will
ever contain an origin point.ut

Figure 15 shows an intermediate step (left) and the final step (right) of ap-
plying Algorithm 3 on Figure 13. The representation of Figure 15 is topologically
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equivalent to the hypergraph representation of Figure 13 (right). Figure 16 shows
the side by side, another dag and its corresponding planar region representation;
internal holes are represented by dotted lines. Our objective here was not to cre-
ate “nice” visualizations, but to prove that it is possible to represent an arbitrary
canonical dag, i.e., an arbitrary hP system structurally based on a canonical dag,
by hierarchically nested planar regions.

Xo

Xp

R1 R2 R3 R4 R5

Xo

Xp

R2 R3 R4 R5

Fig. 15. An intermediate step and the final step of applying Algorithm 3 on Figure 13.

1

2 3

4

R1 R2 R3 R4

Xo

Xp

Fig. 16. A height two dag and its corresponding representation, built by Algorithm 3.

We will next show that, for any finite set of hierarchically nested planar regions,
we can build a corresponding canonical dag (i.e., the underlying structure of a
hP system).
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Algorithm 4 (Algorithm for building a canonical dag from finite set of
hierarchically nested planar regions)

Assume that we have n hierarchically nested planar regions,

1. Label each planar region by Ri, i ∈ {1, . . . , n},
2. If Ri directly nests Rj then draw an arc from a vertex vi to a vertex vj ,
i, j ∈ {1, . . . , n}, i 6= j.

ut
We now show that a canonical graph produced from Algorithm 4 does not

contain any cycles. Our proof is by contradiction. Let us assume a directed graph
G produced from Algorithm 4 contains a cycle vi, . . . , vk, . . . , vi. Then every vertex
in a cycle has an incoming arc. If vertex vk is a maximal element in a cycle, with
respect to direct nesting, then its corresponding planar region Rk have the largest
region area among planar regions in a cycle. Since no other planar region in a cycle
can contain Rk, there are no arc incident to vertex vk. Hence, there is no cycle in
G.

Remark 4. We leave open the problem of representing dags (that is hP systems)
that contain transitive arcs.

7 Summary

We have proposed a new model, as an extension of P systems, that provides a better
communication structure and we believe is often more convenient for modeling real-
world applications based on tree structures augmented with secondary or shared
communication channels.

We have shown that hP systems functionally extends the basic functionality of
transition P systems and neural P systems, even though the underlying structure
of hP systems is different. In the dag/hypergraph model of hP systems we can
have a natural separation of computing cells (sinks) from communication cells
(hyperedges). This model also allows us to easily represent multiple inheritance
and/or to distribute computational results (as specified by a dag) amongst several
different parts of a membrane structure.

We note that the operational behavior of hP systems is separate from the topo-
logical structure of a membrane system. In this paper, we illustrated hP systems
using the computational rules of nP systems, where multisets of objects are re-
peatedly changed within cells, by using a fixed set of multiset rewriting rules, or
transferred between cells, using several possible transfer modes.

Finally, we provided a intuitive visualization of hP systems, by showing that
any set of hierarchically nested planar regions (which represents any set of cells
ordered by containment) is equivalent to, or modeled by, a dag without transitive
arcs. We provided simple algorithms to translate between these two interpretations.

Part B of this paper will explore this model further and support it with a more
extensive set of examples.
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Summary. An idea of modularization of complex networks (from cortial neural net,
Internet computer network, to market and social networks) is explained and some its
topic motivations are presented. Then some known modularization algorithms and mod-
ular architectures (constructions) of complex networks are discussed in the context of
possible applications of spiking neural P systems in order to improve these modular-
ization algorithms and to analyze massively parallel processes in networks of modular
architecture.

1 Introduction

The aim of this paper is to discuss certain interconnections between spiking neural
P systems [16], [28], and an idea of modularization of complex networks from cortial
neural net, Internet computer network, to market and social networks, where the
idea of modularization comprises modular architectures (structures or construc-
tions) of those networks and modularization algorithms for retrieving modular
structure of networks. The interconnections are understood here as proposals of
application of spiking neural P systems to improve the modularization algorithms
and to analyze massively parallel processes in networks of modular architecture or
construction (emergence of new modules, etc., [9], [23]).

In Section 2 we explain the idea of modularization of complex networks and
some its topic motivations. In Section 3 we outline open problems concerning
improvement of some modularization algorithms by application of spiking neural
P systems and investigations of massively parallel processes in networks of modular
construction by applying these P systems.
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2 Modularization of Complex Networks and Its Topic
Motivations

A modularization1 of a complex network or a graph is understood to be a decom-
position or a partition of the underlying set of nodes of the network or the graph,
respectively, into subsets called modules, often identified with subnetworks deter-
mined by these subsets and treated as autonomous processing units in cooperation
with other units (on a higher level if abstraction). A collection of modules of a given
network or a graph can be also a subject of modularization, i.e. a decomposition
into subcollections of modules, etc., where the resulting subcollections of modules
are called higher level modules.

There are many reasons, motivations, and practical applications of modular-
ization and we outline here some topics:

1) cortial neural network is modularized from anatomical, physiological, and scale
(or magnitude) reasons, see, e.g., [24] or [27] for more references, into
• cortial minicolumns which are modules consisting of neurons,
• cortial hypercolumns which are some sets of minicolumns,
• cortial areas which are some sets of hypercolumns,
where cortial hypercolumns and areas are higher level modules,

2) natural self-modularization of cortial neural network into neuronal groups dur-
ing evolution process described by M. G. Edelman’s Theory of Neuronal Group
Selection (Neuronal Darwinism), see [18], [17] for a spiking neural network ver-
sion,

3) modularization of cortial neural network into assemblies of neurons appears
useful for neuronal representation of cognitive functions and processes because:
• a single neuron behavior is less certain or more noisy than a behavior of

an assembly of neurons,
• the number of synaptic connections of a single neuron with other neurons

is smaller than that of an assembly of neurons with other assemblies of
neurons,

• according to M. Kaiser [20] hierarchical cluster (higher level module) ar-
chitecture “may provide the structural basis for the stable and diverse
functional patterns observed in cortial networks”,

4) emergence (or extraction) of community structures in social networks, bio-
logical networks, and Internet computer network is a modularization of these
networks discussed by M. J. E. Newman, [6], [7], [26], [29], see also applications
of similar modularization in city planning discussed by Ch. Alexander [2],

5) modularization of artificial cortial-like networks for image processing, e.g., reg-
ularization for improving segmentation, see J. A. Anderson and P. Sutton,
cf. [21], applications of an idea of a Network of Networks (NoN),

6) modularization which gives rise to hierarchical and fractal graphs and net-
works, [25], [29], [30], [33], to compress the information contained in large
complex networks.

1 The term ‘modularization’ is used e.g., in [19].
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The higher level modules and their motivation are also discussed in [10], [11],
[12], [22], [32], [31].

3 Modularization Algorithms and Modular Architectures

In the cases 2)–5) algorithms of modularization are considered, i.e. algorithms of
distinguishing or extraction of modules, see e.g., [3], [18]. Thus one asks for those
spiking neural P systems which could realize these algorithms through massive
parallelism of computations providing

• efficiency of computation,
• those computation processes which could be close (from simulation reason) to

real distributed processes of emergence of neuronal groups (see [18]) or com-
munity structures in social networks, where distributed processes of emergence
of neuronal groups are massively parallel processes of simultaneous emergence
of many those groups which are autonomous understood that, e.g., each group
has at least one neuron which does not belong to other groups.

These spiking neural P systems could give rise to constructing new brain-
based devices (robots) similar to those which belong to the family Darwin due to
M.G. Edelman [8]. The new brain-based devices could simulate maturing processes,
where emergence of neuronal groups and groups of groups give rise to new cognitive
functions.

We show now an example of a link between modularization algorithms and
spiking neural P systems which suggests the proposed above applications of these
P systems. Namely, basing on the algorithm for identification of neuronal groups
described in [18] we outline a method of extraction of a process of simultaneous
emergence of many neuronal groups from a process generated by a spiking neural
P system.

Let S [ C > S ′ be the next state relation determined by simultaneous appli-
cation (in maximal parallelism mode) of the rules of a spiking neural P system,
where S,S ′ are spike contents of neurons of the system and C is the set of those
synapses of the system which are activated to transform S into S ′ according to
some maximal consistent set of the rules of the system during a unit of time. For
a finite process generated by a spiking neural P system and represented by

S0 [ C1 > S1 [ C2 > S2 . . .Sn−1 [ Cn > Sn (n > 2) (1)

we extract from it a process of simultaneous emergence of many neuronal groups
which is represented by a sequence G1 . . .Gi∗ of sets of synapses of the system such
that

• G1 is the set of maximal (with respect to inclusion relation of sets) subsets x
of C1 such that the synapses in x have a common source neuron which is a
counterpart of an anchor neuron, see the first step of the algorithm in [18],
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• for i > 1 we define Gi to be the set of maximal sets in the collection

Ki =
{

y
∣∣∣ x ( y = x ∪ {s ∈ Ci | the source neuron of synapse s

is the target neuron of some synapse in x} for some x ∈ Gi−1

}

until this collection is non-empty or, equivalently, until i = i∗, where i∗ is the
greatest number for which Ki∗ is non-empty.

The elements of Gi∗ represent neural circuits which correspond to neuronal
groups emerging simultaneously in the process represented by (1).

Since the networks and their modularization discussed in 2)–4) are also ap-
proached by using probabilistic and statistical methods of clustering (see [1]) and
by using random graphs (understood as in the B. Bolobas book [4]), it is worth
to discuss a concept of a stochastic (or random) spiking neural P system whose
synaptic connections form a random graph.

Besides the new applications of spiking neural P systems suggested above one
could ask for an application of M.-A. Guttiérez-Naranjo and M. Pérez-Jiménez
models for Hebbian learning with spiking neural P systems [15] to explain in a
new way

• temporal correlation hypothesis of visual feature integration [14], also dealing
with modularization, where modules are neural assemblies emerging in distrib-
uted processes like the processes of emergence of neuronal groups described
above, for the connections of neuronal groups and binding (some generaliza-
tion of feature integration), see [17].

• emergence of brain cognitive functions, where some modularizations of cortial
neural network are considered, see [5], [13].

We propose to use higher-level networks with neighbourhood graphs, intro-
duced in [27], as a precise description of results of some modularizations of net-
works and modular architectures including higher level modules.
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Summary. A central issue in systems biology is the study of efficient methods to in-
fer fluxes of biological reactions starting from experimental data. Among the different
techniques proposed in the last years, in the theory of Metabolic P systems Log-Gain
principles have been introduced, which prove to be helpful for deducing biological fluxes
from temporal series of observed dynamics. However, crucial tasks remain to be per-
formed for a complete suitable application of these principles. In particular the algebraic
systems introduced by the Log-Gain principles require the knowledge of the initial fluxes
associated with a set of biochemical reactions. In this paper we propose an algorithm for
estimating initial fluxes, which is tested in two case studies.

1 Introduction

In the last years, the problem of reverse-engineering of biological phenomena from
experimental data has spurred increasing interest in the scientific communities. For
these reasons, many computational models inspired from biology have been given.
Among these models, the Metabolic P systems [9, 10], shortly MP systems, proved
to be relevant in the analysis of dynamics of biochemical processes [4, 12, 14, 13].
MP systems intend to model metabolic systems, that is, structures where matter
of different types is subject to reactions, or transformations of various types. The
importance of these computational models is their potential applicability to the
reverse-engineering problem of biological phenomena. In fact, the MP systems
introduce a theory, called Log-Gain [8], intrinsically related to the structure of
these computational models.

This theory provides a method for constructing MP models of real phenomena
from time-series of observed dynamics. In fact, given a real system which can be
observed in its evolution, then almost all the elements occurring in the definition
of MP system can be, in principle, deduced by macroscopic observations of the
system [9].
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The only component which cannot be directly measured is a set of regula-
tion functions which state the reaction fluxes, that is, the amount of reactants
transformed by the reactions at any state of the system. These functions depend
on internal microscopic processes on which molecules are involved. However, Log-
Gain theory provides a way for deducing them from time-series of the states of a
given system along a sufficient number of observation instants.

A key point for achieving this task consists in the discovery of the fluxes asso-
ciated to the passage of a metabolic system from two initial observation instants.
In this paper an algorithm is proposed for estimating these initial fluxes from few
steps of observation.

The present paper is organized as follows. Section 2 is devoted to the definition of
Metabolic P Systems. Section 3 briefly recalls the Log-Gain theory. In Section 4 we
describe the algorithm that solves our problem. Section 5 reports some experimen-
tal results obtained by the new framework. Some further remarks and directions
for future researches are discussed in the last section.

2 Metabolic P Systems

MP systems are a special class of dynamical systems (the reader can find some
details concerning dynamical aspects of MP systems in [11]), based on P systems
[3, 16, 17, 18], which are related to metabolic processes. MP systems are essentially
constituted by multiset grammars where rules are regulated by specific functions
depending on the state of the system. From a Membrane Computing point of
view, MP systems can be seen as deterministic mono-membrane P systems where
the transitions between states are calculated by a suitable recurrent operation. In
an MP system the overall variation, in a macroscopic time interval, of the whole
system under investigation is considered. In this manner, the evolution law of the
system consists in the knowledge of the contribution of each reaction in the passage
between any two instants separated by such an interval. Therefore, dynamics is
given at discrete steps, and at each step, it is ruled by a partition of matter among
the reactions transforming it. The principle underlying the partitioning is called
mass partition principle. This principle replaces the mass action law1 of ODE
systems. The mass partition principle defines the transformation rate of object
populations rather than single objects, according to a suitable generalization of
chemical laws [9].

1 The foundation of this law is the theory of molecular collisions. The first formulation
of this law, formulated by Waage and Guldberg [21], is the following: “the rate of
any given chemical reaction is proportional to the product of the concentrations of the
reactants”.
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2.1 MP systems: a formal definition

The following definition introduces the MP systems in a formal way (N, Z, and R
respectively denote the sets of natural, integer, and real numbers).

Definition 1 (MP system) An MP system M is specified by the following con-
struct:

M = (X, R, V,H, Φ, ν, µ, τ, δ)

where X, R and V are finite disjoint sets, and moreover the following conditions
hold, with n, m, k ∈ N:

• X = {x1, x2, . . . , xn} is a finite set of substances. This set represents the types
of molecules;

• R = {r1, r2, . . . , rm} is a finite set of reactions. A reaction r is a pair of type
αr → βr, where αr identifies the multiset of the reactants (substrates) of r
and βr identifies the multiset of the products of r (λ represents the empty
multiset). The stoichiometric matrix A of a set R of reactions over a set X
of substances is A = (Ax,r | x ∈ X, r ∈ R) with Ax,r = |βr|x − |αr|x, where
|αr|x and |βr|x respectively denote the number of occurrences of x in αr and
βr. Of course, a reaction r can be seen as the vector r = (Ax,r |x ∈ X ) of
Zn. We also set Rα(x) = {r ∈ R | x ∈ αr}, Rβ(x) = {r ∈ R | x ∈ βr}, and
R(x) = Rα(x) ∪Rβ(x);

• V = {v1, v2, . . . , vk} is a finite set of parameters (such as pressure, tempera-
ture,. . . );

• H = {hv | v ∈ V } is a set of parameters evolution functions. The function
hv : N → R states the value of parameter v, and H[i] = (hv(i) |v ∈ V );

• Φ = {ϕr | r ∈ R} is the set of flux regulation maps, where, for each r ∈ R,
ϕr : Rn+k → R. Let q ∈ Rn be the vector of substances values and s ∈ Rk be
the vector of parameters values. Then (q, s) ∈ Rn+k is the state of the system.
We set by U(q, s) = (ϕr(q, s) | r ∈ R) the flux vector in the state (q, s);

• ν is a natural number which specifies the number of molecules of a (conven-
tional) mole of M ;

• µ is a function which assigns, to each x ∈ X, the mass µ(x) of a mole of x
(with respect with to some measure units);

• τ is the temporal interval between two consecutive observation steps;
• X[i] = (x1[i], x2[i], . . . , xn[i]), for each i ∈ N, is the vector of substances val-

ues at the step i, and X[0] are the initial values of substances. The dynamics
δ : N → Rn of the system is completely identified by the following recurrent
equation, called Equational Metabolic Algorithm shortly EMA:

X[i + 1] = A× U(X[i],H[i]) + X[i] (1)

where A is the stoichiometric matrix of reactions having dimension n×m, while
×, +, are the usual matrix product and vector sum. We denote by EMA[i]
the system (1) at the step i. By using the formulation introduced above it is
simple to note that we can obtain the vector X[i + 1] from vectors X[i] and
U(X[i], X[i]).
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3 Log-Gain Theory: A Brief Recall

The starting point of the Log-Gain theory for MP systems [20] is the Allometry
Law [2, 6] which assumes a proportion between the relative variations of the fluxes
of a reaction r and the sum of relative variations of tuners of r, that is, magnitude
influencing r.

The relative variation of a variable x is given, in differential notation and with
respect to the time variable t, by d(lg x)/dt. This explains the term “Log-Gain”.

Given a dynamics of an MP system, we will use the following simplified nota-
tions, for i ∈ N, and r ∈ R:

ur[i] = ϕr(X[i],H[i]) and U [i] = (ur[i]|r ∈ R) (2)

Assuming to know the vectors X[i] and X[i+1], the equation (1) can be rewritten
in the following form, which we called ADA[i] (Avogadro and Dalton Aggregation
[10]):

X[i + 1] = A× U [i] + X[i] (3)

The formula (3) expresses a system of n equations and m variables (n is the
number of substances and m the number of reactions) which is assumed to have
maximal rank. This supposition is not restrictive. In fact, if it does not hold the
rows which are linearly depend on other rows are removed. Formally ADA[i] is the
same to system EMA[i] introduced in Section 2. However, these two systems have
dual interpretations. In fact, in EMA[i], the vectors U [i] and X[i] are known, and
the vector X[i + 1] is computed by means of them, while in ADA[i], the vector
X[i + 1] − X[i] is known and U [i] is computed by solving the system, as we will
see by formula (6).

Usually, in a biochemical phenomenon, the number of reactions is greater than
the number of substances, and this means that the system (3) has more than one
solution. Therefore, fluxes cannot be univocally deduced by means of ADA. The
following principle [8] allows us to add more equations to the above system in
order to get a univocally solvable system which could provide the flux vector.

Definition 2 (Discrete Log-Gain) Let (z[i] |i ∈ N ) a real valued sequence. Then,
the discrete log-gain of z is given by the following equation:

Lg(z[i]) =
z[i + 1]− z[i]

z[i]
(4)

Principle 1 (Log-Gain regulation) Let U [i], for i ≥ 0, be the vector of fluxes
at step i. Then the Log-Gain regulation can be expressed in terms of matrix and
vector operations:

(U [i + 1]− U [i])/U [i] = B× L[i] + C ⊗ P [i + 1] (5)

where:
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• B = (pr,z |r ∈ R, z ∈ X ∪ V ) where pr,z ∈ {0, 1} with pr,z = 1 if z is a tuner of
r and pr,z = 0 otherwise;

• L[i] = (Lg(z[i]) |z ∈ X ∪ V ) is the column vector of substances and parameters
log-gains ;

• P [i + 1] is a column vector of values associated with the reactions and called
(Log-Gain) offsets at step i + 1;

• C = (cr |r ∈ R ), where cr = 1 if r ∈ R0, while cr = 0 otherwise, and R0 is a
subset of reactions having the Covering Offset Log Gain Property, that is, it is
a set of n linear independent vectors of Zn;

• × denotes the usual matrix product;
• +, −, /, ⊗ denote the component-wise sum, subtraction, division and product2.

If we assume to know the flux unit vector at step i and put together the equations
(5) and (3) at steps i and i + 1 respectively, we get the following linear system
called Offset Log-Gain Adjustment module at step i, shortly OLGA[i], in which
the number of variables (here reported in bold font) is equal to the number of
equations:

A×U[i + 1] = X[i + 2]−X[i + 1] (6)
(U[i + 1]− U [i])/U [i] = B× L[i] + C ⊗P[i + 1]

Now, if the vectors X[i] and V [i], for 0 ≤ i ≤ l, where l ∈ N, are obtained by
experimental measures, then it is possible to solve OLGA[i] for i = 0, . . . , l − 1,
obtaining the vector U [i] for i ∈ [1, l − 1].

4 An Algorithm for the Estimation of Initial Metabolic
Fluxes

The method described in the previous section assumes the knowledge of the initial
values of fluxes.

Problem 1 (Initial Fluxes Problem) Given X[0] and H[0], find a flux vector
U [0] such that it satisfies the initial dynamics, that is:

X[1] u A× U [0] + X[0]

where u means approximate equality.

The algorithm given below circumvents the Initial Fluxes Problem by using the
knowledge about the dynamics in the first evolution steps in order to approximate
the amount of substances which is not transformed, we call inertia of the system
(at a given step).

2 Given two n × m matrices A and B, the operation A ⊗ B involves the action of
multiplying component-wise each element of A by the corresponding element of B.
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4.1 The proposed algorithm

Our approach is based on the assumption that if the inertia of each substance is
known, then only a part of substances has to be partitioned among the reactions
which require to consume them. The main steps of the algorithm are described in
the following of this section.

Step 1.

The goal of the first step is to evaluate grossly the initial fluxes at the step 0 by
assuming that they are proportional to the reactants, that is, for all r ∈ R:

ûr[i] = kryr[i] (7)

where kr ∈ R, and yr[i] is the product of all substance quantities, at the step i,
which are reactants for r. We suppose that if αr = λ then yr = 1, and we set

Û [i] = (ûr[i] | r ∈ R) (8)

For example, in a metabolic system with three kinds of substances, a, b, c, and
with a set of reactions given in the first column of the Table 1, the relationships
among the fluxes of these reactions and their reactants are reported in the second
column of the Table 1.
Let us consider the following system, called Local-Stoichiometric Module at the

Reactions Maps

r1 : a → bc kr1a
r2 : b → a kr2b
r3 : c → ab kr3c
r4 : c → cc kr4c

Table 1. Reactions and their flux regulation maps of the Local-Stoichiometric Module.

step i:
x[i + 1]− x[i] =

∑
r∈R(x)

Ax,rûr[i] ∀x ∈ X (9)

If we assume that the constants kr, with r ∈ R, do not sensibly change in few steps,
then by applying the system (9) for a sufficient number of steps we can obtain
a square linear system of dimension m having maximum rank. In the example
reported in Table 1, we have a Local-Stoichiometric Module of 3 equations which
initially has 4 unknowns. It has rank 3. At the second iteration of this module we
get other 3 equations and the rank of Local-Stoichiometric Module is maximum.
Thus, we can obtain a system of equation having unique solution. In general, if
we start with the Local-Stoichiometric Module at the step 0 then we can compute
the vector Û [0] = (ûr[0] | r ∈ R) by applying the Local-Stoichiometric module a
suitable number of steps.
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Step 2.

The aim of this step is to approximate the inertia of the system. We split this step
in two sub-steps. In the first one we take n linear independent reactions, obtaining
a set R0, according to the Covering Offset Log Gain Property. Then, we use the
set R0 to obtain an OLGA[1] module, with U [0] = Û [0], where Û [0] is the vector of
fluxes computed in the previous step. We will indicate with U∗[1] = (u∗r [1] | r ∈ R)
the solution of this system. However, if some elements of this vector is a negative
real value, then we choose others n linear independent reactions and reapply the
procedure above describe (it easy to prove that a positive vector must exist).

In the second sub-step we compute, for each x ∈ X, the inertia, indicated by
x̄, by applying the following equation:

x̄[1] = x[1]−
∑

r∈Rα(x)

u∗r [1], ∀x ∈ X (10)

Step 3

In the last step we obtain the vector of fluxes at the evolution step 1 by solving an
optimization problem. In fact, the vector U◦ = (u◦r | r ∈ R) we search has to be
a strictly positive vector of Rm (positive in each component) which satisfies the
following n equations:

x[1]− x̄[1] =
∑

r∈Rα(x)

u◦r [1], ∀x ∈ X (11)

and it is bounded, for each component, by the following constraint:

u◦r [1] ≤

min
{

xj [1]−x̄j [1]
|αr|xj

| xj ∈ αr

}
if αr 6= λ

kr if αr = λ
(12)

and such that
U◦ = min

ξ∈Rm
‖A× ξ − (X[2]−X[1])‖ (13)

5 Experiments

In this section, in order to evaluate the performance of our algorithm, we apply
it to two case studies: i) a synthetic oscillatory metabolic system, and ii) the
Belousov-Zhabotinsky reaction [1, 7, 19, 22].
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Reactions Flux regulation maps

r1 : a → aa ϕ1 = k1a/(k1 + k2c + k4b + k6)
r2 : a → b ϕ2 = k2ac/(k1 + k2c + k4b + k6)
r3 : b → λ ϕ3 = k3b/(k3 + k6)
r4 : a → c ϕ4 = k4ab/(k1 + k2c + k4b + k6)
r5 : c → λ ϕ5 = k5c/(k5 + k6)

X[0] = (100 100 1) k1 = k3 = k5 = 4, k2 = k4 = 0.02, k6 = 100

Table 2. Sirius’ reactions and maps.

5.1 A synthetic metabolic system

Let us consider the synthetic non-cooperative metabolic system called Sirius and
given in Table 2 [9]. Firstly, we generate the dynamics of this model for 1000
steps by using the flux regulation maps of Sirius. Then, we use our algorithm
to approximate the vector of fluxes U◦[1] at the evolution step 1. Starting from
U◦[1], by applying OLGA[i] for i = 1, 2, . . . , 900, we deduce the vectors U [i], for
i = 2, 3, . . . , 899, according to the Log-Gain theory. Figure 1 shows the fluxes
relative to the dynamics of Sirius initially generated, while the Figure 2 shows the
inferred fluxes. These results show an almost complete accordance.

Fig. 1. The values of Sirius’ fluxes calculated by using the flux regulation maps given in
Table 2.
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Fig. 2. The values of Sirius’ fluxes calculated by applying the Log-gain theory and the
initial vector of fluxes inferred by the proposed algorithm.

5.2 A biochemical case study

In this subsection the application of the algorithm to approximate the initial fluxes
of the Belousov-Zhabotinsky reaction, also known as BZ reaction, is discussed.
This reaction represents a famous example of a biochemical oscillatory phenom-
enon. Its importance is that it is the first evidence of a biochemical clock. Although
the stoichiometry of the BZ reaction is quite complicated, several simplified math-
ematical models of this phenomenon have been proposed. In particular, Prigogine
and Nicolis [15] proposed a simplified formulation of the dynamics of the BZ re-
action, called Brusselator, whose oscillating behavior is represented by only two
substances, x and y respectively, and it is governed by the following system of
differential equations:

dx

dt
= k1 − k2x + k3x

2y − k4x (14)

dy

dt
= k2x− k3x

2y

where k1 = 100, k2 = 3, k3 = 10−4 and k4 = 1 represent constant rates. The
numerical solution of the system system (14) from initial conditions x = 1 and
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y = 10 shows the oscillatory dynamics displayed in Figure 3. We use this dynamics
as experimental data on which applying our algorithm. By reading the set of

Fig. 3. Numerical solution of the system of differential equations (14).

differential equations (14) the stoichiometry of the Brusselator can be interpreted
by using the set of rewriting rules reported in Table 3. In fact, species x has
two positive and two negative contributions, while one positive and one negative
contributions characterize y. Thus, the equations can be translate in the suitable
stoichiometry by following the strategy described in [5].

Rules

r1 : λ → x
r2 : xxy → xxx
r3 : x → y
r4 : x → λ

Table 3. A set of rewriting rules that describes the Brusselator’ stoichiometry.

In the case of BZ we adopt a different strategy of validation of our algorithm.
In fact, there is a complete correspondence between the dynamics computed by the
differential model and that one computed by the equational metabolic algorithm
using the fluxes inferred (Figure 4) by solving an OLGA module starting from the
initial fluxes inferred by means of our algorithm.
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Fig. 4. The BZ reaction’s fluxes calculated by using the Log-gain theory and the initial
vector of fluxes inferred by our algorithm.

6 Conclusions

In this paper we have devised an algorithm for inferring the initial reaction fluxes
of a metabolic network.

The proposed algorithm has been validated on test cases of a synthetic
metabolic oscillator and Brusselator reaction. The near future investigations will
be planed with the aim i) to show the applicability of our method to complex
biological cases ii) and to improve this algorithm possibly with other relevant
computational features.
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3. G. Ciobanu, M.J. Pérez-Jiménez, G. Păun: Applications of Membrane Computing

(Natural Computing Series). Springer-Verlag, Berlin, 2006.
4. F. Fontana, L. Bianco, V. Manca: P systems and the modeling of biochemical oscil-
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A. Salomaa, editors, Handbook of Membrane Computing, chapter 16. Oxford Univer-
sity Press, 2009. To appear.

11. V. Manca: Metabolic P dynamics. In G. Păun, G. Rozenberg, and A. Salomaa,
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Summary. We consider a natural restriction in the architecture of a spiking neural P
system, namely, to have neurons of a small number of types (i.e., using a small number of
sets of rules), and we prove that three types of neurons are sufficient in order to generate
each recursively enumerable set of numbers as the distance between the first two spikes
emitted by the system or as the number of spikes in a specified neuron, in the halting
configuration. The case we investigate is that of spiking neural P systems with standard
rules, with delays, but without using forgetting rules; similar normal forms remain to be
found for other types of systems.

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [3], and
then investigated in a large number of papers. We refer to the respective chapter
of [4] for general information in this area, and to the membrane computing website
from [5] for details.

In this note, the SN P systems are considered as generators of sets of numbers,
with the numbers obtained as the distance in time between the first two spikes
emitted by the output neuron of the system, or with the generated number given
as the number of spikes present in a given neuron in the end of the computation.
Systems with standard rules are used (i.e., with only one spike produced by each
rule), with the rules used sequentially in each neuron, but the whole system work-
ing in the maximally parallel way (i.e., each neuron which can use a rule has to
do it).

Several normal forms were imposed to SN P systems – see, e.g., [2]. A natural
restriction suggested by biology but also natural by itself is to restrict the number
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of types of neurons used in a system, where by “type” we understand the set of
rules present in a neuron. An SN P system whose neurons are of at most k types
is said to be in the kR-normal form.

We prove that each recursively enumerable set of natural numbers can be
generated by an SN P system (without forgetting rules, but using delays) in the
3R-normal form when the number is obtained as the distance between the first
two spikes sent out by the system or when the number is given by the number of
spikes from a specified neuron. Slightly bigger values are obtained when we also
consider the number of spikes initially present in a neuron for defining the “type”
of a neuron. We do not know whether or not these results can be improved, or how
they extend to other classes of SN P systems. (Do the forgetting rules help? What
about extended rules, about asynchronous SN P systems, systems with exhaustive
use of rules, etc?) What about SN P systems used in the accepting mode? (The
systems can then be deterministic, which usually brings some simplifications.)

2 Prerequisites

We assume the reader to be familiar with basic elements about SN P systems,
e.g., from [4] and [5], and we introduce here only a few notations, as well as the
notion of register machines, used later in the proofs of our results. We also assume
familiarity with very basic elements of automata and language theory, as available
in many monographs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The family of Turing computable sets of natural numbers
is denoted by NRE. For a regular expression E we denote by L(E) the regular
language identified by E.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we proceed to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
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instruction, then the number n stored at that time in the first register is said to
be computed by M . The set of all numbers computed by M is denoted by N(M).
It is known that register machines compute all sets of numbers which are Turing
computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register
is never decremented during the computation, we only add to its contents. In the
proofs of our results we assume that the register machines which we simulate have
these properties.

We can also use a register machine in the accepting mode: a number is stored
in the first register (all other registers are empty); if the computation starting in
this configuration eventually halts, then the number is accepted. Again, all sets
of numbers in NRE can be obtained, even using deterministic register machines,
i.e., with the ADD instructions of the form li : (ADD(r), lj , lk) with lj = lk (in this
case, the instruction is written in the form li : (ADD(r), lj)).

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

3 Spiking Neural P Systems

In order to have the paper self-contained, we recall here the definition of an SN P
system and of the set of numbers generated or accepted by it.

An SN P system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.
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The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → a; d can be applied. The application of this rule means removing c spikes
(thus only k − c remain in σi), the neuron is fired, and it produces a spike after
d time units (a global clock is assumed, marking the time for the whole system,
hence the functioning of the system is synchronized). If d = 0, then the spike is
emitted immediately, if d = 1, then the spike is emitted in the next step, etc. If the
rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d−1 the neuron
is closed (this corresponds to the refractory period from neurobiology), so that it
cannot receive new spikes (if a neuron has a synapse to a closed neuron and tries
to send a spike along it, then that particular spike is lost). In the step t + d, the
neuron spikes and becomes again open, so that it can receive spikes (which can be
used starting with the step t + d + 1).

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron. During a computation, the “state”
of the system is described by both by the number of spikes present in each neuron,
and by the open/closed condition of each neuron: if a neuron is closed, then we
have to specify when it will become open again.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used. With any computation (halting or not) we as-
sociate a spike train, the sequence of zeros and ones describing the behavior of the
output neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

An SN P system can be used in various ways. In the generative mode, we start
from the initial configuration and we define the result of a computation (i) either
as the number of steps between the first two spikes sent out by the output neuron,
or (ii) as the number of spikes present in neuron σout when the computation halts
(note that in the first case we do not request that the computation halts after
sending out two spikes). We denote by N2(Π) the set of numbers computed in the
first way by an SN P system Π and by Ngen(Π) the set of numbers generated
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by Π in the second case. We can also use Π in the accepting mode: a number
n is introduced in the system in the form of a number f(n) of spikes placed in
neuron σin, for a well-specified mapping f , and the number n is accepted if and
only if the computation halts. (Alternatively, we can introduce the number to be
recognized as the distance in time between two spikes entering neuron σin from
the environment.) We denote by Nacc(Π) the set of numbers accepted by Π.

In the generative case, the neuron (with label) in is ignored, in the accepting
mode the neuron out is ignored (in most cases below, we identify the neuron σi

with its label i, so we say “neuron i” understanding that we speak about “neuron
σi”). We can also use an SN P system in the computing mode, introducing a
number in neuron in and obtaining a result in neuron out, but we do not consider
this case here.

A neuron σi (in the initial configuration of an SN P system) is characterized
by ni, the number of spikes present in it, and by Ri, its associated set of rules.
An SN P system is said to be in the kR-normal form, for some k ≥ 1, if there are
at most k different sets R1, . . . , Rk of rules used in the m neurons of the system.
An SN P system is said to be in the knR-normal form, for some k ≥ 1, if there
are at most k different pairs (n1, R1), . . . , (nk, Rk) describing the m neurons of the
system.

We denote by NαSNP (kβ, forg, dley) the families of all sets Nα(Π) computed
by SN P systems in the kβ-normal form, for α ∈ {2, gen, acc}, β ∈ {R, nR}, and
k ≥ 1; if no forgetting rules are used, then we remove the indication forg from the
notation; if all rules have delay d = 0, then we remove the indication dley from
the notation.

4 A 3R-Normal Form Result

We are going now to prove the main result mentioned in the Introduction: SN
P systems with only three different sets of rules are universal when generating
numbers encoded in the first two spikes of the spike train.

Theorem 1. NRE = N2SNP (3R, dley).

Proof. We show that NRE ⊆ N2SNP (3R, dley); the converse inclusion is straight-
forward (or we can invoke for it the Turing-Church thesis). Let us consider a reg-
ister machine M = (m,H, l0, lh, I) with the properties specified in Section 2. We
construct an SN P system Π which simulates M in the way somewhat standard
already when proving that a class of SN P systems is universal. Specifically, we
construct modules ADD and SUB to simulate the instructions of M , as well as
an output module FIN which provides the result (in the form of a suitable spike
train). Each register r of M will have a neuron r in Π, and if the register contains
the number n, then the associated neuron will contain 2n spikes.

The modules will be given in a graphical form, indicating their initial configu-
ration, the synapses, and, for each neuron, the associated set of rules; all neurons
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are initially empty, with the exception of the neuron associated with the initial la-
bel, l0, of M , which contains one spike, and with exception of a few other neurons,
as shown in the following figures.
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li

a(aa)∗/a → a; 0

a → a; 0

li1
a(aa)∗/a → a; 0

a → a; 0

rli2
a(aa)∗/a → a; 0

a → a; 0

li3
a(aa)∗/a → a; 0

a → a; 0

li6
a(aa)∗/a → a; 0

a → a; 0

li4 a(aaa)∗/a → a; 0

a → a; 1
li5a(aa)∗/a → a; 0

a → a; 0

li7

a(aa)∗/a → a; 0

a → a; 0
li8

a(aa)∗/a → a; 0

a → a; 0

li9

a2

a(aaa)∗/a → a; 0

a → a; 1

li10

a2

a(aaa)∗/a → a; 0

a → a; 1

li11

a(aa)∗/a → a; 0

a → a; 0

li12

a(aa)∗/a → a; 0

a → a; 0

lj lk

li13

a(aa)∗/a → a; 0

a → a; 0

li14

a(aa)∗/a → a; 0

a → a; 0

Fig. 1. Module ADD, simulating li : (ADD(r), lj , lk)

We consider the following three sets of rules:

R1 = {a(aa)∗/a → a; 0, a → a; 0},
R2 = {a(aa)∗/a3 → a; 0, a → a; 1},
R3 = {a(aaa)∗/a → a; 0, a → a; 1}.
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The ADD module used to simulate an addition instruction li : (ADD(r), lj , lk)
is indicated in Figure 1. No rule in R1 can be applied in the presence of an even
number of spikes. If a spike enters the neuron (with the label) li, then this neuron
starts using its rules; initially, this is the case with neuron l0. Neuron li spikes and
one spike is sent to both neuron li1 and neuron li2, which also spike in the next step.
In this way, two spikes are sent to neuron r, and this represents the increment of
register r by one. Neuron li2 also sends a spike to neurons li3, li4, and li5. Neurons
li3 and li5 spike immediately, while neuron li4 can non-deterministically choose
either rule to use as both of them are enabled by the existence of a single spike –
this ensures the non-deterministic passage to one of the instructions lj or lk..

Assume that σli4 uses the rule a(aa)∗/a → a; 0. This means that in the next
step σli8 receives two spikes, hence no rule here can be used. Simultaneously,
neurons li6 and li7 receive one spike each, and both of them spike. In this way,
σli9 receives one spike and σli7 continues having one spike. Neuron li9 contains
now a number of spikes of the form 3n + 3, for some n ≥ 0 (initially we had two
spikes here, hence n = 0) and no rule is enabled. In the next step, this neuron
receives one further spike, and the first rule is fired (the number of spikes is now
3(n + 1) + 1). All neurons lj and li11, li12 receive one spike. The last two neurons
send back to σli9 one spike each, hence the number of spikes in this neuron will be
again congruent with 2 modulo 3, as at the beginning. Thus, the neuron associated
with the label lj has been activated.

If neuron li4 uses the rule a → a; 1, then σli7 receives two spikes at the same (af-
ter one time unit) time and this branch remains idle, while neurons li8, li10, li13, li14
behave like neurons li7, li9, li11, li12, and eventually σlk is activated and the number
of spikes from σli10 returns to the form 3s + 2, for some s ≥ 0.

The simulation of the ADD instruction is correctly completed.
The SUB module used to simulate a subtraction instruction li : (SUB(r), lj , lk)

is shown in Figure 2. Because the reader has the experience of examining the work
of the ADD module, this time we do not write explicitly the rules, but the sets
R1, R2, R3 as defined above. Like in the case of the ADD module, the SUB module
starts to work when a spike enters the neuron with the label li. The functioning of
each neuron is similar to the previous case (the rules to be used are chosen in the
same way and eventually the neurons remain with a number of spikes like that in
the starting configuration).

The neuron li sends a spike to the neurons li1, and r. If register r is not empty,
then the rule a(aa)∗/a3 → a; 0 of R2 will be applied.

Assume that this is the case. This means that σr spikes immediately, hence σli2

receives two spikes (one from σli1) and is doing nothing, while neuron li3 receives
one spike and it fires. A spike is sent to each of the three neurons li7, li8, and li9.
This last neuron will send a spike to σli11 , which will spike, thus activating the
neuron associated with label lj . The two spikes sent by σli7 , σli8 to σli10 wait here,
as no rule is enabled for a number of spikes of the form 3n + 2. In the next step,
a spike comes from neuron li11, hence σli10 ends with a number of spikes which is
a multiple of 3, hence no rule is activated.
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Fig. 2. Module SUB, simulating li : (SUB(r), lj , lk)

If the register r is empty, then in σr we have to use the rule a → a; 1. The
neuron li2 receives a spike from σli1 and in the next step it fires, at the same time
with the move of spikes produced at the previous step in σr and kept there because
of the delay. In this moment, all neurons li2, li3, li4, li5, and li6 contains one spike.
Neurons li4, li5, li6 send their spikes to σli10 and σli11 , but they immediately receive
one spike from σli2 . This also happens with neurons li7, li8, li9, which receive one
spike each from σli3 . Neuron li10 spikes and activated lk, sending at the same
time one spike to σli11 , thus completing here the number of spikes to a multiples of
three. Similarly, in the next step, σli10 (resp., σli11) receives three spikes each, from
neurons li4, li7, li8 (respectively, li5, li6, li9). The simulation of the SUB instruction
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is correctly completed, with the neurons containing numbers of spikes of the same
parity as in the beginning.

The modules have different neurons, precisely identified by the label of the
respective instruction of M . Modules ADD do not interfere. However, a problem
appears with modules SUB: when simulating an instruction li : (SUB(r), lj , lk),
neuron σr send one spike to all neurons ls2, ls3 from modules associated with
instructions ls : (SUB(r), lu, lv) (that is, subtracting from the same register r).
However, no undesired effect appears: the spikes arrive simultaneously in neurons
ls2, ls3, hence they send one spike to each of the three neurons “below” them,
which, in turn, send their spikes to neurons ls10, ls11; each of these neurons gets
three spikes, hence no rule can be used here, the spikes are just accumulated (in a
number which continues to be a multiple of 3).
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Fig. 3. The FIN module

The addition and subtraction modules simulate the computation of M . In order
to produce the number generated by M as the distance between the first two spikes
sent out by the system Π we use the module FIN from Figure 3. It is triggered
when M reaches the lh : HALT instruction. At this point a single spike is sent to
neuron 1, and at the same time to σlh1 . Neuron σ1 sends a spike to each neuron
lh1, lh2, and out. The output neuron spikes (for the first time). Neurons σ1 and σlh1

continuously exchange spikes, hence at each step from now on neuron σ1 contains
an odd number of spikes and fires. Neuron out gets two spikes in each step, one
from σ1 and one from σlh2 , hence nothing happens. When the content of σ1 is
exhausted, the rule a → a; 1 must be used here. The neuron is closed, the spike of
σlh1 is lost, σout receives only one spike, from σlh2 , and spikes for the second time.
The work of the system continues forever, because of the interchange of spikes
between σlh1 and σ1, but we are interested only in the distance between the first
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two spikes emitted by σout, and this distance is equal to the number stored in
register 1 in the end of the computation of M . Consequently, N(M) = N2(Π) and
this concludes the proof. 2

In the previous figures one can see that the set R1 appears in neurons having
zero or one spike (the case of σl0) in the initial configuration, R2 only with zero
spikes, and the set R3 appears in neurons with zero, two, or three spikes. This
means that, if we also consider the number of spikes present in a neuron in the
initial configuration when defining the type of a neuron, then the previous 3R-
normal form becomes a 6nR-normal form.

Corollary 1. NRE = N2SNP (6nR, dley).

When considering the generated number encoded in the number of spikes
present in the output neuron, then several simplifications of the previous con-
structions are possible. First, the module FIN is no longer necessary; moreover,
when a spike is sent to neuron lh, the computation will halt. Because no instruc-
tion is performed in the register machine after reaching the instruction lh : HALT,
we provide no outgoing synapse for neuron lh, so it does matter which rules are
present in this neuron, no change is implied on the result of the computation.
Then, we only write to register 1, hence to neuron 1 we do not have to apply SUB
operations; this means that we can only add spikes to this neuron, namely, one at
a time, while any rule can be used inside because no outgoing synapse is present
for this neuron. However, always we have the same number of types of neurons,
because three types are necessary in modules ADD and SUB. (Similarly, we can
use for neuron 1 a FIN module which halves the number of spikes and sends them
to another neuron, which leads back to a construction as above.) The results are
again as above (the details are left to the reader):

Corollary 2. NRE = NgenSNP (3R, dley) = NgenSNP (6nR, dley).

5 Final Remarks

The accepting case brings further simplifications: the ADD instructions are deter-
ministic (hence only one type of neurons is necessary – see Figure 4, where R1

is as above), and the FIN module is no longer necessary (we consider the input
given as the number of spikes initially present in neuron σin, without taking into
account this number when defining the types of neurons).

However, if we also take into consideration the number of spikes present in the
neurons, then we get the following types: (0, R1), (1, R1), (0, R2), (3, R3), that is,
we have the next result:

Corollary 3. NRE = NaccSNP (3R, dley) = NaccSNP (4nR, dley).
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Fig. 4. Module ADD, simulating li : (ADD(r), lj)

We do not have a construction for module SUB using only two types of neurons.
As mentioned in the Introduction, there are several open problems and research

topics suggested by the previous results. We conclude by mentioning a few basic
ones. Is the result in Theorem 1 optimal, or a 2R-normal form or even a 1R-normal
form result is valid? Extend this study to other classes of SN P systems, with other
types of rules or with other modes of using the rules.

Important remark: The proof of Theorem 1 implicitly shows that the uni-
versality of SN P systems can be obtained without using forgetting rules. The
result was first stated in [2], but the construction of the SUB module as given in
that paper has a bug: the interaction between neurons from different SUB mod-
ules acting on the same register is not examined and the undesired interactions
avoided. This is done in the construction from Figure 2, as explicitly mentioned
above. Note that our construction uses the delay feature; in [1] it is proved that
both the forgetting rules and the delay feature can be avoided without losing the
universality, but also there it seems that the interaction of neurons in different
SUB modules is not carefully checked. Whether or not the idea in our module
SUB can be used to obtain such a stronger normal form remains to be seen.
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Summary. Besides usual spikes employed in spiking neural P systems, we consider
“anti-spikes”, which participate in spiking and forgetting rules, but also annihilate spikes
when meeting in the same neuron. This simple extension of spiking neural P systems
is shown to considerably simplify the universality proofs in this area: all rules become
of the form bc → b′ or bc → λ, where b, b′ are spikes or anti-spikes. Therefore, the
regular expressions which control the spiking are the simplest possible, identifying only
a singleton. A possible variation is not to produce anti-spikes in neurons, but to consider
some “inhibitory synapses”, which transform the spikes which pass along them into anti-
spikes. Also in this case, universality is rather easy to obtain, with rules of the above
simple forms.

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [4], and
then investigated in a large number of papers. We refer to the respective chapter
of [7] for general information in this area, and to the membrane computing website
from [9] for details.

In this note, we consider a variation of SN P systems which was suggested
several times, i.e., involving inhibitory impulses/spikes or inhibitory synapses and
investigated in a few papers under various interpretations/formalizations – see,
e.g., [1], [2], [5], [8]. The definition we take here for such spikes – we call them
anti-spikes (somewhat thinking to anti-matter) – considers having, besides usual
“positive” spikes denoted by a, objects denoted by ā, which participate in spiking
or forgetting rules as usual spikes, but also in implicit rules of the form aā → λ:
if an anti-spike meets a spike in a given neuron, then they annihilate each other,
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and this happens instantaneously (the disappearance of one a and one ā takes no
time, it is like applying the rule aā → λ without consuming any time for that).

This simple extension of SN P systems is proved to entail a surprising simpli-
fication of both the proofs and the form of rules necessary for simulating Turing
machines (actually, the proofs here are based on simulating register machines) by
means of SN P systems: all rules have a singleton regular expression, which, more-
over, indicates precisely the number of spikes or anti-spikes to consume by the
rule. (Precisely, we have rules of the forms bc → b′ or bc → λ, where b, b′ are spikes
or anti-spikes; such rules, having the regular expression E such that L(E) = bc are
called pure; formal definitions will be given immediately.) This can be considered
as a (surprising) normal form for this case; please compare with the normal forms
from [3], especially with the simplifications of regular expressions obtained there.

Anti-spikes are produced from usual spikes by means of usual spiking rules; in
turn, rules consuming anti-spikes can produce spikes or anti-spikes (actually, as
we will see below, the latter case can be avoided). A possible variant is to produce
always only spikes and to consider synapses which “change the nature” of spikes.
Also in this case, universality is easily proved, using only pure rules.

2 Prerequisites

We assume the reader to be familiar with basic elements about SN P systems,
e.g., from [7] and [9], and we introduce here only a few notations, as well as the
notion of register machines, used later in the proofs of our results. We also assume
familiarity with very basic elements of automata and language theory, as available
in many monographs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+.
A regular expression over an alphabet V is defined as follows: (i) λ and each

a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)+) = (L(E1))+, for all regular expressions E1, E2 over V . Non-necessary
parentheses can be omitted when writing a regular expression, and also (E)+∪{λ}
can be written as E∗.

The family of Turing computable sets of natural numbers is denoted by NRE.
A register machine is a construct M = (m,H, l0, lh, I), where m is the number

of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:
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• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we proceed to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n stored at that time in the first register is said to
be computed by M . The set of all numbers computed by M is denoted by N(M).
It is known that register machines compute all sets of numbers which are Turing
computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register is
never decremented during the computation, we only add to its contents.

We can also use a register machine in the accepting mode: a number is stored
in the first register (all other registers are empty); if the computation starting in
this configuration eventually halts, then the number is accepted. Again, all sets
of numbers in NRE can be obtained, even using deterministic register machines,
i.e., with the ADD instructions of the form li : (ADD(r), lj , lk) with lj = lk (in this
case, the instruction is written in the form li : (ADD(r), lj)).

Again, without loss of generality, we may assume that in the halting configu-
ration all registers are empty.

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

3 Spiking Neural P Systems with Anti-Spikes

We recall first the definition of an SN P system in the classic form (without delays,
because this feature is not used in our paper) and of the set of numbers generated
or accepted by it.

An SN P system of degree m ≥ 1 is a construct

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:



142 L. Pan, Gh. Păun

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a, where E is a regular expression over a and c ≥ 1;
(2) as → λ, for some s ≥ 1;

3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → a can be applied. The application of this rule means removing c spikes
(thus only k − c remain in σi), the neuron is fired, and it produces a spike which
is sent immediately to all neurons σj such that (i, j) ∈ syn.

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

Note that we have not imposed here the restriction that for each rule E/ac → a
of type (1) and as → λ of type (2) from Ri to have as /∈ L(E).

If a rule E/ac → a of type (1) has E = ac, then we will write it in the simplified
form ac → a and we say that it is pure.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a and E2/ac2 → a, can have
L(E1)∩L(E2) 6= ∅, it is possible that two or more rules can be applied in a neuron,
and in that case only one of them is chosen non-deterministically. Thus, the rules
are used in the sequential manner in each neuron, but neurons function in parallel
with each other.

The configuration of the system is described by the number of spikes present
in each neuron. The initial configuration is n1, n2, . . . , nm. Using the rules as de-
scribed above, one can define transitions among configurations. Any sequence of
transitions starting in the initial configuration is called a computation. A com-
putation halts if it reaches a configuration where no rule can be used. With any
computation (halting or not) we associate a spike train, the sequence of zeros and
ones describing the behavior of the output neuron: if the output neuron spikes,
then we write 1, otherwise we write 0.

When using an SN P system in the generative mode, we start from the initial
configuration and we define the result of a computation as the number of steps
between the first two spikes sent out by the output neuron. We denote by N2(Π)
the set of numbers computed by Π in this way. In the accepting mode, a number n
is introduced in the system in the form of a number f(n) of spikes placed in neuron
σin, for a well-specified mapping f , and the number n is accepted if and only if
the computation halts. We denote by Nacc(Π) the set of numbers accepted by Π.
It is also possible to introduce the number n by means of a spike train entering
neuron σin, as the distance between the first two spikes coming to σin.

In the generative case, the neuron (with label) in is ignored, in the accepting
mode the neuron out is ignored (sometimes below, we identify the neuron σi with
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its label i, so we say “neuron i” understanding that we speak about “neuron σi”).
We can also use an SN P system in the computing mode, introducing a number
in neuron in and obtaining a result in (by means of) neuron out, but we do not
consider this case here.

We denote by NαSNP (rulek) the families of all sets Nα(Π), α ∈ {2, acc},
computed by SN P systems with at most k ≥ 1 rules (spiking or forgetting) in
each neuron.

Let us now pass to the extension mentioned in the Introduction. A further
object, ā, is added to the alphabet O, and the spiking and forgetting rules are of
the forms

E/bc → b′, bc → λ,

where E is a regular expression over a or over ā, while b, b′ ∈ {a, ā}, and c ≥ 1.
As above, if L(E) = bc, then we write the first rule as bc → b′ and we say that it
is pure.

Note that we have four categories of rules, identified by (b, b′) ∈
{(a, a), (a, ā), (ā, a), (ā, ā)}.

The rules are used as in a usual SN P system, with the additional fact that a
and ā “cannot stay together”, they instantaneously annihilate each other: if in a
neuron there are either objects a or objects ā, and further objects of either type
(maybe both) arrive from other neurons, such that we end with ar and ās inside,
then immediately a rule of the form aā → λ is applied in a maximal manner, so
that either ar−s or ās−r remain, provided that r ≥ s or s ≥ r, respectively.

We stress the fact that the mutual annihilation of spikes and anti-spikes takes
no time, so that the neuron always contains either only spikes or anti-spikes. That
is why, for instance, the regular expressions of the spiking rules are defined either
on a or on ā, but not on both symbols. Of course, we can also imagine that the
annihilation takes one time unit, when the explicit rule aā → λ is used, but we do
not consider this case here (if the rule aā → λ has priority over other rules, then
no essential change occurs in the proofs below).

The computations and the result of computations are defined in the same way
as for usual SN P systems – but we consider the restriction that the output neuron
produces only spikes, not also anti-spikes (again, this is a restriction which is only
natural/elegant, but not essential). As above, we denote by NαSaNP (rulek, forg)
the families of all sets Nα(Π), α ∈ {2, acc}, computed by SN P systems with at
most k ≥ 1 rules (spiking or forgetting) in each neuron, using also anti-spikes.
When only pure rules are used, we write NαSaNP (prulek).

4 Universality Results

We start by considering the generative case, for which we have the next result
(universality is known for usual SN P systems, without anti-spikes, but now both
the proof is simpler and the used rules are all pure):

Theorem 1. NRE = N2SaNP (prule2).
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Proof. We only have to prove the inclusion NRE ⊆ N2SaNP (prule2, forg).
Let us consider a register machine M = (m,H, l0, lh, I) as introduced in Section

2. We construct an SN P system Π (with O = {a, ā}) which simulates M in the
way already standard in the literature when proving that a class of SN P systems
is universal. Specifically, we construct modules ADD and SUB to simulate the
instructions of M , as well as an output module FIN which provides the result
(in the form of a suitable spike train). Each register r of M will have a neuron
σr in Π, and if the register contains the number n, then the associated neuron
will contain n spikes, except for the neuron σ1 associated with the first register
(the neurons associated with registers will either contain occurrences of a, hence ā
disappears immediately, or only ā is present, and it is consumed in the next step
by a rule ā → a). Two spikes are initially placed in the neuron σ1 associated with
the first register, so if the first register contains the number n, then neuron σ1 will
contain n + 2 spikes. These two spikes are used for outputting the computation
result. Note that the number of spikes in the neuron σ1 will not be smaller than
two before the simulation reaches the instruction lh and the output module FIN
is activated, because we assume that the output register is never decremented
during the computation. One neuron σli is associated with each label li ∈ H, and
some auxiliary neurons σ

l
(j)
i

, j = 1, 2, 3, . . ., will be also considered, thus precisely
identified by label li (remember that each li ∈ H is associated with a unique
instruction of M).

The modules will be given in a graphical form, indicating the synapses and, for
each neuron, the associated set of rules. In the initial configuration, all neurons are
empty, except for the neurons associated with label l0 of M and the first register,
which contain one spike and two spikes, respectively. In general, when a spike a
is sent to a neuron σli , with li ∈ H, then that neuron becomes active and the
module associated with the respective instruction of M starts to work, simulating
the instruction.

The functioning of the module from Figure 1, simulating an instruction li :
(ADD(r), lj , lk), is obvious; the non-deterministic choice between instructions lj and
lk is done by non-deterministically choosing the rule to apply in neuron σ

l
(3)
i

.
The simulation of an instruction li : (SUB(r), lj , lk) is also simple – see the

module from Figure 2. The neuron σli sends a spike to neurons σ
l
(1)
i

and σ
l
(2)
i

.
In the next step, neuron σ

l
(2)
i

sends an anti-spike to neuron σr, corresponding
to register r; at the same time, σ

l
(1)
i

sends a spike to each neuron σ
l
(3)
i

, σ
l
(4)
i

. If
register r is non-empty, that is, neuron σr contains at least one a, then ā removes
one occurrence of a, which corresponds to subtracting one from register r, and no
rule is applied in σr. This means σ

l
(5)
i

and σ
l
(6)
i

receive only two spikes, from σ
l
(3)
i

and σ
l
(4)
i

, hence σlj is activated and σlk not. If register r is empty, then the rule
ā → a is used in σr, hence σ

l
(5)
i

and σ
l
(6)
i

receive three spikes, and this leads to the
activation of σlk , which is the correct continuation also in this case.

Note that if there are several sub instructions lt which act on register r, then
σr will send one spike to neurons σ

l
(5)
t

and σ
l
(6)
t

while simulating the instruction
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Fig. 1. Module ADD, simulating li : (ADD(r), lj , lk)

li : (SUB(r), lj , lk), but this spike is immediately removed by the rule a → λ present
in all neurons σ

l
(5)
t

, σ
l
(6)
t

.
The module FIN, which produces a spike train such that the distance between

the first two spikes equals the number stored in register 1 of M , is indicated in
Figure 3. At some step t, the neuron σlh is activated, which means that the register
machine M reaches the halt instruction and the system Π starts to output the
result. Suppose the number stored in register 1 of M is n. At step t+2, neurons σh1 ,
σh3 and σh4 contain a spike. Neurons σh1 and σh4 exchange spikes among them,
and thus σh4 sends a spike to neuron σh5 continuously until neuron σ1 spikes and
neurons σh1 , σh4 , σh5 are “flooded”. At step t + 4, neuron σout receives a spike,
and in the next step σout sends a spike to the environment; at the same time, σ1

receives an anti-spike that decreases by one the number of spikes from σ1. At step
t + n + 4, the neuron σ1 contains one spikes, and in the next step neuron σ1 sends
a spike to neuron σout. At step t + n + 6, neuron σout spikes again. The distance
between the first two spikes emitted by σout equals n, which is exactly the number
stored in register 1 of M . The spike produced by neuron σ1 “floods” neurons σh1 ,
σh4 , and σh5 , thus blocking the work of these neurons. After the system sends the
second spike out, the whole system halts.

From the previous explanations we get the equality N(M) = N2(Π) and this
concludes the proof. ut

Note that in the previous construction there is no rule of the form āc → ā; is
it possible to also avoid other types of rules? For instance, the rule ā → a only
appears in the neurons associated with registers in module SUB. Is it possible to
remove the ā → a by replacing it with the rules ac → a and a → ā?
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If the SN P systems are used in the accepting mode, then a further simplifi-
cation is entailed by the fact that the ADD instructions are deterministic. Such
an instruction li : (ADD(r), lj) can be directly simulated by a simple module as in
Figure 4.
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Together with SUB modules, this suffices in the case when the number to accept
is introduced as the number of spikes initially present in neuron σ1. If this number
is introduced in the system as the distance between the first two spikes which
enters the input neuron, then a input module is necessary, as used, for instance,
in [3]. Note that the module INPUT from [3] uses only pure rules (involving only
spikes, not also anti-spikes), hence we get a theorem like Theorem 1 also for the
accepting case, for both ways of providing the input number.

It is worth mentioning that in the previous constructions we do not have spiking
rules which can be used at the same time with forgetting rules.

5 Using Inhibitory Synapses

Let us now consider the case when no rule can produce an anti-spike, but there
are synapses which transform spikes into anti-spikes. The previous modules ADD,
SUB, FIN can be modified in such a way to obtain a characterization of NRE also
in this case. We directly provide these modules, without any explanation about
their functioning, in Figures 5, 6, and 7; the synapses which change a into ā are
marked with a dot.

Note that this time the non-determinism in the ADD instruction is simulated
by allowing the non-deterministic choice among the spiking rule ā → a and the
forgetting rule ā → λ of neuron σ

l
(1)
i

, which is not allowed in the classic definition
of SN P systems. Removing this feature, without introducing rules which are not
pure or other ingredients, such as the delay, remains as an open problem.

Denoting by NαSaNPs(prulek) the respective families of sets of numbers (the
subscript s in Ps indicates the use of inhibitory synapses, in the sense specified
above), we conclude having the next result:

Theorem 2. NRE = N2SaNPs(prule2).

6 Final Remarks

There are several open problems and research topics suggested by the previous
results. Some of them were already mentioned, but further questions can be for-
mulated. For instance, can the proofs be improved so that less types of rules are
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necessary? We have avoided using rules āc → ā, but not the other three types,
corresponding to the pairs (a, a), (a, ā), (ā, a). Then, following the idea from [6],
can we decrease the number of types of neurons, in the sense of having a small
number of sets of rules which are used in each neuron (three such sets are found
in [6] to be sufficient for universality in the case of usual SN P systems; do the
anti-spikes helps also in this respect?).
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ā → a

²
±

¯
°
h4

a → a

²
±

¯
°
h3

a → a

©©©©©©¼ -
¾

?

-

-

?

?

Fig. 7. Module FIN

Acknowledgements

The work of L. Pan was supported by National Natural Science Foundation of
China (Grant Nos. 60674106, 30870826, 60703047, and 60803113), Program for
New Century Excellent Talents in University (NCET-05-0612), Ph.D. Programs
Foundation of Ministry of Education of China (20060487014), Chenguang Pro-
gram of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural Science
Foundation of Hubei Province (2008CDB113 and 2008CDB180). The work of Gh.
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Summary. In order to enhance the efficiency of spiking neural P systems, we introduce
the features of neuron division and neuron budding, which are processes inspired by neural
stem cell division. As expected (as it is the case for P systems with active membranes),
in this way we get the possibility to solve computationally hard problems in polynomial
time. We illustrate this possibility with SAT problem.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [6] in the
framework of membrane computing [13] as a new class of computing devices which
are inspired by the neurophysiological behavior of neurons sending electrical im-
pulses (spikes) along axons to other neurons. Since then, many computational
properties of SN P systems have been studied; for example, it has been proved
that they are Turing-complete when considered as number computing devices [6],
when used as language generators [3, 1] and also when computing functions [12].

Investigations related to the possibility to solve computationally hard prob-
lems by using SN P systems were first proposed in [2]. The idea was to encode
the instances of decision problems in a number of spikes which are placed in an
arbitrarily large pre-computed system at the beginning of the computation. It was
shown that the resulting SN P systems are able to solve the NP-complete problem
SAT (the satisfiability of propositional formulas expressed in conjunctive normal
form) in a constant time. Slightly different solutions to SAT and 3-SAT by using SN
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P systems with pre-computed resources were considered in [7]; here the encoding of
an instance of the given problem is introduced into the pre-computed resources in
a polynomial number of steps, while the truth values are assigned to the Boolean
variables of the formula and the satisfiability of the clauses is checked. The answer
associated with the instance of the problem is thus computed in a polynomial
time. Finally, very simple semi-uniform and uniform solutions to the numerical
NP-complete problem Subset Sum – by using SN P systems with exponential size
pre-computed resources – have been presented in [8]. All the systems constructed
above work in a deterministic way.

A different idea of constructing SN P systems for solving NP-complete prob-
lems was given in [10, 11], where the Subset Sum and SAT problems were consid-
ered. In these papers, the solutions are obtained in a semi-uniform or uniform way
by using non-deterministic devices but without pre-computed resources. However,
several ingredients are also added to SN P systems such as extended rules, the
possibility to have a choice between spiking rules and forgetting rules, etc. An
alternative to the constructions of [10, 11] was given in [9], where only standard
SN P systems without delaying rules and having a uniform construction are used.
However, it should be noted that the systems described in [9] either have an expo-
nential size, or their computations last an exponential number of steps. Indeed, it
has been proved in [11] that a deterministic SN P system of a polynomial size can-
not solve an NP-complete problem in a polynomial time unless P=NP. Hence,
under the assumption that P 6= NP, efficient solutions to NP-complete problems
cannot be obtained without introducing features which enhance the efficiency of
the system.

In this paper, neuron division and budding are introduced into the framework
of SN P systems in order to enhance the efficiency of these systems. We exemplify
this possibility with a uniform solution to SAT problem.

The biological motivation of introducing neuron division and budding into SN
P systems comes from the recent discoveries in neurobiology related to neural stem
cells – see, e.g., [4]. Neural stem cells persist throughout life within central nervous
system in the adult mammalian brain, and this ensures a life-long contribution of
new neurons to self-renewing nervous system with about 30000 new neurons being
produced every day. Even in vitro, neural stem cells can be grown and extensively
expanded for months. New neurons are produced by symmetric or asymmetric
division. Two main neuron cell types are found: neuroblasts and astrocytes. The
latter form a meshwork and are organized into channels. These observations are
incorporated in SN P systems by considering neuron division and budding, and by
providing a “synapse dictionary” according to which new synapses are generated,
respectively.

The paper is organized as follows. In Section 2 we recall some mathematical
preliminaries that will be used in the following. In Section 3 the formal definition
of SN P systems with neuron division rules and neuron budding rules is given. In
Section 4 we present a uniform family of SN P systems with neuron division and
budding rules such that the systems can solve SAT problem in a polynomial time.
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Section 5 concludes the paper and suggests some possible open problems for future
work.

2 Prerequisites

We assume the reader to be familiar with basic elements about membrane com-
puting, e.g., from [13] and [14], and formal language theory, as available in many
monographs. We mention here only a few notions and notations which are used
through the paper.

For an alphabet V , V ∗ denotes the set of all finite strings over V , with the
empty string denoted by λ. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we simply write a∗ and a+ instead of {a}∗,
{a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each regular expression E we associate
a language L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a},
for all a ∈ V , (ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2),
and L((E1)+) = (L(E1))+, for all regular expressions E1, E2 over V . Non-necessary
parentheses can be omitted when writing a regular expression, and also (E)+∪{λ}
can be written as E∗.

3 SN P Systems with Neuron Division and Budding

As stated in the Introduction, SN P systems have been introduced in [6], in the
framework of membrane computing. They can be considered as an evolution of P
systems, corresponding to a shift from cell-like to neural-like architectures.

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph, called the synapse graph. The contents of each neuron consist of
a number of copies of a single object type, called the spike. Every cell may also
contain a number of firing and forgetting rules. Firing rules allow a neuron to
send information to other neurons in the form of electrical impulses (also called
spikes) which are accumulated at the target cell. The applicability of each rule is
determined by checking the contents of the neuron against a regular set associated
with the rule. In each time unit, if a neuron can use one of its rules, then one of such
rules must be used. If two or more rules could be applied, then only one of them
is non-deterministically chosen. Thus, the rules are used in the sequential manner
in each neuron, but neurons function in parallel with each other. Note that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, and hence the functioning of the system is synchronized.
When a cell sends out spikes it becomes “closed” (inactive) for a specified period
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of time, a fact which reflects the refractory period of biological neurons. During
this period, the neuron does not accept new inputs and cannot “fire” (that is, emit
spikes). Another important feature of biological neurons is that the length of the
axon may cause a time delay before a spike arrives at the target. In SN P systems
this delay is modeled by associating a delay parameter to each rule which occurs
in the system. If no firing rule can be applied in a neuron, then there may be the
possibility to apply a forgetting rule, that removes from the neuron a predefined
number of spikes.

The structure of SN P systems (that is, the synapse graph) introduced in
[6] is static. For both biological and mathematical motivations discussed in the
Introduction, neuron division and budding are introduced into SN P systems. In
this way, an exponential workspace can be generated in polynomial (even linear)
time and computationally hard problems can be efficiently solved by means of a
space-time tradeoff.

Formally, a spiking neural P system with neuron division and budding of (ini-
tial) degree m ≥ 1 is a construct of the form

Π = (O, H, syn, n1, . . . , nm, R, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. H is a finite set of labels for neurons;
3. syn ⊆ H ×H is a synapse dictionary, with (i, i) 6∈ syn for i ∈ H;
4. ni ≥ 0 is the initial number of spikes contained in neuron i, i ∈ {1, 2, . . . , m};
5. R is a finite set of developmental rules, of the following forms:

(1) extended firing (also called spiking) rule [E/ac → ap; d]
i
, where i ∈ H, E

is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the restriction
c ≥ p;

(2) neuron division rule [E] i → [ ] j ‖ [ ]k, where E is a regular expression and
i, j, k ∈ H;

(3) neuron budding rule [E]
i
→ [ ]

i
/[ ]

j
, where E is a regular expression and

i, j ∈ H;
6. in, out ∈ H indicate the input and the output neurons of Π.

Note that we have presented here an SN P system in a way slightly different
from the usual definition present in the literature, where the neurons present ini-
tially in the system are explicitly listed as σi = (ni, Ri), where 1 ≤ i ≤ m and Ri

are the rules associated with neuron with label i. In what follows we will refer to
neuron with label i ∈ H also denoting it with σi.

It is worth to mention that by applying division rules different neurons can
appear with the same label. In this context, (i, j) ∈ syn means the following:
there exist synapses from each neuron with label i to each neuron with label j.

If an extended firing rule [E/ac → ap; d] i has E = ac, then we will write it in
the simplified form [ac → ap; d]

i
; similarly, if a rule [E/ac → ap; d]

i
has d = 0,

then we can simply write it as [E/ac → ap]
i
; hence, if a rule [E/ac → ap; d]

i
has
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E = ac and d = 0, then we can write [ac → ap]
i
. A rule [E/ac → ap]

i
with p = 0

is written in the form [E/ac → λ] i and is called extended forgetting rule. Rules of
the types [E/ac → a; d] i and [ac → λ] i are said to be standard.

If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule [E/ac →
ap; d]

i
is enabled and it can be applied. This means consuming (removing) c spikes

(thus only k − c spikes remain in neuron σi); the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately; if
d = 1, then the spikes are emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes open again, so that it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). Once emitted
from neuron σi, the p spikes reach immediately all neurons σj such that there is a
synapse going from σi to σj and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form [E/ac → λ]

i
, then, when it is applied, c ≥ 1 spikes are

removed. When a neuron is closed, none of its rules can be used until it becomes
open again.

If (1) a neuron σi contains s spikes and as ∈ L(E), and (2) there is no neuron σg

such that the synapse (g, i) or (i, g) exists in the system, for some g ∈ {j, k}, then
the division rule [E]

i
→ [ ]

j
‖ [ ]

k
is enabled and it can be applied. This means that

consuming all these s spikes the neuron σi is divided into two neurons, σj and σk.
The new neurons contain no spike in the moment when they are created. They can
have different labels, but they inherit the synapses that the father neuron already
has (if there is a synapse from neuron σg to the neuron σi, then in the process of
division one synapse from neuron σg to new neuron σj and another one from σg to
σk are established; similarly, if there is a synapse from the neuron σi to neuron σh,
then one synapse from σj to σh and another one from σk to σh are established).
Note that the restriction provided by condition (2) to the use of the rule ensures
that no synapse (j, j) or (k, k) appears. Except for the inheritance of synapses,
the new neurons produced by division can have new synapses as provided by the
synapse dictionary. Note that during the computation, it is possible that a synapse
between neurons involved in the division rule and neurons existing in the system
will appear that is not in the synapse dictionary syn, because of the inheritance
of synapses. Therefore, the synapse dictionary syn has two functions: one is to
deduce the initial topological structure of the SN P system (a directed graph), for
example, if there are neurons σ1, . . . , σk at the beginning of computation, then the
initial topological structure of the system is syn ∩ ({1, 2, . . . , k} × {1, 2, . . . , k});
another function is to guide the synapse establishment associated with the new
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neurons generated by neuron division or neuron budding. That is why we call syn
a synapses dictionary.

If (1) a neuron σi contains s spikes, and as ∈ L(E), and (2) there is no neuron
σj such that the synapse (i, j) exists in the system,then the budding rule [E]

i
→

[ ]
i
/[ ]

j
is enabled and it can be applied. This means that consuming all the s

spikes a new neuron is created, σj . Both neurons are empty after applying the
rule. The neuron σi inherits the synapses going to it before using the rule. The
neuron σj created by budding by neuron σi inherits the synapses going out of σi

before budding, that is, if there is a synapse from neuron σi to some neuron σh,
then a synapse from neuron σj to neuron σh is established (condition (2) ensures
the fact that no synapse (j, j) appears). There is also a synapse (i, j) between
neurons σi and σj . Except for the above synapses associated with neurons σi and
σj , other synapses associated with neuron σj can be established according to the
synapses dictionary syn as in the case of neuron division rule.

In each time unit, if a neuron σi can use one of its rules, then a rule from R must
be used. If several rules are enabled in neuron σi, irrespective of their types (spik-
ing, dividing, or budding) then only one of them is chosen non-deterministically.
When a spiking rule is used, the state of neuron σi (open or closed) depends on
the delay d. When a neuron division rule or neuron budding rule is applied, at this
step the associated neuron is closed, it cannot receive spikes. In the next step, the
neurons obtained by division or budding will be open and can receive spikes. Thus,
the rules are used in the sequential manner in each neuron, but neurons function
in parallel with each other.

It is worth noting here that the two neurons produced by a division rule can
have labels different from each other and from the divided neuron, and that they
are placed “in parallel”, while in the budding case the old neuron (consumes all its
spikes and) produces one new neuron which is placed “serially”, after the neuron
which budded.

The configuration of the system is described by the topology structure of the
system, the number of spikes associated with each neuron, and the state of each
neuron (open or closed). Using the rules as described above, one can define tran-
sitions among configurations. Any sequence of transitions starting in the initial
configuration is called a computation. A computation halts if it reaches a configu-
ration where all neurons are open and no rule can be used.

Traditionally, the input of an SN P system used in the accepting mode is
provided in the form of a spike train, a sequence of steps when one spike or no
spike enters the input neuron. In what follows we need several spikes at a time to
come into the system via the input neuron, that is we consider “generalized spike
trains”, written in the form ai1 ·ai2 · . . . ·air , where r ≥ 1, ij ≥ 0 for each 1 ≤ j ≤ r.
The meaning is that ij spikes are introduced in neuron σin in step j (all these ij
spikes are provided at the same time). Note that we can have ij = 0, which means
that no spike is introduced in the input neuron. The period which separate the
“packages” aij of spikes is necessary in order to make clear that we do not have
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here a concatenation of the strings describing these “packages”, but a sequence of
blocks (more formally, a sequence of multisets over the singleton alphabet O).

Spiking neural P systems can be used to solve decision problems, both in a
semi–uniform and in a uniform way. When solving a problem Q in the semi–
uniform setting, for each specified instance I of Q an SN P system ΠQ,I is (i)
built by a Turing machine in a polynomial time (with respect to the size of I),
(ii) its structure and initial configuration depend upon I, and (iii) it halts (or
emits a specified number of spikes in a given interval of time) if and only if I is
a positive instance of Q. On the other hand, a uniform solution of Q consists of
a family {ΠQ(n)}n∈N of SN P systems that are built by a Turing machine in a
polynomial time (with respect to the size n). When having an instance I ∈ Q of
size n, we introduce a polynomial (in n) number of spikes in a designated input
neuron of ΠQ(n) and the computation halts (or, alternatively, a specified number
of spikes is emitted in a given interval of time) if and only if I is a positive instance.
The preference for uniform solutions over semi–uniform ones is given by the fact
that they are more strictly related to the structure of the problem, rather than to
specific instances. Indeed, in the semi–uniform setting we do not even need any
input neuron, as the instance of the problem can be embedded into the initial
configuration of the system from the very beginning.

4 A Uniform Solution to SAT Problem

Let us consider the NP-complete decision problem SAT [5]. The instances of SAT
depend upon two parameters: the number n of variables, and the number m of
clauses. We recall that a clause is a disjunction of literals, occurrences of xi or
¬xi, built on a given set X = {x1, x2, . . . , xn} of Boolean variables. Without loss
of generality, we can avoid the clauses in which the same literal is repeated or
both the literals xi and ¬xi, for any 1 ≤ i ≤ n, occur. In this way, a clause can be
seen as a set of at most n literals. An assignment of the variables x1, x2, . . . , xn

is a mapping T : X → {0, 1} that associates to each variable a truth value. The
number of all possible assignments to the variables of X is 2n. We say that an
assignment satisfies the clause C if, assigned the truth values to all the variables
which occur in C, the evaluation of C (considered as a Boolean formula) gives 1
(true) as a result.

We can now formally state the SAT problem as follows.
Problem 1. NAME: SAT.

– INSTANCE: a set C = {C1, C2, . . . , Cm} of clauses, built on a finite set
{x1, x2, . . . , xn} of Boolean variables.

– QUESTION: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Equivalently, we can say that an instance of SAT is a propositional formula
γn,m = C1∧C2∧· · ·∧Cm, expressed in the conjunctive normal form as a conjunction
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of m clauses, where each clause is a disjunction of literals built using the Boolean
variables x1, x2, . . . , xn. With a little abuse of notation, from now on we will denote
by SAT (n,m) the set of instances of SAT which have n variables and m clauses.

Let us consider the polynomial time computable function 〈n, m〉 = ((m+n)(m+
n + 1)/2) + m (the pair function), which is a primitive recursive and bijective
function from N2 to N. Let us build a uniform family {ΠSAT (〈n,m〉)}n,m∈N of
SN P systems such that for all n, m ∈ N the system ΠSAT (〈n,m〉) solves all the
instances of SAT (n,m) in a number of steps which is linear in both n and m. All
the systems ΠSAT (〈n, m〉) will work in a deterministic way.

Because the construction is uniform, we need a way to encode any given in-
stance γn,m of SAT (n,m). As stated above, each clause Ci of γn,m can be seen
as a disjunction of at most n literals, and thus for each j ∈ {1, 2, . . . , n} either xj

occurs in Ci, or ¬xj occurs, or none of them occurs. In order to distinguish these
three situations we define the spike variables αi,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
as variables whose values are amounts of spikes; we assign to them the following
values:

αi,j =





a, if xj occurs in Ci;
a2, if ¬xj occurs in Ci;
a0, otherwise.

In this way, clause Ci will be represented by the sequence αi,1 · αi,2 · . . . · αi,n of
spike variables; in order to represent the entire formula γn,m we just concatenate
the representations of the single clauses, thus obtaining the generalized spike train
α1,1 ·α1,2 · . . . ·α1,n.α2,1 ·α2,2 · . . . ·α2,n · . . . ·αm,1 ·αm,1 · . . . ·αm,n. As an example,
the representation of γ3,2 = (x1∨¬x2)(x1∨x3) is the sequence a ·a2 ·a0 ·a ·a0 ·a. In
order to let the systems have enough time to generate necessary workspace before
computing the instances of SAT (n,m), a spiking train (a0·)2n is added in front
of the formula encoding spike train α1,1 · α1,2 · . . . · α1,n.α2,1 · α2,2 · . . . · α2,n · . . . ·
αm,1 · αm,1 · . . . · αm,n. In general, for any given instance γn,m of SAT (n,m), the
encoding sequence is cod(γn,m) = (a0·)2nα1,1 ·α1,2 · . . . ·α1,n ·α2,1 ·α2,2 · . . . ·α2,n ·
. . . · αm,1 · αm,1 · . . . · αm,n.

For each n,m ∈ N, we construct

Π(〈n,m〉) = (O,H, syn, n1, . . . , nq, R, in, out),

with the following components:

The initial degree of the system is q = 4n + 7;

O = {a};

H = {in, out, cl} ∪ {di | i = 0, 1, . . . , n}
∪ {Cxi | i = 1, 2, . . . , n} ∪ {Cxi0 | i = 1, 2, . . . , n}
∪ {Cxi1 | i = 1, 2, . . . , n} ∪ {ti | i = 1, 2, . . . , n}
∪ {fi | i = 1, 2, . . . , n} ∪ {0, 1, 2, 3};
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syn = {(di, di+1) | i = 0, 1, . . . , n− 1} ∪ {(dn, d1)}
∪ {(in, Cxi) | i = 1, 2, . . . , n} ∪ {(di, Cxi) | i = 1, 2, . . . , n}
∪ {(Cxi, Cxi0) | i = 1, 2, . . . , n} ∪ {(Cxi, Cxi1) | i = 1, 2, . . . , n}
∪ {(i + 1, i) | i = 0, 1, 2} ∪ {(1, 2), (0, out)}
∪ {(Cxi1, ti) | i = 1, 2, . . . , n} ∪ {(Cxi0, fi) | i = 1, 2, . . . , n};

nd0 = n0 = n2 = n3 = 1, nd1 = 6, and there is no spike in the other neurons;

R is the following set of rules:
(1) spiking rules:

[a → a]
in

,
[a2 → a2]

in
,

[a → a; 2n + nm]d0
,

[a4 → a4]
i
, i = d1, . . . , dn,

[a5 → λ]
d1

,
[a6 → a4; 2n + 1]

d1
,

[a → λ]
Cxi

, i = 1, 2, . . . , n,
[a2 → λ]Cxi

, i = 1, 2, . . . , n,
[a4 → λ]

Cxi
, i = 1, 2, . . . , n,

[a5 → a5; n− i]Cxi
, i = 1, 2, . . . , n,

[a6 → a6; n− i]
Cxi

, i = 1, 2, . . . , n,
[a5 → a4]Cxi1

, i = 1, 2, . . . , n,
[a6 → λ]

Cxi1
, i = 1, 2, . . . , n,

[a5 → λ]Cxi0
, i = 1, 2, . . . , n,

[a6 → a4]
Cxi0

, i = 1, 2, . . . , n,
[(a4)+ → a] ti

, i = 1, 2, . . . , n,
[(a4)+ → a]

fi
, i = 1, 2, . . . , n,

[a4k−1 → λ] ti
, k = 1, 2, . . . , n, i = 1, 2, . . . , n,

[a4k−1 → λ]
fi

, k = 1, 2, . . . , n, i = 1, 2, . . . , n,
[am → a2]cl,
[(a2)+/a → a]out,
[a → a]

i
, i = 1, 2,

[a2 → λ]
2
,

[a → a; 2n− 1]
3
;

(2) neuron division rules:
[a]0 → [ ] t1

‖ [ ]f1
,

[a]
ti
→ [ ]

ti+1
‖ [ ]

fi+1
, i = 1, 2, . . . , n− 1,

[a]
fi
→ [ ]

ti+1
‖ [ ]

fi+1
, i = 1, 2, . . . , n− 1;

(3) neuron budding rules:
[a]

tn
→ [ ]

tn
/[ ]

cl
,

[a]
fn
→ [ ]

fn
/[ ]

cl
.
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The solution of the SAT problem is obtained by means of a brute force algorithm
in the framework of SN P systems with neuron division and budding. Our strategy
consists in the following phases:

• Generation Stage: The neuron division and budding are applied to generate an
exponential number of neurons such that each possible assignment of variables
x1, x2, . . . , xn is represented by a neuron (with associated connections with
other neurons by synapses).

• Input Stage: The system reads the encoding of the given instance of SAT.
• Satisfiability Checking Stage: The system checks whether or not there exists

an assignment of variables x1, x2, . . . , xn that satisfies all the clauses in the
propositional formula C.

• Output Stage: According to the result of the previous stage, the system sends
a spike to the environment if the answer is positive; otherwise, the system does
not send any spike to the environment.

Let us have an overview of the computation. The initial structure of the system
is shown in Figure 1 (in the figures which follow we only present the spiking and
the forgetting rules, but not also the division and budding rules). The first three
layers of the system constitutes the input module. The neuron σ0 and its offsprings
will be used to generate an exponential workspace by neuron division and budding
rules. The auxiliary neurons σ1, σ2, and σ3 supply necessary spikes to the neuron
σ0 and its offsprings for neuron division and budding rules. The neuron σout is
used to output the result.

Generation Stage: By the way of the encoding of instances, it is easy to see
that the spike variables αi,j will be introduced into neuron σin from step 2n + 1
(it takes 2n steps to read (a0·)2n of cod(γn,m)). In the first 2n steps, the system
generates an exponential workspace; after that, the system checks the satisfiability,
and outputs the result.

The neuron σ0 contains one spike, the rule [a]0 → [ ] t1
‖ [ ]f1

is applied, and
two neurons σt1 and σf1 are generated. They have the associated synapses (1, f1),
(1, t1), (t1, out), (f1, out), (Cx11, t1) and (Cx10, f1), where the first 4 synapses are
obtained by the heritage of the synapses (0, out) and (1, 0), respectively, and the
last 2 synapses are established by the synapse dictionary. The auxiliary neuron σ2

sends one spike to neuron σ1, and at step 2 neuron σ1 sends this spike to neurons
σt1 and σf1 for the next division. At step 1, the neuron σ3 contains one spike, and
the rule [a → a; 2n − 1]

3
is applied. It will send one spike to neuron σ2 at step

2n because of the delay 2n − 1. (As we will see, at step 2n, neuron σ1 also sends
one spike to neuron σ2, so neuron σ2 will have 2 spikes, and the rule [a2 → λ]2
will be applied. In this way, after step 2n, the auxiliary neurons stop the work of
supplying spikes for division and budding.) The structure of the system after step
1 is shown in Figure 2.

At step 2, neuron σ1 sends one spike to neurons σ2, σt1 , and σf1 . In the next
step, neuron σ2 sends one spike back to neuron σ1; in this way, the auxiliary
neurons σ1, σ2, and σ3 supply spikes for division and budding every two steps in
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Fig. 1. The initial structure of system Π(〈n, m〉)

the first 2n steps. At step 3, only division rules can be applied in neurons σt1 and
σf1 , these two neurons are divided, and the associated synapses are obtained by
heritage or synapse dictionary. The four neurons with labels t2 or f2 correspond
to assignments where (1) x1 = 1 and x2 = 1, (2) x1 = 1 and x2 = 0, (3) x1 = 0
and x2 = 1, (4) x1 = 0 and x2 = 0, respectively. The neuron Cx11 (encoding
that x1 appears in a clause) has synapses from it to neurons whose corresponding
assignments have x1 = 1. That is, assignments with x1 = 1 satisfy clauses where
x1 appears. The structure of the system after step 3 is shown in Figure 3. The
neuron division is iterated until 2n neurons with labels tn or fn appear at step
2n− 1. The corresponding structure after step 2n− 1 is shown in Figure 4.

At step 2n, each neuron with label tn or fn obtains one spike from neuron σ1,
then in next step the budding rules [a]

tn
→ [ ]

tn
/[ ]

cl
and [a]

fn
→ [ ]

fn
/[ ]

cl
are

applied. Each created neuron σcl has synapses (tn, cl) or (fn, cl) and (cl, out) by
heritage. At step 2n, neuron σ1 also sends one spike to neuron σ2, at the time,
neuron σ3 sends one spike to neuron σ2. So neuron σ2 has two spikes, and the rule
[a2 → λ]

2
is applied at step 2n+1. After that, the auxiliary neurons cannot supply

spikes any more, and the system passes to read the encoding of given instance.
The structure of the system after step 2n + 1 is shown in Figure 5.
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Fig. 2. The structure of system Π(〈n, m〉) after step 1

Input Stage: The input module consists of 2n + 2 neurons, which are in the
layers 1 – 3 as illustrated in Figure 1; σin is the unique input neuron. The spikes
of the encoding sequence code(γn,m) are introduced into σin one “package” by one
“package”, starting from step 1. It takes 2n steps to introduce (a0·)2n into neuron
σin. At step 2n + 1, the value of the first spike variable α11, which is the virtual
symbol that represents the occurrence of the first variable in the first clause, enters
into neuron σin. In the next step, the value of the spike variable α11 is replicated
and sent to neurons σCxi , for all i ∈ {1, 2, . . . , n}; in the meanwhile, neuron σd1

send four auxiliary spikes to neurons σCx1 and σd2 (the rule [a6 → a4; 2n + 1]d1
is

applied at step 1). Hence, neuron σCx1 will contain 4, 5 or 6 spikes: if x1 occurs
in C1, then neuron σCx1 collects 5 spikes; if ¬x1 occurs in C1, then it collects
6 spikes; if neither x1 nor ¬x1 occur in C1, then it collects 4 spikes. Moreover,
if neuron σCx1 has received 5 or 6 spikes, then it will be closed for n − 1 steps,
according to the delay associated with the rules in it; on the other hand, if 4
spikes are received, then they are deleted and the neuron remains open. At step
2n + 3, the value of the second spike variable α12 from neuron σin is distributed
to neurons σCxi , 2 ≤ i ≤ n, where the spikes corresponding to α11 are deleted
by the rules [a → λ]

Cxi
and [a2 → λ]

Cxi
, 2 ≤ i ≤ n. At the same time, the four

auxiliary spikes are duplicated and one copy of them enters into neurons σCx2 and
σd3 , respectively. The neuron σCx2 will be closed for n− 2 steps only if it contains
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Fig. 4. The structure of system Π(〈n, m〉) after step 2n− 1
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Input module

a5� a4

a6��
Cx1 1

a5��
a6�a4

Cx1 0 Cx21 Cx20 Cxn 1 Cxn 0

�a4���a� a

a4k�1��
�n�k�1�

�a5� a4

a6��
a5��
a6�a4

a5��
a6�a4

a5� a4

a4��

t n f n

a �a ;2 n�1

a �a
a2��

a �a

�a2���a� a

1

2

3

out

�a4���a� a �a4���a� a �a4���a� a

t n
f n�t1 t 2�t n�1 t n�

�a4���a� a

t n

�a4���a� a

f n

�

�

�t1 t 2�t n�1 f n� �t1 t 2� f n�1 t n� �t1 t 2� f n�1 f n� � f 1 f 2� f n�1 t n� � f 1 f 2� f n�1 f n�

am�a2
am�a2

am�a2
am�a2 am�a2

am�a2

clclcl
cl

clcl

a4k�1��
�n�k�1� a4k�1��

�n�k�1� a4 k�1��
�n�k�1�

a4 k�1��
�n�k�1�

a4k�1��
�n�k�1�

Fig. 5. The structure of system Π(〈n, m〉) after step 2n + 1

5 or 6 spikes, which means that this neuron will not receive any spike during this
period. In neurons σCxi , 3 ≤ i ≤ n, the spikes represented by α12 are forgotten in
the next step.

In this way, the values of the spike variables are introduced and delayed in the
corresponding neurons until the value of the spike variable α1n of the first clause
and the four auxiliary spikes enter together into neuron σCxn at step 3n+1. At that
moment, the representation of the first clause of γn,m has been entirely introduced
in the system, and the second clause starts to enter into the input module. In
general, it takes mn + 1 steps to introduce the whole sequence code(γn,m) in the
system, and the input process is completed at step 2n + nm + 1.

At step 2n + nm + 1, the neuron σdn sends four spike to neuron σd1 . At the
same time, the auxiliary neuron σd0 also sends a spike to the neuron σd1 (the rule
[a → a; 2n + nm]

d0
is used at the first step of the computation). So neuron σd1

contains 5 spikes, and in the next step these 5 spikes are forgotten by the rule
[a5 → λ]d1

. This ensures that the system eventually halts.
Satisfiability Checking Stage: Once all the values of spike variables α1i (1 ≤

i ≤ n), representing the first clause, have appeared in their corresponding neurons
σCxi in layer 3, together with a copy of the four auxiliary spikes, all the spikes
contained in σCxi are duplicated and sent simultaneously to the pair of neurons
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σCxi1 and σCxi0, for i ∈ {1, 2, . . . , n}, at step 3n + 2. In this way, each neuron
σCxi1 and σCxi0 receives 5 or 6 spikes when xi or ¬xi occurs in C1, respectively,
whereas it receives no spikes when neither xi nor ¬xi occurs in C1. In general, if
neuron σCxi1 receives 5 spikes, then the literal xi occurs in the current clause (say
Cj), and thus the clause is satisfied by all those assignments in which xi is true.
Neuron σCxi0 will also receive 5 spikes, but they will be deleted during the next
computation step. On the other hand, if neuron σCxi1 receives 6 spikes, then the
literal ¬xi occurs in Cj , and the clause is satisfied by those assignments in which
xi is false. Since neuron σCxi1 is designed to process the case in which xi occurs
in Cj , it will delete its 6 spikes. However, neuron σCxi0 will also have received 6
spikes, and this time it will send four spikes to those neurons which are bijectively
associated with the assignments for which xi is false (refer to the generation stage
for the corresponding synapses). In the next step, those neurons with label tn or fn

that received at least four spikes send one spike to the corresponding neurons σcl

(the remaining spikes will be forgotten; note that the number of spikes received in
neurons with label tn or fn is not more than 4n, because, without loss of generality,
we assume that the same literal is not repeated and at most one of literals xi or
¬xi, for any 1 ≤ i ≤ n, can occur in a clause; that is, a clause is a disjunction of at
most n literals), with the meaning that the clause is satisfied by the assignments in
which xi is false. This occurs in step 3n+4. Thus, the check for the satisfiability of
the first clause has been performed; in a similar way, the check for the remaining
clauses can proceed. All the clauses can thus be checked to see whether there exist
assignments that satisfy all of them.

If there exist some assignments that satisfy all the clauses of γn,m, then the
corresponding neurons with label cl succeed to accumulate m spikes. Thus, the rule
[am → a2]

cl
can be applied in these neurons. The satisfiability checking process is

completed at step 2n + mn + 4.
Output Stage: From the above explanation, it is not difficult to see that the

output neuron receives spikes if and only if γn,m is true. Furthermore, the output
neuron sends exactly one spike to the environment at step 2n+mn+6 if and only
if γn,m is true.

From the previous explanations, one can see that the system correctly answers
the question whether or not γn,m is satisfiable. The duration of the computation is
polynomial in term of n and m: if the answer is positive, then the system sends one
spike to the environment at step 2n + mn + 6; if the answer is negative, then the
system halts in 2n+mn+6 steps, but does not send any spike to the environment.

Finally, we show that the family Π = {Π(〈n,m〉) | n,m ∈ N} is polynomially
uniform by deterministic Turing machines. We first note that the sets of rules
associated with the system Π(〈n, m〉) are recursive. Hence, it is enough to note
that the amount of necessary resources for defining each system is linear with
respect to n, and this is indeed the case, since those resources are the following:

1. Size of the alphabet: 1 ∈ O(1).
2. Initial number of neurons: 4n + 7 ∈ O(n).
3. Initial number of spikes: 9 ∈ O(1).
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4. Number of labels for neurons: 6n + 8 ∈ O(n).
5. Size of synapse dictionary: 7n + 6 ∈ O(n).
6. Number of rules: 2n2 + 14n + 12 ∈ O(n2).

5 Conclusions and Remarks

With computer science and biological motivation, neuron division and neuron bud-
ding are introduced into the framework of spiking neural P systems. We have
proven that spiking neural P systems with neuron division and neuron budding
can solve NP-complete problems in polynomial time. We exemplify this possibility
with SAT problem.

Both neuron division rules and neuron budding rules can generate exponential
workspace in linear time. In this sense, we used a double “power” to solve SAT
problem in the systems constructed in this paper. It remains open to design efficient
spiking neural P systems with either neuron division rules or neuron budding rules,
but not both kinds of rules, for solving NP-complete problem.

Actually, we have here a larger set of problems. Besides the budding rules of
the form considered above, we can also define “serial division rules”, of the form
[E]

i
→ [ ]

j
/[ ]

k
, where E is a regular expression and i, j, k ∈ H. The meaning

is obvious: neuron σi produces two neurons, σj and σk, with possibly new labels
j, k, linked by synapses as in the case of budding rules. Note that a budding rule
is a particular case, with i = j. Thus, we can consider three types of rules: parallel
division rules, budding rules (these two types were considered above), and serial
division rules. Are rules of a single type sufficient in order to devise SN P systems
which solve computationally hard problems in polynomial time?

For cell-like P systems, besides membrane division, there is another operation
which was proved to provide ways to generate an exponential workspace in poly-
nomial time, useful for trading space for time in solving NP-complete problem,
namely membrane creation (a membrane is created from objects present in other
membranes). Can this idea be also extended to SN P systems? Note that in the
case of SN P systems we do not have neurons inside neurons, neither spikes outside
neurons, hence this issue does not look easy to handle; maybe further ingredients
should be added, such as glia cells, astrocytes, etc.
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Summary. The most investigated variants of P systems in the last years are cell-like
models, especially in terms of efficiency. Recently, different new models of tissue-like
(symport/antiport) P systems have received important attention. This paper presents a
new class of tissue P systems with cell separation, where cell separation can generate new
workspace. Its efficiency is investigated, specifically, (a) only tractable problem can be
efficiently solved by using cell separation and communication rules with length at most
1, and (b) an efficient (uniform) solution to SAT problem by using cell separation and
communication rules with length at most 6 is presented. Further research topics and open
problems are discussed, too.

1 Introduction

Membrane computing is inspired by the structure and the function of living cells,
as well as from the organization of cells in tissues, organs, and other higher order
structures. The devices of this model, called P systems, provide distributed parallel
and non-deterministic computing models.

Roughly speaking, the main components of such a model are a cell-like mem-
brane structures, in the compartments of which one places multisets of symbol-
objects which evolve in a synchronous maximally parallel manner according to
given evolution rules, also associated with the membranes (for introduction see
[19] and for further bibliography see [29]).

Membrane computing is a young branch of natural computing initiated by Gh.
Păun in the end of 1998 [17]. It has received important attention from the scien-
tific community since then, with contributions by computer scientists, biologists,
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formal linguists and complexity theoreticians, enriching each others with results,
open problems and promising new research lines. In fact, membrane computing
was selected by the Institute for Scientific Information, USA, as a fast Emerging
Research Front in computer science, and [20] was mentioned in [28] as a highly
cited paper in October 2003.

In the last years, many different models of P systems have been proposed. The
most studied variants are characterized by a cell-like membrane structure, where
the communication takes place between a membrane and the surrounding one. In
this model we have a set of nested membranes, in such a way that the graph of
neighborhood relation is a tree.

One of the topics in the field is the study of the computational power and
efficiency of P systems. In particular, different models of these cell-like P systems
have been successfully used in order to design solutions to NP-complete problems
in polynomial time (see [6] and the references therein). These solutions are obtained
by generating an exponential amount of workspace in polynomial time and using
parallelism to check simultaneously all the candidate solutions. Inspired by living
cell, several ways for obtaining exponential workspace in polynomial time were
proposed: membrane division (mitosis) [18], membrane creation (autopoiesis) [8]
membrane separation (membrane fission) [16]. These three ways have given rise to
the corresponding P systems model: P systems with active membranes, P systems
with membrane creation, and P systems with membranes separation. These three
models are universal from a computational point of view, but technically, they are
pretty different. In fact, nowadays there does not exist any theoretical result which
proves that these models can simulate each other in polynomial time.

Under the hypothesis P6=NP, Zandron et al. [27] established the limitations of
P systems that do not use membrane division concerning the efficient solution of
NP-complete problems. This result was generalized by Pérez-Jiménez et al. [24]
obtaining a characterization of the P6=NP conjecture by the polynomial time un-
solvability of an NP-complete problem by means of language accepting P systems
(without using rules that allow to increase the size of the structure of membranes).

Here, we shall focus on another type of P systems, the so-called (because of
their membrane structure) tissue P systems. Instead of considering a hierarchical
arrangement, membranes are placed in the nodes of a virtual graph. This variant
has two biological inspirations (see [15]): intercellular communication and coopera-
tion between neurons. The common mathematical model of these two mechanisms
is a net of processors dealing with symbols and communicating these symbols
along channels specified in advance. The communication among cells is based on
symport/antiport rules, which were introduced to P systems in [20]. Symport rules
move objects across a membrane together in one direction, whereas antiport rules
move objects across a membrane in opposite directions.

From the seminal definitions of tissue P systems [14, 15], several research lines
have been developed and other variants have arisen (see, for example, [1, 2, 3, 9,
10, 26]). One of the most interesting variants of tissue P systems was presented in
[22]. In that paper, the definition of tissue P systems is combined with the one of P
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systems with active membranes, yielding tissue P systems with cell division, and a
polynomial-time uniform solution to the NP-complete problem SAT is shown. In
this kind of tissue P systems [22], there exists replication, that is, the two new cells
generated by a division rule have exactly the same objects except for at most a
pair of different objects. However, in the biological phenomenon of separation, the
contents of the two new cells evolved from a cell can be significantly different, and
membrane separation inspired by this biological phenomenon in the framework
of cell-like P systems was proved to be an efficient way to obtain exponential
workspace in polynomial time [16]. In this paper, a new class of tissue P systems
based on cell separation, called tissue P systems with cell separation, is presented,
and a linear time uniform solution to the NP-complete problem SAT is shown.

The paper is organized as follows: first, we recall some preliminaries, and then,
the definition of tissue P systems with cell separation is given. Next, recognizer
tissue P systems are briefly described. In Section 5, we prove that only tractable
problem can be efficiently solved by using cell separation and communication rules
with length at most 1. In Section 6, an efficient (uniform) solution to SAT problem
by using cell separation and communication rules with length at most 6 is shown,
including a short overview of the computation and of the necessary resources.
The formal verification of the solution is also given. Finally, some discussion is
presented.

2 Preliminaries

An alphabet, Σ, is a non empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

A multiset m over a set A is a pair (A, f) where f : A → IN is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}
and its size is defined as

∑

x∈A f(x). A multiset is empty (resp. finite) if its support
is the empty set (resp. finite).

If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then it

will be denoted as m = {{a
f(a1)
1 , . . . , a

f(ak)
k }}. That is, superscripts indicate the

multiplicity of each element, and if f(x) = 0 for any x ∈ A, then this element is
omitted.

In what follows we assume the reader is already familiar with the basic notions
and the terminology of P systems. For details, see [19].
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3 Tissue P Systems with Cell Separation

In the first definition of the model of tissue P systems [14, 15], the membrane
structure did not change along the computation. We will give a new model of
tissue P systems with cell separation based on the cell-like model of P systems
with membranes separation [16]. The biological inspiration is clear: alive tissues
are not static network of cells, since new cells are generated by membrane fission
in a natural way.

The main features of this model, from the computational point of view, are
that cells are not polarized (the contrary holds in the cell-like model of P systems
with active membranes, see [19]); the cells obtained by separation have the same
labels as the original cell and if a cell is separated, its interaction with other cells
or with the environment is blocked during the separation process. In some sense,
this means that while a cell is separating it closes its communication channels.

Formally, a tissue P system with cell separation of degree q ≥ 1 is a tuple

Π = (Γ,O1, O2, w1, . . . , wq, E ,R, i0),

where:

1. Γ is a finite alphabet whose elements are called objects, Γ = O1∪O2, O1, O2 6=
∅, O1 ∩ O2 = ∅;

2. w1, . . . , wq are strings over Γ , representing the multisets of objects placed in
the q cells of the system at the beginning of the computation;

3. E ⊆ Γ is a finite alphabet representing the set of objects in the environment
in arbitrary copies each;

4. R is a finite set of rules of the following forms:
(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;

Communication rules; 1, 2, · · · , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i, (|u| + |v| is
called the length of the communication rule (i, u/v, j));

(b) [a]i → [O1]i[O2]i, where i ∈ {1, 2, . . . , q} and a ∈ Γ ;
Separation rules; in reaction with an object a, the cell is separated into
two cells with the same label; at the same time, object a is consumed; the
objects from O1 are placed in the first cell, those from O2 are placed in
the second cell;

5. i0 ∈ {0, 1, 2, . . . , q} is the output cell.

The rules of a system like the above one are used in the non-deterministic max-
imally parallel manner as customary in membrane computing. At each step, all
cells which can evolve must evolve in a maximally parallel way (in each step we
apply a multiset of rules which is maximal, no further rule can be added). This
way of applying rules has only one restriction: when a cell is separated, the sepa-
ration rule is the only one which is applied for that cell in that step; the objects
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inside that cell do not evolve by means of communication rules. The new cells
could participate in the interaction with other cells or the environment by means
of communication rules in the next step – providing that they are not separated
once again. Their labels precisely identify the rules which can be applied to them.

The configuration of tissue P system with cell separation is described by all
multisets of objects associated with all the cells and environment (w′

1, · · · , w′
q;

w′
0), where w′

0 is a multiset over Γ − E representing the objects present in the
environment having a finite multiplicity. The tuple (w1, w2, · · · , wq; ∅) is the initial
configuration. The computation starts from the initial configuration and proceeds
as defined above; only halting computations give a result, and the result is encoded
by the objects present in cell i0 in the halting configuration.

4 Recognizer Tissue P Systems with Cell Separation

NP-completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency, the notions from classical compu-
tational complexity theory are adapted for membrane computing, and a special
class of cell-like P systems is introduced in [25]: recognizer P systems. For tissue
P systems, with the same idea as recognizer cell-like P systems, recognizer tissue
P systems is introduced in [22].

A recognizer tissue P system with cell separation of degree q ≥ 1 is a construct

Π = (Γ,O1, O2, Σ,w1, . . . , wq, E ,R, iin, i0)

where:

• (Γ,O1, O2, w1, . . . , wq, E ,R, io) is a tissue P system with cell separation of de-
gree q ≥ 1 (as defined in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, at least one
copy of them present in some initial multisets w1, . . . , wq, but none of them
are present in E .

• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π, then either object yes or object no (but not both)

must have been released into the environment, and only at the last step of the
computation.

The computations of the system Π with input w ∈ Σ∗ start from a configu-
ration of the form (w1, w2, . . . , wiin

w, . . . , wq; ∅), that is, after adding the multiset
w to the contents of the input cell iin. We say that C is an accepting computation
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(respectively, rejecting computation) if object yes (respectively, no) appears in the
environment associated to the corresponding halting configuration of C.

We denote by TSC(k) the class of recognizer tissue P systems with cell sepa-
ration and with communication rules of length at most k.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) | n ∈ IN} of recognizer tissue P systems with
cell separation if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every com-
putation of Π(s(u)) with input cod(u) is halting and, moreover, it performs
at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

We denote by PMCTSC(k) the set of all decision problems which can be solved
by means of recognizer tissue P systems from TSC(k).

5 Limitation on the Efficiency of TSC(1)

In this section, we consider the efficiency of tissue P systems with cell separation
and communication rules with length 1. Specifically, we shall prove that such
systems can efficiently solve only tractable problems.

Let Π be a tissue P system with cell separation and let all communication
rules be of length 1. In this case, each rule of the system can be activated by a
single object. Hence, there exists, in some sense, a dependency between the object
triggering the rule and the object or objects produced by its application. This
dependency allows to adapt the ideas developed in [13] for cell-like P systems with
active membranes to tissue P systems with cell separation and communication
rules of length 1.

We can consider a general pattern (a, i) → (b1, j) . . . (bs, j) where i, j ∈
{0, 1, 2, . . . , q}, and a, bk ∈ Γ , k ∈ {1, · · · , s}. This pattern can be interpreted
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as follows: from the object a in the cell (or in the environment) labeled with i we
can reach the objects b1, . . . , bs in the cell (or in the environment) labeled with j.
Communication rules correspond to the case s = 1 and b1 = a.

Without loss of generality we can assume that all communication rules in the
system obey the syntax (i, a/λ, j), since every rule of the form (j, λ/a, i) can be
rewritten to follow the above syntax, with equivalent semantics.

We formalize these ideas in the following definition.

Definition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system of de-
gree q ≥ 1 with cell separation. Let H = {0, 1, . . . , q}. The dependency graph
associated with Π is the directed graph GΠ = (VΠ , EΠ) defined as follows:
VΠ = {(a, i) ∈ Γ × H : ∃j ∈ H ((i, a/λ, j) ∈ R ∨ (j, a/λ, i) ∈ R)},
EΠ = {((a, i), (b, j)) : (a = b ∧ (i, a/λ, j) ∈ R)}.

Note that when a separation rule is applied, objects do not evolve, and the
labels of membranes do not change, so separation rules do not add any nodes and
edges to the associated dependency graph.

Proposition 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system
with cell separation, in which the length of all communication rules is 1. Let
H = {0, 1, . . . , q}. There exists a deterministic Turing machine that constructs
the dependency graph GΠ associated with Π, in polynomial time (that is, in a
time bounded by a polynomial function depending on the total number of commu-
nication rules).

Proof. A deterministic algorithm that, given a P system Π with the set Rc of
communication rules, constructs the corresponding dependency graph, is the fol-
lowing:

Input: Π (with Rc as its set of communication rules)

VΠ ← ∅; EΠ ← ∅
for each rule r ∈ Rc of Π do

if r = (i, a/λ, j) then

VΠ ← VΠ ∪ {(a, i), (a, j)}; EΠ ← EΠ ∪ {((a, i), (a, j))}
The running time of this algorithm is bounded by O(|Rc|).

Proposition 2. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a tissue P system with
cell separation, in which the length of all communication rules is 1. Let H =
{0, 1, . . . , q}. Let ∆Π be defined as follows:

∆Π = {(a, i) ∈ Γ × H : there exists a path (within the dependency graph)
from (a, i) to (yes, 0)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial time
(that is, in a time bounded by a polynomial function depending on the total number
of communication rules).

Proof. We can construct the set ∆Π from Π as follows:
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• We construct the dependency graph GΠ associated with Π.
• Then we consider the following algorithm:

Input: GΠ = (VΠ , EΠ)
∆Π ← ∅
for each (a, i) ∈ VΠ do

if reachability (GΠ , (a, i), (yes, 0)) = yes then

∆Π ← ∆Π ∪ {(a, i)}

The running time of this algorithm 3 is of order O(|VΠ | · |VΠ |2), hence it is of
order O(|Γ |3 · |H|3).

Notation: Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin, iout) be a tissue P system
with cell separation. Let m be a multiset over Σ. Then we denote M∗

j = {(a, j) :
a ∈ Mj}, for 1 ≤ j ≤ q, and m∗ = {(a, iin) : a ∈ m}.

Below we characterize accepting computations of a recognizer tissue P system
with cell separation and communication rules of length 1 by distinguished paths
in the associated dependency graph.

Lemma 1. Let Π = (Γ,Σ,Ω,M1, . . . ,Mq,R, iin) be a recognizer confluent tissue
P system with cell separation in which the length of all communication rules is 1.
The following assertions are equivalent:

(1) There exists an accepting computation of Π.
(2) There exists (a0, i0) ∈

⋃q

j=1 M
∗
j and a path in the dependency graph associated

with Π, from (a0, i0) to (yes, 0).

Proof. (1) ⇒ (2). First, we show that for each accepting computation C of Π there
exists (a0, i0) ∈

⋃q
j=1 M

∗
j and a path γC in the dependency graph associated with

Π from (a0, i0) to (yes, 0). By induction on the length n of C.
If n = 1, a single step is performed in C from C0 to C1. A rule of the form

(j, yes/λ, 0), with yes ∈ Γ, j 6= 0, has been applied in that step. Then, (yes, j) ∈
M∗

j , for some j ∈ {1, . . . , q}. Hence, ((yes, j), (yes, 0)) is a path in the dependency
graph associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1) be
an accepting computation of Π. Then C′ = (C1, . . . , Cn, Cn+1) is an accepting
computation of the system Π ′ = (Γ,Σ,Ω,M′

1, . . . ,M
′
q,R, iin), where M′

j is the

3 The Reachability Problem is the following: given a (directed or undirected) graph, G,
and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design
an algorithm running in polynomial time solving this problem. For example, given a
(directed or undirected) graph, G, and two nodes a, b, we consider a depth–first–search
with source a, and we check if b is in the tree of the computation forest whose root
is a. The total running time of this algorithm is O(|V | + |E|), that is, in the worst
case is quadratic in the number of nodes. Moreover, this algorithm needs to store a
linear number of items (it can be proved that there exists another polynomial time
algorithm which uses O(log2(|V |)) space).
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content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction hypothesis
there exists an object b0 in a cell i0 from C1, and a path in the dependency graph
associated with Π ′ from (b0, i0) to (yes, 0). If (b0, i0) is an element of configuration
C0 (that means that in the first step a separation rule has been applied to cell
i0), then the result holds. Otherwise, there is an element (a0, j0) in C0 producing
(b0, i0). So, there exists a path γC in the dependency graph associated with Π from
(a0, j0) to (yes, 0).

(2) ⇒ (1). Let us prove that for each (a0, i0) ∈
⋃q

j=1 M
∗
j and for each path in

the dependency graph associated with Π from (a0, i0) to (yes, 0), there exists an
accepting computation of Π. By induction on the length n of the path.

If n = 1, we have a path ((a0, i0), (yes, 0)). Then, a0 = yes and the computa-
tion C = (C0, C1) where the rule (i0, yes/λ, 0) belongs to a multiset of rules m0

that produces configuration C1 from C0 is an accepting computation of Π.
Let us suppose that the result holds for n. Let

((a0, i0), (a1, i1), . . . (an, in), (yes, 0))

be a path in the dependency graph of length n + 1. Let C1 be the configuration
of Π reached from C0 by the application of a multiset of rules containing the rule
that produces (a1, i1) from (a0, i0). Then ((a1, i1), . . . (an, in), (yes, 0)) is a path
of length n in the dependency graph associated with the system

Π ′ = (Γ,Σ,Ω,M′
1, . . . ,M

′
q,R, iin)

where M′
j is the content of cell j in configuration C1, for 1 ≤ j ≤ q. By induction

hypothesis, there exists an accepting computation C′ = (C1, . . . , Ct) of Π ′. Hence,
C = (C0, C1, . . . , Ct) is an accepting computation of Π.

Next, given a family Π = (Π(n))n∈N of recognizer tissue P system with cell
separation in which the length of all communication rules is 1, solving a decision
problem, we will characterize the acceptance of an instance of the problem, w,
using the set ∆Π(s(w)) associated with the system Π(s(w)), that processes the
given instance w. More precisely, the instance is accepted by the system if and
only if there is an object in the initial configuration of the system Π(s(w)) with
input cod(w) such that there exists a path in the associated dependency graph
starting from that object and reaching the object yes in the environment.

Proposition 3. Let X = (IX , θX) be a decision problem. Let Π = (Π(n))n∈N be
a family of recognizer tissue P system with cell separation in which the length of
all communication rules is 1 solving X, according to Definition 1. Let (cod, s) be
the polynomial encoding associated with that solution. Then, for each instance w
of the problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w)) ∩ ( (cod(w))∗ ∪

p
⋃

j=1

M∗
j ) 6= ∅, where M1, . . . ,Mp are the initial mul-

tisets of the system Π(s(w)).
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Proof. Let w ∈ IX . Then θX(w) = 1 if and only if there exists an accepting
computation of the system Π(s(w)) with input multiset cod(w). By Lemma 1,
this condition is equivalent to the following: in the initial configuration of Π(s(w))
with input multiset cod(w) there exists at least one object a ∈ Γ in a cell labelled
with i such that in the dependency graph the node (yes, 0) is reachable from (a, i).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M∗
j 6= ∅ for some j ∈ {1, . . . , p}, or

∆Π(s(w)) ∩ (cod(w))∗ 6= ∅.

Theorem 1. P = PMCTSC(1)

Proof. We have P ⊆ PMCTSC(1) because the class PMCTSC(1) is closed under
polynomial time reduction. In what follows, we show that PMCTSC(1) ⊆ P. Let
X ∈ PMCTSC(1) and let Π = (Π(n))n∈N be a family of recognizer tissue P
systems with cell separation solving X, according to Definition 1. Let (cod, s) be
the polynomial encoding associated with that solution.

We consider the following deterministic algorithm:
Input: An instance w of X
- Construct the system Π(s(w)) with input multiset cod(w).
- Construct the dependency graph GΠ(s(w)) associated with Π(s(w)).
- Construct the set ∆Π(s(w)) as indicated in Proposition 2

answer ← no; j ← 1
while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩M∗
j 6= ∅ then

answer ← yes

j ← j + 1
endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there exists a
pair (a, i) belonging to ∆Π(s(w)) such that the symbol a appears in the cell labelled
with i in the initial configuration (with input the multiset cod(w)).

On the other hand, a pair (a, i) belongs to ∆Π(s(w)) if and only if there exists
a path from (a, i) to (yes, 0), that is, if and only if we can obtain an accepting
computation of Π(s(w)) with input cod(w). Hence, the algorithm above described
solves the problem X.

The cost to determine whether or not ∆Π(s(w)) ∩ M∗
j 6= ∅ (or ∆Π(s(w)) ∩

(cod(w))∗ 6= ∅) is of order O(|Γ |2 · |H|2).

Hence, the running time of this algorithm can be bounded by f(|w|)+O(|Rc|)+
O(q · |Γ |2 ·n2), where f is the (total) cost of a polynomial encoding from X to Π,
Rc is the set of rules of Π(s(w)), and q is the number of (initial) cells of Π(s(w)).
Furthermore, by Definition 1 we have that all involved parameters are polynomial
in |w|. That is, the algorithm is polynomial in the size |w| of the input.
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6 Solving Computationally Hard Problems by Using TSC(6)

In this section, we consider the efficiency of tissue P systems with cell separation
and communication rules of length at most 6. As expected, such systems can
efficiently solve computationally hard problems. In what follows, we show how to
efficiently solve SAT problem by such systems.

The SAT problem is the following: given a boolean formula in conjunctive
normal form (CNF), to determine whether or not there exists an assignment to its
variables on which it evaluates true. This is a well known NP-complete problem
[5].

The solution proposed follows a brute force approach in the framework of
recognizer P systems with cell separation. The solution consists of the following
stages:

• Generation Stage: All truth assignments for the n variables are produced by
using cell separation in an adequate way.

• Checking Stage: We determine whether there is a truth assignment that makes
the boolean formula evaluate to true.

• Output Stage: The system sends to the environment the right answer according
to the results of the previous stage.

Let us consider the polynomial time computable function 〈n,m〉 = ((m +
n)(m + n + 1)/2) + m (the pair function), which is a primitive recursive and
bijective function from IN2 to IN. We shall construct a family Π = {Π(t) | t ∈ IN}
such that each system Π(t) will solve all instances of SAT problem with n variables
and m clauses, where t = 〈n,m〉, provided that the appropriate input multisets
are given.

For each n,m ∈ IN,

Π(〈n,m〉) = (Γ (〈n,m〉), Σ(〈n,m〉), w1, w2,R(〈n,m〉), E(〈n,m〉), iin, i0),

with the following components:

• Γ (〈n,m〉) = O1 ∪ O2,
O1 = {xi,j , x̄i,j , ci,j , zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪

{Ai | 1 ≤ i ≤ n} ∪ {a1,i, b1,i, gi, hi | 1 ≤ i ≤ n − 1}∪
{d1,i, ei, li | 1 ≤ i ≤ n − 2} ∪ {a2,i, b2,i, d2,i | 2 ≤ i ≤ n − 1}∪
{ai,j,k, bi,j,k, di,j,k | 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 1}∪
{Bi | 1 ≤ i ≤ 4n} ∪ {Ci | 1 ≤ i ≤ 3n}∪
{Di | 1 ≤ i ≤ 4n + 2m} ∪ {Ei | 1 ≤ i ≤ 4n + 2m + 3}∪
{rj | 1 ≤ j ≤ m} ∪ {Ti, Fi, ti, fi | 1 ≤ i ≤ n} ∪ {c, p, s, y, z, yes, no},

O2 = {x′
i,j , x̄

′
i,j , z

′
i,j} | 1 ≤ i ≤ n, 1 ≤ j ≤ m}∪

{T ′
i , F

′
i | 1 ≤ i ≤ n} ∪ {y′, z′}.

• Σ(〈n,m〉) = {ci,j , xi,j , x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

•
w1 = {{a1,1, a2,2, g1, B1, C1,D1, E1, p, yes, no}}∪

{{ai,j,1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.
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• w2 = A1.
• R(〈n,m〉) is the set of rules:

1. Separation rule:

r1 ≡ [s]2 → [O1]2[O2]2.

2. Communication rules:

r2,i,j,k ≡ (1, ai,j,k/bi,j,k, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 1;
r3,i,j,k ≡ (1, bi,j,k/c2

i,jd
2
i,j,k, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 2;

r4,i,j ≡ (1, bi,j,n−1/c2
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r5,i,j,k ≡ (1, di,j,k/ai,j,k+1, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ n − 2;
r6,i ≡ (1, a1,i/b1,i, 0) for 1 ≤ i ≤ n − 1;
r7,i ≡ (1, b1,i/c2d2

1,ie
2
i , 0) for 1 ≤ i ≤ n − 2;

r8 ≡ (1, b1,n−1/c2, 0);
r9,i ≡ (1, d1,i/a1,i+1, 0) for 1 ≤ i ≤ n − 2;
r10,i ≡ (1, ei/a2,i+1, 0) for 1 ≤ i ≤ n − 2;
r11,i ≡ (1, a2,i/b2,i, 0) for 2 ≤ i ≤ n − 1;
r12,i ≡ (1, b2,i/c2d2

2,i, 0) for 2 ≤ i ≤ n − 2;

r13 ≡ (1, b2,n−1/c2, 0);
r14,i ≡ (1, d2,i/a2,i+1, 0) for 2 ≤ i ≤ n − 2;
r15,i ≡ (1, gi/hi, 0) for 1 ≤ i ≤ n − 1;
r16,i ≡ (1, hi/l2i A

2
i+1, 0) for 1 ≤ i ≤ n − 2;

r17 ≡ (1, hn−1/A
2
n, 0);

r18,i ≡ (1, li/gi+1, 0) for 1 ≤ i ≤ n − 2;
r19,i,j ≡ (2, ci,jxi,j/zi,jz

′
i,jxi,jx

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r20,i,j ≡ (2, ci,j x̄i,j/zi,jz
′
i,j x̄i,j x̄

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r21,i,j ≡ (2, ci,jx
′
i,j/zi,jz

′
i,jxi,jx

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r22,i,j ≡ (2, ci,j x̄
′
i,j/zi,jz

′
i,j x̄i,j x̄

′
i,j , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r23,i ≡ (2, Ai/TiF
′
izz′yy′s, 0) for 1 ≤ i ≤ n − 1;

r24 ≡ (2, An/TnF ′
nyy′s, 0);

r25,i ≡ (2, cTi/zz′TiT
′
i , 0) for 1 ≤ i ≤ n − 1;

r26,i ≡ (2, cT ′
i/zz′TiT

′
i , 0) for 1 ≤ i ≤ n − 1;

r27,i ≡ (2, cFi/zz′FiF
′
i , 0) for 1 ≤ i ≤ n − 1;

r28,i ≡ (2, cF ′
i/zz′FiF

′
i , 0) for 1 ≤ i ≤ n − 1;

r29,i,j ≡ (1, ci,j/zi,j , 2) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r30,i,j ≡ (1, ci,j/z′i,j , 2) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r31 ≡ (1, c/z, 2);
r32 ≡ (1, c/z′, 2);
r33,i ≡ (1, Ai/y, 2) for 2 ≤ i ≤ n;
r34,i ≡ (1, Ai/y′, 2) for 2 ≤ i ≤ n;
r35,i ≡ (1, Bi/Bi+1, 0) for 1 ≤ i ≤ 2n − 1;
r36,i ≡ (1, Bi/B2

i+1, 0) for 2n ≤ i ≤ 3n − 1;
r37,i ≡ (1, Ci/Ci+1, 0) for 1 ≤ i ≤ 2n − 1;
r38,i ≡ (1, Ci/C2

i+1, 0) for 2n ≤ i ≤ 3n − 1;
r39,i ≡ (1,Di/Di+1, 0) for 1 ≤ i ≤ 2n − 1;
r40,i ≡ (1,Di/D2

i+1, 0) for 2n ≤ i ≤ 3n − 1;
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r41,i ≡ (1, Ei/Ei+1, 0) for 1 ≤ i ≤ 4n + 2m + 2;
r42,i,j ≡ (1, zi,j/λ, 0);
r43,i,j ≡ (1, z′i,j/λ, 0);
r44 ≡ (1, y/λ, 0);
r45 ≡ (1, y′/λ, 0);
r46 ≡ (1, z/λ, 0);
r47 ≡ (1, z′/λ, 0);
r48 ≡ (1, B3nC3nD3n/y, 2);
r49 ≡ (1, B3nC3nD3n/y′, 2);
r50,i ≡ (2, C3nTi/C3nti, 0) for 1 ≤ i ≤ n;
r51,i ≡ (2, C3nT ′

i/C3nti, 0) for 1 ≤ i ≤ n;
r52,i ≡ (2, C3nFi/C3nfi, 0) for 1 ≤ i ≤ n;
r53,i ≡ (2, C3nF ′

i/C3nfi, 0) for 1 ≤ i ≤ n;
r54,i ≡ (2, Bi/B2

i+1, 0) for 3n ≤ i ≤ 4n − 1;
r55,i ≡ (2,Di/Di+1, 0) for 3n ≤ i ≤ 4n − 1;
r56,i,j ≡ (2, B4ntixi,j/B4ntirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r57,i,j ≡ (2, B4ntix̄i,j/B4nti, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r58,i,j ≡ (2, B4ntix

′
i,j/B4ntirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r59,i,j ≡ (2, B4ntix̄
′
i,j/B4nti, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r60,i,j ≡ (2, B4nfix̄i,j/B4nfirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r61,i,j ≡ (2, B4nfixi,j/B4nfi, 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;
r62,i,j ≡ (2, B4nfix̄

′
i,j/B4nfirj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r63,i,j ≡ (2, B4nfix
′
i,j/B4nrj , 0) for 1 ≤ i ≤ n, 1 ≤ j ≤ m;

r64,i ≡ (2,Di/Di+1, 0) for 4n ≤ i ≤ 4n + m − 1;
r65,i ≡ (2,D4n+m+iri+1/D4n+m+i+1, 0) for 0 ≤ i ≤ m − 1;
r66 ≡ (2,D4n+2m/λ, 1);
r67 ≡ (1,D4n+2m p yes/λ, 0);
r68 ≡ (1, E4n+2m+3 p no/λ, 0).

• E(〈n,m〉) = Γ (〈n,m〉) − {yes, no}.
• iin = 2 is the input cell.
• i0 = 0 is the output region.

6.1 An Overview of the Computation

A family of recognizer tissue P systems with cell separation is constructed above.
For an instance of SAT problem ϕ = M1 ∧ · · · ∧ Mm, consisting of m clauses
Mi = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where V ar(ϕ) = {x1, · · · , xn}, yi,k ∈ {xj ,¬xj |
1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li, the size mapping on the set of instances
is defined as s(ϕ) = 〈n,m〉 = ((m + n)(m + n + 1)/2) + m, the encoding of the
instance is the multiset cod(ϕ) = {{ci,jxi,j | xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤
n, 1 ≤ j ≤ m}} ∪ {{ci,j x̄i,j | ¬xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}}.

Now, we informally describe how system Π(s(ϕ)) with input cod(ϕ) works.
Let us start with the generation stage. This stage has several parallel processes,

which we describe in several items.
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– In cells with label 2, by rules r19,i,j – r22,i,j , objects ci,jxi,j , ci,j x̄i,j ,
ci,jx

′
i,j , ci,j x̄

′
i,j introduce objects zi,jz

′
i,jxi,jx

′
i,j , zi,jz

′
i,j x̄i,j x̄

′
i,j , zi,jz

′
i,jxi,jx

′
i,j ,

zi,jz
′
i,j x̄i,j x̄

′
i,j , respectively. In the next step, the objects with prime and the

objects without prime are separated into the new daughter cells with label 2.
The idea is that ci,j is used to duplicate xi,j and x̄i,j (in the sense ignoring the
prime), so that one copy of each of them will appear in each cell with label 2.
The objects zi,j and z′i,j in cells with label 2 are exchanged with the objects
ci,j in the cell with label 1 by the rules r29,i,j and r30,i,j . In this way, the cycle
of duplication-separation can be iterated.

– In parallel with the above duplication-separation process, the objects c are used
to duplicate the objects Ti, T ′

i , Fi, and F ′
i by the rules r25,i – r28,i; the rules

r31 and r32 take care of introducing the object c from the cell with label 1 to
cells with label 2.

– In the initial configuration of the system, the cell with label 2 contains an object
A1 (Ai encodes the i-th variable in the propositional formula). The objects T1,
F ′

1, z, z′, y, y′ and s are brought in the cell with label 2, in exchange of A1,
by the rule r23,i. The objects T1 and F ′

1 correspond to the values true and
false which the variable x1 may assume (in general, Ti (or T ′

i ) and Fi (or F ′
i )

are for the variable xi), and in the next step they are separated into the new
daughter cells with label 2 by separation rule, because T1 ∈ O1 and F ′

1 ∈ O2.
The object s is used to activate the separation rule r1, and is consumed during
the application of separation rule. The objects y and y′ are used to introduce
A2 from the cell with label 1, and the process of truth-assignment for variable
x2 can continue. In this way, in 3n − 1 steps, we get 2n cells with label 2, and
each one contains one of the 2n possible truth-assignments for the n variables.

– In parallel with the operations in the cells with label 2, the objects ai,j,k+1 from
the cell with label 1 are traded for objects bi,j,k+1 from the environment at the
step 3k + 1 (0 ≤ k ≤ n − 3) by the rule r2,i,j,k. In the next step, each object
bi,j,k+1 is traded for two copies of objects ci,j and di,j,k+1 by the rule r3,i,j,k.
At step 3k + 3 (0 ≤ k ≤ n − 3), the object di,j,k is traded for object ai,j,k+2

by the rule r4,i,j,k. Especially, at step 3n − 5, ai,j,n−1 is traded for bi,j,n−1 by
the r2,i,j,k, at step 3n − 4, each copy of object bi,j,n−1 is traded for two copies
of ci,j by the r4,i,j . After step 3n − 4, there is no object ai,j,k appears in the
cell with label 1, and the group of rules r2,i,j,k – r5,i,j,k will not be used again.
Note that the subscript k of the object ai,j,k grows by 1 in every 3 steps until
reaching the value n− 1, and the number of copies of ai,j,k is doubled in every
3 steps. At step 3k + 3 (0 ≤ k ≤ n − 2), the cell with label 1 has 2k+1 copies
of object ci,j . At the same time, we have 2k+1 cells with label 2, and each cell
with label 2 contains one copy of object zi,j or one copy of object z′i,j . Due to
the maximality of the parallelism of using the rules, each cell with label 2 gets
exactly one copy of ci,j from the cell with label 1 by the rules r29,i,j and r30,i,j .
The object ci,j in cell with label 2 is used for duplication as described above.
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– The objects a1,i and a2,i in the cell with label 1 has the similar role as object
ai,j,k in cell 1, which introduce appropriate copies of object c for the duplication
of objects Ti, T ′

i , Fi, and F ′
i by the rules r6,i – r14,i. Note that at step 3k + 3

(0 ≤ k ≤ n−2), there are 2k+1(k +1) copies of object c, which ensure each cell
with label 2 gets k + 1 copies of object c by the maximality of the parallelism
of using the rules.

– The object gi+1 in the cell with label 1 is traded for hi+1 from the environment
at step 3i + 1 (0 ≤ i ≤ n − 3) by the rule r15,i. In the next step, the object
hi+1 is traded for two copies of objects li+1 and Ai+2 by the rule r13,i. At the
step 3i + 3 (0 ≤ i ≤ n − 3), the object li+1 is traded for two copies of gi+2,
so that the process can be iterated, until the subscript i of gi reaches n − 1.
Especially, at step 3n − 5, object gn−1 is traded for hn−1 by the rule r15,i, at
step 3n− 4, each object hn−1 is traded for two copies of An. After step 3n− 4,
there is no object gi appears in the cell with label 1, and the group of rules
r15,i – r18,i will not be used again. At the step 3i + 3 (0 ≤ i ≤ n − 2), the cell
with label 1 contains 2i+1 copies of Ai+2, and we have 2i+1 cells with label 2,
each of them contains one copy of object y or one copy of object y′. Due to
the maximality of the parallelism of using the rules, each cell with label 2 gets
exactly one copy of Ai+2 from the cell 1 by the rules r33,i and r34,i. In this
way, the truth-assignment for the valuable xi+1 can continue.

– The counters Bi, Ci, Di, and Ei in the cell with label 1 grow their subscripts
by the rules r35,i – r41,i. From step 2n to step 3n − 1, the number of copies
of objects of the first three types is doubled, hence after 3n − 1 steps, the cell
with label 1 contains 2n copies of B3n, C3n, and D3n. Objects Bi will check
which clauses are satisfied by a given truth-assignment, objects Ci are used to
multiply the number of copies of ti, fi as we will see immediately, objects Di

are used to check whether there is at least one truth-assignment which satisfies
all clauses, and Ei will be used to bring the object no to the environment, if
this will be the case, in the end of the computation.

– The objects zi,j , z′i,j , y, y′, z, and z′ in the cell with label 1 are removed by
the rules r42,i,j – r47. (Actually, if the objects zi,j , z′i,j , y, y′, z, and z′ stay in
the cell with label 1, they do not influence the work of the system. The rules
r38 – r43 are designed just in order to simplify the formal verification.)

In this way, after the (3n − 1)–th step the generation stage finishes and the
checking stage starts. At this moment, the cell with label 1 contains 2n copies
of objects B3n, C3n, and D3n, and there are 2n cells with label 2, each of them
containing a copy of y and n − 1 copies of z, or a copy of y′ and n − 1 copies of
z′. The objects z and z′ in cells with label 2 will not evolve anymore, because the
cell with label 1 contains no object c from now on, and the rules r31 and r32 can
not be applied.

At the step 3n, objects y or y′ are traded for objects B3n, C3n, and D3n by
rules r48 and r49. (Note that the rules r33,i and r34,i can not be used, because
there is no object Ai in the cell with label 1 at this moment and henceforth. And
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the cells with label 2 cannot separate any more.) Due to the maximality of the
parallelism of using the rules, each cell with label 2 gets exactly one copy of each
of B3n, C3n, and D3n.

In the presence of C3n, the objects Ti and T ′
i , Fi and F ′

i introduce the objects
ti and fi, respectively. We have only one copy of C3n available, for each one of ti
and fi we need one step. So this phase needs n steps that is, this phase ends at
step 4n.

In parallel with the previous operations, the counters Bi and Di increase their
subscripts, until reaching the value 4n by the rules r54,i and r55,i. Each cell with
label 2 contains one copy of D4n and 2n copies of B4n. Simultaneously, Ei increase
its subscript in the cell with label 1.

At step 4n+1, with the presence of B4n, we start to check the values assumed
by clauses for the truth-assignments from each cell with label 2 by the rules r56,i,j

– r63,i,j . Each membrane with label 2 contains nm objects xi,j and x̄i,j or nm
objects x′

i,j and x̄′
i,j , because each clause contains at most n literals, and we have

m clauses. Note that each membrane with label 2 contains 2n copies of B4n and
n objects ti and fi. At each step, n objects xi,j and x̄i,j , or n objects x′

i,j and
x̄′

i,j are checked. So it takes m steps. In parallel, Di increases the subscript, until
reaching the value 4n + m (at step 4n + m) by the rule r64,i.

By the rule r65,i, in each cell with label 2, we check whether or not all clauses are
satisfied by the corresponding truth-assignment. For each clause which is satisfied,
we increase by one the subscript of Di, hence the subscript reaches the value
4n + 2m if and only if all clauses are satisfied.

The output stage starts at the (4n + 2m + 1)-th step.

– Affirmative answer: If one of the truth-assignments from a cell with label 2 has
satisfied all clauses, then in that cell there is an object D4n+2m as described
above, which is sent to the cell with label 1 by the rule r66. In the next step,
the object yes leaves the system by the rule r67, signaling the fact that the
formula is satisfiable. In cell 1, the counter Ei increases its subscript by the
rule r41,i, until reaching the value 4n + 2m + 3, but after that it will remain
unchanged – it can leave the cell with label 1 only in the presence of p, but
this object p was already moved to the environment at step 4n + 2m + 2. The
computation halts at step 4n + 2m + 2.

– Negative answer: If the counter Ei reaches the subscript 4n + 2m + 3 and the
object p is still in the cell with label 1, then the object no can be moved to the
environment by the rule r68, signaling that the formula is not satisfiable. The
computation finishes at step 4n + 2m + 3.

6.2 Formal Verification

In this subsection, we prove that the family built above solves SAT problem in a
polynomial time, according to Definition 1. First of all, the Definition 1 requires
that the defined family is consistent, in the sense that all systems of the family
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must be recognizer tissue P systems with cell separation. By the construction (type
of rules and working alphabet) it is clear that it is a family of tissue P systems
with cell separation. In order to show that all members in Π are recognizer systems
it suffices to check that all the computations halt (this will be deduced from the
polynomial bound), and that either an object yes or an object no is sent out exactly
in the last step of the computation (this will be deduced from the soundness and
completeness).

Polynomial uniformity of the family

We will show that the family Π = {Π(〈n,m〉) | n,m ∈ IN} defined above is
polynomially uniform by Turing machines. To this aim it will be proved that
Π(〈n,m〉) is built in polynomial time with respect to the size parameter n and m
of instances of SAT problem.

It is easy to check that the rules of a system Π(〈n,m〉) of the family are
defined recursively from the values n and m. And the necessary resources to build
an element of the family are of a polynomial order, as shown below:

• Size of the alphabet: 3n2m + 4nm + 30n + 5m − 5 ∈ O(n2m).
• Initial number of cells: 2 ∈ O(1).
• Initial number of objects: nm + 10 ∈ O(nm).
• Number of rules: 3n2m + 15nm + 36n + 3m − 12 ∈ O(n2m).
• Maximal length of a rule: 6 ∈ O(1).

Therefore, a deterministic Turing machine can build Π(〈n,m〉) in a polynomial
time with respect to n and m.

Polynomial bound of the family

For an instance of SAT problem ϕ = M1 ∧ · · · ∧ Mm, consisting of m clauses
Mi = yi,1 ∨ · · · ∨ yi,li , 1 ≤ i ≤ m, where V ar(ϕ) = {x1, · · · , xn}, yi,k ∈ {xj ,¬xj |
1 ≤ j ≤ n}, 1 ≤ i ≤ m, 1 ≤ k ≤ li, we recall the size mapping function s(ϕ) and
the encoding function cod(ϕ): s(ϕ) = 〈n,m〉, and cod(ϕ) = {{ci,jxi,j | xi ∈ {yj,k |
1 ≤ k ≤ li}, 1 ≤ i ≤ n, 1 ≤ j ≤ m}} ∪ {{ci,j x̄i,j | ¬xi ∈ {yj,k | 1 ≤ k ≤ li}, 1 ≤ i ≤
n, 1 ≤ j ≤ m}}. The pair (cod, s) is computable in polynomial time, cod(ϕ) is an
input multiset of the system Π(s(ϕ)).

In order to prove that the system Π(s(ϕ)) with input cod(ϕ) is polynomially
bounded, it suffices to find the moment in which the computation halts, or at least,
an upper bound for it.

Proposition 4. The family Π = {Π(〈n,m〉) | n,m ∈ IN} is polynomially bounded
with respect to (SAT, cod, s).

Proof. We will informally go through the stages of the computation in order to
estimate a bound for the number of steps. The computation will be checked more
in detail when addressing the soundness and completeness proof.
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Let ϕ = M1 ∧ · · · ∧ Mm be an instance of the problem SAT. We shall study
what happens during the computation of the system Π(s(ϕ)) with input cod(ϕ)
in order to find the halting step, or at least, an upper bound for it.

First, the generation stage has exactly 3n − 1 steps, where at steps 3k + 2
(0 ≤ k ≤ n − 1) the cells with label 2 are separated. In this way, we get 2n cells
with label 2, each of them contains one of the 2n possible truth-assignments for
the n variables.

After one more step, the objects B3n, C3n, and D3n arrive at cells with label 2,
and the checking stage starts. The object C3n works for n steps introducing objects
ti or fi into cells with label 2, until all object Ti, T ′

i , Fi and F ′
i are consumed, at

the step 4n. From step 4n+1, the objects B4n start to work checking which clauses
are satisfied by the truth-assignment from each cell with label 2. This checking
takes m steps. When the subscript of Di grows to 4n + m at step 4n + m, the
system starts to check whether or not all clauses are satisfied by the corresponding
truth-assignment. It takes m steps, and the checking stage ends at step 4n + 2m.

The last one is the answer stage. The longest case is obtained when the answer
is negative. In this case there are two steps where only the counter Ei is working.
At the step 4n+2m+3 the object E4n+2m+3 works together with object p bringing
no from the cell with label 1 into the environment.

Therefore, there exists a linear bound (with respect to n and m) on the number
of steps of the computation.

Soundness and completeness of the family

In order to prove the soundness and completeness of the family Π with respect
to (SAT, cod, s), we shall prove that for a given instance ϕ of the problem SAT,
the system Π(s(ϕ)) with input cod(ϕ) sends out an object yes if and only if the
answer to the problem for the considered instance ϕ is affirmative and the object
no is sent out otherwise. In both cases the answer will be sent to the environment
in the last step of the computation.

For the sake of simplicity in the notation, we consider the following two
functions ψ(σj(xi)) and γ(σj(xi)). Let F be the set of all assignments of the
variables x1, x2, · · · , xn. We order the set S in lexicographical order, that is,
F = {σ1, σ2, · · · , σ2n}, where σj(xi) ∈ {0, 1} (1 ≤ j ≤ 2n, 1 ≤ i ≤ n) is an
assignment of variables. For 1 ≤ j ≤ 2n, 1 ≤ i ≤ n, we define ψ as follows: if j is
odd, then

ψ(σj(xi)) =

{

Ti, if σj(xi) = 1,
Fi, if σj(xi) = 0;

if j is even, then

ψ(σj(xi)) =

{

T ′
i , if σj(xi) = 1,

F ′
i , if σj(xi) = 0.

For each assignment σj(xi) ∈ {0, 1}, and for i = 1, . . . , n, we define γ as follows:

γ(σj(xi)) =

{

ti, if σj(xi) = 1;
fi, if σj(xi) = 0.
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In this way, each assignment of variables σj is associated a multiset {{ψ(σj(x1)),
ψ(σj(x2)), · · · , ψ(σj(xn))}} and a multiset {{γ(σj(x1)), γ(σj(x2)), · · · , γ(σj(xn)
)}}.

Given a computation C we denote the configuration at the i-th step as Ci.
Moreover, Ci(1) will denote the multiset associated to cell 1 in such configuration.

Proposition 5. Let C be an arbitrary computation of the system, then at step
3k + 2 for all k such that 0 ≤ k ≤ n − 2, the cell with label 1 gets 2k+1 copies of
object ci,j, 2k+1(k + 1) copies of object c, and 2k+1 copies of object Ak+2 from the
environment. And after step 3n− 3, the cell with label 1 cannot get objects ci,j, c,
Ai any more.

Proof. It is not difficult to find that in the set of all rules there are 6 types of
rules related to object ci,j , that is, rules r2,i,j,k – r5,i,j,k, r29,i,j and r30,i,j . The
rules r29,i,j and r30,i,j are used to move ci,j from the cell with label 1 to cells with
label 2 in exchange of zi,j or z′i,j , which happens at steps 3k +3 for all k such that
0 ≤ k ≤ n − 2. Anyway, these two rules do not bring object ci,j into the cell with
label 1. So we need only to check how these 4 types of rules r2,i,j,k – r5,i,j,k work.

First, by induction on k, we prove that at step 3k + 2 (0 ≤ k ≤ n− 3), the cell
with label 1 gets 2k+1 copies of object ci,j and the cell with label 1 has exactly
2k+1 copies of di,j,k+1.

In the multiset C0(1), there is one copy of each object ai,j,1 (1 ≤ i ≤ n,
1 ≤ j ≤ m). By application of rules r2,i,j,1 and r3,i,j,1, the cell with label 1 gets
two 2 copies of ci,j and 2 copies di,j,1 at step 2.

Now suppose the result is true for k < n − 4. We have, by the inductive
hypothesis, at step 3k + 2, the cell with label 1 gets 2k+1 copies of object ci,j and
the cell with label 1 has exactly 2k+1 copies of di,j,k+1. At step 3k + 3, among
these 4 types of rules r2,i,j,k+1 – r5,i,j,k, only rule r5,i,j,k+1 can be applied, 2k+1

copies of di,j,k+1 are traded for 2k+1 copies of ai,j,k+2. At step 3(k + 1) + 1, 2k+1

copies of ai,j,k+2 are traded for 2k+1 copies of bi,j,k+2 by the r2,i,j,k+2. At step
3(k + 1) + 2, by the rule r3,i,j,k+2, the cell with label 1 gets 2k+2 copies of object
ci,j and the cell with label 1 has exactly 2k+2 copies of di,j,k+2.

Based on the above result, specifically, we have, at step 3(n − 3) + 2, the cell
with label 1 has exactly 2n−2 copies of di,j,n−2. In the next 3 steps, the rules
r5,i,j,n−2, r2,i,j,n−1, and r4,i,j,n−1 are applied in order. At step 3(n − 2) + 2, the
cell with label 1 gets 2n−1 copies of ci,j . Note that on object di,j,k is brought into
the cell with label 1 at step 3(n − 2) + 2, and the group of rules r5,i,j,k, r2,i,j,k,
and r4,i,j,k cannot be used any more. Therefore the cell with label 1 will not get
object ci,j any more, and the result holds.

For the cases of objects c and Ai, the results can be proved similarly. We omit
them here.

Proposition 6. Let C be an arbitrary computation of the system, then

1. For each assignment σj(xi), i = 1, 2, · · · , n, there exists only one cell with label
2 in C3n−1 that contains multiset {{ψ(σj(xi)) | i = 1, 2, · · · , n}}.
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2. There exist exactly 2n cells with label 2 in configuration Ck (k ≥ 3n − 1).
Particularly, in configuration C3n−1, each cell with label 2 contains a multiset
{{y}}∪{{zi,j , xi,j | xi,j ∈ cod(ϕ)}}∪{{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or a multiset
{{y′}} ∪ {{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈ cod(ϕ)}}.

Proof. We prove the result by induction.
In the configuration C0, there is only one cell with label 2, which has multiset

{{cij , xi,j , x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}} ∪ {{A1}}. The rules r19,i,j – r22,i,j and
r23,1 can be applied. At step 1, the cell with label 2 has multiset {{zi,j , xi,j | xi,j ∈
cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j |

x̄i,j ∈ cod(ϕ)}}∪{{z, z′, T1, F
′
1, y, y′, s}}. At step 2, with the appearance of object

s, the separation rule r1 is used to separate cell with label 2, object s is consumed,
and the multiset {{zi,j , xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} ∪
{{z, T1, y}} are placed in one new cell with label 2, the multiset {{z′i,j , x

′
i,j | xi,j ∈

cod(ϕ)}} ∪ {{z′i,j , x̄
′
i,j | x̄i,j ∈ cod(ϕ)}} ∪ {{z′, F ′

1, y
′}} are placed in another new

cell with label 2. We take the cell with label 2 where ψ(σj(x1)) appears.
By Proposition 5, at step 2, the cell with label 1 has two copies of ci,j , two

copies of c, two copies of A2. So, at step 3, the rules r29,i,j , r30,i,j , r33,2 and r34,2

can be applied. Due to the maximality of the parallelism of using rules, each cell
with label 2 gets exactly one copy of ci,j , one copy of c, and one copy of A2 from
the cell with label 1. Object ci,j and c are used for duplication, and A2 is used to
assign truth-values to the valuable x2. In this way, the next cycle of duplication-
separation can continue.

In general, after step 3k + 2 (0 ≤ k ≤ n − 1) (that is, the second step in the
(k + 1)-th cycle of duplication-separation), we take the cell with label 2 where
{{ψ(σj(x1)), · · · , ψ(σj(xk+1))}} appears. In this way, at step 3n − 1, there exists
exactly one cell with label 2 whose multiset is {{ψ(σj(x1)), · · · , ψ(σj(xn))}}. (Note
the difference of the rule r24 and the rules r23,i. The rule r24 does not bring objects
z and z′ into cells with label 2 from the environment, and this rule is used at step
3n − 2. So the object z does not appear in the multiset of cell 2 that corresponds
to the assignment σj .)

From the above proof, it is easy to see that the multiset {{ψ(σj(x1)), · · · , ψ(σj

(xn))}} appears only in the corresponding cell with label 2.
In every cycle of duplication-separation, the number of cells with label 2 is

doubled. In the 3n − 1 steps, there are n cycles. So there exist exactly 2n cells
with label 2 in configuration C3n−1; and from now on, cells with label 2 will not
separate anymore.

In the last cycle of duplication-separation, at step 3n−2, each of the 2n−1 cells
with label 2 contains one copy of y and one copy of y′ by the rule r24; at step
3n− 1, the 2n−1 cells with label 2 are separated by the rule r1, each of the 2n new
cells gets one copy of object y or one copy of object y′.

Proposition 7. Let C be an arbitrary computation of the system, then C3n−1(1) =
{{B2n

3n , C2n

3n ,D2n

3n, E3n, p, yes, no}}.
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Proof. In order to prove C3n−1(1) = {{B2n

3n , C2n

3n ,D2n

3n, E3n, p, yes, no}}, we will
check how all the rules related to the cell 1 work in the first 3n − 1 steps.

– Checking the rules r2,i,j,k – r18,i.
From the proofs of Propositions 5 and 6, we can find that after step 3n−3, there
are no objects ai,j,k, bi,j,k, ci,j , di,j,k, a1,i, b1,i, c, d1,i, ei, a2,i, b2,i, d2,i, gi, hi, li, Ai

in the cell with label 1, and the rules r2,i,j,k – r18,i will not bring any more
objects into the cell with label 1.

– Checking the rules r35,i – r40,i.
In the first 2n − 1 steps of the computation, by the rules r35,i, r37,i, and r39,i,
the subscripts of B1, C1, and D1 grow to 2n. In the next n steps, by the rules
r36,i, r38,i, and r40,i, the subscripts of B2n, C2n, and D2n grow to 3n, and at
every step, the numbers of objects of each type Bi, Ci, and Di are doubled. So
the cell with label 1 has 2n copies of B3n, 2n copies of C3n, and 2n copies of
D3n at the step 3n − 1.

– Checking the rule r41,i.
By the rule r41,i, the subscript of E1 grow to 3n in the first 3n− 1 steps of the
computation. So the cell 1 has the object E3n at step 3n − 1.

– Checking the group of rules r29,i,j – r34,i,j and the group of rules r42,i,j – r47.
In the first 3n−3 steps, the cell with label 1 has communication with cells with
label 2 getting objects zi,j , z′i,j , z, z′, y, y′ from cells with label 2, by the rules
r29,i,j – r34,i,j . In the next step after the objects zi,j , z′i,j , z, z′, y, y′ reach the
cell 1, they are sent to the environment by the rules r42,i,j – r47.

– Checking the group of rules r48 – r49.
At the step 3n − 1, the subscript of objects Bi, Ci and Di grow to 3n. The
rules r48 – r49 can be applied at step 3n. But, in the first 3n − 1 steps of the
computation, they cannot be applied.

– Checking the rules r66 – r68.
In the first steps 3n − 1, there are no object D4n+2m appearing in cells with
label 2, and no object E4n+2m+3 appearing in the cell with label 1. The rules
r66 – r68 cannot be applied in the first 3n− 1 steps of the computation, so the
cell with label 1 has objects yes, no and p at the step 3n − 1.

Therefore, C3n−1(1) = {{B2n

3n , C2n

3n ,D2n

3n, E3n, p, yes, no}}.

Proposition 8. Let C be an arbitrary computation of the system, then

1. C3n(1) = {{y2n−1

, (y′)2
n−1

, E3n+1, p, yes, no}};
2. For each assignment σj there exists only one cell with label 2 in C3n that

contains multiset {{ψ(σj(xi)) | i = 1, 2, · · · , n}}. In configuration C3n, each
cell with label 2 contains a multiset {{B3n, C3n,D3n}} ∪ {{zi,j , xi,j | xi,j ∈
cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or multiset {{B3n, C3n,D3n}} ∪
{{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈ cod(ϕ)}}.
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Proof. The multiset C3n(1) is obtained from C3n−1(1) by the application of the
rules r41,i, r48 and r49. The object E3n in C3n−1(1) increases its subscript by one
by the rule r41,i, so one copy of E3n+1 appears in C3n(1). By Proposition 7, at step
3n−1, the cell with label 1 has 2n copies of B3n, 2n copies of C3n, and 2n copies of
D3n. By Proposition 6, at step 3n−1, there exist exactly 2n cells with label 2, each
of them contains one copy of object y or one copy of object y′, and the number of
cells with label 2 containing object y (resp. y′) is 2n−1 (resp. 2n−1). At step 3n, the
rules r48 and r49 can be applied, 2n copies of objects B3nC3nD3n in the cell with
label 1 are traded for y or y′ from the cells with label 2. Due to the maximality
of the parallelism of using rules, each cell with label 2 gets one copy of objects
B3nC3nD3n, and the cell with label 1 gets 2n−1 copies of object y and 2n−1 copies
of object y′. Therefore, C3n(1) = {{y2n−1

, (y′)2
n−1

, E3n+1, p, yes, no}}; and for each
assignment σj there exists only one cell with label 2 in C3n that contains multiset
{{ψ(σj(xi)) | i = 1, 2, · · · , n}}. By Proposition 6 and the above proof, it is not
difficult to see that in configuration C3n, each cell with label 2 contains a multiset
{{B3n, C3n,D3n}} ∪ {{zi,j , xi,j | xi,j ∈ cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or
a multiset {{B3n, C3n,D3n}} ∪ {{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈

cod(ϕ)}}.

Proposition 9. C4n(1) = {{E4n+1, p, yes, no}} holds.

Proof. By the rules r44 and r45, at step 3n + 1, the objects y and y′ are moved to
the environment. Henceforth the cell with label 1 will not get any more y or y′,
because the objects y or y′ are traded into cells with label 2 from the environment
against the object An, and no Ai will appear in cells with label 2 after step
3n− 2. By the rule r41,i, the subscript of E3n+1 grows to E4n+1. These are all the
operations related to the cell with label 1 from step 3n + 1 to step 4n. Therefore,
C4n(1) = {{E4n+1, p, yes, no}} holds.

Proposition 10. For each assignment σj, there exists only one cell with label
2 in C4n that contains multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}. In configuration
C4n, each cell with label 2 contains a multiset {{B2n

4n , C3n,D4n}} ∪ {{zi,j , xi,j |
xi,j ∈ cod(ϕ)}} ∪ {{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or a multiset {{B2n

4n , C3n,D4n}} ∪
{{z′i,j , x

′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{z′i,j , x̄

′
i,j | x̄i,j ∈ cod(ϕ)}}.

Proof. Based on Proposition 8, we prove Proposition 10 holds.
From step 3n+1 to step 4n, the objects in multiset {{zi,j , xi,j | xi,j ∈ cod(ϕ)}}∪

{{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} and multiset {{z′i,j , x
′
i,j | xi,j ∈ cod(ϕ)}}∪{{z′i,j , x̄

′
i,j |

x̄i,j ∈ cod(ϕ)}} keep unchanged because no rules can be applied to them.
By the rules r54,i and r55,i, the subscripts of objects B3n and D3n in C3n

increase, until reaching the value 4n at step 4n. At each step from step 3n + 1
to step at step 4n, the number of object Bi is doubled by the rule r54,i, so in
configuration C4n, there are 2n copies of Bi.

For an assignment σj , we consider the only cell with label 2 in C3n that contains
multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}. From the definition of functions ψ and γ,
we can see that Ti, T ′

i and ti correspond to the value true which the valuable xi
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assumes; Fi, F ′
i and fi correspond to the value false which the valuable xi assumes.

Both multisets {{ψ(σj(xi)) | i = 1, 2, · · · , n}} and {{γ(σj(xi)) | i = 1, 2, · · · , n}}
are associated with the same assignment σj . By the rules r50,i – r53,i, with the
object C3n, the objects Ti or T ′

i introduce the objects ti, and the objects Fi or F ′
i

introduce the objects fi. Because there is only one copy of C3n, it takes n steps to
introduce all the objects in multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}.

Therefore Proposition 10 holds.

Proposition 11. C4n+m(1) = {{E4n+m+1, p, yes, no}} holds.

Proof. By the rule r41,i, the subscript of object E4n+1 in C4n(1) grows to the value
4n + m + 1 at step 4n + m. The objects p, yes, no keeps unchanged. Therefore,
Proposition 11 holds.

Proposition 12. For each assignment σj, there exists only one cell with label 2
in C4n+m that contains multiset (∪n

i=1{{rj1rj2 · · · rjk
| γ(σj(xi)) = ti, and xi,jl

∈
cod(ϕ), l = 1, 2, · · · , k, 1 ≤ j1 < j2 < · · · < jk ≤ n}}) ∪ (∪n

i=1{{rj1rj2 · · · rjk
|

γ(σj(xi)) = fi, and x̄i,jl
∈ cod(ϕ), l = 1, 2, · · · , k, 1 ≤ j1 < j2 < · · · <

jk ≤ n}}). In configuration C4n+m, each cell with label 2 contains a multiset
{{B2n

4n , C3n,D4n+m}}.

Proof. By Proposition 10, for each assignment σj , there exists only one cell with
label 2 in C4n that contains multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}; and each cell
with label 2 contains a multiset {{B4n, C3n,D4n}}∪{{zi,j , xi,j | xi,j ∈ cod(ϕ)}}∪
{{zi,j , x̄i,j | x̄i,j ∈ cod(ϕ)}} or a multiset {{B4n, C3n,D4n}} ∪ {{z′i,j , x

′
i,j | xi,j ∈

cod(ϕ)}} ∪ {{z′i,j , x̄
′
i,j | x̄i,j ∈ cod(ϕ)}}. In the following, we consider this unique

cell with label 2 that contains multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}.
The objects C3n keep unchanged, and the subscript of D4n reaches 4n + m at

step 4n + m by the rule r64,i .
With the presence of B4n in C4n (not appearing in Ci (i < 4n)), the rules

r56,i,j – r63,i,j can be applied. We start to check which clauses are satisfied. If
σj((xi)) = ti and xi,j ∈ cod(ϕ), then rule r56,i,j or r58,i,j is applied, and an object
rj is introduced into the corresponding cell with label 2. If σj((xi)) = ti and x̄i,j ∈
cod(ϕ), then rule r57,i,j or r59,i,j is applied, and the object x̄i,j or x̄′

i,j is removed
from the corresponding cell with label 2. Similarly, if σj((xi)) = fi and x̄i,j ∈
cod(ϕ), then rule r60,i,j or r62,i,j is applied, and an object rj is introduced into the
corresponding cell with label 2. If σj((xi)) = fi and xi,j ∈ cod(ϕ), then rule r61,i,j

or r63,i,j is applied, and the object xi,j or x′
i,j is removed from the corresponding

cell with label 2. The sizes of both cod(ϕ) and {{x′
i,j | xi,j ∈ cod(ϕ)}} ∪ {{x̄′

i,j |
x̄i,j ∈ cod(ϕ)}} are nm, and each cell with label 2 contains multiset cod(ϕ) or
{{x′

i,j | xi,j ∈ cod(ϕ)}} ∪ {{x̄′
i,j | x̄i,j ∈ cod(ϕ)}}. We have 2n copies of B4n,

n objects ti and fi from the multiset {{γ(σj(xi)) | i = 1, 2, · · · , n}}, so it takes
m steps to check which clauses are satisfied. In total, all the introduced objects
ri form the multiset (∪n

i=1{{rj1rj2 · · · rjk
| γ(σj(xi)) = ti, and xi,jl

∈ cod(ϕ), l =
1, 2, · · · , k, 1 ≤ j1 < j2 < · · · < jk ≤ n}}) ∪ (∪n

i=1{{rj1rj2 · · · rjk
| γ(σj(xi)) =

fi, and x̄i,jl
∈ cod(ϕ), l = 1, 2, · · · , k, 1 ≤ j1 < j2 < · · · < jk ≤ n}}).
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Proposition 13. C4n+2m(1) = {{E4n+2m+1, p, yes, no}} holds.

Proof. By the rule r41,i, the subscript of object E4n+m+1 in C4n+m(1) grows to
the value 4n + 2m + 1 at step 4n + 2m. The objects p, yes, no keeps unchanged.
Therefore, Proposition 13 holds.

Proposition 14. Let C be an arbitrary computation of the system, then

• If σj is an assignment that does not satisfy the formula ϕ, then there exists
only one cell with label 2 in C4n+2m associated with σj, and whose associated
multiset contains an object D4n+m+α, where 0 ≤ α < m such that the clauses
M1, · · · ,Mα are satisfied by the assignment f , but Mα+1 is not satisfied by the
assignment σj.

• If σj is an assignment that satisfies the formula ϕ, then there exists only one
cell 2 in C4n+2m associated with σj, and whose associated multiset contains one
copy of object D4n+2m.

Proof. From the configuration C4n+m, we start to check whether or not all clauses
are satisfied by the corresponding assignment. Such checking is simultaneous in all
2n cells with label 2.

Let us consider an assignment σj . By Proposition 12, with the presence of
object D4n+m, the rule r65,i can be applied. The clauses are checked in the order
from M1 to Mm. For each clause which is satisfied (that is, the corresponding
object ri appears), we increase by one the subscript of Di, hence the subscript
of Di reaches the value 4n + 2m if and only if all clauses are satisfied. If the
clauses M1, · · · ,Mα (0 ≤ α < m) are satisfied, but Mα+1 is not satisfied (that is,
r1, · · · , rα appear, but rα+1 does not appear), then the subscript of Di can only
reach the value 4n + m + α.

Therefore, Proposition 14 holds.

Proposition 15. Let C be an arbitrary computation of the system, Let us suppose
that there exists an assignment that satisfies the formula ϕ. Then
(a) C4n+2m+1(1) = {{E4n+2m+2,D

β
4n+2m, p, yes, no}},

(b) C4n+2m+2(1) = {{E4n+2m+3,D
β−1
4n+2m, no}},

where β is the number of assignments that satisfy the formula ϕ. Furthermore, the
object yes appears in C4n+2m+2(0).

Proof. The configuration of item (a) is obtained by the application of rules r41,i and
r66 to the previous configuration C4n+2m. By the rule r41,i, the object E4n+2m+1

in C4n+2m(1) grows by one its subscript at step 4n+2m+1. By Proposition 14, for
each assignment that satisfies the formula ϕ, there exists exactly one associated
cell with label 2 in C4n+2m whose multiset contains an object D4n+2m. The object
D4n+2m is moved to the cell with label 1 by the rule r66. If there are β assignments
that satisfy the formula ϕ, then the cell 1 gets β copies of object D4n+2m.

The configuration of item (b) is obtained by the application of rules r41,i and r67

to the previous configuration C4n+2m+1(1). By the rule r41,i, the object E4n+2m+2
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in C4n+2m+1(1) grows by one its subscript at step 4n + 2m + 2. By the rule r67,
the object yes together with objects D4n+2m and p leaves the system into the
environment, signaling the formula ϕ is satisfiable. The one copy of object p is
consumed by the rule r67, so the rule r68 cannot be applied. The object no cannot
exit into the environment.

Proposition 16. Let C be an arbitrary computation of the system, Let us suppose
that there does not exist any assignment that satisfies the formula ϕ. Then
(a) C4n+2m+1(1) = {{E4n+2m+2, p, yes, no}},
(b) C4n+2m+2(1) = {{E4n+2m+3, p, yes, no}},
(c) C4n+2m+3(1) = {{yes}}.
Furthermore, the object no appears in C4n+2m+3(0).

Proof. If there does not exist any assignment that satisfies the formula ϕ, by
Proposition 14, all cells with label 2 do not contain object D4n+2m. Of course, the
cell with label 1 cannot get object D4n+2m.

The configurations of items (a) an (b) are obtained by the application of rules
r41,i to the previous configuration C4n+2m.

The configuration of item (c) is obtained by the application of rules r68 to the
previous configuration.

6.3 Main Results

The system constructed to solution of SAT in Section 6 has communication rules
with length at most 6. From the discussion in the previous sections and according
to the definition of solvability given in Section 4, we have the following result:

Theorem 2. SAT ∈ PMCTSC(6).

Corollary 1. NP ∪ co − NP ⊆ PMCTS(6).

Proof. It suffices to make the following observations: the SAT problem is NP-
complete, SAT∈ PMCTS(6) and this complexity class is closed under polynomial-
time reduction and under complement.

7 Discussion

The efficiency of cell-like P systems for solving NP-complete problems has been
widely studied. The space-time tradeoff method is used to efficiently solve NP-
complete problems in the framework of cell-like P systems. Membrane division,
membrane creation, and membrane separation are three efficient ways to obtain
exponential workspace in polynomial time. Membrane division is introduced into
tissue P systems, and a linear time solution for SAT problem by tissue P systems
with cell division is given [22]. In this research, membrane separation is introduced
into tissue P systems, and a polynomial time solution for SAT problem by tissue
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P systems with cell separation and communication rules of lengths at most 6 is
presented. We also prove that tissue P systems with cell separation and communi-
cation rules of length 1 can only solve tractable problems. Hence, in the framework
of recognizer tissue P systems with cell separation, the lengths of the communica-
tion rules provide a borderline between efficiency and non-efficiency. Specifically,
a frontier is there when we pass from length 1 to length 6. The role of the lengths
of communication rules is worth further investigation. That is, what happens if we
consider tissue P systems with communication rules of length k, k ∈ {2, 3, 4, 5}?

In the framework of tissue P systems, when cell division is used to generate
exponential workspace in polynomial time, there is an advantage: all the other
objects in the cell are duplicated except the object that activate the cell division
operation. But both cell creation and cell separation have no such duplication
function. In this sense, the solution for SAT problem presented in this paper gives
some hint for answering the following open problem: how to efficiently solve NP-
complete problems by tissue P systems with cell creation.

Although SAT problem is NP-complete (the other NP problems can be re-
duced to SAT problem in polynomial-time), we would like to stress that up to
now there does not exist a methodology to compute the reduction process by P
systems. The solution to SAT problem by tissue P systems with cell separation can
be used as a scheme for designing solutions to other NP–complete problems such
as the vertex–cover problem, the clique problem, the Hamiltonian path problem,
etc.

Recently, a new kind of P system model, called spiking neural P systems, was
introduced [7], which has neural-like architectures. It was proved that spiking neu-
ral P systems are Turing complete [7]. About the efficiency of spiking neural P
systems to solve computationally hard problems, there is an interesting result: an
SN P system of polynomial size cannot solve in a deterministic way in a polynomial
time an NP-complete problem (unless P=NP) [11]. Hence, under the assumption
that P 6= NP, efficient solutions to NP-complete problems cannot be obtained
without introducing features which enhance the efficiency. One of possible features
is some ways to exponentially grow the workspace during the computation. Cell
division, cell creation and cell separation are candidates to be introduced into
spiking neural P systems for exponential workspace generation. Although the ar-
chitectures of spiking neural P systems are similar to the architectures of tissue P
systems, it is not a trivial work to introduce cell division, cell creation and cell sep-
aration into spiking neural P systems and give efficient solutions to NP-complete
problems by new variants of spiking neural P systems.

In general, it is expected that the research of efficiency and complexity on P
systems can provide insight on unconventional parallel computing models, and also
help us in clarifying the relations between classic complexity classes.
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Summary. A few open problems and research topics collected during the 7th Brain-
storming Week on Membrane Computing are briefly presented; further details can be
found in the papers included in the volume.

1 Introduction

This is a short list of open problems and research topics which I have compiled dur-
ing the Seventh Brainstorming Week on Membrane Computing (BWMC), Sevilla,
2-6 February 2009. Different from the previous years, when such lists (much more
comprehensive) were circulated before the meeting, this time the problems were
collected during and inspired by the presentations in Sevilla. Most of the problems
directly refer to these presentations, hence for further details, in several cases for
(preliminary) solutions, the reader should consult the present volume. This list is
only a way to call attention to the respective ideas, not necessarily a presentation
of the state-of-the-art of the research related to these problems.

Of course, the reader is assumed familiar with membrane computing, so that
no preliminaries are provided. As usual, for basic references, the book [17], the
handbook [21], and the membrane computing website [25] are suggested.

The problems are identified by letters, with no significance assigned to the
ordering.

2 Open Problems

A. The following problem was considered in [5] and then in [3], as an extension
to P systems of a problem well known for cellular automata (where it is called the
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“firing squad synchronization problem”, FSSP for short): Find a class of cell-like
P systems where all membranes except the skin one may contain given objects,
input some objects in the skin region, and aim to reach a configuration where each
region contains a designated object F , all regions get this object at the same time,
and, moreover, the system stops at that step. (A more technical presentation of
the problem can be found in the cited papers.)

I recall from [3] some lines from the end of the Introduction: “The synchro-
nization problem as defined above was studied in [5] for two classes of P systems:
transitional P systems and P systems with priorities and polarizations. In the first
case, a non-deterministic solution to FSSP was presented and for the second case
a deterministic solution was found. These solutions need a time 3h and 4n + 2h
respectively, where n is the number of membranes of a P system and h is the depth
of the membrane tree.

In this article we significantly improve the previous results in the non-deter-
ministic case. In the deterministic case, another type of P system was considered
and this permitted to improve the parameters. The new algorithms synchronize
the corresponding P systems in 2h + 3 and 3h + 3 steps, respectively.”

Of course, these results depends on the type of P systems used. In particu-
lar, in both papers one makes use of a powerful communication command, of a
broadcasting type: in! target indications can be associated with objects, with the
meaning that the objects marked with in! are sent to ALL membranes placed in-
side the membrane where the rule containing the command in! was used. This is
a very powerful feature, somewhat related to the considered issue itself, so that
the natural question is whether or not one can get rid of in!. This will probably
imply some cost, for instance, in terms of the time needed for synchronization, or
– as A. Alhazov pointed out during BWMC – in the knowledge we assume to have
(inside the system) about the starting systems (degree, depth, etc.).

A related topic is to consider synchronization issues for other classes of P
systems: symport/antiport, active membranes, maybe also for spiking neural P
systems (where the object F should be replaced with a specified number of spikes).

Actually, because of its interest (and presumably, of its difficulty, at least to
define it), this can be formulated as a separate problem:

B. Define and investigate synchronization problems for spiking neural P systems
(SN P systems).

C. Synchronization can suggest another problem, which has appeared from time
to time in various contexts (for instance, when constructing SN P systems for
simulating Boolean circuits, see [11]): reset a system to its initial configuration
after completing a specified task. As in the case of synchronization, we need to
consider various classes of P systems and, if the resetting is possible for them, we
have to look for the time of doing this.

A possible way to address this problem is the following one: let us choose a
class of P systems which halts the computation by sending a specified object to the
environment (this is the case with the systems used in solving computationally hard
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problems in a feasible time; those systems are in general with active membranes,
membrane creation, etc.), AND for which the synchronization problem can be
solved; when a system halts and produces an object, say, T , we use this object in
order to start the synchronization phase; when the synchronization is completed,
the object F introduced in each membrane is used for restoring the contents of
that membrane as in the beginning of the computation. Of course, there are several
difficulties here: is it possible to work with systems whose membrane structure
evolves during the computation? (I guess, not); it is easy to introduce the objects
present in the initial configuration starting from F , but how the “garbage” objects,
those remaining inside in the end of a computation, can be removed? (this needs
some kind of context sensitivity, for instance, using F as a promotor of erasing
rules, or other similar ideas).

Needless to say that the resetting problem is of a particular interest for SN P
systems, but this time I do not formulate this subproblem separately.

The reset problem can probably be addressed also from other points of view
and in other contexts. An idea is to have somewhere/somewhow in the system
a description of the system itself (a sort of “genome”, in a “nucleus”) and in
the end of the computation to simply destroy the existing system, at the same
time reconstructing it from its description, which amounts at resetting the initial
system. Some related ideas, problems, and techniques are discussed, in a different
set-up, in [6].

D. Let us continue with SN P systems, whose study is far from being exhausted,
and which benefits of many suggestions coming from neurology, psychology, com-
puter science. A problem suggested by Linqiang Pan and then preliminarily dealt
with in [15] is the following: is it possible to work with SN P systems (in particular,
having characterizations of Turing computable sets of numbers or recursively enu-
merable languages) which have neurons of a small number of types? By a “type”
we can understand either only the set of rules present in a neuron (an SN P system
whose neurons are of at most k such types is said to be in the kR-normal form),
or we can consider both the set of rules and the number of spikes initially present
in the neuron (and then we speak about SN P systems in the knR-normal form,
if they have neurons of at most k such types).

In [15] it is proved that each recursively enumerable set of natural numbers can
be generated by an SN P system (without forgetting rules, but using delays) in
the 3R-normal form when the number is obtained as the distance between spikes
or when the number is given by the number of spikes from a specified neuron,
but two types of neurons suffice in the accepting case. Slightly bigger values are
obtained when we also consider the number of spikes initially present in a neuron
for defining the “type” of a neuron: five and three, respectively.

A lot of open problems can now be formulated: First, we do not know whether
or not these results can be improved. How these results extend to other classes of
SN P systems? (Do the forgetting rules help? What about extended rules, about
asynchronous SN P systems, systems with exhaustive use of rules, etc?) What
about SN P systems which generate languages, or about universal SN P systems?
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E. A problem about SN P systems which was formulated also earlier – see, e.g.,
problem G in [18] – concerns the possibility of dividing neurons, in general, of
producing an exponential working space in a linear number of steps, in such a
way to be able to solve computationally hard problems in a feasible time. Up to
now, no idea how to divide neurons was discussed, although this operations was
considered for cells in tissue-like P systems; see, e.g., [20]. What is really exciting is
that a recent discovery of neuro-biology provides biological motivations for neuron
division: there are so called neural stem cells which divide repeatedly, either with-
out differentiating, hence producing further neural stem cells, or differentiating,
so making possible the production of an exponential number of mature neurons;
details can be found in [7].

In terms of SN P systems, we can easily capture the idea of having several
types of neurons, for instance, using polarizations, as in P systems with active
membranes. On the other hand, each neuron also has a label; if by division we
obtain two new neurons with the same label, then polarizations are perhaps nec-
essary; if we allow producing new neurons with labels different from the divided
neuron, then the polarization can be included in the label (label changing can
account also of polarizations).

However, the difficulties lie in other places. First, in SN P systems the contents
of a neuron is described by the number of spikes it contains, and this number is
usually controlled/sensed by means of a regular expression over alphabet {a}. This
seems to be also the most natural idea for controlling the division, which leads to
rules of the general form

[ E] i → [ E1] j [ E2]k,

where E, E1, E2 are regular expressions over {a}, and i, j, k are labels of neurons
(the labels of the produced neurons tell us which are the rules used in those
neurons). By using such a rule, a neuron σi containing n spikes such that an ∈
L(E) divides into two neurons, with labels j and k, containing n1 and n2 spikes,
respectively, such that n = n1 + n2, and an1 ∈ L(E1), an2 ∈ L(E2).

Now, the second important point/diffficulty appears: which are the synapses
of the new neurons? There are two possibilities: to have the neurons places “in
parallel” and to have them placed “serially/in cascade”. In the first case, no con-
nection exists between the two new neurons, but both of them inherit the links of
the father neuron; in the second case, neuron σj inherits the synapses coming to
σi, neuron σk inherits the synapses going out of σi, while a synapse (j, k) is also
established. In order to distinguish the two interpretations, the rules are written
as follows:

(a) [ E]
i
→ [ E1] j

||[ E2]k
,

(b) [ E] i → [ E1] j/[ E2]k,

and the semantics described above is illustrated in Figure 1.
The use of these rules was already explored in [16], where SAT is solved in

polynomial time by SN P systems having the possibility of dividing neurons. The
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Fig. 1. Dividing neurons – two cases

solution is uniform. Is it possible to use only neuron division where the labels
are not changed? (A more intensive use of the regular expressions controlling the
division might be helpful, maybe also the use of polarizations, hence of suggestions
coming from neural stem cells.) What about solving more difficult problems, for
instance, QSAT (so that to cover PSPACE)?

In general, complexity investigations related to SN P systems need further
efforts.

F. Both for stressing its interest and also because is related to the previous prob-
lem, I recall/reformulate here another problem from [18], problem N, about using
pre-computed resources in solving hard problems by means of SN P systems. The
motivation is clear, several papers have considered this idea, directly producing
solutions to well-known problems, but still a more general approach is missing.
The basic issue is to say which pre-computed (arbitrarily large) nets of neurons
are allowed, how much information may be given “for free” (and how it can be
evaluated/measured), how complexity classes should look like in this framework?
A possible way to address some of these questions is to mix the idea of dividing
neurons with that of pre-computed resources, and to build a net of neurons start-
ing from a few given neurons, with a limited contents. This approach moves the
pre-computation in the computation, with the important difference being that the
time of the pre-computation (of “programming”) is ignored as long as the pro-
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duced system contains a limited quantity of information. (We return to the main
problem: how to define and measure the information present in a system?) In the
present volume there is a contribution related to this problem, namely [?], which
address this issue starting from rules able to create neurons and synapses, hence
to provide a dynamical SN P system.

G. Continuing with SN P systems, a problem which was vaguely formulate from
time to time, but only orally, refers to a basic feature of the brain, the memory.
How can this be captured in terms of SN P systems is an intriguing question. First,
what means “memory”? In principle, the possibility to store some information for
a certain time (remember that there is a short term and also a long term memory),
and to use this information without losing it. For our systems, let us take the case
of storing a number; we need a module of an SN P system where this number is
“memorized” in such a way that in precise circumstances (e.g., at request, when
a signal comes from outside the module), the number is “communicated” without
“forgetting” it. In turn, the communication can be to only one destination or to
several destinations. There are probably several ways to build such a module. The
difficulty comes from the fact that if the number n is stored in the form of n spikes,
“reading” these spikes would consume them, hence it is necessary to produce copies
which in the end of the process reset the module. This is clearly possible in terms
of SN P systems, what remains to do is to explicitly write the system. However,
new questions appear related to the efficiency of the construction, in terms of
time (after getting the request for the number n, how many steps are necessary
in order to provide the information and to reset the module?), and also in terms
of descriptional complexity (how many neurons and rules, how many spikes, how
complex rules?). It is possible that a sort of “orthogonal” pair of ideas are useful:
many spikes in a few neurons (n spikes in one neuron already is a way to store the
number, what remains is to read and reset), or a few spikes in many neurons (a
cycle of n neurons among which a single spike circulates, completing the cycle in
n steps, is another “memory cell” which stores the number n; again, we need to
read and reset, if possible, using only a few spikes). Another possible question is
to build a reusable module, able to store several numbers: for a while (e.g., until
a special signal) a number n1 is stored, after that another number n2, and so on.

H. The previous problem can be placed in a more general set-up, that of mod-
eling other neurobiological issues in terms of SN P systems. A contribution in
this respect is already included in the present volume, [13], where the sleep-awake
passage is considered. Of course, the approach is somewhat metaphorical, as the
distance between the physiological functioning of the brain and the formal struc-
ture and functioning of an SN P system is obvious, but still this illustrates the
versatility and modeling power of SN P systems. Further biological details should
be considered in order to have a model with some significance for the brain study
(computer simulations will then be necessary, like in the case of other applications
of P systems in modeling biological processes). However, also at this formal level
there are several problems to consider. For instance, what happens if the sleeping
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period is shortened, e.g., because a signal comes from the environment? Can this
lead to a “damage” of the system? In general, what about taking the environment
into account? For instance, we can consider a larger system, where some modules
sleep while other modules not; during the awake period it is natural to assume
that the modules interact, but not when one of them is sleeping, excepting the
case of an “emergency”, when a sleeping module can be awakened at the request
of a neighboring module. Several similar scenarios can be imagined, maybe also
coupling the sleep-awake issue with the memory issue.

I. Let us now pass to general P systems, where still there are many unsettled
problems and, what is more important for the health of membrane computing,
there still appear new research directions. One of them was proposed and prelim-
inarily explored in [23]: space complexity for P systems. It is somewhat surprising
that this classic complexity issue was not considered so far, while the time com-
plexity is already intensively investigated. We do not enter here into any detail –
anyway, the details are moving fast in this area – but we refer to the mentioned
paper.

J. Remaining in the framework of complexity, it is worth noting a sound recent
result, the first one of this type, dealing with the relation between uniform and
semi-uniform solutions to (computationally hard) problems. In [24] one produces a
first example where semi-uniform constructions cover a strictly larger family than
the uniform one. There also are classes of P systems for which the two approaches,
uniform and semi-uniform, characterize the same family of problems – see, e.g.,
[22]. However, as also in [24] is stated, it is highly possible – and definitely of
interest to find it – that the separation between uniform and semi-uniform families
is strict for further classes of P systems.

K. Similarly short formulations (actually, only pointing out the problem and the
main reference, always from the present volume) will also have the next problems.
First, the idea of merging two “classic” topics in membrane computing: P systems
with active membranes and P systems with string objects. Up to now only P
systems with active membranes and with symbol objects were considered, but the
necessity to mix the two ideas arose in [2] in the framework of a specific application.
It is also natural to investigate this kind of systems as a goal per se, mainly from
the complexity (descriptional and computational – and here both time and space)
points of view.

L. A related general problem is suggested by the above paper [2]: looking for
other “practical” problems, of known polynomial complexity, but which are so
frequent and important that as efficient as possible solutions are desirable. The
mentioned paper considers such a problem: search and updating of dictionaries.
Many other problems can probably be addressed in terms of membrane computing,
with good (theoretical) results. And, as it happens also in the case of [2], it is also
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possible that new classes of P systems will emerge in this context, as requested by
the respective applications.

M. A problem several times mentioned, also addressed from various angles in
several places concerns the general idea of “going backwards”. Sometimes it is
directly called computing backwards, as in [8], other times one speaks about dual
P systems, as in [1], about reversible P systems, as in [12]. In the present volume,
the reversibility is addressed again, in [4], but the question still deserves further
research efforts.

N. I close this short list of research topics by mentioning the one proposed in [14]
– the title is self-explanatory, so I do not enter into other details, but I mention that
the issue seems rather promising, both theoretically (composition-decomposition,
structural/descriptional complexity, etc.) and from the applications point of view.

Lists of open problems were presented in all previous brainstorming volumes
– the reader can find them at [25]. There also exists an attempt to follow the
research and to present the known solutions to some of these problems – see [19].
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configurations of P systems, Third Brainstorming Week on Membrane Computing,
Sevilla, 2005, RGNC Report 01/2005, 131–155, and Fundamenta Informaticae, 82,
1-2 (2008), 29–46.

7. R. Galli, A. Gritti, L. Bonfanti, A.L. Vescovi: Neural stem cells: an overview. Circu-
lation Research, 92 (2003), 598–608.



Some Open Problems Collected During 7th BWMC 205
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– Membrane division, membrane creation. In [21], in press.

23. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron: Introducing a space complexity
measure for P systems. In the present volume.

24. D. Woods, N. Murphy:
25. The P Systems Website: http://ppage.psystems.eu.





A Bibliography of Spiking Neural P Systems

Gheorghe Păun
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What follows is a bibliography of spiking neural P systems (SN P systems, for
short), at the level of April 2009. This bibliography is included in the present
volume having in mind the fact that this research area attracted much interest
in the few years since it was initiated, so that it might be useful to the reader to
have a comprehensive list of titles at hand, as complete as we were able to compile
it. Of course, most of this information can also be found in the membrane com-
puting website, at http://ppage.psystems.eu, with a comprehensive survey also
provided by the chapter devoted to SN P systems in the Handbook of Membrane
Computing (Gh. Păun, G. Rozenberg, A. Salomaa, eds.), Oxford University Press,
2009. The list which follows also includes the papers on SN P systems present
in the present volume (with the indication “in the present volume”); the papers
from the previous proceedings volumes of the Brainstorming Week on Membrane
Computing are given with indications of the form “BWMC2007” with the obvious
meaning, then specifying the pages. The three brainstorming volumes cited in this
way are:
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mation we had when compiling the list was that the paper was still unpublished.
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(C. Enăchescu, F. Filip, B. Iantovics, eds.), Ed. Academiei, Bucureşti, 2009.
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57. Gh. Păun: Spiking neural P systems with astrocyte-like control. JUCS, 13, 11
(2007), 1707–1721.
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Summary. We define space complexity classes in the framework of membrane comput-
ing, giving some initial results about their mutual relations and their connection with time
complexity classes, and identifying some potentially interesting problems which require
further research.

1 Introduction

Until now, research on the complexity theoretic aspects of membrane computing
has mainly focused on the time resource. In particular, since the introduction of
P systems with active membranes [5], various results concerning time complexity
classes defined in terms of P systems with active membranes were given, comparing
different classes obtained using various ingredients (such as, e.g., polarizations,
dissolution, uniformity, etc.). Other works considered the comparisons between
them and the usual complexity classes defined in terms of Turing machines, either
from the point of view of time complexity [8, 3, 11], or space complexity classes [10,
1, 9].

Despite the vivid interest on this subject, up to now no investigations concern-
ing space complexity classes defined in terms of P systems have been carried out in
formal terms. Of course, the evident relation between time and space in P systems
with active membranes is informally acknowledged: all results concerning solutions
to NP-complete problems are solved using an exponential workspace obtained in
polynomial time. Nonetheless, there is no formal definition of space complexity
classes for P systems and, as a consequence, no formal results concerning the
relations between space and time.

In this paper, we make the first steps in this direction, first by defining the
space requirements for a given P system on a specific computation, and then by
formally defining space complexity classes for P systems. We will then give a first
set of results concerning relations among complexity classes for P systems, some
of them directly following from the definitions, and others which can be derived
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by considering space requirements of various solutions proposed in the literature
which make use of P systems with active membranes.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a systematic introduction, we refer
the reader to [6]. A survey and an up-to-date bibliography concerning P systems
can be found at the web address http://ppage.psystems.eu.

The rest of the paper is organized as follows. In Section 2 we give basic defini-
tions for membrane systems which will be used throughout the rest of the paper. In
Section 3 we give formal definitions of space complexity classes in terms of P sys-
tems. In Section 4 we present some results concerning such complexity classes,
which follow immediately from the definitions, while in Section 5 we present some
results which can be obtained by considering known results for time complexity
classes in the framework of P systems with active membranes. Section 6 concludes
the paper by presenting some conjectures and open problems concerning space
complexity.

2 Definitions

We begin by recalling the formal definition of P systems with active membranes
and the usual process by which they are used to solve decision problems. Moreover,
we recall the main definitions related to time complexity classes in this framework.

Definition 1. A P system with active membranes of degree m ≥ 1 is a structure

Π = (Γ, Λ, µ,w1, . . . , wm, R)

where:

• Γ is a finite alphabet of symbols or objects;
• Λ is a finite set of labels;
• µ is a membrane structure (i.e., a rooted, unordered tree) of m membranes,

labeled with elements of Λ; different membranes may be given the same label;
• w1, . . . , wm are multisets over Γ describing the initial contents of the m mem-

branes in µ;
• R is a finite set of developmental rules.

The polarization of a membrane can be + (positive), − (negative) or 0 (neutral);
each membrane is assumed to be initially neutral.

Developmental rules are of the following six kinds:

• Object evolution rule of the form [a → w]αh
It can be applied to a membrane labeled by h, having polarization α and con-
taining an occurrence of the object a; the object a is rewritten into the multiset
w (i.e., a is removed from the multiset in h and replaced by the objects in w).
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• Communication rule of the form a [ ]αh → [b]βh
It can be applied to a membrane labeled by h, having polarization α and such
that the external region contains an occurrence of the object a; the object a is
sent in to h becoming b and, simultaneously, the polarization of h is changed
to β.

• Communication rule of the form [a]αh → [ ]βh b
It can be applied to a membrane labeled by h, having polarization α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the polarization of h is changed
to β.

• Dissolution rule of the form [a]αh → b
It can be applied to a membrane labeled by h, having polarization α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its content is
left in the surrounding region unaltered, except that an occurrence of a becomes
b.

• Elementary division rule of the form [a]αh → [b]βh [c]γh
It can be applied to an elementary membrane labeled by h, having polarization α
and containing an occurrence of the object a; the membrane is divided into two
membranes having label h and polarizations β and γ; the object a is replaced,
respectively, by b and c while the other objects in the initial multiset are copied
to both membranes.

• Non-elementary division rule of the form
[
[ ]+h1

· · · [ ]+hk
[ ]−hk+1

· · · [ ]−hn

]α

h
→ [

[ ]δh1
· · · [ ]δhk

]β

h

[
[ ]εhk+1

· · · [ ]εhn

]γ

h

It can be applied to a non-elementary membrane labeled by h, having polariza-
tion α, containing the positively charged membranes h1, . . . , hk and the nega-
tively charged membranes hk+1, . . . , hn; no other non-neutral membrane may
be contained in h. The membrane h is divided into two copies with polarization
β and γ; the positive children are placed inside the former, their polarizations
changed to δ, while the negative ones are placed inside the latter, their polar-
izations changed to ε. Any neutral membrane inside h is duplicated and placed
inside both copies.

A configuration of a P system with active membranes Π is given by a mem-
brane structure and the multisets contained in its regions. In particular, the initial
configuration is given by the membrane structure µ and the initial contents of its
membranes w1, . . . , wm. A computation step leads from a configuration to the next
one according to the following principles:

• the developmental rules are applied in a maximally parallel way: when one or
more rules can be applied to an object and/or membrane, then one of them
must be applied. The only elements left untouched are those which cannot be
subject to any rule;

• each object can be subject to only one rule during that step. Also membranes
can be subject to only one rule, except that any number of object evolution rules
can be applied inside them;
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• when more than one rule can be applied to an object or membrane, then the one
actually applied is chosen nondeterministically. Thus multiple, distinct config-
urations may be reachable by means of a computation step from a single con-
figuration;

• when a dissolution or division rule is applied to a membrane, the multiset of
objects to be released outside or copied is the one after any application of object
evolution rules inside such membrane;

• the skin membrane cannot be divided or dissolved, nor any object can be sent
in from the environment surrounding it (i.e., an object which leaves the skin
membrane cannot be brought in again).

A sequence of configurations, each one reachable from the previous one by means of
developmental rules, is called a computation. Due to nondeterminism, there may
be multiple computations starting from the initial configuration, thus producing
a computation tree. A computation halts when no further configuration can be
reached, i.e., when no rule can be applied in a given configuration.

Families of recognizer P systems can be used to solve decision problems as
follows.

Definition 2. Let Π be a P system whose alphabet contains two distinct objects
yes and no, such that every computation of Π is halting and during each computa-
tion exactly one of the objects yes,no is sent out from the skin to signal acceptance
or rejection. If all the computations of Π agree on the result, then Π is said to
be confluent; if this is not necessarily the case, then it is said to be non-confluent
and the global result is acceptance iff there exists an accepting computation.

Definition 3. Let L ⊆ Σ? be a language, D a class of P systems and let Π =
{Πx | x ∈ Σ?} ⊆ D be a family of P systems, either confluent or non-confluent.
We say that Π decides L when, for each x ∈ Σ?, x ∈ L iff Πx accepts.

Complexity classes for P systems are defined by imposing a uniformity condi-
tion on Π and restricting the amount of time available for deciding a language.

Definition 4. Consider a language L ⊆ Σ?, a class of recognizer P systems D,
and let f : N → N be a proper complexity function. We say that L belongs to the
complexity class MC?

D(f) if and only if there exists a family of confluent P systems
Π = {Πx | x ∈ Σ?} ⊆ D deciding L such that

• Π is semi-uniform, i.e., there exists a deterministic Turing machine which, for
each input x ∈ Σ?, constructs the P system Πx in polynomial time;

• Π operates in time f , i.e., for each x ∈ Σ?, every computation of Πx halts
within f(|x|) steps.

In particular, a language L ⊆ Σ? belongs to the complexity class PMC?
D iff there

exists a semi-uniform family of confluent P systems Π = {Πx | x ∈ Σ?} ⊆ D
deciding L in polynomial time.

The analogous complexity classes for non-confluent P systems are denoted by
NMC?

D(f) and NPMC?
D.
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Another set of complexity classes is defined in terms of uniform families of
recognizer P systems:

Definition 5. Consider a language L ⊆ Σ?, a class of recognizer P systems D,
and let f : N → N be a proper complexity function. We say that L belongs to the
complexity class MCD(f) if and only if there exists a family of confluent P systems
Π = {Πx | x ∈ Σ?} ⊆ D deciding L such that

• Π is uniform, i.e., for each x ∈ Σ? deciding whether x ∈ L is performed as
follows: first, a polynomial-time deterministic Turing machine, given the length
n = |x| as a unary integer, constructs a P system Πn with a distinguished input
membrane; then, another polynomial-time DTM computes a coding of the string
x as a multiset wx, which is finally added to the input membrane of Πn, thus
obtaining a P system Πx accepting iff x ∈ L.

• Π operates in time f , i.e., for each x ∈ Σ?, every computation of Πx halts
within f(|x|) steps.

In particular, a language L ⊆ Σ? belongs to the complexity class PMCD iff there
exists a uniform family of confluent P systems Π = {Πx | x ∈ Σ?} ⊆ D deciding
L in polynomial time.

The analogous complexity classes for non-confluent P systems are denoted by
NMCD(f) and NPMCD.

3 A Measure of Space Complexity for P Systems

In order to define the space complexity of P systems, we first need to establish a
measure of the size of their configurations. The first definition we propose is based
on an hypothetical implementation of P systems by means of real biochemical
materials (cellular membranes and molecules). Under this assumption, every single
object takes some constant physical space: this is equivalent to using a unary
coding to represent multiplicities.

Definition 6. Let C be a configuration of a P system Π, that is, a rooted, un-
ordered tree µ representing the membrane structure of Π, whose vertices are labeled
with the multisets describing the contents of each region. The size |C| of C is then
defined as the sum of number of membranes in µ and the total number of objects
they contain.

An alternative definition focuses on the simulative point of view, i.e., on the
implementation of P systems in silico, where it is not necessary to actually store
every single object (using a unary representation), but we can just store their
multiplicity as a binary number, thus requiring exponentially less space for each
kind of symbol.

Definition 7 (Alternative). Let C be a configuration of a P system Π, that is, a
rooted, unordered tree µ representing the membrane structure of Π, whose vertices
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are labeled with the multisets describing the contents of each region. The size |C|
of C is then defined as the sum of number of membranes in µ and the total number
of bits required to store the objects they contain.

In the following discussion we will assume the first definition; however notice
that the actual results might or might not depend on the precise choice between
Definitions 6 and 7 (a thorough analysis of the differences involves a clarification
of the relative importance of the number of membranes and the number of objects
in various classes of P systems, and it is left as an open problem).

Once a notion of configuration size is established, we need to take account
of all possible computation paths which can develop even in confluent recognizer
P systems; the following definitions are given in the spirit of those concerning time
complexity for P systems [7].

Definition 8. Let Π be a (confluent or non-confluent) recognizer P system, and
let C = (C0, . . . , Cm) be a halting computation of Π, that is, a sequence of configu-
rations starting from the initial one and such that every subsequent one is reachable
in one step by applying developmental rules in a maximally parallel way. The space
required by C is defined as

|C| = max{|C0|, . . . , |Cm|}.
The space required by Π itself is then

|Π| = max{|C| : C is a halting computation of Π}.
Definition 9. Let Π = {Πx : x ∈ Σ?} be a uniform or semi-uniform family
of recognizer P systems, each Πx deciding the membership of the string x in a
language L ⊆ Σ?; also let f : N→ N. We say that Π operates within space bound
f iff |Πx| ≤ f(|x|) for each x ∈ Σ?.

We are now ready to define space complexity classes for P systems.

Definition 10. Let D be a class of confluent recognizer P systems; let f : N→ N
and L ⊆ Σ?. Then L ∈ MCSPACE?

D(f) iff L is decided by a semi-uniform family
Π ⊆ D of P systems operating within space bound f .

The corresponding class for uniform families of confluent P systems is de-
noted by MCSPACED(f), while in the non-confluent case we have the classes
NMCSPACE?

D(f) and NMCSPACED(f) respectively.

As usual, we provide a number of abbreviations for important space classes.

Definition 11. The classes corresponding to polynomial and exponential space, in
the semi-uniform and confluent case, are

PMCSPACE?
D = MCSPACE?

D(poly(n))

EXPMCSPACE?
D = MCSPACE?

D
(
2poly(n)

)
.

The definitions are analogous in the uniform and non-confluent cases.
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4 Basic Results

From the above definitions, some results concerning space complexity classes and
their relations with time complexity classes follow immediately. We state them
only for semi-uniform families, but they also hold in the uniform case.

The first two propositions can be immediately derived from the definitions.

Proposition 1. The following inclusions hold:

PMCSPACE?
D ⊆ EXPMCSPACE?

D
NPMCSPACE?

D ⊆ NEXPMCSPACE?
D.

Proposition 2. MCSPACE?
D(f) ⊆ NMCSPACE?

D(f) for each f : N→ N, and
in particular

PMCSPACE?
D ⊆ NPMCSPACE?

D
EXPMCSPACE?

D ⊆ NEXPMCSPACE?
D.

The following results mirror those which hold for for Turing machines, and they
describe closure properties and provide an upper bound for time requirements of
P systems operating in bounded space.

Proposition 3. PMCSPACE?
D, NPMCSPACE?

D, EXPMCSPACE?
D, and

NEXPMCSPACE?
D are all closed under polynomial-time reductions.

Proof. Let L ∈ PMCSPACE?
D and let M be the Turing machine constructing the

family Π such that L = L(Π). Let L′ be reducible to L via the polynomial-time
computable function f .

Now let M ′ be the following Turing machine: on input x of length n compute
f(x); then behave like M on input f(x), thus constructing Πf(x). Since |f(x)| ≤
poly(n), M ′ operates in polynomial time and Πf(x) in polynomial space; but then
Π′ = {Πf(x) | x ∈ Σ?} is a polynomially semi-uniform family of P systems
deciding L′ in polynomial space. Thus L′ ∈ PMCSPACE?

D.
The proof for the three other classes is analogous.

Proposition 4. MCSPACE?
D(f) is closed under complement for each function

f : N→ N.

Proof. Simply reverse the roles of objects yes and no in order to decide the com-
plement of a language.

Proposition 5. For each function f : N→ N

MCSPACE?
D(f) ⊆ MC?

D
(
2O(f)

)

NMCSPACE?
D(f) ⊆ NMC?

D
(
2O(f)

)
.
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Proof. Let L ∈ MCSPACE?
D(f) be decided by the semi-uniform family Π of

recognizer P systems in space f ; let Πx ∈ Π with |x| = n and let C be a configu-
ration of Πx. Then C can be described with a string of length at most k ·f(n) over
a finite alphabet, say with b ≥ 2 symbols, and there are less than bk·f(n)+1 such
strings. Since Πx is a recognizer P system, by definition every computation halts:
then it must halt within bk·f(n)+1 steps in order to avoid repeating a previous
configuration (thus entering an infinite loop). This number of steps is 2O(f).

The same proof also works in the non-confluent case (only the acceptance
criterion is different).

5 Space Complexity of P Systems with Active Membranes

In this section we provide a brief review of part of the ample literature on com-
plexity results about P systems with active membranes; our aim is to analyze
existing polynomial-time solutions to hard computational problems in order to
obtain space complexity results.

We first consider the class of P systems with active membranes which do not
make use of membrane division rules, usually denoted by NAM. It is a well known
fact that such P systems are able to solve only problems in P (the so-called Milano
theorem [11]); on the other hand, they can be used to solve all problems in P with
a minimal amount of space, when a semi-uniform construction is considered:

Proposition 6. P ⊆ MCSPACE?
NAM(O(1)).

Proof. Let L ∈ P. Then there exists a deterministic Turing machine M deciding
L in polynomial time. Now consider the family of P systems Π = {Πno ,Πyes},
where Πno (resp. Πyes) is the following trivial P system with active membranes:

• the membrane structure consists of the skin only, labeled by h;
• in the initial configuration, exactly one object a is located inside the skin;
• the only rule is [a]0h → [ ]0h no (resp. [a]0h → [ ]0h yes).

It is clear that such P systems halt in one step and that the space they require is
independent of the size of the instance they decide.

The family of P systems Π can be constructed in a semi-uniform way in order
to decide L by a deterministic Turing machine which first simulates M (it can do
so, since M operates in polynomial time), then outputs one of Πyes , Πno according
to the result (acceptance or rejection, respectively).

One of the most powerful features of P systems with active membranes is
the possibility of creating an exponential workspace in polynomial time by means
of elementary membrane division rules; we denote the class of such P systems by
EAM. This feature was exploited for solving NP-complete problems in polynomial
(often even linear) time. In terms of space complexity, this can be stated as follows:

Proposition 7. NP ∪ coNP ⊆ EXPMCSPACE?
EAM.
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Proof. In [11] a polynomial-time semi-uniform solution to SAT is described; the
number of membranes and objects required is exponential with respect to the
length of the Boolean formula. The result then follows from closure under reduc-
tions and complement of EXPMCSPACE?

EAM.

This result can be improved when the use of non-elementary membrane division
rules is allowed; indeed, all problems in PSPACE can be solved by such class of
P systems with active membranes, denoted by AM.

Proposition 8. PSPACE ⊆ EXPMCSPACE?
AM.

Proof. In [10] a polynomial-time uniform solution to QBF (also known as QSAT),
the canonical PSPACE-complete problem, is described; the space required by
each P system is still exponential, and the result follows from the closure properties.

In [1] a uniform solution for the same problem was achieved, with the same
space requirements; this provides a tighter upper bound to PSPACE:

Proposition 9. PSPACE ⊆ EXPMCSPACEAM.

Since standard P systems with active membranes are very powerful when divi-
sion rules are allowed, but very weak otherwise, another line of research involves
removing some other features, such as polarizations. Polarizationless P systems
with active membranes have been proved able to solve QSAT uniformly in polyno-
mial time by making use of both elementary and non-elementary division rules [2].
Since the space requirements are once again exponential, the following result is
immediate:

Proposition 10. PSPACE ⊆ EXPMCSPACEAM0 , where AM0 is the class
of polarizationless P systems with active membranes and both kinds of division
rules. ut

6 Open Problems

In P systems with active membranes, division rules are usually exploited by pro-
ducing an exponential number of membranes in linear time, which then evolve in
parallel; for instance, several solutions to NP-complete problems explore the full
solution space (e.g., generating every possible truth assignment and then checking
whether one of them satisfies a Boolean formula). It appears that membrane di-
vision may become much less useful when a polynomial upper bound on space is
set; or, in other words,

Conjecture 1. The three classes PMCSPACE?
NAM, PMCSPACE?

EAM and
PMCSPACE?

AM coincide.
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An idea which might be useful in proving this conjecture is pre-computing
the “final” membrane structure (which is obtained via division rules) during the
construction phase. While this is straightforward when considering membrane di-
visions which always occur, the matter might be much more difficult in the case of
“conditional” division (i.e., division rules are applied only when certain conditions
are met) or when the P system exhibits a recurring behavior (e.g., a membrane
divides, then one of the two copies is dissolved, and the process is repeated con-
tinuously).

Another interesting problem involves the relations between time and space
complexity classes for P systems with active membranes. We know that Turing
machines, once a polynomial space bound is fixed, are able to solve more problems
in exponential time than in polynomial time (at least when P 6= PSPACE is
assumed). This fact has not been investigated yet in the setting of membrane
computing, as all solutions to decision problems presented until now (up to the
knowledge of the authors) require only a polynomial amount of time. Formally,
the question we pose is the following:

Problem 1. Is PMC?
D 6= PMCSPACE?

D for any class of P systems D among
NAM, EAM,AM? That is, do problems which can be solved in polynomial space
but not in polynomial time exist?

Another important property of traditional computing devices is described by
Savitch’s theorem: nondeterministic space-bounded Turing machines can be simu-
lated deterministically with just a polynomial increase in space requirements, and
as a consequence PSPACE = NPSPACE holds. The proof does not appear to
be transferable to P systems in a straightforward way; nonetheless, an analogous
result might hold even in this setting:

Problem 2. Does PMCSPACE?
D = NPMCSPACE?

D hold for any class of
P systems D among NAM, EAM,AM?

The classes of P systems with active membranes we have considered in all the
previous problems are only defined according to which kinds of membrane division
rules are available (none, just elementary or both elementary and non-elementary).
The same questions may be also worth posing about other restricted classes, such
as P systems without object evolution or communication [12, 4], P systems with
division but without dissolution, or even purely communicating P systems, with
or without polarizations.

Finally, we feel that the differences between P systems and traditional comput-
ing devices deserve to be investigated for their own sake also from the point of view
of space-bounded computations. We formulate this as an open-ended question:

Problem 3. What are the relations between space complexity classes for P sys-
tems and traditional ones, such as P, NP, PSPACE, EXP, NEXP, and
EXPSPACE?
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1 Introduction

Nowadays an increasing interest regards the study of the development of biological
systems in which more species of individuals interact (usually to perform a certain
global task). Research ranging from completely different areas like the study of
metapopulations (the study of groups of spatially separated populations of the
same species which live in fragmented habitats and interact at some level) and
HIV infections was done in essentially the same manner. Traditionally, such studies
were done by employing continuous models where (partial) differential equations
were used to capture the dynamics of these systems.

Currently, the usage of discrete models where the system dynamics is captured
from the collective actions of individual entities has been shown to be a promising
choice. This is based on the fact that living organisms are spatially discrete and the
individuals occupy particular localities at a given time. The interactions between
individuals are strongly connected with their neighborhood relations.

While characterizing these facts a basic issue regards the way the space is rep-
resented. Simple models that involve no detailed spatial structure are in general
analytically easily solvable. However, as the complexity of the reaction-diffusion
dynamics grows, the models based on partial differential equations become in-
tractable to be analyzed.

On the other hand, integrating within the model a detailed spatial structure
(as cellular automata models do, for instance) the setback comes in general from
the impossibility to analyze the models except only by performing simulations.
Although such models have much greater biological reality, they suffer from the
difficulty of generalization (hence of finding the exact behavior). This is especially
important while formulating some practical testable predictions regarding a given
model.

P systems are formal computing devices that were initially inspired and ab-
stracted from the cell functioning (see [4]). In general, P systems make use of
multisets to represent the computational support. These multisets are placed in-
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side the membranes which in their turn are disposed in some hierarchical tree
structure. The (maximal) parallel applications of some multiset rewriting rules
(particular to each membrane) were used to process the multisets.

Although these formal systems were extensively studied with respect to their
computational power and efficiency, while representing some biological processes
many difficulties arise. Representing the data support as multisets essential sim-
plifies the structure of the environment and of the individuals from within (the
neighboring relations between the individuals are completely ignored), the focus
being over the system dynamics. However, in this case, two main assumptions are
considered: the environment is homogeneous so that the concentration of the in-
dividuals do not change with respect to space and the number of individuals of
each species in the environment is “adequately” large (hence the concentration of
the individuals might be assumed to vary continuously over the time). Moreover,
the rules that describe the interactions between the individuals are assumed to be
executed in a maximal parallel manner and governed by a global clock that marks
equal steps.

Even if all these simplifications are useful while defining a computing formal
framework, they are questionable if the aim is to model and simulate actual biolog-
ical systems. This is way many new features that are meaningful to biologists were
added to the original paradigm in order to extend its functionality and versatility
for modeling.

In order to cope with these issues, probabilistic/stochastic P systems were in-
troduced (see [2], [6], [1]). In general, the main idea was to associate to the rules
some weights describing how they should be applied at a given moment. For a
particular rule, the weight gives the susceptibility of its execution at certain in-
stant. Hence, applying this principle to all interaction rules it sets up more realistic
bounds of the nondeterministic application of the rules. The ultimate goal of this
approach is to integrate the structural and dynamical characteristics of a real bio-
system into the way the rules of the model are selected to be applied and executed
(preserving at the same time the unstructured computing support). Although this
method has in general good simulation time complexity it is inadequate if the
interacting species are poorly represented, when there exist many “inactive” indi-
viduals (that are not the subject of any rule) with respect to the entire population
of individuals, or when the environment is not homogeneous.

2 Preliminaries

We assume the reader familiar with the basic notions of P systems (one can con-
sult [4] for more details), so that here we only recall some notions regarding the
abstract rewriting systems on multisets. ARM systems represent a variant of P
systems which was proposed in order to perform simulations of some bio-chemical
processes. Later on, due to its modeling flexibility, it was used to study some sym-
biotic mechanism of an ecological system and even for proposing a novel theory of
evolution.
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ARMS is a stochastic model that uses multisets to represent the bio-chemical
support. Multiset rewriting rules are used to describe the bio-chemical reactions.
As opposed to the classical definition of P systems where the rules are applied in
a nondeterministic, maximal parallel manner and with competition on the objects
composing the multisets, in ARMS the rules obey the Mass Action Law where the
frequency of a reaction follows the concentration of bio-chemicals and a rate con-
stant. Consequently, the rules to be applied are chosen probabilistically from the
rules set and each probability is given by the ratio of the total number of colliding
chemicals of a reaction to the sum of the total number of colliding chemicals of
every reactions in the rule; the applications of the rules remain parallel and with
competition on the objects.

More formally, an ARM system is a construct Π = (O, w,R) where O is the
alphabet of objects, w represents the multiset of objects at the beginning of com-
putation, and R is a set of multiset rewriting rules of type u

k→ v, where u ∈ O+,
v ∈ O∗, and k ∈ R is the rate constant of the rule.

For example, in case of a cooperative rule of type ri : aA + bB → cC + dD
and a given multiset of objects M , the probability of rule execution is defined
as Prob(ri) = kiM

a
AMb

B

R , where k is the rate constant (determined experimentally)
and R is a coefficient for normalizing the probabilities (

∑
i

Prob(ri) = 1). Similarly,

probabilities can be defined for any type of rules.
The system Π starts to evolve from the initial configuration (represented by

w) by applying the rules in parallel, randomly selecting the rules but according
with the probabilities computed as above. Π is governed by an universal clock
that marks equal time units.

We have run more tests using an ARM system Π where O = {A,B, C,D, X, F},
and the set of rules R is given bellow:

r1 : AB
k1→ X r8 : F

k8→ F

r2 : AC
k2→ X r9 : A

k9→ A

r3 : BD
k3→ X r10 : B

k10→ B

r4 : CD
k4→ F r11 : C

k11→ C

r5 : FX
k5→ FF r12 : D

k12→ D

r6 : FA
k6→ FF r13 : X

k13→ X

r7 : FB
k7→ FF

The initial configuration of Π was w = A250B250C5D5 and in our tests we used
several values for ki, 1 ≤ i ≤ 13. The system attempts to simulate the behavior
of some interacting individuals, represented here as the objects A, B, C, and D,
sharing the same environment. In addition, the individuals corresponding to the
objects C and D (which are much less than the individuals corresponding to the
objects A and B) share a localized patch in the environment. Thus, we assumed
the environment not to be homogeneous.
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If at least once the objects C and D interact (i.e., the rule CD
k4→ F is applied)

they will produce an object F which will trigger the conversion of all existing
objects in the multiset into F (the rules r5, r6, and r7). The rest of the rules (r8

till r13) are used to slow down the rate of parallelism.
Since we have assumed the existence of a patch in the environment of indi-

viduals corresponding to objects C and D, then we could make another further
assumption: if the patch is “large enough” so that there exists at least two indi-
viduals C and D which are not interacting initially with the individuals A and B,
then there exists a “significant” probability that the rule CD

k4→ F is executed.
While using multisets to represent the individuals in the environment we lose the
structure, hence when simulating such systems we actually have to relay on the
probabilities of the executions of the rules (which in their turn depend on some
constants experimentally determined). In Figure 1, one can notice the different
behaviors of the same system and they are related to the usage of such proba-
bilities. The charts shown on the right hand side present a simulation when the
rule CD

k4→ F was executed at least once, while the charts on the right hand side
present a simulation when the rule CD

k4→ F was not executed at all. Although
the model considered is very simple a similar situation might happen when repre-
senting some complex systems. Even more, such situations might emerge during
the system evolution and sudden shifts in the behavior might arise from some
minor changes in the circumstances; if this is the case, then it would make almost
impossible the precise identification of the rate constants associated to the rules.

Fig. 1. Two runs of system Π. The results are presented on columns and they show the
different behaviors of the same system when some minor changes in the circumstances
happen.
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Besides all of these issues, if the number of objects in the model decreases
under a certain limit, the usage of probabilities to specify the way the rules are
applied becomes inadequate.

3 PGR Systems

Aiming to tackle the mentioned issues, in this section we introduce a new model
for simulating bio-systems composed by interacting individuals of various species
in a given environment.

Denote by C the set of species in an environment represented here as a metric
space (for simplicity, let Rk, k ≥ 2, be the environment). Let V ⊆ L × C be
the finite set of labeled individuals in the environment (L denotes a finite set of
labels that uniquely identify the individuals in the environment). In addition, let
f : V → Rk, k ≥ 2, be a bijective mapping; for a node v = (n, l) ∈ V , the value
h(v) denotes the position of the individual v in the environment. In addition let
r > 0, r ∈ R, be a positive constant.

Based on above definition one can represent the environment and the individ-
uals from within as a graph G0 = (V0, E0) where V0 = V and the set of edges is
constructed as follows: for two nodes v1, v2 ∈ V , if h(v1) belongs to the open ball
centered in h(v2) and with radius r (i.e., h(v1) ∈ B(h(v2), r)) then there exists an
edge from v1 to v2.

For simplicity we assume that G0 is connected, that is, for any two nodes
m,n ∈ V there exists a sequence m = v0, v1, . . . , vt = n ∈ V such that h(vi) ∈
B(h(vi−1), r), for 1 ≤ i ≤ t.

Fig. 2.

Motivated by these facts we can introduce the following model. A parallel graph
rewriting system (in short, a PGR system) is a construct Γ = (C, G0, R) where
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• C = {c1, . . . , ck} is a finite set of symbols;
• G0 = (V0, E0) is the initial global graph – a connected graph such that

V0 ⊆ L × C is a set of labeled nodes and E0 ⊆ V0 × V0 is a set of edges between
nodes from V0;

• R is a finite set of graph rewriting rules.
A graph rewriting rule r ∈ R is of the following type:

r = (G1 = (V1, E1), G2 = (V2, E2)),

where Vi ⊆ Li ×C, Ei ⊆ Vi × Vi, i ∈ {1, 2}. The graphs G1 and G2 are connected
graphs; G1 represents the neighboring relations between the individuals that are
required for an interaction to take place and G2 represents the output of an actual
interaction between individuals represented in G1. In addition we will assume
that G1 and G2 are not arbitrary graphs, but rather they obey some physical
constraints: any node from G1 and G2 cannot be the subject of more than a
constant tr ∈ IN edges – a condition that assume the nonexistence of more than
tr individuals in an open ball of radius r.

A graph rewriting rule r = (G1, G2) ∈ R can be applied on a graph G if G1

is label isomorphic with some subgraph Gs = (Vs, Es) of G, that is, there exists
a bijective mapping h : V1 → Vs such that h((m, c)) = (n, c) and h−1((n, c)) =
(m, c), where (m, c) ∈ V1, (n, c) ∈ Vs and such that any two nodes u, v ∈ Vs are
adjacent in Gs if and only if h(u) and h(v) are adjacent in G1 (see Figure 3).

In other words, a graph rewriting rule r can be applied on G iff the left-hand
side rule’s graph is “contained” in G both as layout and as corresponding node
labels (via an edge/label-preserving bijection).

Fig. 3. A graph G = (V, E) denoting the computing support and a graph rewriting rule
r = (G1, G2). The sites where the rule r can be applied in G are explicitly figured. If Gs =
(Vs = {(n4, B), (n5, A)}, Es = {((n4, B), (n5, A))}) then G1 is label isomorphic with Gs.
The neighborhood set of degree k = 1 of Gs is B1 = {(n3, A), (n6, C), (n7, C), (n8, B)}.

Applying a rule r over G follows the following steps:
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• eliminate Gs from G (all the nodes from Vs are eliminated from V ; all the edges
of the type (v, vs), v ∈ V , vs ∈ Vs are deleted from E);

• add G2 to G (some relabeling of the nodes from G2 is required in order to avoid
duplicates of nodes at multiple application of r). All the (relabeled) nodes and
edges of G2 are added to G;

• add a set of edges from some nodes of V2 to some nodes of V \ (Vs ∪ V2). The
edges are established as described below.

For the graph Gs let us define the neighborhood set of degree k

Bk = {v ∈ V \ Vs | there exists a path of length
less or equal with k from v to a node u ∈ Vs}.

As we mentioned above, the output of the application of a rule consists of new
individuals that, by hypothesis, at the moment of their apparition it is assumed to
belong to the same vicinity. How big is that vicinity and how the new individuals
are related to the rest depend on many factors among which we just mention the
type of the rule and the environment. Consequently, in our framework, the set Bk

is useful when defining the new neighborhood relations triggered by the application
of a rule. By some straightforward physical arguments, the output graph G2 of
the rule r is likely to be “connected” to G via the nodes from Bk. However, for
simplicity, we will consider the neighborhood set of degree 1 in our simulations.

Let E = {(n1, n2) ∈ E | n1 ∈ B1, n2 ∈ Vs}. Then, a number equals with
card(E) of random edges from the nodes of G2 to the nodes from B1 are added
to G but such that any node considered is not the subject of more than tr edges.

Starting from the initial configuration (the initial global graph G0), the system
evolves according to the rules from R and the current labeled graph in a non-
deterministic parallel manner (but not necessarily maximal). The labeled graph
of Γ at any given moment constitutes the configuration of the system at that
moment. For two configurations GA and GB we can define a transition from GA

to GB if we can pass from GA to GB by applying rules from R.
Determining whether two graphs are isomorphic is referred to as the graph

isomorphism problem. Although this problem belong to NP it is neither known
to be solvable in polynomial time nor it is NP-complete. A generalization of this
problem (that is used in our formalism) is the subgraph isomorphism problem
which is NP-complete; hence the known deterministic algorithms for this problem
are exponential.

Remark 1. There is a physical motivation to assume that after applying a rule of
the system, the newly produced objects (that correspond to the output nodes of
the rule) belongs to the same vicinity, hence the left hand side graph of any rule
should be complete.

Remark 2. For a given PGR system, as much as the radius r grows (hence the
number of edges in the initial global graph is close to n(n−1)

2 where n is the number
of the nodes, that is, the initial global graph is “almost” complete) and the degrees
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of the neighboring sets grow as well, the result of a simulation is similar with one
obtained using parallel multiset rewriting. This is because multisets can be seen
in our formalism as complete graphs, hence any individual in the system is in a
neighboring relation with any other individual (hence, they can interact if proper
rules exist).

4 PGRS Simulator and a Test Case

The simulator implements the model introduced in Section 3. Its main characteris-
tics regard the definition of the rules set by using an XML file, and the possibility
to save/load intermediate configurations. The simulator is written in Java lan-
guage hence it benefits of cross-platform compatibility, parallelism, and possibility
to distribute the computational effort.

The task that has the most computational resource consumption is the sub-
graph isomorphism problem which is addressed whenever a rule r = (G1, G2) is
selected for application and the set S of all the subgraphs of the global graph that
are isomorphic with G1 has to be determined. Even more, whenever a subgraph
G ∈ S is selected to be rewritten by r, a run through all the elements of S has
to be performed in order to eliminate those subgraphs that have some nodes from
G. Considering all these matters for all the rules from the rule set and a relatively
small global graph, the overall time complexity for simulating just one computa-
tional step is exponential. Nevertheless, if the left hand side graphs of the rules
from the rule set are very simple (i.e., less than 4 nodes) and the global graph
contains at most hundreds of nodes, the problem is feasible. Moreover, taking into
account that the problem can be easily parallelized one can divide the the problem
into smaller instances and distribute them over a network.

Let us consider the following PGR system Γ = (C, G0, R) where
• C = {A,B, C,D, F,X},
• R = {r1, r2, r3, r4, r5, r6, r7, r8} is defined as follows:

In our tests, the initial global graph G0 was build to obeying some properties.
First of all, a random graph G′0 was generated and this graph contains 500 nodes
labeled only with A and B (the apparition of these labels are equally probable) and
2000 edges. A second graph G′′0 was generated and this graph contains 10 nodes
labeled only with C and D (the apparition of these labels are equally probable)
and 30 edges. Finally, G′0 and G′′0 were merged together in order to form G0 by
connecting 10 randomly chosen nodes from G′0 with 10 randomly chosen nodes
from G′′0 .

We ran the simulator for 100 times, considering for each run a new initial
global graph generated as above. In Figure 4 are represented the minimal and the
maximal values at each step of the simulation for the objects A, B, C, and D.
Any particular simulation graphic from our test case lay between the boundaries
established.
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Fig. 4. The results of 100 simulations of different GPR systems but having the same
properties. The minimal and maximal obtained values are explicitly marked.

5 Conclusions

Simulations performed using PGR systems in some cases give more accurate an-
swers than ARMS simulations because they explicitly use the spatial distribution
of individuals (hence the neighborhood relations can be extensively expressed).
However the price to pay while using PGR systems regards the computational
effort which in their case is exponential as time complexity. Nevertheless, for some
cases when the number of interacting individuals in the environment is small and
they are not dense, the PGR systems might be useful for performing simulations.

In order to handle these issues, a hybrid system combining features from the
ARM and PGR systems might be proposed. Two directions could be taking into
account:

• one can use alternatively an ARMS-type simulation whenever the number of
individuals from all the species is large and a PGRS-type simulation whenever
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the number of individuals from certain species goes below some threshold;
in this case the newly obtained system uses in a more careful manner the
probabilities for the rules executions.

• one can use in parallel an ARMS-type simulation over a multiset of many
individuals and a PGRS-type simulation on relatively small instances of graphs.
Then one can consider a time sequence and at each moment in the sequence
one can merge the ARMS configuration with the multiset of labels of the nodes
from the graph (or one can exchange some data between these simulations). In
this way, the newly obtained hybrid systems become more robust against some
unexpected changes in the behavior (which might be triggered by some minor
changes).
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Summary. Spiking neural P systems were proved to be Turing complete as function
computing or number generating devices. Moreover, it has been considered in several
papers that spiking neural P systems are also computationally efficient devices working
in a non-deterministic way or with exponential pre-computed resources. In this paper,
neuron budding rules are introduced in the framework of spiking neural P systems, which
is biologically inspired by the growth of dendritic tree of neuron. Using neuron budding
rules in SN P systems is a way to trade space for time to solve computational intractable
problems. The approach is examined here with a deterministic and polynomial time
solution to sat problem without using exponential pre-computed resources.

1 Introduction

Computational efficiency of spiking neural P systems (in short, SN P systems) has
been investigated in a series of works [1, 6, 8, 9, 10], recently. In the framework of
SN P systems, most of the solutions to computationally hard problems are based
on non-determinism [9, 10, 11] or exponential pre-computed resources [1, 6, 8, 7].
The present paper proposes a rather different way to address this issue in a sense
that no pre-computed resource is used but it is computed by a SN P system.

It has been claimed in [11] that an SN P system of polynomial size cannot
solve in a deterministic way in a polynomial time an NP-complete problem (unless
P=NP). Hence, under the assumption that P 6= NP, efficient solutions to NP-
complete problems cannot be obtained without introducing features which enhance
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the efficiency (pre-computed resources, ways to exponentially grow the workspace
during the computation, non-determinism, and so on).

A possibility of using spiking neural P systems for solving computationally
hard problems, under the assumption that some (possibly exponentially large)
pre-computed resources are given in advance has been presented in [6]. Specially,
in [6], a uniform family of spiking neural P systems was proposed which can be
used to address the NP-complete problems, in particular, to solve all the instances
of sat which can be built using n Boolean variables and m clauses, in a time which
is quadratic in n and linear in m.

In the present paper, we continue the study considered in [6] and particularly
focus on a possible way to construct an SN P system such that the system can
compute the necessary resources (exponentially large work space) to be used in
advance by itself. For this purpose, we extend the SN P systems [6] by introducing
neuron budding rules. We show that the SN P systems with budding rules can (pre-
)compute the exponential work space in polynomial time with respect to the size
of the instances of the problem we want to solve, however, the problem is solved
too by the same system. All the systems we will propose work in a deterministic

way.
The biological motivation of the mechanism for expanding the work space (net

structure) of SN P systems by introducing neuron budding comes from the growth
of dendritic tree of neural cells [15]. The brain is made up of about 100 billion
cells. Almost all brain cells are formed before birth. Dendrites (from Greek, tree)
are the branched projections of a neuron. The point at which the dendrites from
one cell contact the dendrites from another cell is where the miracle of information
transfer (communication) occurs. Brain cells can grow as many as 1 million bil-

lion dendrite connections – a universe of touch points. The greater the number of
dendrites, the more information that can be processed. Dendrites grow as a result
of stimulation from and interaction with the environment. With limited stimula-
tion there is limited growth. With no stimulation, dendrites actually retreat and
disappear. These microscope photographs illustrated in Figure 1 show actual den-
drite development. Dendrites begin to emerge from a single neuron (brain cell)
developing into a cluster of touch points seeking to connect with dendrites from
other cells.

In the framework of SN P systems, the dendrite connection points are consid-
ered as abstract neurons and the branches of dendrite tree are consider as abstract
synapses. The new connection between dendrites from two different neuron cells is
understood as new created synapses. In this way, new neurons and synapses can
be produced during the growth of dendrite tree.

The formal definition of neuron budding rule and its semantics will be given
in Section 2.
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Fig. 1. Growing neuron: a. dendrites begin to emerge from a single neuron, b. developed
into a cluster of touch points; c. Ramon y Cajal, Santiago. Classical drawing: Purkinje
cell; d. newborn neuron dendrites, e. 3 months later. Photos from Tag Toys [15]

2 SN P systems with neuron budding rules

A spiking neural P system with neuron budding of (initial) degree m ≥ 1 is a
construct of the form

Π = (O,Σ,H, syn,R, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. Σ = {σ1, σ2, . . . , σm} is a finite set of initial neurons;
3. H is a finite set of labels for neurons;
4. syn ⊆ H × H is a finite set of synapses, with (i, i) 6∈ syn for i ∈ H;
5. R is a finite set of developmental rules, of the following forms:

(1) extended firing (also called spiking) rule [E/ac → ap; d]
i
, where i ∈ H, E

is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0, with the restriction
c ≥ p;

(2) neuron budding rule x[ ]
i
→ y[ ]

j
, where x ∈ {(k, i), (i, k), λ}, y ∈

{(i, j), (j, i)}, i, j, k ∈ H, i 6= k, i 6= j.
6. in, out ∈ H indicate the input and the output neurons of Π.

The way of presentation of SN P system is here slightly different from the
usual definition present in the literature, where the neurons presented initially in
the system are explicitly listed as σi = (ni, Ri), 1 ≤ i ≤ m and Ri are the rules
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associated with neuron with label i. In what follows we will refer to neuron with
label i ∈ H also denoting it with σi.

If an extended firing rule [E/ac → ap; d]
i

has E = ac, then we will write it in
the simplified form [ac → ap; d]

i
; similarly, if a rule [E/ac → ap; d]

i
has d = 0,

then we can simply write it as [E/ac → ap]
i
; hence, if a rule [E/ac → ap; d]

i
has

E = ac and d = 0, then we can write [ac → ap]
i
. A rule [E/ac → ap]

i
with p = 0

is written in the form [E/ac → λ]
i

and is called extended forgetting rule. Rules of
the types [E/ac → a; d]

i
and [ac → λ]

i
are said to be standard.

If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule [E/ac →
ap; d]

i
is enabled and it can be applied. This means consuming (removing) c spikes

(thus only k − c spikes remain in neuron σi); the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately; if
d = 1, then the spikes are emitted in the next step, etc. If the rule is used in step
t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this
corresponds to the refractory period from neurobiology), so that it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and tries to send a spike
along it, then that particular spike is lost). In the step t + d, the neuron spikes
and becomes open again, so that it can receive spikes (which can be used starting
with the step t + d + 1, when the neuron can again apply rules). Once emitted
from neuron σi, the p spikes reach immediately all neurons σj such that there is a
synapse going from σi to σj and which are open, that is, the p spikes are replicated
and each target neuron receives p spikes; as stated above, spikes sent to a closed
neuron are “lost”, that is, they are removed from the system. In the case of the
output neuron, p spikes are also sent to the environment. Of course, if neuron σi

has no synapse leaving from it, then the produced spikes are lost. If the rule is a
forgetting one of the form [E/ac → λ]

i
, then, when it is applied, c ≥ 1 spikes are

removed. When a neuron is closed, none of its rules can be used until it becomes
open again.

If a neuron σi has only synapse x where x ∈ {(i, k), (k, i), λ}, i 6= k, then rule
x[ ]

i
→ y[ ]

j
is enabled and can be applied, where y ∈ {(i, j), (j, i)}. The synapse

x describes the interaction environment of neuron σi with another neuron. As a
result of the rule application, a new neuron σj and a synapse y are established
provided that they do not exist already; if a neuron with label j does already exist
in the system but no synapse of type y exists, then only the synaptic connection y
between the neurons σi and σj is established, no new neuron with label j is budded.
We stress here that the application of budding rules depends on the environment
of the associated neuron, instead of the spikes contained in the associated neuron;
a budding rule can be applied only if the associated neuron has the environment
exactly as the rule described; in other words, even if the environment has a proper
sub-environment that enables a budding rule, but the whole environment does not
enables the budding rule, then the rule cannot be applied. The rules of such type
are applied in a maximal parallel way: if the environment of neuron σi enables
several budding rules, then all these rules are applied; as a result, several new
neurons and synapses are produced (which corresponds to have several branches at
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a touch point in the dendrite tree). Note that the way of using neuron budding rules
is different with the usual way in P systems with cell division or cell creation, where
at most one rule division rule or creation rules can be applied to one membrane
or one object, respectively.

In each time unit, if a neuron σi can use one of its rules, then a rule from
R must be used. If several spiking rules are enabled in neuron σi, then only one
of them is chosen non-deterministically. If the environment of neuron σi enables
several budding rules, then all these rules are applied. If both spiking rules and
budding rules are enabled in the same step, then one type of rules is chosen non-
deterministically. When a spiking rule is used, the state of neuron σi (open or
closed) depends on the delay d. When a neuron budding rule is applied, at this
step the associated neuron is closed, it cannot receive spikes. In the next step, the
neurons obtained by budding will be open and can receive spikes.

The configuration of the system is described by the topology structure of the
system, the number of spikes associated with each neuron, and the state of each
neuron (open or closed). Using the rules as described above, one can define tran-

sitions among configurations. Any sequence of transitions starting in the initial
configuration is called a computation. A computation halts if it reaches a configu-
ration where all neurons are open and no rule can be used.

In the following, we give an example to make the usage of budding rules trans-
parent, where neither spike nor spiking rule is of interest.
An example. The system Π1 has initial topological structure shown in Fig-
ure 2(a), and the budding rules (1, 3)[ ]3 → (3, 4)[ ]4, (1, 3)[ ]3 → (3, 5)[ ]5,
(2, 1)[ ]2 → (6, 2)[ ]6, (3, 4)[ ]4 → (4, 7)[ ]7 and (6, 2)[ ]6 → (6, 5)[ ]5.

In the initial topological structure, neuron σ3 has two synapses (1, 3) and (2, 1),
and no other synapses are associated with it; as the environment of neuron σ3

enables both rules (1, 3)[ ]
3
→ (3, 4)[ ]

4
and (1, 3)[ ]

3
→ (3, 5)[ ]

5
, the rules are

applied in the maximal parallel application manner. As a result, two new neurons
σ4 and σ5, and two synapses (3, 4) and (3, 5) are produced. At the same time,
the rule (2, 1)[ ]

2
→ (6, 2)[ ]

6
is applied to neuron σ2 with a synapse (2, 1), thus,

neuron σ6 and synapse (6, 2) are produced. The structure is shown in 2(b) after
step 1.

At the second step, the rules (1, 3)[ ]
3
→ (3, 4)[ ]

4
and (1, 3)[ ]

3
→ (3, 5)[ ]

5
cannot apply again as the two newly created synapses (3, 4) and (3, 5) going
out from neuron σ3 have changed the environment of it. Similarly, the rule
(2, 1)[ ]

2
→ (6, 2)[ ]

6
cannot be used again. As neuron σ4 has only synapse (3, 4),

its environment enables the rule (3, 4)[ ]4 → (4, 7)[ ]7 to be applied to it, then
a new neuron σ7 and a synapse (4, 7) are produced. Neuron σ6 has only synapse
(6, 2), then rule (6, 2)[ ]

6
→ (6, 5)[ ]

5
is enabled and applied. Since a neuron with

label 5 already exist, no new neuron with label 5 is budded instead, a synapse
(6, 5) to neuron σ5 from neuron σ6 is established, this is the principle of neuron
budding rules. The corresponding structure is shown in Figure 2(c). Now no rule
is enabled by any neuron interaction environment, thus the system halts.
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Fig. 2. Structure transition of SN P system Π1

3 Brief of pre-computed SN P systems solving sat

As we mentioned in Section 1, a way to solve NP hard problems by SN P systems
is to assume an exponential working space has been pre-computed in advance,
based on that given work space a family of SN P systems solves all the possible
instances of the problem in polynomial time, [6].

Let us recall here the basic description of sat (satisfiability) problem, a well
know NP-complete problem. An instance of sat is a propositional formula γn =
C1 ∧ C2 ∧ · · · ∧ Cm, expressed in the conjunctive normal form as a conjunction of
m clauses, where each clause is a disjunction of literals built using the Boolean
variables x1, x2, . . . , xn. An assignment of the variables x1, x2, . . . , xn is a mapping
a : X → {0, 1} that associates to each variable a truth value. The number of all
possible assignments to the variables of X is 2n. We say that an assignment satisfies

the clause C if, assigned the truth values to all the variables which occur in C, the
evaluation of C gives 1 (true) as a result.

Let us denote by sat(n,m) the set of instances of sat which have n variables
and m clauses. In [6], a uniform family {ΠSAT (〈n,m〉)}n,m∈N of SN P systems was
built such that for all n,m ∈ N the system ΠSAT (〈n,m〉) solves all the instances
of sat(n,m) in a number of steps which is quadratic in n and linear in m.

Let us first briefly summarize here the overview of the considered system
ΠSAT (〈n,m〉) from [6], and its structure and functioning that solves all the possi-
ble instances of sat(n,m).

The system structure is composed by n + 5 layers, see Figure 3. The first layer
(numbered by 0) is composed by a single input neuron, that is used to insert the
representation of the instance γn ∈ sat(n,m) to be solved. Note that layer 1, as
well as the subsequent n − 1 layers, is composed by a sequence of n neurons, so
that the layer contains the representation of one clause of the instance. In layer n,
we have got 2n copies of the subsystem; each subsystem contained in this layer is
bijectively associated to one possible assignment to variables x1, x2, . . . , xn. Sim-
ply say, the neurons in a subsystem are two types: f and t; the types indicate that
the corresponding Boolean variable is assigned with the Boolean values t(rue) or
f(alse), respectively. However, the all subsystems of layer n are injectively distin-
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Fig. 3. SN P system structure which solves sat(m,n). From [6].

guished from each other with respect to the all possible different truth assignments
for variables x1, x2, . . . , xn represented by each subsystem. The subsystems that
occur in layer n together with the so called generator have a very specific functions
such that all possible assignments are tested in here in parallel against the clause.
The assignment is performed by sending 3 spikes to all the neurons labelled with t,
and 4 spikes to all the neurons labelled with f from the generator. This means that
the generator have three synapses going to neurons t and four synapses towards
neurons f .

Those assignments that satisfy the clause produce a (single) spike in the corre-
sponding neuron 2 (that occurs in the same row, in layer n+2), which is accumu-
lated in the associated neuron 3, that operates like a counter. When the first clause
of γn has been processed, the second takes place in the subsystems in layer n in n
steps, and all possible assignments are tested, etc. When all the m clauses of γn

have been processed, neurons 3 in layer n + 3 contain each the number of clauses
which are satisfied by the corresponding assignment. The neurons that contain m
spikes fire, sending one spike to neuron out, thus signalling that their correspond-
ing assignment satisfies all the clauses of the instance. Neuron out operates like an
or gate: it fires if and only if it contains at least one spike, that is, if and only if
at least one of the assignments satisfies all the clauses of γn.
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In the next section, in particular, we aim to show the fact that the assumed pre-
computed work space used in [6] to solve SAT can be pre-computed practically in
advance in polynomial time by SN P systems with budding rules. Then, a solution
to SAT problem is given by the systems with already pre-computed work space.

4 Uniform solution to sat by (dendritic) SN P systems

Our SN P system with budding rules is composed of two subsequent subsystems:
construction of a SN P system structure which meant to solve sat problem uni-
formly and the SN P systems family, [6], which solves the sat problem efficiently
– for the sake of simplicity, we avoid the neuron budding and the spike firing rules
are used at the same time in each subsystem.

Π = (O,Σ,H, syn,R, soma, out)

where:

1. O = {a} is the singleton alphabet;
2. H is a finite set of labels for neurons,

H ⊇ H0 = {soma, out, e0, e1, e2, e3, b1, b2, b3, c, s,+,−} is the labels for neu-
rons initially given;

3. Σ = {σi | i ∈ H0} is the set of initial neurons;
4. syn ⊆ H × H is a finite set of synapses, with (i, i) /∈ syn for i ∈ H),

syn ⊇ syn0 = {(e, ei) | 0 ≤ i ≤ 3, e ∈ {+,−}} ∪ {(e0, bi) | 1 ≤ i ≤ 3} ∪
{(b3, c), (s,+), (+,−), (−,+), λ} is the set of synapses initially in use;

5. R is a set of neuron budding and extended spiking rules specified as follows.

Fig. 4. The initial topological structure (new born dendrite) of the system Π: soma and
out neurons, generator.
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Constructing the system structure

The system initially contains an input neuron σsoma, an output neuron σout, and
a sub-structure so-called generator block G composed of the set of neurons Σ
and the set of synapses syn0, |Σ| = |syn0| = 13, the corresponding topological
structure is illustrated in Figure 4.

The generation mechanism is governed by only neuron budding rules and con-
trolled by the labels of budding neurons and the created synapses. The labels of
each neuron in a subsystem in layer n encodes an associated truth assignment.

The system construction algorithm consists of two main parts:
A. To generate the dendritic-tree sub-structure (the layers 0 – n in Figure 3,

exponentially large in n) and the truth assignments for n Boolean variables. The
process starts from the initial neuron σsoma (the root node).

B. To complete the network structure. The subsystems in nth layer of the
system establish connections to the generator block according to the truth assign-
ments represented in those subsystems, and they are expanded by further three
layers, finally converged to the output neuron σout.

A. The dendritic-tree generation process, controlled by the labels of neurons
as well as the synapses, starts from the initial neuron σsoma (cell body). It is
noteworthy that since the truth assignments associated with the subsystems in nth
layer are encoded in the labels of those neurons compose each subsystem, the truth
assignments are being generated while the dendritic-tree has been constructed.

The label of a neuron σc is a sequence of the form

c = (k, j, x
(p)
k ) = (k, j, xk(1) = p) = (k, j, p, xk2, . . . , xkk),

p ∈ {t, f}, where the first pair (k, j) indicates the location of the neuron on the
dendritic-tree: k is the layer number, j is the place where the neuron is in its

subsystem, the subsequence x
(p)
k represents a string of length k formed by Boolean

values t and f being generated. Whereas p in x
(p)
k indicates that the first entry

of the subsequence is exactly p – which is later importantly used in the budding
rules to distinguish the being generated truth assignments from a same neuron.
Moreover, we stress again that the labels of neurons of a chain of length k in a layer
k represents a truth-assignment v of length k, precisely, v is a sequence formed by
xk(j), 1 ≤ j ≤ k, of the neuron labels c = (k, j, xk) of a chain. However, hence each
chain or subsystem of a layer structure is a separate unit and associates with a truth
assignment, all the truth assignments represented in a layer are distinguishable
from each other. In other words, the truth assignments are encoded in both the
labels of neurons of the chains and its layer structure of composing units too. We
do not care which assignment is associated with which subsystem of the layer.

In this phase of computation three types of budding rules are performed for
the role: budding rules of type a0) applied to the neuron σsoma which initiates the
generation of the structure; the dendritic-tree structure is constructed from the
layer 0 towards the layer n, for each layer two types of rules such as a1) n − 1
times and a2) once, are alternated, total n × n steps needed to complete.
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a0) [ ]
csoma

→ (csoma, c(1,1,t))[ ]
c(1,1,t)

,

[ ]
csoma

→ (csoma, c(1,1,f))[ ]
c(1,1,f)

,

where (csoma, c(1,1,t)), (csoma, c(1,1,f)) ∈ syn.
The initial neuron σcsoma

buds two new neurons as the rules a0) apply to
it simultaneously. The newly produced neurons are: σc(1,1,t)

with a synapse
(csoma, c(1,1,t)) coming from the father neuron and σc(1,1,f)

connected with the
father neuron by a synapse (csoma, c(1,1,f)), respectively. Where the symbols
t and f in the neuron labels indicate truth values t(rue) and f(alse), respec-
tively, hence the two truth assignments (t) and (f) of length 1 for a single
Boolean variable y1 are formed. Note that the left hand side of each rule a0)
(where λ ∈ syn0 is omitted) requires its interaction environment is empty i.e
no synapse exists connected to the neuron σcsoma

. Once the rules have applied,
the interaction environment of the neuron σcsoma

has been evolved having two
new synapses going out are created, which makes those rules are not applicable
to this neuron anymore. Thus, the base of the first layer of the dendritic-tree
has been established, at the first step of the computation.
An almost complete system structure for sat(2,m) is depicted in Figure 5,
which is worth to follow during the construction.
To complete the established layer 1 (in general, i, 1 ≤ i ≤ n), the rules of type
a1) generate the 2 (in general 2i number of) subsystems or the chains of n
neurons.

a1) (c
(k,j−1,x

(p)
k

)
, c

(k,j,x
(p)
k

)
)[ ]

c
(k,j,x

(p)
k

)

→ (c
(k,j,x

(p)
k

)
, c

(k,j+1,x
(p)
k

)
)[ ]

c
(k,j+1,x

(p)
k

)

,

p ∈ {t, f}, 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n, c
(k,0,x

(p)
k

)
= c(k−1,n,xk−1), x

(p)
k =

(p, xk−1) ∈ {t, f}k.
The chains composed of n neurons in a layer k are generated by iterative ap-
plications of the rules of type a1) in n − 1 steps. This rule can be applied in
a neuron of type σc

(k,j,x
(p)
k

)
, 1 ≤ j ≤ n − 1, when its interaction environment

is provided in which exists a single synapse (c
(k,j−1,x

(p)
k

)
, c

(k,j,x
(p)
k

)
) coming to

the neuron. Then each rule buds a single neuron σc
(k,j+1,x

(p)
k

)
with a synap-

tic connection (c
(k,j,x

(p)
k

)
, c

(k,j+1,x
(p)
k

)
), where the second entry (j + 1) of the

neuron label differs from the father neuron as its corresponding label entry
as (j), otherwise the rest of the labeling sequence is inherited from the father
neuron’s label; xk is a truth assignment of length k over {t, f}. The newly cre-
ated synapse changes the interaction environment of the father neuron, which
prevents another application of the rule.
As soon as the last neurons, whose second entry of the label is n, of the layer
are produced, the next two types of rules are enabled to apply to those neurons
as follows.
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a2) (c
(k,n−1,x

(p)
k

)
, c

(k,n,x
(p)
k

)
)[ ]

c
(k,n,x

(p)
k

)

→ (c
(k,n,x

(p)
k

)
, c

(k+1,1,t,x
(p)
k

)
)[ ]

c
(k+1,1,t,x

(p)
k

)

,

(c
(k,n−1,x

(p)
k

)
, c

(k,n,x
(p)
k

)
)[ ]

c
(k,n,x

(p)
k

)

→ (c
(k,n,x

(p)
k

)
, c

(k+1,1,f,x
(p)
k

)
)[ ]

c
(k+1,1,f,x

(p)
k

)

,

p ∈ t, f , and 1 ≤ k ≤ n − 1.
Those two rules of type a2) apply simultaneously to each last neuron of type
σc

(k,n,x
(p)
k

)
of each chain in the current layer k, the interaction environments

must satisfy the rule condition. As a result, each neuron buds two new neurons
with respective synapses. The next layer of the system is thus established.
Hence the interaction environment of each father neuron extended by two
new synapses, none of these rules is possible to apply again to those neurons.
We shall look at the labels of newly produced pairs of type σc

(k+1,1,t,x
(p)
k

)
and

σc
(k+1,1,f,x

(p)
k

)
, the labels are formed as follows: first of all the pair (k + 1, 1)

corresponds to the neuron location where k+1 indicates the new layer number
while 1 says the neuron is the very first one in its corresponding chain of length

n in the new layer; the rest of the labeling sequence as (t, x
(p)
k ) or (f, x

(p)
k )

represents a new truth assignment for Boolean variables x1, x2, . . . , xk+1, where
the newly inserted symbol t or f associates with a truth value t(rue) or f(alse),

respectively, while x
(p)
k is an heritage from the father neuron. Thus, all the

possible 2k+1 different truth assignments are generated in layer k + 1.
The truth assignment generation steps for two Boolean variables y1, y2 can be
observed as described in Figure 5.

The rules of type a1) are enabled in turn to complete the newly established layer
by continued generation of the chains of length n.

By the alternated applications of the rules of types a1) (n − 1 times) and a2)
(once), in n2 steps the layers from 0 to n are, the dendritic-tree, constructed by
means an exponential work space and all the truth assignments of length n are
generated.

Now, we come to the part B of the algorithm.
B. The pre-computation to construct the SN P system structure continues until

it converges to the output neuron in a further few steps. The main function of this
part of the algorithm is to design the substructure which is devoted to the test of
the satisfiability of truth assignments against the clauses and to the exploration
of the possibility whether any solution to the clauses of the propositional formula
exists.

The very first task in part B is to connect the layer n to the generator block
appropriately according to the truth assignments formed in this layer. We recall
here that, in layer n, there are 2n number of subsystems each one is composed of a
sequence of n neurons (chains). However, each subsystem injectively corresponds
to a different truth assignment of length n.

More precisely, taking the label of a neuron σc(n,j,xn)
in layer n, where the

subsequence xn = (xn1, xn2, . . . , xnn) ∈ {t, f}n represents a truth assignment.
We associate jth entry of xn with the jth neuron of considering subsystem, thus,
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Fig. 5. An almost complete structure of Π system for sat(2, m) (maturated dendrite
tree). The neuron budding rules used in each computation step are indicated by their
labels in the corresponding neurons, while the spiking rules are presented too.

each neuron is indicated by an abstract triple (n, j, xn(j)), where 1 ≤ j ≤ n, and
associated with a truth value xnj . This way, a truth assignment of length n is
represented by the n neurons (labels) of a subsystem.

For instance, in a case n = 2 as described in Figure 5, 22 = 4 different truth
assignments of length 2 have been generated for two Boolean variables y1 and y2

and each one is associated with a subsystem of layer n = 2. Technically, the first
subsystem is composed of two neurons with labels c(2,1,f,t) and c(2,2,f,t), respec-
tively. Whereas the former one associates with Boolean t(rue) value as x2 = (f, t)
and x2(1) = f , while the later one with f(alse) value as x2(2) = t, and then al-
together forms an assignment (f, t); the case with other subsystems are the same
where (t, t), (f, f), (t, f), respectively, are generated; one can see that the four
truth assignments are well distinguished from each other by the layer structure of
four subsystems (chains).
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The next synapse creation (budding) rules establish three synapses coming to
the neurons which associate with a Boolean t(rue) value while four synapses to
the neurons associated with f(alse) value, from the generator block.

b1) (c(n,j−1,xn), c(n,j,xn))[ ]
c(n,j,xn(j)=p)

→ (c(n,j,xn(j)=p), cei
)[ ]

ei
,

1 ≤ j ≤ n, p ∈ {t, f} and s ≤ i ≤ 3, where s = 1 if p = t, s = 0 if p = f ,
c(n,0,xn) = c(n−1,n,xn).
Those neurons σc(n,j,xn(j)=t)

whose interaction environment satisfies the con-
dition of the rules b1) create three synapses coming from the neurons σcei

,
1 ≤ i ≤ 3, while the neurons σc(n,j,xn(j)=f)

establish synapses coming to it from
the four neurons σcei

, 0 ≤ i ≤ 3, of the generator block. The synapse creation
rules of type b1) and the neuron budding rules of type a1) are applied to the
same neurons in layer n at the same time in a consequent n− 1 steps as their
interaction environments coincide.
Again looking at Figure 5, neuron σc(2,1,f,t)

associates with f(alse) value gets
4 synapses from the generator as neuron σc(2,1,f,t)

gets 3 cause its identity of
t(rue) value.

b2) (c(n,n−1,xn), c(n,n,xn))[ ]
c(n,n,xn)

→ (c(n,n,xn), 1)[ ]1.

The rule of type b2) applies parallel to the last neurons of the layer n and
produce the neurons σ1 forming a new layer n+1. Meantime the rules of type
b1) create synapses from the same neurons of layer n to the generator block
at last.

b3) (c(n,n,xn), 1)[ ]
1
→ (1, 2)[ ]

2
,

b4) (c(n,n,xn), 1)[ ]1 → (bi, 1)[ ]
bi

, 1 ≤ i ≤ 3.
As rules of type b3) apply to the neurons σ1 and bud neurons σ2, rules of
type b4) apply too and create three synapses coming from the neurons σbi

,
1 ≤ i ≤ 3, to each neuron σ1. Thus, layer n + 2 is formed.

b5) (1, 2)[ ]
2
→ (2, 3)[ ]

3
,

b6) (1, 2)[ ]
2
→ (c, 2)[ ]

c
.

The rules of types b5) and b6) apply simultaneously to a neuron σ2 with a
synapse (1,2). As a result, the former one buds a new neuron σ3, while the
later one makes a new connection coming from the neuron σc as (c, 2). All
other neurons σ2 get the same effect by the rules as the maximal parallel
applications of the rules.

b7) (2, 3)[ ]3 → (3, out)[ ]
out

.
The pre-computation of the SN P system structure construction is completed
by forming the converged connections from the neurons σ3 to the output neu-
ron σout, by means the rules of type b7) are applied parallel to all neurons of
layer n + 3.

Thus, the SN P system device structure totally empty of spikes which is to solve
all the instances of sat(n,m), has been (pre-)computed in a polynomial time. The
next computation stage (post-computation) to solve sat(n,m) is plugged-in as
follows.
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Solving sat

Any given instance γn of sat(n,m) is encoded in a sequence of spikes. Each clause
Ci of γn can be seen as a disjunction of at most n literals: for each j ∈ {1, 2, . . . ,m},
either yj occurs in Ci, or ¬yj occurs, or none of them occurs. In order to distinguish
these three situations we define the spike variables αij , for 1 ≤ i ≤ m and 1 ≤
j ≤ n, as variables whose values are amounts of spikes, and we assign to them the
following values:

αij =











a if yj occurs in Ci

a2 if ¬yj occurs in Ci

λ otherwise.

In this way, clause Ci will be represented by the sequence αi1αi2 · · ·αin of
spike variables; in order to represent the entire formula γn we just concate-
nate the representations of the single clauses, thus obtaining the sequence
α11α12 · · ·α1nα21α22 · · ·α2n · · ·αm1αm2 · · ·αmn. As an example, the representa-
tion of γ3 = (y1 ∨ ¬y2) ∧ (y1 ∨ y3) is aa2λaλa.

The spiking rules residing in the neurons of the system which perform for
solving the introduced problem are listed below with a brief description for each.
But we do not go detailed explanation of each rule functions here, we prefer it
refer to Section 3 and the paper [6], also the neuron budding rules are out of usage
in this stage.

A given instance γn ∈ sat(n,m) encoded in a spike sequence is introduced into
the system structure and will be processed by the spiking rules according to their
roles in each step of the computation.

c1) [a → a]
csoma

; [a2 → a2]
csoma

;

[a → a;n2 − n − 1]
s
.

At each computation step of introducing the input, we insert 0, 1 or 2 spikes
into the system through the input neuron σsoma, according to the value of the
spike variable αij we are considering in the representation of γn. Meantime we
insert a single spike a into neuron σs once, which excites the generator block.

c2) [a → a]
c(k,j,xk)

; [a2 → a2]
c(k,j,xk)

1 ≤ k ≤ n − 1, 1 ≤ j ≤ n, xk ∈ {t, f}k.
Each spike inserted into the input neuron is duplicated here and transmit
along the first layer of the system towards next layers. When a spike passes a
touching point – neuron with label of type c(k,n,xk), it is duplicated and enter
into next layer, etc., finally 2n copies of them will take place at the layer n.

Once the copies of a clause are taken place on the neurons of the chains of
length n in layer n, the combined functioning of the generator block and the layer
n tests the assignments against each copy of the clause in consideration. For this
purpose, the rules c3) − c5) are used.

c3) [a → a]
ei

; 0 ≤ i ≤ 3,
[a → a;n − 1]

+
; [a → a;n − 1]

−
.
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The generator block and its spiking rules. The generator block provides 3 and 4
spikes, respectively, in each n steps to the neurons associated with truth values
t and f , of layer n, in order to test the satisfiability of the truth assignments
against a clause which has been taken place through the layer.

c4) [a → a]
tt

; [a3 → λ]
tt

; [a2 → a2]
t1

;

[a4 → a]
tt

; [a5 → λ]
tt

; [a2 → a]
t0

;
tt = c(n,j,xn(j)=t), 1 ≤ j ≤ n,
t1 = c(n,j,xn(j)=t), 1 ≤ j ≤ n − 1,
t0 = c(n,n,xn(n)=t), xn ∈ {t, f}n.
The spiking rules residing in the neurons which associate Boolean t(rue) value
in layer n. The rules a2 → a2, a2 → a, and a → a used to transmit the spike
variables a, a2 along the chains. Once a clause placed, each neuron associated
with t(rue) value contains either of a spike a or a2 or empty. As a spike
variable a represents a truth variable y, to which a spike true value a3 sent by
the generator is assigned and it results an yes answer as a4, then it passes to
the neuron σ1 along the chain with a saying that a truth variable of the clause
is satisfied by true value of a truth assignment or simply the clause is satisfied
by a truth assignment of the corresponding chain. Meanwhile, a true value a3

is assigned to the spike variables a2 associates to truth variable ¬y and empty
wherever, which give a result no by means the rules a3 → λ and a5 → λ are
performed.

c5) [a → a]
ff

; [a4 → λ]
ff

; [a2 → a2]
f1

;

[a5 → λ]
ff

; [a6 → a]
ff

; [a2 → a]
f0

;

ff = c(n,j,xn(j)=f), 1 ≤ j ≤ n,
f1 = c(n,j,xn(j)=f), 1 ≤ j ≤ n − 1,
f0 = c(n,n,xn(n)=f), xn ∈ {t, f}n.
The spiking rules residing in the neurons which associate with Boolean f(alse)
value in layer n. The functioning of the rules is similar as rules c5).

c6) [a → a;n − 1]
bi

; 1 ≤ i ≤ 3,

[a2/a → a]
1
; [a3 → λ]

1
;

[a4 → a]1; [a5 → a]1.
Whether an assignment satisfies the considered clause or not is checked by a
combined functioning of the neurons with label 1 in layer n+1 and the neurons
with label bi, 1 ≤ i ≤ 3.

c7) [a → λ]
2
; [a2 → a]

2
;

[a → a]
c
.

With a combined function of neuron σc, neuron σ2 emits a spike into neuron σ3

if the corresponding assignment satisfies the under consideration clause here,
otherwise no spike is emitted.

c8) [am → a]3;
[a+/a → a]

out
.

Neurons with label 3 count how many clauses of the instance γn are satisfied
by the associated truth assignments. If any of those neurons get m spikes,
which fire, hence the number of spikes that reach neuron out is the number of



250 J. Wang, T.-O. Ishdorj, L. Pan

assignments that satisfy all the clauses of γn. Thus, the output neuron fires
if it has got at least one spike by means the problem has a positive solution,
otherwise there is no assignment satisfies the instance γn.

This stage of the computation ends at the n2 + nm + 4th step. The entire system
halts in total at most in 2(n2 + nm + 4) number of computation steps.

Thus, we got a full (deterministic, polynomial time and uniform) solution to
sat(n,m) in the framework of SN P systems.

5 Discussion

The present paper concerns the efficiency of SN P systems, we proposed a way
to solve NP-complete problems, particularly sat, in polynomial time. Specifi-
cally, the neuron budding rule is introduced in the framework of SN P systems,
which a new feature enhances the efficiency of the systems to generate necessary
work space. Neuron budding rules drive the mechanism of neuron production and
synapse creation according to the interaction of a neuron with its environment
(described by its synapses connected to other neurons). A very restricted type of
rule of neuron budding, at most one synapse is involved in an environment, is used,
but it is powerful enough to solve the considered problem, sat. The solution to
sat by SN P systems with neuron budding contains two computation stages: first,
constructing the device structure which has no spikes inside, second, introducing
the considered problem to be solved encoded in spikes into the device. The system
works in deterministic and maximally parallel manner. The whole mechanism we
considered here for solutions to computational intractable problems is elegant from
computational complexity theory point of view as the designed algorithm can be
computed by a deterministic Turing machine in polynomial time; the operation of
neuron budding is well motivated by neural biology.

We believe that SN P systems use the restricted budding rules can be an
efficient computing tool to solve other NP hard problems.

The SN P systems with neuron budding rules can be extended by introducing
more general rules, which in some sense capture the dynamic interaction of neurons
with their environment. One possible form of such general rules is as follows:
Ai[ ]

i
Bi → Cj [ ]

j
Dj , where Ai, Bi and Cj ,Dj are the set of synapses coming

to and going out from, respectively, the specified neurons σi and σj . Clearly, in
such general rules, more than one synapses are involved in the environment of the
considered neuron.
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by the Academy of Finland. The work of L. Pan was supported by Na-
tional Natural Science Foundation of China (Grant Nos. 60674106, 30870826,



Efficiency of Spiking Neural P Systems 251

60703047, and 60533010), Program for New Century Excellent Talents in Uni-
versity (NCET-05-0612), Ph.D. Programs Foundation of Ministry of Education of
China (20060487014), Chenguang Program of Wuhan (200750731262), HUST-SRF
(2007Z015A), and Natural Science Foundation of Hubei Province (2008CDB113
and 2008CDB180).

References

1. H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems.
Proc. 8th Inter. Conf. on Electronics, Information, and Communication, Ulanbator,
Mongolia, June 2006, 49–52.

2. H. Chen, M. Ionescu, T.-O. Ishdorj, A. Păun, Gh. Păun, M.J. Pérez-Jiménez: Spik-
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tions to SAT and SUBset SUM by spiking neural P systems. Submitted.

11. A. Leporati, C. Zandron, C. Ferretti, G. Mauri: On the computational power of
spiking neural P systems. International Journal of Unconventional Computing, 2007,
in press.
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