
New Normal Forms for Spiking Neural P Systems

Linqiang Pan1,2, Gheorghe Păun2,3

1 Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
lqpan@mail.hust.edu.cn, lqpan@us.es

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

3 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
george.paun@imar.ro, gpaun@us.es

Summary. We consider a natural restriction in the architecture of a spiking neural P
system, namely, to have neurons of a small number of types (i.e., using a small number of
sets of rules), and we prove that three types of neurons are sufficient in order to generate
each recursively enumerable set of numbers as the distance between the first two spikes
emitted by the system or as the number of spikes in a specified neuron, in the halting
configuration. The case we investigate is that of spiking neural P systems with standard
rules, with delays, but without using forgetting rules; similar normal forms remain to be
found for other types of systems.

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [3], and
then investigated in a large number of papers. We refer to the respective chapter
of [4] for general information in this area, and to the membrane computing website
from [5] for details.

In this note, the SN P systems are considered as generators of sets of numbers,
with the numbers obtained as the distance in time between the first two spikes
emitted by the output neuron of the system, or with the generated number given
as the number of spikes present in a given neuron in the end of the computation.
Systems with standard rules are used (i.e., with only one spike produced by each
rule), with the rules used sequentially in each neuron, but the whole system work-
ing in the maximally parallel way (i.e., each neuron which can use a rule has to
do it).

Several normal forms were imposed to SN P systems – see, e.g., [2]. A natural
restriction suggested by biology but also natural by itself is to restrict the number

128 L. Pan, Gh. Păun

of types of neurons used in a system, where by “type” we understand the set of
rules present in a neuron. An SN P system whose neurons are of at most k types
is said to be in the kR-normal form.

We prove that each recursively enumerable set of natural numbers can be
generated by an SN P system (without forgetting rules, but using delays) in the
3R-normal form when the number is obtained as the distance between the first
two spikes sent out by the system or when the number is given by the number of
spikes from a specified neuron. Slightly bigger values are obtained when we also
consider the number of spikes initially present in a neuron for defining the “type”
of a neuron. We do not know whether or not these results can be improved, or how
they extend to other classes of SN P systems. (Do the forgetting rules help? What
about extended rules, about asynchronous SN P systems, systems with exhaustive
use of rules, etc?) What about SN P systems used in the accepting mode? (The
systems can then be deterministic, which usually brings some simplifications.)

2 Prerequisites

We assume the reader to be familiar with basic elements about SN P systems,
e.g., from [4] and [5], and we introduce here only a few notations, as well as the
notion of register machines, used later in the proofs of our results. We also assume
familiarity with very basic elements of automata and language theory, as available
in many monographs.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ,
the empty string is denoted by λ, and the set of all nonempty strings over V is
denoted by V +. When V = {a} is a singleton, then we write simply a∗ and a+

instead of {a}∗, {a}+. The family of Turing computable sets of natural numbers
is denoted by NRE. For a regular expression E we denote by L(E) the regular
language identified by E.

A register machine is a construct M = (m,H, l0, lh, I), where m is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an ADD
instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we proceed to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt

New Normal Forms for Spiking Neural P Systems 129

instruction, then the number n stored at that time in the first register is said to
be computed by M . The set of all numbers computed by M is denoted by N(M).
It is known that register machines compute all sets of numbers which are Turing
computable, hence they characterize NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register
is never decremented during the computation, we only add to its contents. In the
proofs of our results we assume that the register machines which we simulate have
these properties.

We can also use a register machine in the accepting mode: a number is stored
in the first register (all other registers are empty); if the computation starting in
this configuration eventually halts, then the number is accepted. Again, all sets
of numbers in NRE can be obtained, even using deterministic register machines,
i.e., with the ADD instructions of the form li : (ADD(r), lj , lk) with lj = lk (in this
case, the instruction is written in the form li : (ADD(r), lj)).

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

3 Spiking Neural P Systems

In order to have the paper self-contained, we recall here the definition of an SN P
system and of the set of numbers generated or accepted by it.

An SN P system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1, with the restriction that for each rule E/ac →

a; d of type (1) from Ri, we have as /∈ L(E);
3. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses

between neurons);
4. in, out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.

130 L. Pan, Gh. Păun

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → a; d can be applied. The application of this rule means removing c spikes
(thus only k − c remain in σi), the neuron is fired, and it produces a spike after
d time units (a global clock is assumed, marking the time for the whole system,
hence the functioning of the system is synchronized). If d = 0, then the spike is
emitted immediately, if d = 1, then the spike is emitted in the next step, etc. If the
rule is used in step t and d ≥ 1, then in steps t, t+1, t+2, . . . , t+d−1 the neuron
is closed (this corresponds to the refractory period from neurobiology), so that it
cannot receive new spikes (if a neuron has a synapse to a closed neuron and tries
to send a spike along it, then that particular spike is lost). In the step t + d, the
neuron spikes and becomes again open, so that it can receive spikes (which can be
used starting with the step t + d + 1).

The rules of type (2) are forgetting rules and they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from
Ri must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron. During a computation, the “state”
of the system is described by both by the number of spikes present in each neuron,
and by the open/closed condition of each neuron: if a neuron is closed, then we
have to specify when it will become open again.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons
are open and no rule can be used. With any computation (halting or not) we as-
sociate a spike train, the sequence of zeros and ones describing the behavior of the
output neuron: if the output neuron spikes, then we write 1, otherwise we write 0.

An SN P system can be used in various ways. In the generative mode, we start
from the initial configuration and we define the result of a computation (i) either
as the number of steps between the first two spikes sent out by the output neuron,
or (ii) as the number of spikes present in neuron σout when the computation halts
(note that in the first case we do not request that the computation halts after
sending out two spikes). We denote by N2(Π) the set of numbers computed in the
first way by an SN P system Π and by Ngen(Π) the set of numbers generated

New Normal Forms for Spiking Neural P Systems 131

by Π in the second case. We can also use Π in the accepting mode: a number
n is introduced in the system in the form of a number f(n) of spikes placed in
neuron σin, for a well-specified mapping f , and the number n is accepted if and
only if the computation halts. (Alternatively, we can introduce the number to be
recognized as the distance in time between two spikes entering neuron σin from
the environment.) We denote by Nacc(Π) the set of numbers accepted by Π.

In the generative case, the neuron (with label) in is ignored, in the accepting
mode the neuron out is ignored (in most cases below, we identify the neuron σi

with its label i, so we say “neuron i” understanding that we speak about “neuron
σi”). We can also use an SN P system in the computing mode, introducing a
number in neuron in and obtaining a result in neuron out, but we do not consider
this case here.

A neuron σi (in the initial configuration of an SN P system) is characterized
by ni, the number of spikes present in it, and by Ri, its associated set of rules.
An SN P system is said to be in the kR-normal form, for some k ≥ 1, if there are
at most k different sets R1, . . . , Rk of rules used in the m neurons of the system.
An SN P system is said to be in the knR-normal form, for some k ≥ 1, if there
are at most k different pairs (n1, R1), . . . , (nk, Rk) describing the m neurons of the
system.

We denote by NαSNP (kβ, forg, dley) the families of all sets Nα(Π) computed
by SN P systems in the kβ-normal form, for α ∈ {2, gen, acc}, β ∈ {R, nR}, and
k ≥ 1; if no forgetting rules are used, then we remove the indication forg from the
notation; if all rules have delay d = 0, then we remove the indication dley from
the notation.

4 A 3R-Normal Form Result

We are going now to prove the main result mentioned in the Introduction: SN
P systems with only three different sets of rules are universal when generating
numbers encoded in the first two spikes of the spike train.

Theorem 1. NRE = N2SNP (3R, dley).

Proof. We show that NRE ⊆ N2SNP (3R, dley); the converse inclusion is straight-
forward (or we can invoke for it the Turing-Church thesis). Let us consider a reg-
ister machine M = (m,H, l0, lh, I) with the properties specified in Section 2. We
construct an SN P system Π which simulates M in the way somewhat standard
already when proving that a class of SN P systems is universal. Specifically, we
construct modules ADD and SUB to simulate the instructions of M , as well as
an output module FIN which provides the result (in the form of a suitable spike
train). Each register r of M will have a neuron r in Π, and if the register contains
the number n, then the associated neuron will contain 2n spikes.

The modules will be given in a graphical form, indicating their initial configu-
ration, the synapses, and, for each neuron, the associated set of rules; all neurons

132 L. Pan, Gh. Păun

are initially empty, with the exception of the neuron associated with the initial la-
bel, l0, of M , which contains one spike, and with exception of a few other neurons,
as shown in the following figures.

'
&

$
%
'
&

$
%

'

&

$

%

'

&

$

%'
&

$
%

'
&

$
% '

&
$
%

'
&

$
%

#
"

!
#
"

!

#
"

!
#
"

!#

"

!

�
�

�
�

�
�

�
�

�
�

�
� '

&

$

%

�
�

�
�-

Z
Z

Z
Z

ZZ~

HHHHHj

�����*

?

���������

Q
Q

Q
Q

Q
Q

Q
Q

QQs

?

@
@@R

�
�

�
��	

@
@

@
@@R

�

?

?

?

?

-
�

Q
Q

QQs
Q

Q
Qk

�
-

�
�

��=
�

�
�>

li

a(aa)∗/a → a; 0

a → a; 0

li1
a(aa)∗/a → a; 0

a → a; 0

rli2
a(aa)∗/a → a; 0

a → a; 0

li3
a(aa)∗/a → a; 0

a → a; 0

li6
a(aa)∗/a → a; 0

a → a; 0

li4 a(aaa)∗/a → a; 0

a → a; 1
li5a(aa)∗/a → a; 0

a → a; 0

li7

a(aa)∗/a → a; 0

a → a; 0
li8

a(aa)∗/a → a; 0

a → a; 0

li9

a2

a(aaa)∗/a → a; 0

a → a; 1

li10

a2

a(aaa)∗/a → a; 0

a → a; 1

li11

a(aa)∗/a → a; 0

a → a; 0

li12

a(aa)∗/a → a; 0

a → a; 0

lj lk

li13

a(aa)∗/a → a; 0

a → a; 0

li14

a(aa)∗/a → a; 0

a → a; 0

Fig. 1. Module ADD, simulating li : (ADD(r), lj , lk)

We consider the following three sets of rules:

R1 = {a(aa)∗/a → a; 0, a → a; 0},
R2 = {a(aa)∗/a3 → a; 0, a → a; 1},
R3 = {a(aaa)∗/a → a; 0, a → a; 1}.

New Normal Forms for Spiking Neural P Systems 133

The ADD module used to simulate an addition instruction li : (ADD(r), lj , lk)
is indicated in Figure 1. No rule in R1 can be applied in the presence of an even
number of spikes. If a spike enters the neuron (with the label) li, then this neuron
starts using its rules; initially, this is the case with neuron l0. Neuron li spikes and
one spike is sent to both neuron li1 and neuron li2, which also spike in the next step.
In this way, two spikes are sent to neuron r, and this represents the increment of
register r by one. Neuron li2 also sends a spike to neurons li3, li4, and li5. Neurons
li3 and li5 spike immediately, while neuron li4 can non-deterministically choose
either rule to use as both of them are enabled by the existence of a single spike –
this ensures the non-deterministic passage to one of the instructions lj or lk..

Assume that σli4 uses the rule a(aa)∗/a → a; 0. This means that in the next
step σli8 receives two spikes, hence no rule here can be used. Simultaneously,
neurons li6 and li7 receive one spike each, and both of them spike. In this way,
σli9 receives one spike and σli7 continues having one spike. Neuron li9 contains
now a number of spikes of the form 3n + 3, for some n ≥ 0 (initially we had two
spikes here, hence n = 0) and no rule is enabled. In the next step, this neuron
receives one further spike, and the first rule is fired (the number of spikes is now
3(n + 1) + 1). All neurons lj and li11, li12 receive one spike. The last two neurons
send back to σli9 one spike each, hence the number of spikes in this neuron will be
again congruent with 2 modulo 3, as at the beginning. Thus, the neuron associated
with the label lj has been activated.

If neuron li4 uses the rule a → a; 1, then σli7 receives two spikes at the same (af-
ter one time unit) time and this branch remains idle, while neurons li8, li10, li13, li14
behave like neurons li7, li9, li11, li12, and eventually σlk is activated and the number
of spikes from σli10 returns to the form 3s + 2, for some s ≥ 0.

The simulation of the ADD instruction is correctly completed.
The SUB module used to simulate a subtraction instruction li : (SUB(r), lj , lk)

is shown in Figure 2. Because the reader has the experience of examining the work
of the ADD module, this time we do not write explicitly the rules, but the sets
R1, R2, R3 as defined above. Like in the case of the ADD module, the SUB module
starts to work when a spike enters the neuron with the label li. The functioning of
each neuron is similar to the previous case (the rules to be used are chosen in the
same way and eventually the neurons remain with a number of spikes like that in
the starting configuration).

The neuron li sends a spike to the neurons li1, and r. If register r is not empty,
then the rule a(aa)∗/a3 → a; 0 of R2 will be applied.

Assume that this is the case. This means that σr spikes immediately, hence σli2

receives two spikes (one from σli1) and is doing nothing, while neuron li3 receives
one spike and it fires. A spike is sent to each of the three neurons li7, li8, and li9.
This last neuron will send a spike to σli11 , which will spike, thus activating the
neuron associated with label lj . The two spikes sent by σli7 , σli8 to σli10 wait here,
as no rule is enabled for a number of spikes of the form 3n + 2. In the next step,
a spike comes from neuron li11, hence σli10 ends with a number of spikes which is
a multiple of 3, hence no rule is activated.

134 L. Pan, Gh. Păun

�
�
�
�

�
�
�
�

�

�

�

�

#

"

!

�
�
�
�

�
�
�
��

�
�
�
�
�
�
��

�
�
�

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�

�	

@
@

@R

?

�
�

�
�

�
�

��+

S
S

S
SSw

ZZ~B
BBN

�
�

�
��/

J
J

JĴ

@
@

@
@

@
@

@
@@R

HHHHHHHHHHHHj

�
��+ �

���
S

S
S

SSw

�
�

��/

�
�

�
�

�
�

�
�	

������������

? ?

li R1

li1

R1
rR2

li2
R1

li4

R1 li5

R1

li6

R1

li3R1li7

R1

li8

R1

li9

R1

li10

a
3

R3

li11

a
3

R3

lk lj

-

�

Fig. 2. Module SUB, simulating li : (SUB(r), lj , lk)

If the register r is empty, then in σr we have to use the rule a → a; 1. The
neuron li2 receives a spike from σli1 and in the next step it fires, at the same time
with the move of spikes produced at the previous step in σr and kept there because
of the delay. In this moment, all neurons li2, li3, li4, li5, and li6 contains one spike.
Neurons li4, li5, li6 send their spikes to σli10 and σli11 , but they immediately receive
one spike from σli2 . This also happens with neurons li7, li8, li9, which receive one
spike each from σli3 . Neuron li10 spikes and activated lk, sending at the same
time one spike to σli11 , thus completing here the number of spikes to a multiples of
three. Similarly, in the next step, σli10 (resp., σli11) receives three spikes each, from
neurons li4, li7, li8 (respectively, li5, li6, li9). The simulation of the SUB instruction

New Normal Forms for Spiking Neural P Systems 135

is correctly completed, with the neurons containing numbers of spikes of the same
parity as in the beginning.

The modules have different neurons, precisely identified by the label of the
respective instruction of M . Modules ADD do not interfere. However, a problem
appears with modules SUB: when simulating an instruction li : (SUB(r), lj , lk),
neuron σr send one spike to all neurons ls2, ls3 from modules associated with
instructions ls : (SUB(r), lu, lv) (that is, subtracting from the same register r).
However, no undesired effect appears: the spikes arrive simultaneously in neurons
ls2, ls3, hence they send one spike to each of the three neurons “below” them,
which, in turn, send their spikes to neurons ls10, ls11; each of these neurons gets
three spikes, hence no rule can be used here, the spikes are just accumulated (in a
number which continues to be a multiple of 3).

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��/

J
J

J
Ĵ

-

?

�
�

�
��	

-

!!!HHHj

���HHHY

lhR1

1

R2

lh1

R1

lh2

R1

R1

out

Fig. 3. The FIN module

The addition and subtraction modules simulate the computation of M . In order
to produce the number generated by M as the distance between the first two spikes
sent out by the system Π we use the module FIN from Figure 3. It is triggered
when M reaches the lh : HALT instruction. At this point a single spike is sent to
neuron 1, and at the same time to σlh1 . Neuron σ1 sends a spike to each neuron
lh1, lh2, and out. The output neuron spikes (for the first time). Neurons σ1 and σlh1

continuously exchange spikes, hence at each step from now on neuron σ1 contains
an odd number of spikes and fires. Neuron out gets two spikes in each step, one
from σ1 and one from σlh2 , hence nothing happens. When the content of σ1 is
exhausted, the rule a → a; 1 must be used here. The neuron is closed, the spike of
σlh1 is lost, σout receives only one spike, from σlh2 , and spikes for the second time.
The work of the system continues forever, because of the interchange of spikes
between σlh1 and σ1, but we are interested only in the distance between the first

136 L. Pan, Gh. Păun

two spikes emitted by σout, and this distance is equal to the number stored in
register 1 in the end of the computation of M . Consequently, N(M) = N2(Π) and
this concludes the proof. 2

In the previous figures one can see that the set R1 appears in neurons having
zero or one spike (the case of σl0) in the initial configuration, R2 only with zero
spikes, and the set R3 appears in neurons with zero, two, or three spikes. This
means that, if we also consider the number of spikes present in a neuron in the
initial configuration when defining the type of a neuron, then the previous 3R-
normal form becomes a 6nR-normal form.

Corollary 1. NRE = N2SNP (6nR, dley).

When considering the generated number encoded in the number of spikes
present in the output neuron, then several simplifications of the previous con-
structions are possible. First, the module FIN is no longer necessary; moreover,
when a spike is sent to neuron lh, the computation will halt. Because no instruc-
tion is performed in the register machine after reaching the instruction lh : HALT,
we provide no outgoing synapse for neuron lh, so it does matter which rules are
present in this neuron, no change is implied on the result of the computation.
Then, we only write to register 1, hence to neuron 1 we do not have to apply SUB
operations; this means that we can only add spikes to this neuron, namely, one at
a time, while any rule can be used inside because no outgoing synapse is present
for this neuron. However, always we have the same number of types of neurons,
because three types are necessary in modules ADD and SUB. (Similarly, we can
use for neuron 1 a FIN module which halves the number of spikes and sends them
to another neuron, which leads back to a construction as above.) The results are
again as above (the details are left to the reader):

Corollary 2. NRE = NgenSNP (3R, dley) = NgenSNP (6nR, dley).

5 Final Remarks

The accepting case brings further simplifications: the ADD instructions are deter-
ministic (hence only one type of neurons is necessary – see Figure 4, where R1

is as above), and the FIN module is no longer necessary (we consider the input
given as the number of spikes initially present in neuron σin, without taking into
account this number when defining the types of neurons).

However, if we also take into consideration the number of spikes present in the
neurons, then we get the following types: (0, R1), (1, R1), (0, R2), (3, R3), that is,
we have the next result:

Corollary 3. NRE = NaccSNP (3R, dley) = NaccSNP (4nR, dley).

New Normal Forms for Spiking Neural P Systems 137

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

?

@
@

@R

?

@
@

@@R

�
�

��	

li

R1

li1

R1

li2
R1

rlj

Fig. 4. Module ADD, simulating li : (ADD(r), lj)

We do not have a construction for module SUB using only two types of neurons.
As mentioned in the Introduction, there are several open problems and research

topics suggested by the previous results. We conclude by mentioning a few basic
ones. Is the result in Theorem 1 optimal, or a 2R-normal form or even a 1R-normal
form result is valid? Extend this study to other classes of SN P systems, with other
types of rules or with other modes of using the rules.

Important remark: The proof of Theorem 1 implicitly shows that the uni-
versality of SN P systems can be obtained without using forgetting rules. The
result was first stated in [2], but the construction of the SUB module as given in
that paper has a bug: the interaction between neurons from different SUB mod-
ules acting on the same register is not examined and the undesired interactions
avoided. This is done in the construction from Figure 2, as explicitly mentioned
above. Note that our construction uses the delay feature; in [1] it is proved that
both the forgetting rules and the delay feature can be avoided without losing the
universality, but also there it seems that the interaction of neurons in different
SUB modules is not carefully checked. Whether or not the idea in our module
SUB can be used to obtain such a stronger normal form remains to be seen.

Acknowledgements

The work of L. Pan was supported by National Natural Science Foundation of
China (Grant Nos. 60674106, 30870826, 60703047, and 60803113), Program for
New Century Excellent Talents in University (NCET-05-0612), Ph.D. Programs
Foundation of Ministry of Education of China (20060487014), Chenguang Pro-
gram of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural Science

138 L. Pan, Gh. Păun

Foundation of Hubei Province (2008CDB113 and 2008CDB180). The work of Gh.
Păun was supported by Proyecto de Excelencia con Investigador de Reconocida
Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. M. Garćıa-Arnau, D. Pérez, A. Rodŕıguez-Patón, P. Sośık: Spiking neural P systems:
Stronger normal forms. Proc. Fifth Brainstorming Week on Membrane Computing
(M.A. Gutiérrez-Naranjo et al., eds.), Fenix Editora, Sevilla, 2007, 157–178.

2. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodriguez-Paton, P. Sosik, S. Woodworth: Normal
forms for spiking neural P systems. Theoretical Computer Science, 372, 2-3 (2007),
196–217.

3. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308

4. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010 (in press).

5. The P Systems Website: http://ppage.psystems.eu.

