
P Systems with Adjoining Controlled
Communication Rules

Mihai Ionescu1, Dragoş Sburlan2

1 Rovira i Virgili University
Research Group on Mathematical Linguistics
Tarragona, Spain
armandmihai.ionescu@urv.net

2 Ovidius University
Faculty of Mathematics and Informatics
Constantza, Romania
dsburlan@univ-ovidius.ro

Summary. This paper proposes a new model of P systems where the rules are activated
by objects present in the neighboring regions. We obtain the computational completeness
considering only two membranes, external inhibitors and carriers. Leaving the carriers
apart we obtain equality with ET0L systems in terms of number sets.

1 Introduction

Having as inspiration the way living cells are divided by membranes into com-
partments where various biochemical processes take place, P systems (also known
as membrane systems) area grew rapidly since Gheorghe Păun, proposed the first
model in 1998 ([4]). A complete bibliography of P systems can be found on the P
system webpage ([8]).

Within the living cell there are several energy consuming activities. Among
them there is the transport activity which is of three types: diffusion, facilitated
diffusion, and active transport. Simple diffusion means that the molecules can pass
directly through the membrane, always down a concentration gradient, while in
the case of facilitated diffusion and active transport molecules can pass both down
an up the concentration gradient. In the facilitated diffusion membrane protein
channels are used to allow charged molecules (which otherwise could not diffuse
across the cell membrane) to freely diffuse the cell, while active transport requires
the expenditure of energy to transport the molecule from one side of the membrane
to the other.

Hence, living cells get/expel from/to their environment many substances and
for this aim they have developed specific transport systems across membranes,
even against a concentration gradient. Often enough this necessity of the living

200 P Systems with Adjoining Controlled Communication Rules

cell to expel or attract various molecules is triggered by the presence or the absence
of certain chemicals in the immediate neighboring (inner or outer) regions.

Here we deal with P systems where the rules from a given region are activated
precisely by the presence or the absence of certain symbols in the neighboring
regions. This model has a biological counterpart and it is inspired by the chemicals
that pass through the membranes of the cell, from one region to another, in the
sense of polarization gradient. In this case, the electrical charge plays the role of
the promoter.

Before going into the definition of the new model and its computational power
(Section 3) let us briefly remind the reader some basic notions and notations
(Section 2). Section 4 is dedicated to the conclusions and challenges for further
research.

2 Preliminaries and Definitions

We assume familiarity with the basics of formal language theory (see [6]), as well
as with the basics of membrane computing (see [5]).

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ. We denote the empty word by
λ, the length of a word w by |w|, and the number of occurrences of a symbol a in
w by |w|a. The (con)catenation of two words x and y is denoted by xy.

A language over Σ is a (possibly infinite) set of words over Σ. The language
consisting of all words over Σ is denoted by Σ∗, and Σ+ = Σ∗ \{λ}. We denote by
REG, CF, ET0L, CS, RE the families of languages generated by regular, context-free,
table Lindemayer interactionless systems context-sensitive, and of arbitrary gram-
mars, respectively (RE stands for recursively enumerable languages). The following
strict inclusions hold: REG ⊂ CF ⊂ ET0L ⊂ CS ⊂ RE.

For a family FL of languages, NFL denotes the family of length sets of languages
in FL. The following relations hold: NREG = NCF ⊂ NET0L ⊂ NCS ⊂ NRE.

The multisets over a given finite support (alphabet) are represented by strings
of symbols. The order of symbols does not matter, because the number of copies of
an object in a multiset is given by the number of occurrences of the corresponding
symbol in the string (see [1] for other ways to specify multisets).

3 The Model

Based on the biological observations mentioned in the introductory section we
introduce the following new class of P systems.

3.1 Defining the Model

Definition 1. A P system with adjoining controlled communication rules (called
in short, a PACC system) is a construct

M. Ionescu, D. Sburlan 201

Π = (V,C, µ,w1, . . . , wm, R1, . . . , Rm, i0),

where:

• V is the alphabet of objects;
• C ⊆ V is the set of carriers;
• µ is a membrane structure with m membranes (labeled in a one-to-one manner

by 1, . . . ,m);
• w1, . . . , wm are the multisets of objects initially present in the regions of Π;
• R1, . . . , Rm are finite sets of communication rules associated to membranes,

that are of the following types:
� simple rules:[
A

]
i
−→

[]
i
α or A

[]
i
−→

[
α
]
i
, for A ∈ V \ C, α ∈ (V \ C)∗,

� promoted simple rules:[
A

]
i
B −→

[]
i
α or A

[
B

]
i
−→

[
α
]
i
, for A,B ∈ V \ C, α ∈ (V \ C)∗,

� inhibited simple rules:[
A

]
i
¬B −→

[]
i
α or A

[
¬B

]
i
−→

[
α
]
i
, for A,B ∈ V \ C, α ∈ (V \ C)∗,

� carrier rules:
pairs of rules

[
cA

]
i
−→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗, or
pairs of rules cA

[]
i
−→

[
cα

]
i

and
[
c
]
i
−→

[]
i
c for A ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗,
� promoted carrier rules:
pairs of rules

[
cA

]
i
B −→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A,B ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗, or
pairs of rules cA

[
B

]
i
−→

[
cα

]
i

and
[
c
]
i
−→

[]
i
c, for A,B ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗;
� inhibited carrier rules:
pairs of rules

[
cA

]
i
¬B −→

[]
i
cα and c

[]
i
−→

[
c
]
i
, for A,B ∈ V \C, c ∈ C,

α ∈ (V \ C)∗, or
pairs of rules cA

[
¬B

]
i
−→

[
cα

]
i
and

[
c
]
i
−→

[]
i
c, for A,B ∈ V \ C, c ∈ C,

α ∈ (V \ C)∗;
• i0 ∈ {1, . . . ,m} is an elementary membrane of µ (the output membrane).

In a simple rule an object is rewritten in a string of objects, in the inner or
outer region with respect to the initial object. A promoted simple rule/inhibited
simple rule has the same action as a simple rule but it can be applied only in the
presence/absence of certain objects (chemicals) called promoters/inhibitors. To be
more precise we take as example the rule

[
A

]
i
B −→

[]
i
α, which implies that

object A is rewritten in α in the outer membrane only if promoter B is present
there. If we replace B with ¬B, the object plays the role of the inhibitor, and only
by its presence it blocks the execution of the rule.

In a carrier rule the objects can be rewritten only if they are guided by an
object, the carrier. Note that the carrier is not actively participating in the reac-
tion. Its role is to “accompany” the reaction and to inhibit the parallelism. As an

202 P Systems with Adjoining Controlled Communication Rules

example, by rule
[
cA

]
i
−→

[]
i
cα we mean that object A evolves to α (in the

outer region of object A) iff there is an object c that helps A to be rewritten.
Promoted/Inhibited carrier rules can be applied if besides the carrier there is

also a promoter/inhibitor which triggers/blocks the reaction.
As usual in membrane computing, the rules are used in a nondeterministic

maximally parallel manner starting from an initial configuration. In this way, we
obtain transitions between the configurations of the system. A configuration is
described by the m-tuple of the multisets of objects present in the m regions of
the system. The initial configuration is (w1, . . . , wm).

A sequence of transitions between configurations of the system constitutes a
computation; a computation is successful if it halts, i.e., it reaches a configuration
(the halting configuration) where no rule can be applied to any of the objects.

The result of a successful computation is the number of objects present within
the membrane with the label io in the halting configuration. A computation which
never halts yields no result.

We use the notation NPACCm(α, β), where α ∈ {smp} ∪ {catk | k ≥ 0},
β ∈ {proRi, inhRi} to denote the family of sets of natural numbers generated
by P systems with adjoining controlled communication rules having at most m
membranes, communication rules that can be simple α = smp, or carrier α = catk,
using at most k carriers, and external promoters β = proRi or external inhibitors
β = inhRi of weight i at the level of rules.

3.2 An Example

Let us now exemplify the functioning of the model defined above throughout an
example. Here it shown how such machines can be used to compute functions.

Consider the following system:

Π1 = ({A,B, D}, C = {c}, [[]2]1, w1 = {An}, w2 = {c}, R1, R2, 2),

where:

• R1=∅, R2={A
[]

2
−→

[
ABD

]
2
,
[
B

]
2
−→

[]
2
B,

[
cD

]
2
−→

[]
2
c,

B
[
D

]
2
−→

[
AB

]
2
, c

[]
2
−→

[
c
]
2
}.

The system Π is fed with n ≥ 1 copies of object A in region 1 and when it halts,
the contents of the output region contains n2 copies of A.

The functioning of the system is rather simple. The only rule we can apply in
the initial configuration is the one which rewrites object A in ABD in the inner
region, hence in the second step of the computation we will have all the objects
of the system (n copies of A, n copies of B, n copies of D and the object initially
present here, carrier c) in region 2. Then, we expel all objects B in region 1 and
we start consuming objects D by applying the rule

[
cD

]
2
−→

[]
2
c, hence object

D is sent outside membrane 2 and is rewritten to λ having carrier c accompanying
the reaction.

M. Ionescu, D. Sburlan 203

Note that object D plays the role of the counter and each time a copy of D is
deleted (for example in step i of the computation), n more copies of A are produced
(in step i+2 of the computation). One by one the n-th copies of D are consumed,
adding for each of them n copies to object A. In the rule B

[
D

]
2
−→

[
AB

]
2
, object

D plays also the role of promoter and object B can be rewritten into AB only
in its presence. The computation ends with n2 copies of A in region 2, hence the
system computes the number-theoretic function f(n) = n2, n ≥ 1.

3.3 The Results

In what follows we will prove that the class of sets of numbers generated by P
systems with external inhibitors equals the class of sets of numbers generated by
P systems with external inhibitors and only two membranes.

Lemma 1. NPACCm(smp, inhR1) = NPACC2(smp, inhR1),m ≥ 2.

Proof. Obviously, NPACCm(inh) ⊇ NPACC2(inh). For the opposite inclusion
we have to show that for any P system with external inhibitors Π = (V ,C, µ, R, i0)
generating a set of natural numbers, there exists an equivalent P system with
external inhibitors Π = (V,C, µ,R, i0) with only 2 membranes.

To this aim, we simulate the computation of Π, with the system Π defined as
follows.

Let us denote by L = {1, 2, . . . ,m} the set of labels of the regions in Πm. In
addition, assume that R = {R1, . . . , Rm}, and each Ri ∈ R, 1 ≤ i ≤ m, contains
all the rules that cross membrane i. Then, we define:
• V = {ai | a ∈ V , i ∈ L};
• C = C = ∅;
Let h : V

∗ × L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L,
2) h(λ, j) = λ, j ∈ L,
3) h(x1x2, j) = h(x1, j)h(x2, j), x1, x2 ∈ V

∗
, j ∈ L,

• denote w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in region
i ∈ L of Πm at the beginning of the computation.
• R is defined as follows.

For each rule A
[]

i
−→

[
α
]
i
∈ Ri, A ∈ V , α ∈ V

∗
, i ∈ L, we add to R the

rule h(A, j)
[]

1
−→

[
h(α′, i)

]
1
, providing that j is the label of the outer

membrane of membrane i.

For each rule A
[
¬B

]
i
−→

[
α
]
i
∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add to

R the rule h(A, j)
[
¬h(B, i)

]
1
−→

[
h(α′, 2)

]
1
, providing that j is the label

of the outer membrane of membrane i.

For each rule
[
A

]
i
−→

[]
i
α ∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule
[
h(A, i)

]
1
−→

[]
1
h(α′, j) providing that j is the outer

membrane of membrane i.

204 P Systems with Adjoining Controlled Communication Rules

For each rule
[
A

]
i
¬B −→

[]
i
α ∈ Ri, A,B ∈ V , α ∈ V

∗
, i ∈ L, we add

to R the rule
[
h(A, i)

]
1
¬h(B, j) −→

[]
1
h(α′, j) providing that j is the

outer membrane of membrane i.

Generally speaking, the purpose of membranes is to keep private the interior
rules and objects from the neighboring ones and vice-versa. However, in our case
we can express the passage of certain symbol through the membranes by using new
symbols that we add to vocabulary and that encode both the crossed membrane
label and the symbols from where they derive. In this way we can rewrite the
rules, using the new symbols that perfectly describe the passage of objects in
the membrane structure; consequently, in our case, we can shrink an arbitrarily
membrane structure to only two membranes. The morphism used by the above
construction accomplishes the encoding procedure.

The system Π simulates all the moves of Π and it stops whenever Π stops.
However, in the halting configuration, in the designated output region of Π, there
could be some objects representing the encoded version of the objects present in
the regions of Π. Therefore, we have to modify the above set of rules such that
Π eliminates all these objects in order to generate the same set of numbers as
Π. This can be accomplish by producing an object D whenever a rule of Π is
simulated (by adding the object D at the right hand side of each above rule),
deleting it at each step (we add to R rules of type D

[]
1
−→

[
λ
]
1

and
[
D

]
1
−→[]

1
λ). Finally, if Π stops, then Π will not produce the object D anymore,

hence the absence of this object can trigger an inhibited rule that deletes all
the unnecessary objects. Consequently, we have that NPACCm(smp, inhR1) =
NPACC2(smp, inhR1),m ≥ 2.

Here we will prove that the family of sets of vectors of numbers generated by
P systems with external inhibitors equals the family of sets of numbers generated
by ET0L systems.

Theorem 1. NPACC2(smp, inhR1) = NET0L.

Proof. We will prove the result by showing that communicative P systems with
external inhibitors are equivalent with P systems with inhibitors, which at their
turn, generates the same class of sets of numbers as the Parikh image of ET0L as
shown in [7]. Let NP1(smp, inhR1) be the family of sets of numbers generated by
P systems with inhibitors.

The proof of the inclusion NP1(smp, inhR1) ⊇ NPACC2(smp, inhR1) is
rather simple and is based on a similar encoding of regions into new objects as
was presented above.

For the inclusion NP1(smp, inhR1) ⊆ NPACC2(smp, inhR1) we will simulate
the computation of a P system with one region Πinh = (V,C, µ,w, R, i0). We
assume that the set of rules R contains rules of type A → α or A → α|¬B ,
A,B ∈ V , α ∈ V ∗.

Let us consider the sets Ṽ = {Ã | A ∈ V } and V̇ = {Ȧ | A ∈ V }. In addition,
let us define the morphisms:

M. Ionescu, D. Sburlan 205

h1 : V ∗ → Ṽ ∗, such that h1(A) = Ã for all A ∈ V ;
h2 : V ∗ → V̇ ∗, such that h3(A) = Ȧ for all A ∈ V .

We construct a P system Πcc = (V , C, µ,R, i0), simulating Πinh, defined as
follows:

V = V ∪ Ṽ ∪ V̇ ∪ {F}; w1 = w;
C = ∅; w2 = w;
µ =

[[]
2

]
1
; i0 = 1.

The set of rules R is defined as follows3:

step i A
[
¬B

]
−→

[
h1(α)h2(α)

]
, for all rules A → α|¬B ∈ Rinh,

step i A
[]

−→
[
h1(α)h2(α)

]
, for all rules A → α ∈ Rinh,

step i
[
A

]
−→

[]
F, if exists A → α ∈ Rinh,

step i
[
A

]
¬B −→

[]
F, if exists A → α|¬B ∈ Rinh,

step i + 1 F
[]

−→
[]

,

step i + 1
[
h1(A)

]
−→

[]
h1(A), for all objects A ∈ V,

step i + 2 h1(A)
[]

−→
[
A

]
, for all objects A ∈ V,

step i + 2
[
h2(A)

]
¬R −→

[]
A, for all A ∈ V.

Here is how the system Πcc simulates the computation of Πinh. First, remark
that in order to correctly simulate the moves of Πinh, we will maintain during the
computation in both regions of Πcc a copy of the multiset w – the multiset that
represent the current configuration of Πinh. This is especially useful when trying
to simulate rules of type A → α|¬B ∈ Rinh because we have to know whether or
not the external inhibitor is present.

We assume that the system is in a configuration given by the strings w1 =
w2 = w. The system attempts to execute simultaneously the rules of type

step i A
[
¬B

]
−→

[
h1(α)h2(α)

]
, for all rules A → α|¬B ∈ Rinh,

step i A
[]

−→
[
h1(α)h2(α)

]
, for all rules A → α ∈ Rinh,

step i
[
A

]
−→

[]
F, if exists A → α ∈ Rinh,

step i
[
A

]
¬B −→

[]
F, if exists A → α|¬B ∈ Rinh.

Remark that the rules of first two types are used to generate inside the inner
region, two copies of multiset α (represented by h1(α) and h2(α)). In the same
3 For the present proof, we will simplify the notation by not including the membrane

labels into the syntax of the rules; this is possible here since we have only two mem-
branes and we do not allow the interaction with the environment. In addition, we have
specified on their left hand side the moment of their executions during the simulation
of one computational step in Πinh.

206 P Systems with Adjoining Controlled Communication Rules

time, the rules of second type delete from region 2 the objects that were within
the scope of rules of first type. In addition, remark that there are no other rules
that can be applied in this step. Moreover, they produce in region 1 objects R;
these objects will be used later for synchronizing the moments when multiset α
appears in both regions.

Next, are executed the rules of type:

step i + 1 F
[]

−→
[]

,

step i + 1
[
h1(A)

]
−→

[]
h1(A), for all objects A ∈ V.

Observe that the presence of object(s) R in this computational step inhibits the
executions of rules of type

[
h2(A)

]
¬F −→

[]
A, for all A ∈ V . Hence, in the

third step, the rules of type

h1(A)
[]

−→
[
A

]
, for all objects A ∈ V,[

h2(A)
]
¬F −→

[]
A, for all A ∈ V,

will be executed. The new objects appear at the same time in both regions of the
system Πcc and the simulation of the next computational step of Πinh can start.
Finally, if the system Πinh stops because there are no rules to be applied, then
also Πcc halts.

Before we conclude, remark that the maximal parallelism as well as the uni-
versal clock is fundamental for the construction.

Consequently we have proved that the computation of an arbitrary P sys-
tem with inhibitors can be simulated by a P system with external inhibitors,
hence we have NP1(smp, inhR1) ⊆ NPACC2(smp, inhR1). Therefore we have
that NP1(smp, inhR1) = NPACC2(smp, inhR1) = PsET0L.

The following theorem shows that P systems with external inhibitors and car-
riers are computationally complete.

Theorem 2. NPACC2(cat, inhR1) = NRE.

Proof. The inclusion NPACC2(cat, inhR1) ⊆ NRE is assumed true by invoking
the Turing-Church thesis.

For the inclusion NPACC2(cat, inhR1) ⊇ NRE we will simulate the compu-
tation of an arbitrary non-deterministic register machine M = (n,P, l0, lh). Such
register machines are computational universal if n ≥ 3.

We construct Π = (V,C, µ,w1, w2, R1, i0) as follows.

V = {ai, Ai, Si | 1 ≤ i ≤ n} ∪ {l, l, l, l̃,˜̃l, L | l ∈ Lab(P)} ∪ {c}

∪ {K, K,K,K, T0, T1, X,X};
C = {c};
µ =

[[]
2

]
1
;

M. Ionescu, D. Sburlan 207

w1 = l0L0a
k1
1 . . . akn

n c;
w2 = A1 . . . AnS1 . . . Sn;
i0 = 1.

The set of rules R is defined as follows:
• for each instruction (l1 : ADD(j), l2, l3) ∈ P, the set R contains the rules:
l1

[]
−→

[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2

]
, l1 6= lh,

l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l3

]
, l1 6= lh,

L1

[
¬Aj

]
−→

[
A1 . . . AnS1 . . . Sn

]
,[

l2
]
−→

[]
l2,[

l3
]
−→

[]
l3,[

aj

]
−→

[]
aj ,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n;

• for each instruction (l1 : SUB(r), l2, l3) ∈ P, the set R contains the rules:
l1

[]
−→

[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
, l1 6= lh,

caj

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
,

L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
,[

l1
]
−→

[]
l1,[

X
]
−→

[]
X,

l1
[]

−→
[
l1T0A1 . . . AnS1 . . . Sn

]
,[

K
]
−→

[]
K,[

l1
]
¬X −→

[]
l̃3,

X
[
¬T0

]
−→

[
l2

]
,

K
[]

−→
[
A1 . . . AnS1 . . . SnK

]
,[

T0

]
−→

[]
T1,[

l1
]
¬K −→

[]
λ,[

l2
]
−→

[]
l2L2,

T1

[]
−→

[
A1 . . . AnS1 . . . Sn

]
,

l̃3
[]

−→
[˜̃
l3

]
,[˜̃

l3
]
−→

[]
l3L3,[

K
]
−→

[]
K,

208 P Systems with Adjoining Controlled Communication Rules

K
[]

−→
[
A1 . . . AnS1 . . . Sn

]
,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n.

Here is how the P system Π simulates the computation of the register machine
M . Observe for the beginning that in the P system Π we will represent the number
stored into register j of M as the multiplicity of the object aj . In addition, remark
that objects Aj , Sj , 1 ≤ j ≤ n, stand for the addition/subtraction command over
register j – both in the simulation of an ADD or SUB instruction, the absence
of symbol Aj or Sj allows the addition or deletion of one occurrence of object
aj . Objects Aj , Sj , 1 ≤ j ≤ n, are produced all the time during the computation
except the moment when we actually want to increment or subtract one occurrence
of object aj from the multiset; at that moment we generate all objects Ai, Si,
1 ≤ i ≤ n, such that i 6= j.

Let us see in more details how the simulation of the addition instruction (l1 :
ADD(j), l2) ∈ P works. Assume that at a certain moment during the computation,
the current multisets in regions 1 and 2 are represented by the strings w1 =
l1L1a

k1
1 . . . akn

n c and w2 = A1 . . . AnS1 . . . Sn respectively. Then, the rules that can
be executed are:

l1
[]

−→
[
A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2

]
or the rule involving l3,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n.

As a consequence of executing the above rules the next configuration will be
represented by w1 = L1a

k1
1 . . . akn

n c and w2 = A1 . . . Aj−1Aj+1 . . . AnS1 . . . Snaj l2.
Now, since in region 2 the object Aj is missing, then the rule

L1

[
¬Aj

]
−→

[
A1 . . . AnS1 . . . Sn

]
can be executed; its role is to reestablish the initial configuration in region 2.
Simultaneously, the system runs the rules[

l2
]
−→

[]
l2,[

aj

]
−→

[]
aj ,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,[

Si

]
−→

[]
λ, 1 ≤ i ≤ n.

The rule
[
l2

]
−→

[]
l2 produces in region 1 the object l2 that corresponds to

register machine label l2. In addition, by the execution of the rule
[
aj

]
−→

[]
aj ,

the number of objects aj in region 1 (that corresponds to the number stored in
register j of M) is incremented.

Concerning the simulation of the subtract instruction (l1 : SUB(j), l2, l3) ∈ P,
the system Π, being in a configuration represented by w1 = l1L1a

k1
1 . . . akn

n c and
w2 = A1 . . . AnS1 . . . Sn, executes first the rules:

l1
[]

−→
[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
,[

Ai

]
−→

[]
λ, 1 ≤ i ≤ n,

M. Ionescu, D. Sburlan 209[
Si

]
−→

[]
λ, 1 ≤ i ≤ n.

In a similar manner as presented in the addition simulation, the rule l1
[]

−→[
A1 . . . AnS1 . . . Sj−1Sj+1 . . . Snl1

]
creates the context required for starting the

simulation. The absence of object Sj in region 2 allows, in the second step, the
(possible) execution of the rules

caj

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
,

L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
.

Observe that in case there exists an object aj in region 1, both rules are exe-
cuted, while if there is not, only the rule L1

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnK

]
will

be executed.
In the same step, the rule

[
l1

]
−→

[]
l1 performs. As we will see, the ob-

jects derived from object l1 will be used later to check whether or not the rule
caj

[
¬Sj

]
−→

[
A1 . . . AnS1 . . . SnX

]
was executed. Moreover, they will be also

used to introduce in region 2 objects A1 . . . AnS1 . . . Sn that forbids a new addi-
tion or subtraction of objects aj .

Let us consider the first case, i.e. the region 1 contains at least one object aj .
Then, as a consequence of executing the above rules we will have the multisets
w1 = ak1

1 . . . a
kj−1
j . . . akn

n c and w2 = A2
1 . . . A2

nS2
1 . . . S2

nXK. The following rules
will be further applied:

l1
[]

−→
[
l1T0A1 . . . AnS1 . . . Sn

]
,[

K
]
−→

[]
K,

and possibly the rule:[
X

]
−→

[]
X.

Remark that the objects derived from l1 are within the scope of rules that intro-
duce at each odd step objects A1 · · ·AnS1 . . . Sn (or A1 . . . Aj−1Aj+1 . . . AnS1 · · ·Sn

in the first step). In a similar manner the objects derived from K are within the
scope of rules that introduce at each even step objects A1 · · ·AnS1 . . . Sn. Anyway,
at each step we delete by rules Ai → λ and Si → λ, 1 ≤ i ≤ n all objects Ai and
Si.

Now, since in the third step an object X was introduced in region 1 then, in

the fourth step, the rule
[
l1

]
¬X −→

[]
l̃3 cannot be executed. Moreover, because

in region 2 exists an object T0 also the rule X
[
¬T0

]
−→

[
l2

]
cannot be executed.

However, in the fourth step the rule
[
T0

]
−→

[]
T1 runs and it will allow, in

the fifth step, the execution of the rule X
[
¬T0

]
−→

[
l2

]
. In the same time, rule[

l1
]
¬K −→

[]
λ is executed and so there will be no way to rewrite l1 into l̃3 and

furthermore into l3. Finally, by rule
[
l2

]
−→

[]
l2L2 the label of the new register

machine instruction to be simulated is generated.
Now let us see what how the simulation is done when the system Π attempts

to simulate the instruction (l1 : SUB(j), l2, l3) ∈ P in the case when the register j
is empty. Then, the simulation works in a similar manner as in the above presented

210 P Systems with Adjoining Controlled Communication Rules

case with the main difference being that in the fourth step the rule
[
l1

]
¬X −→[]

l̃3 is executed because the object X was not produced (the rules caj

[
¬Sj

]
−→[

A1 . . . AnS1 . . . SnX
]

and
[
X

]
−→

[]
X were not ran since the object aj was

missing from the initial multiset). So, the following rules are executed in sequence

l̃3
[]

−→
[˜̃
l3

]
,
[˜̃
l3

]
−→

[]
l3L3. As a consequence, the symbol that corresponds

to the next instruction to be simulated is generated.
If lh is generated then the computation stops, having in the output region a

number of objects ai, 1 ≤ i ≤ n, equals with the contents of register i of M . In
this way the execution of the entire register machine program is simulated.

Since one can easily construct a register machine, equivalent with M , that in
a successful computation clears its registers except a special designated one (the
output register) we have that NPACC2(cat, inhR1) ⊇ NRE.

Therefore, we have proved the equality NPACC2(cat, inhR1) = NRE.

4 Conclusions and Further Research

The model we introduced is based on the observation that various chemical re-
actions within a compartment of a living cell are activated from the neighboring
compartments of the cell. We have proved that the family of sets of vectors of
numbers generated by P systems with adjoining controlled communication rules
when only simple inhibited rules are used equals the family of sets of numbers
generated by ET0L systems. We have also proved the computational completeness
if, in addition, carriers are used. As a plus, we want to emphasize that similar
results can be obtained if, instead of inhibited simple rules, promoted ones are
considered.

Trying to get more “realistic”, we believe that it is worthwhile to investigate
the power of the above systems to whom we add execution times for the rules and
to study their properties (for more details we refer to [2]). Another possible line
for further research is to investigate the power of the systems not considering the
family of sets of vectors of numbers generated as we have done here, but considering
the family of Parikh images generated by such systems.

References

1. C. Calude, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): Multiset Processing, LNCS
2235, Springer-Verlag, Berlin, 2001.

2. M. Cavaliere, D. Sburlan: Time and Synchronization in Membrane Systems, Funda-
menta Informaticae 64(1–4), 65–77, 2005.

3. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors, Journal of Uni-
versal Computer Science, 10(5), 581–599, 2004.

4. Gh. Păun: Computing with Membranes, Journal of Computer and System Sciences,
618(1), 108–143, 2000.

M. Ionescu, D. Sburlan 211

5. Gh. Păun: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
6. A. Salomaa, G. Rozenberg (Eds.): Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
7. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. International

Journal of Foundations of Computer Science, 17, 1 (2006), 205–221;
8. http://psystems.disco.unimib.it/

