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Summary. We investigate the computing power and the efficiency of P systems with
active membranes without polarizations, working in the minimally parallel mode. We
prove that such systems are computationally complete and able to solve NP-complete
problems even when the rules are of a restricted form, e.g., for establishing computational
completeness we only need rules handling single objects and no division of non-elementary
membranes is used.

1 Introduction

P systems with active membranes basically use five types of rules: (a) evolution
rules, by which a single object evolves to a multiset of objects, (b) send-in, and (c)
send-out rules, by which an object is introduced in or expelled from a membrane,
maybe modified during this operation into another object, (d) dissolution rules,
by which a membrane is dissolved, under the influence of an object, which may
be modified into another object by this operation, and (e) membrane division
rules; this last type of rules can be used both for elementary and non-elementary
membranes, or only for elementary membranes. As introduced in [10], all these
types of rules also use polarizations for membranes, “electrical charges” +,−, 0,
controlling the application of the rules.

Systems with rules of types (a), (b), (c) were shown to be equivalent in compu-
tational power with Turing machines [11], even when using only two polarizations
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[4], while P systems using all types of rules were shown to be universal even without
using polarizations [1]. Another important class of results concerns the possibil-
ity of using P systems with active membranes to provide polynomial solutions to
computationally hard problems. Several papers have shown that both decision and
numerical NP-complete problems can be solved in a polynomial time (often, even
linear time) by means of P systems with three polarizations [11], [13], then the
number of polarizations was decreased to two [3], [4]. The systems constructed in
these solutions use only division of elementary membranes. At the price of using
division also for non-elementary membranes, the polarizations can be completely
removed, [2].

All papers mentioned above apply the rules in the maximally parallel mode: in
each step, the assignment of objects to the rules in the chosen multiset of rules to
be applied in parallel is maximal, i.e., no further rule could be added to this chosen
multiset of rules in such a way that the rules in the resulting extended multiset still
could be applied in parallel. Recently, [5] a more relaxed strategy of using the rules
was introduced, the so-called minimal parallelism: in each step, the assignment of
objects to the rules in the chosen multiset of rules to be applied in parallel does
not allow for extending it by any rule out of a set of rules from which no rule has
been chosen so far for this multiset of rules. This introduces an additional degree
of non-determinism in the system evolution, but still computational completeness
and polynomial solutions to SAT were obtained in the new framework by using
P systems with active membranes, with three polarizations and division of only
elementary membranes.

In this paper we continue the study of P systems working in the minimally
parallel way, and we prove that the polarizations can be avoided, at the price of
using all five types of rules for computational completeness and the division of
non-elementary membranes for computational efficiency. Moreover, in the proof
for establishing computational completeness we restrict the form of the rules to
handling only single objects in all types of rules (we call this the one-normal form
for P systems with active membranes).

2 Prerequisites

We suppose that the reader is familiar with the basic elements of Turing com-
putability [6], and of membrane computing [11]. We here, in a rather informal
way, introduce only the necessary notions and notation.

For an alphabet A, by A∗ we denote the set of all strings of symbols from A
including the empty string λ. A multiset over an alphabet A is a mapping from
A to the set of natural numbers; we represent a multiset by a string from A∗,
where the number of occurrences of a symbol a ∈ A in a string w represents the
multiplicity of a in the multiset represented by w (hence, all strings obtained by
permuting symbols in the string w represent the same multiset). The family of
Turing-computable sets of natural numbers is denoted by NRE (with RE coming
from “recursively enumerable”).
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In our proofs showing computational completeness we use the characterization
of NRE by means of register machines. Such a device consists of a given number
of registers, each of which can hold an arbitrarily large natural number, and a
set of labeled instructions which specify how the numbers stored in registers can
change, and which instruction should follow after the instruction just carried out.
There are three types of instructions:

• li : (ADD(r), lj , lk) add 1 to register r, and then go to one of the instructions
labeled by lj and lk, non-deterministically chosen;

• li : (SUB(r), lj , lk) if register r is non-empty (non-zero), then subtract 1
from it and go to the instruction labeled by lj , otherwise go to the instruction
labeled by lk;

• lh : HALT the halt instruction.

A register machine is a construct M = (n, B, l0, lh, I), where n is the number of
registers, B is the set of instruction labels, l0 is the start label, lh is the halt label
(assigned to HALT only), and I is the set of instructions. Each label of B labels
only one instruction from I, thus precisely identifying it. A register machine M
generates a set N(M) of numbers in the following way: having initially all registers
empty (i.e., storing the number zero), start with the instruction labeled by l0, and
proceed to apply instructions as indicated by the labels and by the contents of
registers. If we reach the halt instruction, then the number stored at that time in
register 1 is said to be computed by M , and therefore it is introduced in N(M).
Since we have a non-deterministic choice in the continuation of the computation in
the case of ADD instructions, N(M) can be an infinite set. It is known (see [8]) that
in this way we can compute all the sets of numbers which are Turing-computable,
even using register machines with only three registers as well as registers two and
three being empty whenever the register machine halts.

A register machine can also work in the accepting mode. The number to be
accepted is introduced in register 1, with all other registers being empty. We start
computing with the instruction labeled by l0; if the computation halts, then the
number is accepted (the contents of the registers in the halting configuration do
not matter). We still denote by N(M) the set of numbers accepted by a register
machine M . In the accepting case, we can request the register machines to be
deterministic, namely with all instructions li : (ADD, lj , lk) having lj = lk. It is
known that deterministic accepting register machines characterize NRE even with
only three registers and all registers being empty whenever the register machine
halts.

3 P Systems with Active Membranes

We first introduce the P systems with active membranes in the general form, and
then we describe the restricted version we investigate in this paper.
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A P system with active membranes, of the initial degree n ≥ 1, is a construct
of the form

Π = (O,H, µ,w1, . . . , wn, R, ho),

where:

1. O is the alphabet of objects;
2. H is a finite set of labels for membranes;
3. µ is a membrane structure, consisting of n membranes having initially neutral

polarizations, labeled (not necessarily in a one-to-one manner) with elements
of H;

4. w1, . . . , wn are strings over O, describing the multisets of objects placed in the
n initial regions of µ;

5. R is a finite set of developmental rules, of the following forms:
(a) [ha → v]e

h,
for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the
label and the charge of the membranes, but not directly involving the
membranes, in the sense that the membranes are neither taking part in
the application of these rules nor are they modified by them);

(b) a[h ]e1
h → [hb]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(in communication rules; a possibly modified object is introduced in a
membrane; the polarization of the membrane can also be modified, but
not its label);

(c) [ha ]e1
h → b[h ]e2

h ,
for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(out communication rules; a possibly modified object is sent out of the
membrane; the polarization of the membrane can also be modified, but
not its label);

(d) [ha ]e
h → b,

for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved,
while the object specified in the rule can be modified);

(e) [ha ]e1
h → [hb ]e2

h [hc ]e3
h ,

for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary or non-elementary membranes; in reaction
with an object, the membrane with label h is divided into two membranes
with the same label, possibly of different polarizations; the object specified
in the rule is replaced in the two new membranes by possibly new objects;
the remaining objects may evolve in the same step by rules of type (a)
and the result of this evolution is duplicated in the two new membranes; if
membrane h contains other membranes, then they may evolve at the same
time by rules of any type and the result of their evolution is duplicated in
the two new membranes);
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6. ho ∈ H or ho = env indicates the output region.

In the maximally parallel mode, in each step (a global clock is assumed) we
apply multisets of rules in such a way that no further rule can be applied to the
remaining objects or membranes. In each step, each object and each membrane
can be involved in only one rule. Because this way of using the rules is standard
in membrane computing, we do not give further details, and we present only the
minimally parallel mode, which here means the following:

All the rules of any type involving a membrane h constitute the set Rh (this
means all the rules of type (a) of the form [ha → v]e

h, all the rules of type (b) of the
form a[h ]e1

h → [ha]e2
h , and all the rules of types (c) – (e) of the form [ha]e

h → z,
with the same h, constitute the set Rh). Moreover, if a membrane h appears
several times in a given configuration of the system, then for each occurrence of
the membrane we consider a different set Rh; this means that we identify the ith
copy of membrane h with the pair (h, i), and we consider the set of rules Rh,i = Rh.
Then, in each step, we choose a multiset of rules taken from the sets Rh,i, h ∈ H,
in such a way that after having assigned objects to all the rules in this multiset,
no rule from any of the sets Rh,i from which no rule has been taken so far, could
be used in addition.

Whenever relevant, in order to make visible the sets of rules, we write explicitly
the sets Rh, h ∈ H, instead of the global set R.

Of course, as usual for P systems with active membranes, each membrane and
each object can be involved in only one rule, and the choice of rules to be used and
of objects and membranes to evolve is done in a non-deterministic way. We should
note that for rules of type (a) the membrane is not considered to be involved:
when applying [ha → v]h, the object a cannot be used by other rules, but the
membrane h can be used by any number of rules of type (a) as well as by one rule
of types (b) – (e). In each step, the use of rules is done in the bottom-up manner
(first the inner objects and membranes evolve, and the result is duplicated if any
surrounding membrane is divided).

A halting computation provides a result given by the number of objects present
in region ho at the end of the computation; this is a region of the system if ho ∈ H
(and in this case, for a computation to be successful, exactly one membrane with
label ho should be present in the halting configuration), or it is the environment
if ho = env.

We shall also consider the following normal form for P systems with active
membranes: A system Π is said to be in the one-normal form if the membranes
have no polarization (it is the same as saying that always all membranes have the
same polarization, say 0, which therefore is irrelevant and thus omitted) and the
rules are of the forms [ha → b]h, a[h ]h → [hb]h, [ha ]h → b[h ]h, [ha ]h → b, and
[ha ]h → [hb ]h[hc ]h, for a, b, c ∈ O, such that a 6= b, a 6= c, b 6= c. Note that the
labels of membranes are never changed.

The set of numbers generated in the minimally parallel way by a system Π
is denoted by Nmin(Π). The family of sets Nmin(Π), generated by systems with
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rules of the non-restricted form, having initially at most n1 membranes and using
configurations with at most n2 membranes during any computation is denoted
by NminOPn1,n2((a), (b), (c), (d), (e)); when a type of rules is not used, it is not
mentioned in the notation. If any of the parameters n1, n2 is not bounded, then it
is replaced by ∗. If the systems do not use polarizations for membranes, then we
write (a0), (b0), (c0), (d0), (e0) instead of (a), (b), (c), (d), (e). When the system Π
is in the one-normal form, then we write NminOPn1,n2((a1), (b1), (c1), (d1), (e1)).

When considering families of numbers generated by P systems with active
membrane working in the maximally parallel mode, the subscript min is replaced
by max in the previous notations. For precise definitions, we refer to [11] and to
the papers mentioned below.

4 Computational Completeness

The following results are well known:

Theorem 1. (i) NmaxOP3,3((a), (b), (c)) = NRE, [11].
(ii) NmaxOP∗,∗((a0), (b0), (c0), (d0), (e0)) = NRE, [1].
(iii) NminOP3,3((a), (b), (c)) = NRE, [5].

In turn, the following inclusions follow directly from the definitions:

Lemma 1. NmodeOPn1,n2((a1), (b1), (c1), (d1), (e1)) ⊆
NmodeOPn1,n2((a0), (b0), (c0), (d0), (e0)) ⊆
NmodeOPn1,n2((a), (b), (c), (d), (e)),

for all n1, n2 ≥ 1, mode ∈ {max, min}.

We now improve the equalities from Theorem 1 in certain respects, starting
with proving the computational completeness of P systems with active membranes
in the one-normal form when working in the maximally parallel mode, and then
we extend this result to the minimal parallelism.

Theorem 2. NmaxOPn1,∗((a1), (b1), (c1), (d1), (e1)) = NRE, for all n1 ≥ 5.

Proof. We only prove the inclusion

NRE ⊆ NmaxOP5,∗((a1), (b1), (c1), (d1), (e1)).

Let us consider a register machine M = (3, B, l0, lh, I) generating an arbitrary
set N(M) ∈ NRE. We then construct the P system

Π = (O, H, µ,ws, wh, w1, w2, w3, R, env),

of the initial degree 5, with
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O = {di | 0 ≤ i ≤ 5} ∪ {g,#,#′, p, p′, p′′, c, c′, c′′} ∪B ∪ {l′ | l ∈ B}
∪ {liu | li is the label of an ADD instruction in I, 1 ≤ u ≤ 4}
∪ {liu0 | li is the label of a SUB instruction in I, 1 ≤ u ≤ 4}
∪ {liu+ | li is the label of a SUB instruction in I, 1 ≤ u ≤ 6},

H = {s, h, 1, 2, 3},
µ = [s[1 ]1 [2 ]2 [3 ]3[h ]h]s,

ws = l0d0, wα = λ, for all α ∈ H − {s},

and with the rules constructed as described below.
The value stored in a register r = 1, 2, 3 of M , in Π is represented by the

number of copies of membranes with label r plus one (if the value of the register
r is k, then we have k + 1 membranes with label r). The membrane with label h
is auxiliary, it is used for controlling the correct simulation of instructions of M
by computations in Π. Each step of a computation in M , i.e., using an ADD or
a SUB instruction, corresponds to six steps of a computation in Π. We start with
all membranes being empty, except for the skin region, which contains the initial
label l0 of M and the auxiliary object d0. If the computation in M halts, that is,
the object lh appears in the skin region of Π, then we pass to producing one object
c for each membrane with label 1 present in the system, except one; in this way,
the number of copies of c sent to the environment represents the correct result of
the computation in M .

We first indicate the rules used in each of the six steps of simulating instructions
ADD and SUB, and then we present the rules for producing the result of the
computation; in each configuration, only the membranes and the objects relevant
for the simulation of the respective instruction are specified. In particular, we
ignore the “garbage” object g, because once introduced it remains idle for the
whole computation.

The simulation of an instruction li : (ADD(r), lj , lk) uses the rules from
Table 1.

Table 1. The simulation of an ADD instruction

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i]r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li1]r

[
r
g]

r
[
s
d1 → d2]s

[
s
d2 [

r
li1]r

[
r
g]

r
. . . [

h
]
h
]
s

3 [
r
li1]r

→ li2[r
]
r

d2[h
]
h
→ [

h
d3]h

[
s
li2 [

r
]
r
[
r

]
r
. . . [

h
d3]h

]
s

4 [
s
li2 → li3]s

[
h
d3]h

→ d4[h
]
h

[
s
li3d4[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

5 [
s
li3 → li4]s

[
s
d4 → d5]s

[
s
li4d5[r

]
r
[
r

]
r
. . . [

h
]
h
]
s

6 [
s
li4 → lt]s

, t ∈ {j, k} [
s
d5 → d0]s

[
s
ltd0[r

]
r
[
r

]
r
. . . [

h
]
h
]
s
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The label object li enters into the correct membrane r (even if the register r is
empty, there is at least one membrane with label r) and in the next step divides it.
The object li2 exits the newly produced membrane, but g remains inside; li2 will
evolve three further steps, just to synchronize with the evolution of the auxiliary
objects du, u ≥ 0, and the auxiliary membrane h, so that in the sixth step we end
with the label lj or lk of the next instruction to be simulated present in the skin
membrane, together with d0; note that the number of copies of membrane r was
increased by one.

'

&

$

%

d3

d3 → #

# → #′

#′ → #

d2d1d0 d4 d5 d0- - - - - -1 2 3 4 5 6

h

Fig. 1. The evolution of auxiliary objects

The auxiliary objects du, u ≥ 0, and the auxiliary membrane h are used in the
simulation of SUB instructions, as we will see immediately; in step 4, there also are
other rules to be used in membrane h, introducing the trap-object #, but using
such rules will make the computation never halt, hence, they will not produce an
unwanted result.

The evolution of objects du, u ≥ 0, is represented graphically in Figure 1;
membrane h is only used in step 3, to send an object inside, and in the next step,
for sending an object out of it. On each arrow we indicate the step, according to
Table 1; the steps made by using rules of types (b), (c) are pointed out by drawing
the respective arrows crossing the membranes, thus suggesting the in/out actions.

The way the “ADD module” works is suggested in Figure 2; the division oper-
ation from step 2 is indicated by a branching arrow.

The simulation of an instruction li : (SUB(r), lj , lk) is done with the help of
the auxiliary membrane h. The object li enters a membrane r (there is at least one
copy of it) and divides it, and on this occasion makes a non-deterministic choice
between trying to continue as having register r non-empty or as having it empty.
If the guess has been correct, then the correct action is done (decrementing the
register in the first case, doing nothing in the second case) and the correct next
label is introduced, i.e., lj or lk, respectively. If the guess has not been correct, then
the trap object # is introduced. For all membranes x of the system we consider
the rules [x# → #′]x, [x#′ → #]x, hence, the appearance of # will make the
computation last forever.
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li

�
�

�
�

�
�

�
�

�
�

�
�

r

l′i

li1 g

li2

6

@@I ���

6

- li3 - li4

lj/lk

?

r r

1

2

3

4 5

6

Fig. 2. The work of the ADD module

In Table 2 we present the rules used in the case of guessing that the register
r is not empty. Like in the case of simulating an ADD instruction, the auxiliary
objects and membranes do not play any role in this case.

Table 2. The simulation of a SUB instruction, guessing that register r is not empty

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i]r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li1+]

r
[
r
li2+]

r
[
s
d1 → d2]s

[
s
d2[r

li1+]
r
[
r
li2+]

r
. . . [

h
]
h
]
s

3 [
r
li1+]

r
→ li3+ d2[h

]
h
→ [

h
d3]h

[
r
li2+]

r
→ li4+[

r
]
r

[
s
li3+li4+[

r
]
r
. . . [

h
d3]h

]
s

4 li3+[
r

]
r
→ [

r
g]

r
[
h
d3]h

→ d4[h
]
h

li4+[
r

]
r
→ [

r
li5+]

r
[
s
d4[r

li5+]
r
[
r
g]

r
. . . [

h
]
h
]
s

or [
s
li3+ → #]

s
, [

s
li4+ → #]

s
[
s
d4#[

r
]
r
. . . [

h
]
h
]
s

5 [
r
li5+]

r
→ li6+ [

s
d4 → d5]s

[
s
d5li6+[

r
]
r
. . . [

h
]
h
]
s

7 [
s
li6+ → lj ]s

[
s
d5 → d0]s

[
s
ljd0[r

]
r
. . . [

h
]
h
]
s

In step 2 we divide the membrane r containing the object l′i and the objects
li1+, li2+ are introduced in the two new membranes. One of them is immediately
dissolved, thus the number of copies of membrane r remains unchanged; the ob-
jects li3+, li4+ are introduced in this step. In the next step (the fourth one of the
simulation), objects li3+, li4+ look for membranes r in the skin region. If both of
them find such membranes – and this is the correct/desired continuation – then
both of them enter such membranes; li3+ becomes g and li4+ becomes li5+. If only
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one of them finds a membrane r, then the other one has to evolve to object # in
the skin membrane and the computation never halts.

li

�
�

�
�

�
�

�
�

�
�

�
�

6

@
@I

�
��

li3+

�
�

�
�g

6

� li4+ li5+

li6+

lj

6

�
�

�
�-

?

?

r

r r

r r

1

2

3 3δ

4

li3+ → #

4

li4+ → #

5 δ

6

l′i

li1+ li2+

Fig. 3. The simulation of a SUB instruction when guessing that the register is non-empty

If we had enough membranes r and li3+, li4+ went there, then in the next step
li5+ exits and is changed to li6+. In the sixth step, li6+ becomes lj (simultaneously
with introducing d0), and this completes the simulation. Thus, the computation
continues without having # present in the system if and only if the guess made
in step 2 has been correct, i.e., if register r has been non-empty. Because in step
5 a membrane r was dissolved, the number of these membranes was decreased by
one, and this corresponds to subtracting one from register r.

Figure 3 indicates the evolution of objects liu+ in the six steps mentioned in
Table 2; when a dissolving operation is used, this is indicated by writing δ near
the respective arrow.

However, in step 2, instead of the rule [
r
l′i]r → [rli1+]r[rli2+]r we can use the

rule [rl
′
i]r → [rli10]r[rli20]r, with the intention to simulate the subtract instruction

in the case when the register r is empty – that is, only one membrane with label
r is present in the system. The rules used in the six steps of the simulation are
given in Table 3.

In this case, the auxiliary objects du, u ≥ 0, and the auxiliary membrane h
play an essential role.
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Table 3. The simulation of a SUB instruction, guessing that register r is empty

Step Main rules Auxiliary rules Configuration

– – – [
s
lid0 [

r
]
r
. . . [

h
]
h
]
s

1 li[r
]
r
→ [

r
l′i]r

[
s
d0 → d1]s

[
s
d1 [

r
l′i]r

. . . [
h

]
h
]
s

2 [
r
l′i]r

→ [
r
li10]r

[
r
li20]r

[
s
d1 → d2]s

[
s
d2 [

r
li10]r

[
r
li20]r

. . . [
h

]
h
]
s

3 [
r
li10]r

→ li30 d2[h
]
h
→ [

h
d3]h

[
r
li20]r

→ li40[r
]
r

[
s
li30li40 [

r
]
r
. . . [

h
d3]h

]
s

4 [
r
li30]r

→ [
r
g]

r
, li40 waits [

h
d3]h

→ d4[h
]
h

[
s
li40d4[r

g]
r
. . . [

h
]
h
]
s

or li40[r
]
r
→ [

r
#]

r
[
s
d4[r

#]
r
. . . [

h
]
h
]
s

or li40[h
]
h
→ [

h
l′k]

h
[
h
d3 → #]

h
[
s
[
r
g]

r
. . . [

h
l′k#]

h
]
s

5 li40[h
]
h
→ [

h
l′k]

h
[
s
d4 → d5]s

[
s
d5[r

]
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Fig. 4. The simulation of a SUB instruction when guessing that the register is empty

Until step 3 we proceed exactly as above, but now we introduce the objects
li30, li40. The first one can enter the available membrane r, there evolving to g. If
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there is a second membrane r, i.e., if the guess has been incorrect, then the rule
li40[r ]r → [r#]r should be used simultaneously (step 4), and the computation
never ends. If there is no second membrane r, then in step 4 li40, can also enter
membrane h, but then the trap object is produced here by the rule [hd3 → #]h.
The only way not to introduce the object # is (i) not to have a second membrane r,
(ii) to use the rule [hd3]h → d4[h ]h, thus preventing the use of the rule li40[h ]h →
[hl′k]h, and (ii) not sending li40 to the unique membrane r. This means that during
step 4 the object li40 should wait unchanged in the skin region.
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Fig. 5. The end of computations

In the next step, li40 can enter membrane h (or the unique membrane r, but
it becomes # there). In the next step, lk is released from membrane h, at the
same time with producing d0, hence, the simulation is completed correctly and
the system can pass to simulating another instruction.

The six steps of the computation are shown in Figure 4, this time with the
evolution of the auxiliary objects being indicated, too. The arrows marked with #
correspond to moves which are not desired.

For both guesses, the simulation of the SUB instruction works correctly, and
the process can be iterated.

If the computation in M halts, i.e., if lh is reached, i.e., if the object lh is
introduced in the skin region, we can start to use the following rules:

lh[1 ]1 → [1l
′
h]1,

[1l
′
h]1 → p,

p[
1

]
1
→ [

1
p′]

1
,

[1p
′]1 → [1p

′′]1[1c
′]1,
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[1p
′′]1 → p,

[1c
′]1 → c′′,

[sc
′′]s → c[s ]s,

p[h ]h → [hp′]h,

[hp′]h → p.

The object lh dissolves one membrane with label 1 (thus, the remaining mem-
branes with this label are now as many as the value of register 1 of M), and
gets transformed into p. This object enters each membrane with label 1, divides
it, reproduces itself (after passing through p′ and p′′) and also produces a copy
of the object c′′; this happens when dissolving the two membranes with label 1
obtained by division (rule [1p

′]1 → [1p
′′]1[1c

′]1), hence, the number of copies of
the membrane with label 1 has decreased by one. The object c′′ immediately exits
the system, thereby being changed into c.

At any time, the object p can also enter membrane h and then dissolves it.
The computation can stop only after having dissolved all membranes with label 1
(i.e., a corresponding number of copies of c has been sent out) and after having
dissolved the membrane h, hence, the evolution of objects du, u ≥ 0, also stops.

The function of this final module is described in Figure 5.
Consequently, N(M) = Nmax(Π), and this concludes the proof. ut

Theorem 3 gives the same result as Theorem 3 from [1], with the additional
constraint to have evolution rules with exactly one object on the right-hand side
(neither producing more objects, nor erasing objects, as it is the case in [1]).

The previous proof can easily be changed in order to obtain the computational
completeness of P systems in the one-normal form also in the case of minimal
parallelism. Specifically, we can introduce additional membranes in order to avoid
having two or more evolution rules to be applied in the same region or one or more
evolution rules and one rule of types (b) – (e) which involve the same membrane
(these are the only situations where the minimal parallelism does not correspond
to the maximal parallelism; note that all rules of types (b) – (e) are associated
with membranes which are involved in the use of rules, hence, no two rules of these
types can be applied for the same membrane).

In the previous construction, situations as above which must be avoided are
the following ones:

– Rules [
s
li3+ → #]

s
and [

s
li4+ → #]

s
, in step 4 of the simulation of SUB for the

guess of a non-empty register. However, no other rule is applicable in the skin
region at that time. Applying at least one rule of this type means introducing
the trap object, hence, applying one of these rules is the same for the fate of
the computation as applying all possible rules of that kind.

– Steps 5 and 6 of the auxiliary module (see again Figure 1) are performed in
the skin region, in parallel with steps of modules from Figures 2 and 3. This
can be avoided by introducing one further auxiliary membrane, h′, in the skin
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region, and replacing the rules [sd4 → d5]s, [sd5 → d0]s (both of them from
Rs) by the rules d4[h′ ]h′ → [h′d5]h′ and [h′d5]h′ → d0[h′ ]h′ . These rules are
associated with membrane h′, hence, they should be used in parallel with the
rules from the skin region.

– A further case when the maximal parallelism is important in the previous
construction is in step 4 of simulating a SUB instruction for the guess that the
register is empty (Figure 4): if rule li40[h ]h → [hl′k]h is used in step 4, then also
the rule [hd3 → #]h must be used. In the minimally parallel mode this can be
ensured if we replace this latter rule by d3[h′′ ]h′′ → [h′′#]h′′ , where h′′ is one
further membrane, provided in the initial configuration inside membrane h. In
this way, the rule d3[h′′ ]h′′ → [h′′#]h′′ involves the new membrane h′′, hence,
it should be used in parallel with the rule li40[h ]h → [hl′k]h. Of course, we also
need the rules [h′′# → #′]h′′ , [h′′#′ → #]h′′ , instead of the corresponding
rules from membrane h.

In this way, we obtain the following counterpart of Theorem 2 (note that we
use two further membranes, h′ and h′′):

Theorem 3. NminOPn1,∗((a1), (b1), (c1), (d1), (e1)) = NRE, for all n1 ≥ 7.

In the one-normal form we require that objects appearing on the left-hand
side of a rule are different from those appearing on the right-hand side. This
restriction can be reversed for rules of types (b) – (d): these rules can be of the
forms a[h ]h → [hb]h, [ha ]h → b[h ]h, [ha ]h → b, with a = b. The changes to be
made in the previous proofs are as suggested in Figures 6, 7, 8, 9, which present the
modules for simulating ADD and SUB instructions, in the two possible guesses,
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as well as the final module, directly for the case of the minimally parallel way of
using the rules. This time we need seven steps for simulating an instruction of the
register machine and additional membranes h, h′, h′′, h′′′, with several evolution
steps done inside new membranes in order to change the objects (for instance, this
is the case for step 6 from Figure 6, which is done by using the rule [h′′′ li2 → lα]h′′′

for α ∈ {j, k}. The technical details are left to the reader.
One further observation is that the previous systems can easily be modified

in order to work in the accepting mode: we introduce the number to be analyzed
in the form of the multiplicity of membranes with label 1 initially present in the
skin membrane (for number n we start with n+1 membranes [1 ]1 in the system)
and we work exactly as above, with the final module now having only the task
of dissolving the auxiliary membrane with label h, thus halting the computation
(the module can be changed, because it is no longer necessary to send out of the
system objects c corresponding to the copies of membrane with label 1 present in
the end of the computation, but this is not essential).

Consequently, all the previous results, for both minimally and maximally par-
allel use of rules, are valid also for accepting P systems in the one-normal form.

5 Efficiency Results

We now pass to proving the efficiency result mentioned in the Introduction – this
time, the system is not in the one-normal form, and it remains as an interesting
research topic to check whether this is possible or not.
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5.1 Solving SAT by Polarizationless P Systems

Below we give an efficient semi–uniform solution to the satisfiability problem by
using P systems with polarizationless active membranes working in the minimally
parallel mode.

Theorem 4. The satisfiability of any propositional formula in the conjunctive nor-
mal form, using n variables and m clauses, can be decided in a linear time with
respect to n by a polarizationless P system with active membranes, constructed in
a semi-uniform way in linear time with respect to n and m, and working in the
minimally parallel mode.

Proof. Let us consider a propositional formula ϕ = C1 ∧ . . . ∧ Cm such that each
clause Cj , 1 ≤ j ≤ m, is of the form Cj = yj,1 ∨ . . . ∨ yj,kj

, kj ≥ 1, for yj,r ∈
{xi,¬xi | 1 ≤ i ≤ n}. For each i = 1, 2, . . . , n, let us denote
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t(xi) = {cj | there is r, 1 ≤ r ≤ kj , such that yj,r = xi},
f(xi) = {cj | there is r, 1 ≤ r ≤ kj , such that yj,r = ¬xi}.

These are the sets of clauses which assume the value true when xi is true, and
false when xi is false, respectively.

We construct the P system Π(ϕ) with the following components (the output
membrane is not necessary, because the result is obtained in the environment):

O = {ai, fi, ti | 1 ≤ i ≤ n}
∪ {cj , dj | 1 ≤ j ≤ m}
∪ {pi | 1 ≤ i ≤ 2n + 7}
∪ {qi | 1 ≤ i ≤ 2n + 1}
∪ {ri | 1 ≤ i ≤ 2n + 5}
∪ {b1, b2, y, yes, no},

H = {s, s′, p, q, r, 0, 1, 2, . . . ,m},
µ = [s[s′ [p ]p[0[q ]q[r]r[1 ]1[2 ]2 . . . [m ]m]0]s′ ]s,

wp = p1, wq = q1, wr = r1, w0 = a1,

ws = ws′ = wj = λ, for all j = 1, 2, . . . ,m.

The set of evolution rules, R, consists of the following rules:

(1) [pi → pi+1]p, for all 1 ≤ i ≤ 2n + 6,
[ qi → qi+1]q

, for all 1 ≤ i ≤ 2n,
[ ri → ri+1]r, for all 1 ≤ i ≤ 2n + 4.
These rules are used for evolving counters pi, qi, and ri in membranes with
labels p, q, and r, respectively.

(2) [ai]0 → [ fi]0[ ti]0, for all 1 ≤ i ≤ n,
[ fi → f(xi)ai+1]0 and [ ti → t(xi)ai+1]0, for all 1 ≤ i ≤ n− 1,



148 R. Freund, Gh. Păun, M.J. Pérez-Jiménez

[ fn → f(xn)]0,
[ tn → t(xn)]0.
The goal of these rules is to generate the truth assignments of the n variables
x1, . . . , xn, and to analyse the clauses satisfied by xi and ¬xi, respectively.

(3) cj [ ] j → [ cj ] j and [ cj ] j → dj , for all 1 ≤ j ≤ m.
In parallel with the division steps, if a clause Cj is satisfied by the previously
expanded variable, then the corresponding object cj enters membrane j in
order to dissolve it and to send objects dj to membrane 0.

(4) [ q2n+1 ]q → q2n+1[ ]q,

[ q2n+1 → b1]0.
By using these rules the counter q produces an object b1 in each membrane 0.

(5) b1[ ] j → [ b1] j and [ b1] j → b2, for all 1 ≤ j ≤ m,
[ b2 ]0 → b2.
These rules allow to detect whether the truth assignment associated with a
membrane 0 assigns the value false to the formula (in that case, the membrane
0 will be dissolved).

(6) [p2n+7 ]p → p2n+7[ ]p,

[p2n+7 ]s′ → no[ ]s′ ,
[no ]s → no[ ]s,
[ r2n+5 ]r → r2n+5,
[ r2n+5 ]0 → y[ ]0,
[ y ]s′ → yes,
[yes ]s → yes[ ]s.
These rules produce the answer of the P system.

An overview of the computations in the P system

For the sake of readability, the initial configuration is given in Figure 10.
The membranes with labels p, q, and r, with the corresponding objects pi, qi,

and ri, respectively, are used as counters, which evolve simultaneously with the
main membrane 0, where the truth assignments of the n variables x1, . . . , xn are
generated; the use of separate membranes for counters makes possible the correct
synchronization even for the case of the minimal parallelism. The evolution of
counters is done by the rules of type (1).

In parallel with these rules, membrane 0 evolves by means of the rules of type
(2). In odd steps (from step 1 to step 2n), we divide the (non-elementary) mem-
brane 0 (with fi, ti corresponding to the truth values false, true, respectively, for
variable xi); in even steps we introduce the clauses satisfied by xi,¬xi, respectively.
When we divide membrane 0, all inner objects and membranes are replicated; in
particular, all membranes with labels 1, 2, . . . ,m, as well as membranes q and r,
are replicated, hence, they are present in all membranes with label 0.

This process lasts 2n steps. At the end of this phase, all 2n truth assignments
for the n variables have been generated and they are encoded in membranes labeled
by 0.



Polarizationless P Systems with Active Membranes 149

'

&

$

%

'

&

$

%

�
�

�
�

'

&

$

%

�
�

�
�

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

s
s′

p

p1

0
q r

q1 a1 r1

1 2 m

. . .

Fig. 10. The initial configuration of the system from the proof of Theorem 4

In parallel with the division steps, if a clause Cj is satisfied by the previously
expanded variable, then the corresponding object cj enters membrane j, by means
of the first rule of type (3), permitting its dissolution by means of the second rule
of that type and sending objects dj to membrane 0.

This is done also in step 2n+1, in parallel with using the rules of type (1) and
(4) for evolving membranes p, q, and r.

In step 2n+2, the counters pi and ri keep evolving and the second rule of type
(4) produces an object b1 in each membrane 0.

Thus, after 2n + 2 steps, the configuration C2n+2 of the system consists of
2n copies of membrane 0, each of them containing the membrane p empty, the
membrane r with the object r2n+3, possible objects cj and dj , 1 ≤ j ≤ m, as
well as copies of those membranes with labels 1, 2, . . . ,m corresponding to clauses
which were not satisfied by the truth assignment generated in that copy of mem-
brane 0. The membranes associated with clauses satisfied by the truth assignments
generated have been dissolved by the corresponding object cj . Moreover, in that
configuration the membrane p contains the object p2n+3, and membranes s′ and
s are empty.

Therefore, formula ϕ is satisfied if and only if there is a membrane 0 where all
membranes 1, 2, . . . ,m have been dissolved. In order to check this last condition,
we proceed as follows.

In step 2n+3 we use the first rule of type (5) which introduces the object b1 in a
membrane j which has not been dissolved (this is made in a non–deterministically
manner). In parallel, the counters q and r follow with evolving. The object b1

in membrane j (step 2n + 4) dissolves that membrane producing an object b2 in
membrane 0.

In step 2n + 5 the counter r2n+5 exits from membrane r and, simultaneously,
each membrane 0 containing an object b2 is dissolved by the third rule of type (5).
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Then, formula ϕ is satisfied if and only if in the configuration C2n+5 there exists a
membrane 0 that has not been dissolved (and thus containing the object r2n+5).

In the next step, the counter qi evolves to q2n+7 in membrane q, and if there
is a membrane 0 that has not been dissolved, the object r2n+5 sends an object y
to membrane s′. On the contrary, only the counter qi evolves.

In step 2n + 7 the counter p2n+7 exits from membrane p to membrane s′, by
applying the first rule of type (6). If the formula ϕ is satisfiable then an object
y dissolves the membrane s′ by applying the sixth rule of type (6) producing an
object yes in the skin. In the next step, this object is sent to the environment
and the P system halts. On the contrary, if membrane s′ has not been dissolved,
the object p2n+7 in membrane s′ produces an object no in the skin, by using the
second rule of type (6); in the next step an object no is sent to the environment
and the system halts.

Therefore, if the formula is satisfiable, then the object yes exits the system
in step 2n + 8, and, if the formula is not satisfiable, then the object no exits the
system in step 2n + 9. In both cases, this is the last step of the computation.

The system Π(ϕ) uses 9n+2m+18 objects, m+6 initial membranes, containing
in total 4 objects, and 8n + 4m + 21 rules. The length of any rule is bounded by
m + 3. Clearly, all computations stop (after at most 2n + 9 steps) and all give the
same answer, yes or no, to the question whether formula ϕ is satisfiable, hence,
the system is weakly confluent. These observations conclude the proof. ut

Remark 1. 1. The system used in the previous proof is not in the one-normal
form, because the rules of type (b) are of the form [ha → u]h with u being an
arbitrary multiset. Because the maximal length of such strings u is known (m+
1), we can replace each rule of this form by m rules, each of them introducing
two objects; using rules of the form [ha → b]h, we can also synchronize the
applications of rules, hence, at the price of getting a computation m times
longer, we can obtain a sort of two-normal form. Of course, the rules of types
(b), (c), (d) can be also arranged to have either different objects or identical
objects. We leave the details as a task for the reader, together with the more
interesting issue of finding a polynomial solution to SAT by a system in the
one-normal form.

2. Let us note that we can design a deterministic P system Π(ϕ) working in
minimally parallel mode which decides the satisfiability of ϕ. To this aim,
it is enough to have m copies of the object b1 in each membrane 0 of the
configuration C2n+2. For that, the rule [ q2n+1 → b1]0 can be replaced by
[ q2n+1 → bm

1 ]0.
3. As a consequence of Theorem 4 we obtain the inclusion of NP∪ co−NP in

the class of all decision problems solvable in polynomial time in a semi–uniform
way by a family of P systems with polarizationless active membranes working
in the minimally parallel mode (let us recall that due to the confluence of the
P systems solving a decision problem, every P system that decides an instance
working in minimally parallel mode, also decides it working in the maximally
parallel mode, but the reciprocal is not true).
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5.2 A Formal Verification

In order to assure that the system Π(ϕ) decides the instance ϕ, two main properties
must to be proved: (a) if there exists an accepting computation of the P system
processing ϕ, answering yes, then the problem also answers yes for that instance
(soundness), and (b) if the problem answers yes, then any computation of the P
system processing that instance answers yes ( completeness). Hence, the system
Π(ϕ) must satisfy a condition of confluence: every computation of the system has
the same output.

To prove that the system Π(ϕ) is sound and complete with respect to the SAT
problem, it is sufficient to show that a truth assignment makes true the formula ϕ
if and only if in the configuration C2n+5 there is at least a membrane labeled by 0
that has not been dissolved.

If σ is a truth assignment on a set of variables {x1, . . . , xn}, then we write
σ(xi) = f or σ(xi) = t.

Lemma 2. For each i (1 ≤ i ≤ n) the following conditions hold true:

1. C2i−1(p) = {p2i}, C2i−1(s) = C2i−1(s′) = ∅.
2. For each truth assignment σ on {x1, . . . , xi} there exists a unique membrane

0 such that its contents is

{(σ(xi))i} ∪ {dj | cj ∈
⋃

1≤l≤i−2

(σ(xl))(xl) ∧ i ≥ 3}

∪ {cj | cj ∈
⋂

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 3}.

Moreover, it inside contains a membrane labeled by q which contains the object
q2i, a membrane labeled by r which contains the object r2i, and empty inner
membranes j, where 1 ≤ j ≤ m; moreover, if i ≥ 2, then:

(a) cj /∈
⋂

1≤l≤i−2

(σ(xl))(xl),

(b) if cj ∈ (σ(xi−1))(xi−1)−
⋂

1≤l≤i−2

(σ(xl))(xl), then C2i−1(j) = {cj}.

3. C2i(p) = {p2i+1}, C2i(s) = C2i(s′) = ∅.
4. For each truth assignment σ on {x1, . . . , xi} there exists a unique membrane

0 such that its contents is

{(σ(xi))(xi), ai+1} ∪ {dj | cj ∈
⋃

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 3},

where an+1 = λ.
Furthermore, it contains inside a membrane labeled by q which contains the
object q2i+1, a membrane labeled by r which contains the object r2i+1, and
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empty inner membranes j, where 1 ≤ j ≤ m; moreover, if i ≥ 2, then cj /∈⋂
1≤l≤i−1

(σ(xl))(xl).

Proof. By induction on n. It is easy to prove the base case. Let us suppose that
the result holds for i (1 ≤ i < n).

From the induction hypothesis, we deduce that the configuration C2i+1 is
obtained from C2i by applying the rules [p2i+1 → p2i+2]p, [ q2i+1 → q2i+2]q,
[ r2i+1 → r2i+2]r, [ai+1]0 → [ fi+1]0[ ti+1]0, and cj [ ] j → [ cj ] j (1 ≤ j ≤ m).

Hence, we have C2i+1(p) = {p2i+2} and C2i+1(s) = C2i+1(s′) = ∅. Moreover,
for each truth assignment σ on {x1, . . . , xi, xi+1} there exists a unique membrane
0 which contains

{(σ(xi+1))i+1} ∪ {dj | cj ∈
⋃

1≤l≤i−1

(σ(xl))(xl) ∧ i ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤i

(σ(xl))(xl) ∧ i ≥ 3}.

This membrane 0 inside contains a membrane labeled by q which contains the
object q2i+2, a membrane labeled by r which contains the object r2i+2, and inner
membranes j such that:

• if i ≥ 2 and cj ∈
⋂

1≤l≤i−1

(σ(xl))(xl), then membrane j has been dissolved,

• if i ≥ 2 and cj ∈ (σ(xi))(xi)−
⋂

1≤l≤i−1

(σ(xl))(xl), then C2i+1(j) = {cj};

• the remaining membranes are empty.

The configuration C2i+2 is obtained from C2i+1 by applying the rules [p2i+2 →
p2i+3]p, [ q2i+2 → q2i+3]q; [ r2i+2 → r2i+3]r, [ fi+1 → f(xi+1ai+1]0, [ ti+1 →
t(xi+1)ai+1]0, where an+1 = λ, and cj [ ] j → [ cj ] j (1 ≤ j ≤ m).

Hence, we have C2i+2(p) = {p2i+3} and C2i+2(s) = C2i+2(s′) = ∅. Moreover,
for each truth assignment σ on {x1, . . . , xi, xi+1} there exists a unique membrane
0 which contains

{(σ(xi+1))(xi+1)} ∪ {dj | cj ∈
⋃

1≤l≤i

(σ(xl))(xl) ∧ i ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤i

(σ(xl))(xl) ∧ i ≥ 3}

That membrane 0 inside contains a membrane labeled by q which contains the
object q2i+3, a membrane labeled by r which contains the object r2i+3, and empty
inner membranes j, where 1 ≤ j ≤ m; if i ≥ 2, then cj /∈

⋂
1≤l≤i

(σ(xl))(xl). ut

Lemma 3. The configuration C2n+5 fulfills the following conditions:



Polarizationless P Systems with Active Membranes 153

1. C2n+5(p) = {p2n+6}, C2n+5(s) = ∅, and the content of C2n+5(s′) is

{bu
2 , ru

2n+5} ∪ {dj | cj ∈
⋃

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 3},

where u is the number of truth assignment σ such that σ(ϕ) = 0.
2. For each assignment σ which satisfies the formula ϕ there exists a unique

membrane 0 whose contents is

{r2n+5} ∪ {dj | cj ∈
⋃

1≤l≤n

(σ(xl))(xl) ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ n ≥ 3}.

Corollary 1. The formula ϕ is satisfiable if and only if in the configuration C2n+5

there is at least a membrane labeled by 0 that has not been dissolved.

Proof. Indeed, a truth assignment σ is a satisfying assignment if and only if in
the configuration C2n+4 the object b1 from the membrane 0 associated with the
assignment σ has not entered any membrane j (1 ≤ j ≤ m), because all such
membranes have been dissolved in previous steps. But this condition is equivalent
to the existence of some membrane labeled by 0 in the configuration C2n+5. ut

Corollary 2. Let u be the number of truth assignments σ such that σ(ϕ) = 0, and
let C be a computation of Π(ϕ).

1. If the formula ϕ is satisfiable, then C2n+8(p) = ∅, the contents of C2n+8(s) is

{bu
2 , ru

2n+5, y
n−u−1, p2n+7} ∪ {dj | cj ∈

⋃
1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 3},

C2n+8(env) = yes, and the system halts giving an affirmative answer.
2. If the formula ϕ is not satisfiable, then C2n+8(p) = ∅, the contents of C2n+8(s′)

is

{bu
2 , ru

2n+5, y
n−u} ∪ {dj | cj ∈

⋃
1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 2}

∪ {cj | cj ∈
⋂

1≤l≤n

(σ(xl))(xl) ∧ σ(ϕ) = 0 ∧ n ≥ 3},

C2n+8(s) = {no}, C2n+9(p) = ∅, C2n+9(s) = ∅, C2n+9(env) = no, and the
system halts giving a negative answer.
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6 Final Remarks

We have shown that P systems with polarizationless active membranes are compu-
tationally complete, even when working in the minimally parallel mode with very
restricted forms of the rules, i.e., only evolving one object in or through a mem-
brane (one-normal form). Moreover, we have also shown that SAT can be solved
by P systems with polarizationless active membranes even when working in the
minimally parallel mode, but in this case the question whether we can restrict the
rules to the one-normal form remains as an open problem.
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