
Partial Versus Total Halting in P Systems

Artiom Alhazov1, Rudolf Freund2, Marion Oswald2, Sergey Verlan3

1 Department of Information Technologies
Abo Akademi University
Turku Center for Computer Science
FIN-20520 Turku, Finland
aalhazov@abo.fi

and
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD-2028, Moldova
aartiom@math.md

2 Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
{rudi,marion}@emcc.at

3 LACL, Département Informatique
UFR Sciences et Technologie
Université Paris XII
61, av. Général de Gaulle
94010 Créteil, France
verlan@univ-paris12.fr

Summary. We consider a new variant of the halting condition in P systems, i.e., a
computation in a P system is already called halting if not for all membranes a rule is
applicable anymore at the same time, whereas usually a computation is called halting if
no rule is applicable anymore in the whole system. This new variant of partial halting
is especially investigated for several variants of P systems working in different derivation
modes.

1 Introduction

In the seeding papers of Gheorghe Păun (e.g., see [19], [9]) introducing membrane
computing, membrane systems were introduced as systems with a hierarchical
(tree-like) structure and the rules being applied in a maximally parallel manner;
the results were taken as the contents of a specified output membrane in the final
configurations of halting computations, i.e., at the end of computations to which
no rule was applicable anymore. In this paper, we investigate a new variant of
halting – partial halting –, see [13], i.e., we consider a computation to halt as soon

2 A. Alhazov, R. Freund, M. Oswald, S. Verlan

as not for all membranes a rule is applicable anymore at the same time. Moreover,
we especially also consider the derivation mode of minimal parallelism (e.g., see
[7]), i.e., for each membrane, at least one rule – if possible – has to be applied, but
it is not required to use a maximal multiset of rules. Finally, in the asynchronous
derivation mode an arbitrary number of rules can be applied in parallel, and in the
sequential derivation mode exactly one rule has to be applied in each computation
step.

The paper is organized as follows: We first recall some well-known definitions,
notions, and results for matrix grammars and register machines and then define
a special model of P systems – P systems with permitting contexts – that covers
a lot of variants known from the literature such as antiport P systems, P systems
with conditional uniport rules, evolution/communication P systems, and P sys-
tems with boundary rules. For establishing our results, we especially consider the
new stopping mode of partial halting; we first state some general result and then
show that P systems using membrane rules with permitting contexts working in
the minimally parallel mode and with partial halting can only generate matrix
languages. On the other hand, we improve or newly establish results showing that
specific variants of P systems with permitting contexts such as antiport P systems,
P systems with conditional uniport rules, and evolution/communication P systems
together with the newly introduced variant of minimal parallelism and with total
halting are computationally complete.

2 Definitions

In this section, we first recall some basic notions and notations and then give pre-
cise definitions for matrix grammars, register machines, and a general model of
P systems using membrane rules with permitting contexts as they are considered
in this paper; moreover, we show how several well-known models of P systems (P
systems with symport/antiport rules, P systems with conditional uniport rules,
evolution/communication P systems, P systems with boundary rules) can be in-
terpreted as special variants of this general model.

2.1 Preliminaries

For the basic elements of formal language theory needed in the following, we refer
to [8] and [23]. We just list a few notions and notations: N denotes the set of non-
negative integers. V ∗ is the free monoid generated by the alphabet V under the
operation of concatenation and the empty string, denoted by λ, as unit element;
by NRE and NREG we denote the family of recursively enumerable sets and
regular sets of non-negative integers, respectively.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol
ai in x is denoted by |x|ai

; the Parikh vector associated with x with respect to
(a1, ..., an) is

(
|x|a1

, ..., |x|an

)
. The Parikh image of a language L over (a1, ..., an)

Partial Versus Total Halting in P Systems 3

is the set of all Parikh vectors of strings in L. For a family of languages F, the
family of Parikh images of languages in F is denoted by PsF. A (finite) multiset
〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, can be represented by any string x the
Parikh vector of which with respect to (a1, ..., an) is (m1, ...,mn); if mi = 1 for all
1 ≤ i ≤ n, then x can also be represented by the corresponding set {m1, ...,mn}.

The family of recursively enumerable languages is denoted by RE, the family
of context-free and regular languages by CF and REG, respectively. The corre-
sponding families of languages over a k-letter alphabet are denoted by X (k) ,
X ∈ {RE,CF, REG}; for k = 1 we obtain PsX (1) = NX and, moreover,
NREG = NCF.

2.2 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct
G = (N,T, S,M) where N and T are sets of non-terminal and terminal sym-
bols, respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of
matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form
mi = (mi,1, . . . ,mi,ni

), ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N,T). For mi = (mi,1, . . . ,mi,ni

) and v, w ∈
(N ∪ T)∗ we define v =⇒mi

w if and only if there are w0, w1, . . . , wni
∈ (N ∪ T)∗

such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj is the result of the
application of mi,j to wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T)∗ , mij ∈ M for 1 ≤ j ≤ k, k ≥ 1
}

.

The family of languages generated by matrix grammars without appearance check-
ing (over a one-letter alphabet) is denoted by MATλ (MATλ (1)). It is known
that CF ⊂ MATλ ⊂ RE as well as PsCF ⊂ PsMATλ ⊂ PsRE, and espe-
cially NREG = NCF = PsMATλ (1) ⊂ NRE. For further details about matrix
grammars we refer to [8] and to [23].

2.3 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [17]
for original definitions, and to [11] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, B, P, p0, ph) , where n is the
number of registers, B is a set of labels for injectively labelling the instructions in
P , p0 is the initial/start label, and ph is the final label.

The instructions are of the following forms:

– p : (A (r) , q, s) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) q and s.

4 A. Alhazov, R. Freund, M. Oswald, S. Verlan

– p : (S (r) , q, s) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to instruction
q, otherwise proceed to instruction s.

– ph : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(n1, ..., nβ) of natural numbers if, starting with the instruction with label p0 and
all registers containing the number 0, the machine stops (it reaches the instruction
ph : halt) with the first β registers containing the numbers n1, ..., nβ (and all other
registers being empty).

Without loss of generality, in the succeeding proofs we will assume that for
non-deterministic register machines in each ADD instruction p : (A (r) , q, s) ∈ P
and in each SUB instruction p : (S (r) , q, s) ∈ P the labels p, q, s are mutually
distinct (for a proof see [16]).

A register machine is called deterministic if and only if in every ADD instruc-
tion p : (A (r) , q, s) ∈ P we have q = s; in this case we also write p : (A (r) , q)
instead. A deterministic register machine M is said to accept a vector (n1, ..., nβ)
of natural numbers if, starting with the instruction with label p0 and registers 1 to
β containing the numbers n1, ..., nβ , the machine stops (it reaches the instruction
ph : halt) with the all registers being empty.

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets of
vectors of non-negative integers which can be generated by Turing machines, i.e.,
the family PsRE.

The results proved in [10] (based on the results established in [17]) and [11],
[14] immediately lead to the following results:

Proposition 1. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M gen-
erating L in such a way that, when starting with all registers 1 to β+2 being empty,
M non-deterministically computes and halts with ni in registers i, 1 ≤ i ≤ β, and
registers β + 1 and β + 2 being empty if and only if (n1, ..., nβ) ∈ L. Moreover, the
registers 1 to β are never decremented.

Proposition 2. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a deterministic (β + 2)-register machine M accepting
L in such a way that, when starting with n1, ..., nβ in registers 1 to β and with
register β + 1 and β + 2 being empty, M halts with all registers being empty if and
only if (n1, ..., nβ) ∈ L.

2.4 A General Model of P Systems with Permitting Contexts

We now introduce a general model of P systems with permitting contexts cov-
ering the most important models of communication P systems as well as evolu-
tion/communication P systems. For the state of the art in the P systems area, we
refer to the P systems web page [25].

Partial Versus Total Halting in P Systems 5

A P system (of degree d, d ≥ 1) with permitting contexts (in the following also
called P system for short) is a construct

Π = (V, T,E, µ, w0, w1, . . . , wd, R1, . . . , Rd, io) where

1. V is an alphabet; its elements are called objects;
2. T ⊆ V is an alphabet of terminal objects;
3. E ⊆ V is the set of objects occurring in an unbounded number in the environ-

ment;
4. µ is a membrane structure consisting of d membranes (usually labelled with i

and represented by corresponding brackets [i and]i, 1 ≤ i ≤ d);
5. wi, 1 ≤ i ≤ d, are strings over V associated with the regions 1, 2, . . . , d of µ;

they represent multisets of objects initially present in the regions of µ; w0 rep-
resents the multiset of objects from V rE initially present in the environment
(in the following we usually shall assume w0 = λ);

6. Ri, 1 ≤ i ≤ d, are finite sets of membrane rules with permitting contexts over
V associated with the membranes 1, 2, . . . , d of µ; these evolution rules in Ri

are of the form u
w [x

z → v
w [y

z , where w, z ∈ V ∗ are the contexts in the region
outside membrane i and inside membrane i, respectively, u outside membrane
i is replaced by v and x inside membrane i is replaced by y;

7. io is a number between 1 and d and it specifies the output membrane of Π.

The rule u
w [x

z → v
w [y

z from Ri is applicable if and only if the multiset uw
occurs in the region outside membrane i (in the following also denoted by ı̂) and
the multiset xz occurs in the region inside membrane i. The application of this rule
results in subtracting the multiset identified by u from the multiset in ı̂ and adding
v instead as well as subtracting x and adding y in the region inside membrane i.
The permitting contexts w and z themselves or subsets of w and z can be (part
of) permitting contexts in other rules and, moreover, even be modified by another
rule in the same derivation step. On the other hand, any object can be modified,
i.e., be part of u or x in a rule u

w [x
z → v

w [y
z , by only one application of one rule

in each derivation step. The rules to be applied in parallel and the objects to be
modified by these rules are chosen in a non-deterministic way.

Instead of writing u
w [x

z → v
w [y

z ∈ Ri we can also write u
w [i

x
z → v

w [i
y
z and

in this way collect all rules from the Ri, 1 ≤ i ≤ d, in one single set of rules
R =

{
u
w [

i

x
z →

v
w [

i

y
z |

u
w [x

z →
v
w [y

z ∈ Ri

}
.

The membrane structure and the multisets represented by wi, 0 ≤ i ≤ d, in Π
constitute the initial configuration of the system.

In the maximally parallel derivation mode, a transition from one configuration
to another one is obtained by the application of a maximal multiset of rules,
i.e., no additional rules could be applied anymore to the objects occurring in the
current configuration. The system continues maximally parallel derivation steps
until there remain no applicable rules in any region of Π; then the system halts
(total halting). We consider the number of objects from T contained in the output
membrane io at the moment when the system halts as the result of the underlying

6 A. Alhazov, R. Freund, M. Oswald, S. Verlan

computation of Π yielding a vector of non-negative integers for the numbers of
terminal symbols in the output membrane i0; observe that here we do not count
the non-terminal objects present in the output membrane. The set of results of
all halting computations possible in Π is denoted by Ps (Π), respectively. Below,
we shall consider variants of P systems using only rules of very restricted types α.
The family of all sets of vectors of non-negative integers computable by P systems
with d membranes and using rules of type α is denoted by PsgOPd (α, max,H).

When using the minimally parallel derivation mode, in each derivation step we
choose a multiset of rules from the Ri in such way that to this chosen multiset
no rule from a set Rj from which no rule has been taken so far, could be added
anymore to be applied in parallel with the rules already chosen.

In the asynchronous and the sequential derivation mode, in each derivation step
we apply an arbitrary number of rules/ exactly one rule, respectively. The corre-
sponding families of sets of vectors of non-negative integers generated by P systems
with d membranes and using rules of type α are denoted by PsgOPd (α, X, H),
X ∈ {min, asyn, sequ}.

If instead of the total halting we take partial halting, i.e., computations halting
as soon as in at least from one set of rules no rule is applicable anymore, the corre-
sponding families are denoted by PsgOPd (α, X, h), X ∈ {max,min, asyn, sequ}.

All these variants of P systems can also be considered as accepting devices,
the input being given as the numbers of objects in the distinguished membrane
i0. The corresponding families of sets of vectors of non-negative integers ac-
cepted by P systems with d membranes and using rules of type α are denoted
by PsaOPd (α, X, Y) , X ∈ {max,min, asyn, sequ}, Y ∈ {H,h}. In this case, it
also makes sense to consider deterministic P systems, i.e., systems where for each
configuration obtained in this system we can derive at most one configuration. The
corresponding families are denoted by DPsaOPd (α, X, Y).

If we only count the number of terminal objects and do not distinguish between
different (terminal) objects, in all the definitions given above, we replace Ps by
N . When the parameter d is not bounded, it is replaced by ∗.

In the following, we now consider several restricted variants of membrane rules
with permitting contexts well known from the literature.

P systems with symport/antiport rules

For definitions and results concerning P systems with symport/antiport rules, we
refer to the original paper [18] as well as to the overview given in [22]. An antiport
rule is a rule of the form u [x → x [u usually written as (x, out;u, in), ux 6= λ.
A symport rule is of the form [x → x [or u [→ [u usually written as (x, out),
x 6= λ, or (u, in), u 6= λ, respectively.

The weight of the antiport rule (x, out;u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type α usually written as antik. The
weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|, respectively.
Using only symport rules with weight k induces the type α usually written as

Partial Versus Total Halting in P Systems 7

symk. If only antiport rules (x, out;u, in) of weight ≤ 2 and with |x|+ |u| ≤ 3 as
well as symport rules of weight 1 are used, we shall write anti2′ .

P systems with conditional uniport rules

A conditional uniport rule is a rule of one of the forms ab [→ b [a , [ab → a [b ,
a [b → [ab , b [a → ab [, with a, b ∈ V ; in every case, the object a is moved across
the membrane, whereas the object b stays where it is. Using only rules of that kind
induces the type uni1,1. Conditional uniport rules were first considered in [24] for
the case of tissue P systems, showing computational completeness with maximal
parallelism and total halting (using 24 cells).

P systems with boundary rules and evolution/communication P
systems

In P systems with boundary rules as defined in [4], evolution rules as well as
communication rules with permitting contexts are considered. Usually, we only
consider evolution rules that are non-cooperative, i.e., of the form a → v with
a ∈ V and v ∈ V ∗; a rule a → v ∈ Ri corresponds to [a → [v ∈ Ri in our general
notation. The communication rules are symport or antiport rules with permitting
contexts, i.e., of the form u

w [x
z →

x
w [u

z .
In [5], boundary rules of the form u [x → v [y are considered, i.e., rewriting on

both sides of the membrane. In evolution/communication P systems as introduced
in [6], we allow non-cooperative evolution rules as well as antiport (of weight k) and
symport rules (of weight l), and we denote this type of rules by (ncoo, antik, syml).

3 Results

After recalling some general results for the new variant of partial halting already
established in [13], which immediately yield comparable computational complete-
ness results in the case of antiport P systems for total and partial halting, we prove
that P systems with permitting contexts working in the sequential, in the asyn-
chronous or even in the minimally parallel derivation mode and with partial halting
can only generate Parikh sets of matrix languages (regular sets of non-negative in-
tegers). On the other hand, specific variants of P systems with permitting context
such as P systems with antiport rules, P systems with symport rules, P systems
with conditional uniport rules, and evolution/communication P systems together
with the newly introduced variant of minimal parallelism and with total halting
are computationally complete.

3.1 General Observations

Looking carefully into the definitions of the derivation modes as well as the halting
modes explained above, we observe the following general results already established
in [13]:

8 A. Alhazov, R. Freund, M. Oswald, S. Verlan

Theorem 1. Any variant of P systems yielding a family of sets of non-negative
integers F when working in the derivation mode X, X ∈ {max,min, asyn, sequ},
with only one set of rules assigned to a single membrane and stopping with total
halting yields the same family F when working in the derivation mode X with only
one set of rules assigned to a single membrane when stopping with partial halting,
too.

Theorem 2. Any variant of P systems yielding a family of sets of non-negative
integers F when working in the derivation mode X, X ∈ {asyn, sequ}, with only
one set of rules assigned to a single membrane and stopping with total or partial
halting, respectively, yields the same family F when working in the minimally
parallel derivation mode and stopping with the corresponding halting mode, too.

For any P system using rules of type α, with a derivation mode X, X ∈
{min, asyn, sequ}, and partial halting, we only get Parikh sets of matrix languages
(regular sets of non-negative integers):

Theorem 3. For every X ∈ {min, asyn, sequ},
PsgOP∗ (α, X, h) ⊆ PsMATλ and NgOP∗ (α, X, h) ⊆ NREG.

Proof. We only prove PsgOP∗ (α, X, h) ⊆ PsMATλ; the second inequality
NgOP∗ (α, X, h) ⊆ NREG is a direct consequence of the first one, having
in mind that NREG = PsMATλ (1). Hence, let us start with a P system
Π = (V, T,E, µ, w1, . . . , wd, R1, . . . , Rd, io) using rules of a specific type α, working
with the derivation mode X. The stopping condition h – partial halting – then
guarantees that in order to continue a derivation there must exist a sequence of
rules 〈r1, . . . , rd〉 with ri ∈ Ri, 1 ≤ i ≤ d, such that all these rules are applicable
in parallel. We now consider all functions δ with δ (i, r) ∈ {0, 1} and δ (i, r) = 1 if
and only if the rule r ∈ Ri, 1 ≤ i ≤ d, is assumed to be applicable to the current
sentential form in a matrix grammar GM =

(
VM , T , S,M

)
generating represen-

tations of all possible configurations computable in the given P system Π with
the representation of an object a in membrane i as (i, a). We start with the ma-
trix (S → Kh (w)) where h (w) is a representation of the initial configuration. A
derivation step in Π then is simulated in GM as follows:

(i) We non-deterministically choose some δ as described above and use the
matrix (K → K (δ)). Afterwards, we use the matrix (K (δ) → K ′ (δ) , s1, ..., sm)
where each subsequence sj , 1 ≤ j ≤ m, checks the applicability of
a rule r ∈ Ri with δ (i, r) = 1. For checking the applicability of
u
w [x

z → v
w [y

z ∈ Ri, we have to check for the appearance of uw in
membrane ı̂ (the outer region of membrane i) and for the appearance of
xz in the (inner) region of membrane i. This can be done by the sub-
sequence ((̂ı, uw) → (̂ı, uw) , (̂ı, uw) → (̂ı, uw) , (i, xz) → (i, xz) , (i, xz) → (i, xz)),
where (i, v) → (i, v), for v = v1...vh, vj ∈ V , 1 ≤ j ≤ h, h ≥ 0, is a shortcut
for the sequence ((i, v1) → (i, v1) , ..., (i, vh) → (i, vh)) etc.

(ii) After that, we non-deterministically guess a sequence of rules 〈r1, . . . , rd〉
with ri ∈ Ri, ri = u(i)

w(i)
[x(i)
z(i)

→ v(i)
w(i)

[y(i)
z(i)

, and δ (i, ri) = 1, 1 ≤

Partial Versus Total Halting in P Systems 9

i ≤ d, such that all these rules are applicable in parallel. This can be
checked by the corresponding matrix (K ′ (δ) → K ′′ (δ) , t1, ..., td, t

′
1, ..., t

′
d) with

the subsequences ti, t′i, 1 ≤ i ≤ d, being defined (in the shortcut nota-
tion as above) by ti =

(
(̂ı, u (i)) →

(
ı̂, u (i)

)
, (i, x (i)) →

(
i, x (i)

))
and t′1 =((

ı̂, u (i)
)
→ (̂ı, u (i)) ,

(
i, x (i)

)
→ (i, x (i))

)
. Observe that only the objects in

u (i) and x (i) are assigned to the rule ri, whereas the permitting contexts w (i)
and z (i) may be contexts for another rule or be affected themselves by another
rule, and, moreover, that the applicability of the rules themselves has already been
checked in (i).

(iii) Finally, we take different matrices depending on the derivation mode:

1. In the sequential derivation mode, we only have to take all possible matrices
simulating the application of one rule u

w [x
z → v

w [y
z ∈ Ri with δ (i, r) = 1:

(K ′′ (δ) → Khı̂ (v)hi (y) , (̂ı, u) → λ, (i, x) → λ), where the morphisms hj are
defined by hj (a) = (j, a), 0 ≤ j ≤ d, a ∈ V , except h0 (a) = λ for a ∈ E
(these symbols, by definition, are available in an unbounded number in the
environment).

2. In the asynchronous derivation mode, we have to allow an arbitrary num-
ber of rules to be applied in parallel; we simulate the application of rules
sequentially, priming the results such that they cannot be used immediately.
Finally, if for the current derivation step, the application of no further rule is
intended, we can deprime the result symbols to be available for the simulation
of the next derivation step. In sum, we use the matrices (K ′′ (δ) → K ′′′ (δ)),
(K ′′′ (δ) → K ′′′ (δ)h′ı̂ (v) h′i (y) , (̂ı, u) → λ, (i, x) → λ) – where the morphisms
h′j are defined by h′j (a) = (j, a′), 0 ≤ j ≤ d, a ∈ V , except h′0 (a) = λ for a ∈ E

– for every rule u
w [x

z →
v
w [y

z ∈ Ri with δ (i, r) = 1, as well as
(
K ′′′ (δ) → K (δ)

)
,(

K (δ) → K (δ) , (j, a′) → (j, a)
)
, 0 ≤ j ≤ d, a ∈ V , and finally

(
K (δ) → K

)
.

3. For the minimally parallel mode, instead of (K ′′ (δ) → K ′′′ (δ)) as in
2, we simulate the application of a sequence of rules 〈r1, . . . , rd〉 with
ri ∈ Ri, 1 ≤ i ≤ d, ri = u(i)

w(i)
[x(i)
z(i)

→ v(i)
w(i)

[y(i)
z(i)

, and δ (i, ri) =
1 such that all these rules are applicable in parallel, which is ac-
complished by the matrix

(
K ′′ (δ) → K ′′′ (δ) h′

1̂
(v) h′1 (y) ...h′

d̂
(v)h′d (y) ,(

1̂, u (1)
)
→ λ, (1, x (1)) → λ, ...,

(
d̂, u (d)

)
→ λ, (d, x (d)) → λ

)
.

As a technical detail we have to mention that it does not matter whether all
the primed symbols are deprimed again, this would just make them unavailable
during the next steps. Any sentential form containing primed symbols is considered
to be non-terminal, hence, it cannot contribute to L (GM). Moreover, we have to
point out that every symbol e ∈ E from the environment being available there
in an unbounded number neither needs to be checked for appearance in 1̂ (= 0)
nor to be generated/eliminated or primed/deprimed, i.e., rules like (0, e) → λ,
(0, e) → (0, e), (0, e) → (0, e) have to be omitted.

10 A. Alhazov, R. Freund, M. Oswald, S. Verlan

Finally, we may stop the simulation of computation steps of Π and use the
matrices (K → F), (F → F, (i, a) → (i, a)) for every object a and every membrane
i, and the final matrix (F → λ) for generating a terminal string of GM .

Now, we have to extract the representations of final configurations from
L (GM): For every possibility of choosing a sequence of rules 〈r1, . . . , rd〉 with
ri ∈ Ri, 1 ≤ i ≤ d, such that all these rules are applicable in parallel, we construct
a regular set checking for the applicability of this sequence in any possible repre-
sentation of configurations of Π; then we take the union of all these regular sets
and take its complement thus obtaining a regular set R. In L (GM) ∩ R we then
find at least one representation for every final configuration of computations in Π,
but no representation of a non-final configuration.

Finally, let g be a projection with g ((i, a)) = λ for every i 6= i0 as well as
g ((i0, a)) = λ for a ∈ V r T and g ((i0, a)) = a for a ∈ T . Due to the closure
properties of MATλ, we obtain Ps (g (L (GM) ∩R)) = Ps (Π) ∈ PsMATλ.

3.2 Results for Symport/Antiport Systems

The following results are well known (e.g., see [20]; for an overview of actual results
also see [22]):

Theorem 4. PsgOP1 (anti2′ ,max, H) = DPsaOP1 (anti2′ ,max, H) = PsRE.

Theorem 5. For every X ∈ {asyn, sequ},
PsgOP∗ (anti∗, X,H) = PsgOP1 (anti2′ , X,H) = PsMATλ and
NgOP∗ (anti∗, X,H) = NgOP1 (anti2′ , X,H) = NREG .

Recently, for minimal parallelism, the following result was obtained, see [7]:

Theorem 6. NgOP3 (anti2,min, H) = NRE.

We shall improve this result by showing that only two membranes are needed:

Theorem 7. PsgOP2 (anti2′ ,min, H) = PsRE.

Proof. We only give a sketch of the proof, because the basic ideas are the same as
in the usual proofs showing computational completeness for antiport P systems.
Now let M = (n, B, P, p0, ph) be a register machine generating an output vector
of dimension k (≤ n); then we construct the P system

Partial Versus Total Halting in P Systems 11

Π = (V, T, V, µ, p0, ZX,R1, R2, 2) ,
V = {p, p′, p′′, p′′′, p̃, p̃′, p̃′′, p̄, p̄′, p̄′′ | p ∈ B}

∪ {X, Y, Z, Z ′} ∪ {Ai | 1 ≤ i ≤ n} ,
T = {Ai | 1 ≤ i ≤ k} ,
µ = [1 [2]2]1,
R1 = R1,A ∪R1,S ∪R1,F ,
R1,A = {(p, out;Arq, in) , (p, out;Ars, in) | p : (A (r) , q, s) ∈ P} ,
R1,S = {(p, out; p′p′′, in), (p′′Ar, out; p′′′, in), (p′′X, out; p̄, in),

(p′′′X, out; p̃, in), (p̄, out; p̄′X, in), (p̄′, out; p̄′′Y, in),
(p̄′′, out; s, in), (p̃, out; p̃′X, in), (p̃′, out; p̃′′Y, in),
(p̃′′, out; q, in) | p : (S (r) , q, s) ∈ P} ,

R1,F = {(p′Y, out;Z ′, in) | p ∈ B r {ph}} ∪ {(Z ′, out) , (ZX, out;Z ′, in)} ,
R2 = R2,A ∪R2,S ∪R2,F ,
R2,A = {(Ai, in) | 1 ≤ i ≤ k} ,
R2,S = {(X, out; p′, in) | p ∈ B r {ph}} ∪ {(Z, out;XY, in) , (Z, in)} ,
R2,F = {(p′Y, out; ph, in) | p ∈ B r {ph}} ∪ {(ZX, out; ph, in) , (ph, out)} .

An ADD instruction p : (A (r) , q, s) ∈ P is simulated by using one of the rules
(p, out;Arq, in), (p, out;Ars, in) assigned to membrane 1; in case r is an output
register, the terminal symbol Ar is moved into the output region 2 by using (Ar, in)
from R2. A SUB instruction p : (S (r) , q, s) ∈ P is simulated by using the rules
from R1,S and R2,S in parallel. The final procedure in Π starts when the final
label ph appears; as the number of symbols p′ equals the number of symbols Y as
they have been introduced when simulating a SUB instruction, we finally eliminate
pairs p′Y from the system using the rules from R1,F and R2,F until finally only
ph remains in the skin membrane and the desired output is found in the second
membrane region, without any additional symbols remaining there anymore.

The general result in Theorem 1 and the special result in Theorem 4 immedi-
ately yield the following one:

Corollary 1. PsgOP1 (anti2′ ,max, h) = DPsaOP1 (anti2′ ,max, h) = PsRE.

With the other derivation modes and partial halting, we only get Parikh sets
of matrix languages (regular sets of non-negative integers), which is an immediate
consequence of Theorem 3:

Corollary 2. For every X ∈ {min, asyn, sequ},
PsgOP∗ (anti∗, X, h) = PsgOP1 (anti2′ , X, h) = PsMATλ and
NgOP∗ (anti∗, X, h) = NgOP1 (anti2′ , X, h) = NREG.

For symport rules, the following result is known (e.g., see [22]):

Theorem 8. PsgOP2 (sym2,max,H) = PsaOP2 (sym2,max,H) = PsRE.

Computational completeness can also be obtained with minimal parallelism
and total halting, whereas as a direct consequence of Theorem 3, we only get
Parikh sets of matrix languages (regular sets of non-negative integers) with partial
halting:

12 A. Alhazov, R. Freund, M. Oswald, S. Verlan

Theorem 9. PsgOP2 (sym3,min, H) = PsRE.

Proof. Let M = (n, B, P, p0, ph) be a register machine generating an output vector
of dimension k (≤ n); then we construct the P system

Π = (V, T,E, µ, p0, w1, w2, R1, R2, 2) ,
V = {p, p′, p′′, p′′′, p̃, p̃′, p̃′′, p̃′′′, p̄, p̄′, p̄′′, p̄′′′, p̂, p̂′ | p ∈ B}

∪ {Ai | 1 ≤ i ≤ n} ,
T = {Ai | 1 ≤ i ≤ k} ,
E = V r {p′h} ∪ {p′, p′′′, p̃′′, p̄, p̄′, p̄′′′, p̂′ | p ∈ B}
µ = [1 [2]2]1,
w1 = {p0, p

′
h} ∪ {p′, p′′′, p̃′′, p̄, p̄′′′ | p ∈ B} ,

w2 = {p̂′, p̄′ | p ∈ B} ,
R1 = R1,A ∪R1,S ∪R1,F ,
R1,A = {(pp′, out) , (p′Arp

′′, in) , (p′′p′′′, out) , (p′′′q, in) , (p′′′s, in)
| p : (A (r) , q, s) ∈ P, 1 ≤ r ≤ k}

∪ {(pp′, out) , (p′Arq, in) , (p′Ars, in)
| p : (A (r) , q, s) ∈ P, k < r ≤ n} ,

R1,S = {(pp′, out) , (p̃p̃′p′, in) , (p̃′p̃′′Ar, out) ,
(p̃′′p̃′′′, in) , (p̄p′′′p̃′′′, out) , (p̄p′′′q, in) ,
(p̃p̃′p̄′, out) , (p̄′p̄′′, in) , (p̄p̄′′p̄′′′, out) , (p̄p̄′′′s, in)
| p : (S (r) , q, s) ∈ P} ,

R1,F = {(p̂ip̂
′
ip̄
′
i, out) | 1 ≤ i ≤ l} ∪

{(
p̂′ip̂

′
i+1, in

)
| 1 ≤ i < l

}
∪ {(php′h, out) , (p′hp̂1, in)} ,

R2 = R1,A ∪R1,S ∪R2,F ,
R2,A = {(Ai, in) | 1 ≤ i ≤ k} ,
R2,S = {(p̃p̄, in) , (p̃p̄′, out) , (p̄′p̃′′′, in) , (p̄′p̄′′, in) ,

(p̄p̃′′′, out) , (p̄p̄′′, out) | p : (S (r) , q, s) ∈ P} ,
R2,F = {(p̂i, in) , (p̂i, out) , (p̂ip̂

′
ip̄
′
i, out) | 1 ≤ i ≤ l} .

An ADD instruction p : (A (r) , q, s) ∈ P , k < r ≤ n, is simulated by sending
out the label of the instruction p together with p′ which returns with Ar as well as
the label of the next instruction q or s to be simulated. The simulation of an ADD
instruction p : (A (r) , q, s) ∈ P , 1 ≤ r ≤ k, takes two steps more – after sending
out p, p′ we return with p′ and Ar as well as with p′′ which is sent out together with
p′′′; p′′′ then returns with the label of the next instruction q or s to be simulated,
whereas in the meantime Ar has got the chance to enter membrane 2.

In the case of a SUB instruction p : (S (r) , q, s) ∈ P , p′ returns with p̃ and
p̃′. Whereas p̃ enters membrane 2 together with p̄, p̃′ gets the chance to take one
copy of Ar out of region 1 using the rule (p̃′p̃′′Ar, out). Depending on whether this
rule had to be applied or not, the simulation proceeds until finally the label of the
corresponding instruction to be simulated next is brought in together with p′′′ or
p̄′′′, respectively. We should like to mention that all the symbols from V r E used
during the simulation finally have returned to their original locations.

When the computation of the register machine stops, the label ph appears; in
order to clean the elementary membrane region 1 from non-terminal symbols we

Partial Versus Total Halting in P Systems 13

have to use the rules from R1,F and R2,F ; the labels from B are assumed to be
ordered in a sequence p1 to pl. The symbols p̄′i are taken out one after the other
using the rules (p̂ip̂

′
ip̄
′
i, out); the rules (p̂i, in) and (p̂i, out) could be used for an

unbounded number of steps, but for obtaining a terminating computation at some
moment the rule (p̂ip̂

′
ip̄
′
i, out) has to be used twice. The computation halts when

all p̄′i have been taken out.

Corollary 3. For every X ∈ {min, asyn, sequ},
PsgOP∗ (sym∗, X, h) = PsMATλ and NgOP∗ (sym∗, X, h) = NREG.

3.3 Results for P Systems with Conditional Uniport Rules

Using only conditional uniport rules of type uni1,1, we again obtain computational
completeness, even with the minimally parallel derivation mode, together with
total halting, whereas, as a direct consequence of Theorem 3, with partial halting
we only get Parikh sets of matrix languages (regular sets of non-negative integers)
with the minimally parallel derivation mode.

Theorem 10. PsgOP13 (uni1,1, X,H) = PsRE, for every X ∈ {min,max}.

Proof. We only give a sketch of the proof showing how register machine instruc-
tions can be simulated, using the following membrane structure:

[1 [2 [2′]2′]2 [3 [6]6 [7 [7′]7′]7 [8 [8′]8′]8]3 [4]4 [5 [5′ [5′′]5′′]5′]5]1

Throughout the proof we will use a specific notation for the conditional uni-
port rules to illustrate the trajectories of the objects, in a more relaxed way also
allowing symport rules of weight one (observe that we could use dummy objects as
conditions). Now let i be a membrane and ı̂ be the surrounding membrane (for the
skin membrane 1 this is the environment 0) ; then we use the following notations
(a, b are arbitrary objects):

(i, a, ı̂) represents [
i

a → a [
i
,

(̂ı, a, i) represents a [
i
→ [

i

a ,

(i, a → ı̂, b) represents b [i
a → ab [i ,

(̂ı, a → i, b) represents a [i
b → [i

ab ,

(i, a [b] → ı̂) represents [
i

ab → a [
i

b ,

(̂ı, a [b] → i) represents ab [
i
→ b [

i

a .

Moreover, we will use the shortcut notation

(A,B; i1, . . . , ik; j1, . . . , jk−1)

which corresponds to the following group of rules:

14 A. Alhazov, R. Freund, M. Oswald, S. Verlan

0

1

�
�

�

A
A
A
A
A
A
AA

@
@

@
2

2′

5

@
@

@@
5′

5′′

3

�
�

�
6

@
@

@
8

8′

7

7′

4

Fig. 1. Membrane structure

(it, B, jt)
(jt, B, j′t)
(j′t, B, jt)
(it, A[B], it+1)
(it, B → it+1, A)
for all 1 ≤ t ≤ k − 1

Informally, this means that the symbols A and B travel together from membrane i1
to membrane ik following the path i1, . . . , ik. The rules above permit to implement
this behavior in 2k steps, because if something else happens, then symbol B will
be trapped between membranes jt and j′t. Of course, we assume that B can never
go out from membrane jt and that B cannot interact with other symbols during
its move along the path.

The system is constructed as follows: membrane 8 holds the current state, mem-
brane 7 holds values of registers, membranes 4, 5 and 6 hold additional symbols.
Membrane 2 and all primed membranes are used to trap symbols.

For simulating an ADD instruction, the state symbol from membrane 8 travels
with an accompanying symbol (from membrane 6) to membrane 5. The accompa-
nying symbol then brings a second accompanying symbol from the environment
and both of them move the new state and a copy of the register object Ar to the
corresponding membranes. After that, the first accompanying symbol returns to
its original location.

Partial Versus Total Halting in P Systems 15

The SUB instruction is simulated in an even easier way. The state symbol
brings two symbols from membrane 6 to membrane 3. While it travels with one
of these symbols to membrane 5, the second one tries to decrement the register.
Now depending on the position of this second symbol (membrane 3 if the register
is zero, or membrane 1 if the register is not zero) the corresponding new state is
chosen.

We remark, that finally all involved symbols return to their original locations.
Moreover, we always move groups of two symbols and if a rule not conforming to
the scenario above is applied, then one of these symbols is trapped.

In more detail, for the simulation of an ADD instruction p : (A (r) , q, s) the
following rules are used:

I. (Ip, p; 3, 1, 5; 7, 2)
II. (Tp, Ip; 5, 1; 5′)

III. (Ip, Ar; 1, 3, 7; 2, 8)
IV. (Xp, q; 1, 3, 8; 2, 7)
V. (Xp, s; 1, 3, 8; 2, 7)

1. (8, p, 3) 2. (6, Ip → 3, p)
3. (3, Ip, 6) 4. (7, Ip, 3)
5. (0, Ar → 1, Ip) 6. (0, Xp → 1, T ′′

p)
7. (5, T ′

p → 1, Tp) 8. (5, q → 1, Tp)
9. (5, s → 1, Tp) 10. (1, T ′

p, 5)
11. (1, Tp[q], 5) 12. (1, Tp[s], 5)
13. (4, T ′′

p → 1, T ′
p) 14. (1, T ′′

p , 4)
15. (1, Tp, 2) 16. (1, Xp, 2)
17. (2, Tp, 2′) 18. (2, Xp, 2′)
19. (2′, Tp, 2) 20. (2′, Xp, 2)
21. (8, Xp, 8′)

The simulation usually starts with p in membrane 8, with Ip being in membrane
6, and q, s in membrane 5, respectively.

Symbol p goes to membrane 3 and brings there symbol Ip from membrane 6.
After that they both travel to membrane 5. There symbol Ip is moved together
with symbol Tp to membrane 1. After that Ip brings one Ar from the environment
and they travel together to membrane 7 and continue afterwards to membrane 3
and 6. In the meanwhile, symbol Tp in membrane 1 brings T ′

p and q or s (in this
order, otherwise the state symbol will be trapped in membrane 2). At the same
time when q (or s) is brought in membrane 1, symbol T ′′

p is brought into membrane
1 by T ′

p. After that symbol Tp is sent to membrane 5 and at the same time symbol
Xp is brought into membrane 1 by the symbol T ′′

p . Finally, symbols Xp and q (or
s) go together to membrane 8. We remark that the rules 3, 10 or 14 may be used
instead of some rules of the chain presented above. But in this case symbol p or
symbol Tp will be trapped. We also remark that Xp and q will be ready to move
to membrane 3 after Ip and Ar have arrived there.

16 A. Alhazov, R. Freund, M. Oswald, S. Verlan

The simulation of a SUB instruction p : (A (r) , q, s) is performed by the fol-
lowing rules:

I. (M ′
p, p; 1, 5; 2)

II. (Mp, A; 3, 1; 8)
III. (q, M ′

p; 5, 1; 5′)
IV. (s,M ′

p; 5, 1; 5′)
V. (Mp, q; 1, 3; 2)

1. (8, p, 3) 2. (6,Mp → 3, p)
3. (6,M ′

p → 3, p) 4. (3,M ′
p[Mp], 6)

5. (3,Mp → 6,M ′
p) 6. (7, Ar → 3,Mp)

7. (3,Mp[p], 1) 8. (3, p → 1,M ′
p)

9. (1,M ′
p, 3) 10. (1, s → 3,Mp)

11. (1, Ar[Mp], 0) 12. (3, q[Mp], 8)
13. (3, s[Mp], 8) 14. (3, p, 7)
15. (7, p, 7′) 16. (7′, p, 7)

The simulation usually starts with object p in membrane 8, whereas Mp,M
′
p

are found in membrane 6, q, x in membrane 5, and Ar possibly in membrane 7.
Symbol p first goes from membrane 8 to membrane 3 and after that brings

there symbol M ′
p. After that it moves symbol M ′

p to membrane 1 and brings
symbol Mp to membrane 3. Further, p moves to membrane 1 and Mp may bring
a symbol Ar to membrane 3. If it succeeds, then both symbols Mp and Ar move
to membrane 1 and after that symbol Ar is sent out. In the meanwhile p and M ′

p

move to membrane 5. From there, M ′
p brings either q or s to membrane 1. Now

if it brought q and the register was not zero (Mp is in membrane 1) then Mp will
bring q to membrane 8. Otherwise, q will be trapped in membrane 2. If s was
brought into membrane 1 by M ′

p, and the value of register was zero, then this s
will move to membrane 3 and further to membrane 8. It is easy to observe that the
symbols Mp and M ′

p return to membrane 6 by themselves. They can do this at any
moment of the computation, but only after the state symbol q or s has returned
to membrane 8 they can do this without provoking an infinite computation.

3.4 Results for Evolution/Communication P Systems

For evolution/communication P systems, the constructions from [2], Theorems 1
and 2, and from [3], Theorems 4.3.1 and 4.3.2, already show the computational
completeness, using two membranes, for the minimally parallel setup (when work-
ing in the maximally parallel way, the system never applies simultaneously more
than one rule from the same set of rules assigned to a membrane):

Corollary 4. For X ∈ {min,max},
PsgOP2 ((ncoo, anti1, sym1) , X,H) = PsRE, X ∈ {min,max}.

Partial Versus Total Halting in P Systems 17

We can extend these results by showing that deterministic evolution-
communication P systems with non-cooperative evolution rules and communica-
tion rules of weight one (also see [1]) are computationally complete, using three
membranes.

Theorem 11. For X ∈ {min,max},
DPsaOP3((ncoo, sym1, anti1) , X,H) = PsRE.

Proof. Consider a deterministic register machine M = (n, B, P, p0, ph). Let us
denote the set of labels of SUB instructions by B−.

Π =
(
V, T, V, [1 [2]2[3]3]1, p0, λ, λ, R1, R2, R3, 1

)
,

V = B ∪ {lj | l ∈ B−, 0 ≤ j ≤ 7} ∪ {q}
∪ {Ai | 1 ≤ i ≤ n} ∪ {ij | 1 ≤ i ≤ n, 1 ≤ j ≤ 3} ,

T = {Ai | 1 ≤ i ≤ k} ,
R1 = {l → Ail

′ | (l : A (i) , l′) ∈ P} ∪ {lj → lj+1 | l ∈ B−, j ∈ {0, 1, 2, 5, 6}}
∪ {l → l0i1, l4 → l5q, l7 → l′′ | l : (S (i) , l′, l′′) ∈ P} ,

R2 = {i1 → i2, i3 → λ | 1 ≤ i ≤ n} ∪ {l3 → l4 | l ∈ B−} ,
∪ {(i1, in), (i2, out;Ai, in), (i3, in) | 1 ≤ i ≤ n}
∪ {(i2, out; l3, in), (l4, out) | l : (S (i) , l′, l′′) ∈ P} ,

R3 = {i2 → i3 | 1 ≤ i ≤ n} ∪ {q → λ} ∪ {l3 → l′ | l ∈ B−}
∪ {(i2, in), (i3, out; q, in) | 1 ≤ i ≤ n}
∪ {(i3, out; l3, in), (l′, out) | l : (S (i) , l′, l′′) ∈ P} .

An ADD instruction l : (A (i) , l′) ∈ P is implemented by the single non-
cooperative evolution rule l → Ail

′.
The simulation of a SUB instruction l : (S (i) , l′, l′′) ∈ P is described in a

depictive way in the following tables. Decrementing register i works as follows:

step 0 1 2 3 4
region 2 i1 i2 ai

rules 2 (i1, in) i1 → i2 (i2, out;Ai, in)
region 1 lAi l0i1Ai l1Ai l2Ai l3i2
rules 1 l → l0i1 l0 → l1 l1 → l2 l2 → l3
region 3
rules 3 (i2, in)

step 5 6 7 8
region 2 i3
rules 2 (i3, in) i3 → λ
region 1 l3 l3 i3 l′

rules 1
region 3 i2 i3 l3 l′

rules 3 i2 → i3 (i3, out; l3, in) l3 → l′ (l′, out)

If register i is empty, i.e., if there is no object Ai, the simulation works as
follows:

18 A. Alhazov, R. Freund, M. Oswald, S. Verlan

step 0 1 2 3 4
region 2 i1 i2 i2
rules 2 (i1, in) i1 → i2 (i2, out; l3, in)
region 1 l l0i1 l1 l2 l3
rules 1 l → l0i1 l0 → l1 l1 → l2 l2 → l3
region 3
rules 3

step 5 6 7 8 9 10
region 2 l3 l4 i3
rules 2 l3 → l4 (l4, out) (i3, in) i3 → λ
region 1 i2 l4 l5q l6i3 l7
rules 1 l4 → l5q l5 → l6 l6 → l7 l7 → l′′

region 3 i2 i3 i3 q
rules 3 (i2, in) i2 → i3 (i3, out; q, in) q → λ

The main idea of the construction is similar to that in [1]: if the object Ai is
present in region 2, it is exchanged with object i2 while object l2 changes to l3;
otherwise object l3 is exchanged with i2 in the next step. The trajectory of object
i2 is the same in both cases: it enters membrane 3, is renamed, exits and enters
membrane 2, where it is erased. The behavior of object l3 indirectly depends on
the presence of Ai via i2 or i3: in the decrement case it enters membrane 3, is
renamed to l′ and returns to region 1, while in the zero-case it enters membrane
2, is renamed to l4, exits, and produces two objects; one of them helps i3, while
the other one produces l′′, thus finishing the simulation.

4 Conclusion

In this paper, we have investigated a new variant of halting – we call it partial
halting – in membrane systems where all membranes are required to allow for
the application of a rule at the same time in order to keep a computation alive.
Obviously, for systems with only one membrane this way of halting is equivalent
with the original one where a system halts if and only if no rule is applicable
anymore in the whole system – we also call this total halting. Besides this general
result, we also have shown that P systems working in the minimally parallel mode,
the asynchronous or the sequential derivation mode and with partial halting can
only generate Parikh sets of matrix languages/regular sets, the same what we
obtain with the sequential and the asynchronous derivation mode and total halting.

Comparing the results for total and partial halting for the minimally parallel
derivation mode elaborated above, we realize that for any of the specific restricted
variants α of P systems with permitting contexts we have

PsgOP∗ (α, min, h) ⊆ PsMATλ $ PsRE = PsgOP∗ (α, min,H) and
NgOP∗ (α, min, h) = NREG $ NRE = NgOP∗ (α, min, H) ,

Partial Versus Total Halting in P Systems 19

i.e., in the case of the minimally parallel derivation mode the halting condition
– total in contrast to partial halting – makes the difference. Intuitively speaking,
the requirement for a computation to continue only if for every membrane a rule
is applicable, together with the minimally parallel derivation mode means that
we do not have the possibility of appearance checking and therefore cannot sim-
ulate the zero test for register machines, hence, we cannot obtain computational
completeness.

In the future, the new variant of partial halting should also be investigated
for other variants of P systems working in the different derivation modes, with
multisets of objects, but also with strings, arrays, etc.

Acknowledgements.

Artiom Alhazov gratefully acknowledges support by the Academy of Finland,
project 203667; he also acknowledges the project 06.411.03.04P from the Supreme
Council for Science and Technological Development of the Academy of Sciences of
Moldova. The work of Marion Oswald was supported by FWF-project T225-N04.
2006.

References

1. A. Alhazov: On determinism of evolution-communication P systems, Journal of Uni-
versal Computer Science 10, 5, 2004, 502–508.

2. A. Alhazov, Number of protons/bi-stable catalysts and membranes in P systems.
Time-freeness. In: [15], 79–95.

3. A. Alhazov: Communication in Membrane Systems with Symbol Objects, Ph.D.
Thesis, Tarragona, Spain, 2006.

4. F. Bernardini, V. Manca: P systems with boundary rules. In: [21], 107–118.
5. F. Bernardini, F. J. Romero-Campero, M. Gheorghe, M.J. Pérez-Jiménez, M. Mar-

genstern, S. Verlan, N. Krasnogor: On P systems with bounded parallelism. In: G.
Ciobanu, Gh. Păun (Eds.): Pre-Proc. of First International Workshop on Theory and
Application of P Systems, Timisoara, Romania, September 26–27, 2005, 31–36.

6. M. Cavaliere: Evolution-communication P systems. In: [21], 134–145.
7. G. Ciobanu, Linqiang Pan, Gh. Păun, M.J. Pérez-Jiménez: P systems with minimal

parallelism, accepted for TCS.
8. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory, Springer-

Verlag, Berlin, 1989.
9. J. Dassow, Gh. Păun: On the power of membrane computing, Journal of Universal

Computer Science 5 (2) (1999), 33–49.
10. R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-

maticae 49, 1–3 (2002), 81–102.
11. R. Freund, M. Oswald: P Systems with activated/prohibited membrane channels. In:

[21], 261–268.
12. R. Freund, M. Oswald: P systems with conditional communication rules assigned to

membranes, Journal of Automata, Languages and Combinatorics 9, 4 (2004), 387–
397.

20 A. Alhazov, R. Freund, M. Oswald, S. Verlan

13. R. Freund, M. Oswald: P systems with partial halting, submitted, 2007.
14. R. Freund, Gh. Păun: From Regulated Rewriting to Computing with Membranes:

Collapsing Hierarchies. Theoretical Computer Science 312 (2004), 143–188.
15. R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): Membrane Computing. 6th

International Workshop WMC 2005, Vienna, Austria, Lecture Notes in Computer
Science 3850, Springer-Verlag, 2006.

16. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
Theoretical Computer Science 330 (2005), 101–116.

17. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

18. A. Păun, Gh. Păun: The power of communication: P systems with symport/ antiport,
New Generation Computing 20, 3 (2002), 295–306.

19. Gh. Păun: Computing with membranes, J. of Computer and System Sciences 61, 1
(2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).

20. Gh. Păun: Computing with Membranes: An Introduction, Springer-Verlag, Berlin,
2002.

21. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane Computing.
International Workshop WMC 2002, Curteă de Argeş, Romania, Revised Papers.
Lecture Notes in Computer Science 2597, Springer-Verlag, Berlin (2003).

22. Y. Rogozhin, A. Alhazov, R. Freund: Computational power of symport/antiport:
history, advances, and open problems. In: [15], 1–30.

23. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

24. S. Verlan, F. Bernardini, M. Gheorghe, M. Margenstern: On communication in tissue
P systems: conditional uniport. Pre-proceedings of Membrane Computing. Interna-
tional Workshop, WMC7, Leiden, The Netherlands, 2006, 507–521

25. The P Systems Web Page: http://psystems.disco.unimib.it.

