Small Universal Spiking Neural P Systems

Andrei Piun®, Gheorghe Paun?

! Department of Computer Science

Louisiana Tech University, Ruston

PO Box 10348, Louisiana, LA-71272 USA
apaun@latech.edu

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

and

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda Reina Mercedes s/n, 41012 Sevilla, Spain
george.paun@imar.ro, gpaun@us.es

Summary. In search for small universal computing devices of various types, we consider
here the case of spiking neural P systems (SN P systems), in two versions: as devices
computing functions and as devices generating sets of numbers. We start with the first
case and we produce a universal spiking neural P system with 84 neurons. If a slight
generalization of the used rules is adopted, namely, we allow rules for producing simul-
taneously several spikes, then a considerable improvement, to 49 neurons, is obtained.
For SN P systems used as generators of sets of numbers, we find a universal system with
restricted rules having 76 neurons, and one with extended rules having 50 neurons.

1 Introduction

Looking for small universal computing devices is a natural and well investigated
topic in computer science, see, e.g., [4], [11], and the references therein. Recently,
this issue started to be considered also in membrane computing; first contributions
of this kind can be found in [13] (for tissue P systems with string objects processed
by splicing operations) and [1] (for symport/antiport P systems).

In the present paper, we address the case of the recently introduced (see [3], [9],
[10]) spiking neural P systems (in short, SN P systems), computing models which
bring into membrane computing (see [8] for an introduction and [15] for updated
information) ingredients from neural computing by spiking (see, e.g., [5], [6]).

In short, an SN P system consists of a set of neurons placed in the nodes of a
directed graph (representing synapses) and sending to each other spikes, identical
electrical impulses; the distance between consecutive spikes is the main way to

214 A. Paun, Gh. Paun

encode information; the neurons contain rules for emitting spikes and for forgetting
spikes; one neuron is distinguished as the output neuron and its spikes also exit
into the environment, thus producing a spike train.

Such systems can be used as computing devices in various ways; generating
sets of numbers (encoded in the number of steps between consecutive spikes sent
into the environment by the output neuron), generating strings (the spike train
itself is such a string over the binary alphabet), or computing functions (an input
neuron “reads” the arguments of the function from the environment and the output
neuron “writes” the function value, in all cases with the numbers being encoded
in the distance between consecutive spikes). More precise definitions will be given
in Subsection 2.2.

Here we deal with the first and the third cases, of SN P systems generating
numbers and computing functions.

Already in [3], the SN P systems used for computing sets of numbers were
proved to be computationally complete (able to compute all Turing computable
sets of numbers), but no bound on the number of used neurons was found. The
proof from [3] is based on simulating register machines with SN P systems, hence
the same strategy as that followed in [1] in search of small universal P systems
is useful also here: starting from a small universal register machine as those con-
structed in [4], we can get a small universal SN P system, with the important
mentioning that in [4] one works with register machines computing functions.
That is why we also start here with this case.

We work with the so-called strong universality (without encodings of the input
and output) and we use the standard type of register machines (using ADD and
SUB instructions). For this case, a universal register machine with 8 registers and
23 instructions (the halting one included) was constructed in [4]. (The “code”
of the particular partial recursive function and the argument of the function are
introduced in registers 1 and 2 of the universal machine and the value of the
function for that argument, if defined, is found in register 0 when/if the machine
halts.) Following then the construction of an SN P system simulating a register
machine from [3], with some improvements inspired from [2] and some additional
“code optimization”, as well as a suitable input module, we get an SN P system
with 84 neurons simulating the register machine from [4].

We may formulate this result as follows: there is a universal “brain” (in the
form of an SN P system) with only 84 neurons.

Of course, this number needs to be checked for optimality, but it is our expec-
tation that in the framework used here (with the type of SN P systems considered,
i.e., with standard rules) it is not possible to significantly decrease the number of
neurons.

However, if we allow rules which produce two or more spikes, then a consider-
able improvement of the previous result is obtained: 49 neurons are sufficient for
universality.

We pass then to the case when SN P systems are used for generating sets of
numbers, starting from the observation that a set Q C N is recursively enumer-

Small Universal Spiking Neural P Systems 215

able if and only if the characteristic function of @ (equal to 1 for elements of @
and undefined otherwise) is a partial recursive function. Similar results as for the
previous case are obtained: 76 neurons are sufficient for universality when using
restricted rules and 50 when using extended rules.

In the next section we introduce all necessary prerequisites related to regis-
ter machines, universality, and standard SN P systems. Section 3 gives the first
universal SN P system, and in Section 4 we introduce the extended spiking rules
and we produce the universal computing SN P system with 49 rules. In Section
5 we consider the case of universal SN P systems working as generators of sets of
numbers.

2 Prerequisites

The reader is assumed to have some elementary knowledge in theoretical computer
science as available from the many monographs in the field (e.g., from [12], [14]),
so that we specify here only some notations and basic definitions.

For an alphabet V', V* denotes the set of all strings over V', with the empty
string denoted by .

A regular expression over an alphabet V' is defined as follows: (i) A and each
a € V is a regular expression, (ii) if F, Fy are regular expressions over V, then
(E1)(E2), (E1)U(Es), and (E1)T are regular expressions over V, and (iii) nothing
else is a regular expression over V. Clearly, we assume that the parentheses are
not in V; as a matter of fact, we will often omit “unnecessary parentheses”. Also,
EfL U A can be written as E]. With each expression E we associate its language
L(E) as follows: (i) L(A\) = {A},L(a) = {a}, for a € V, (ii) L((E1)(E2)) =
L(El)L(EQ), L((El) U (EQ)) = L(El) U L(EQ), and L((E1)+) = L(E1)+, for all
regular expressions E1, Fs.

The operations used here are the standard union, concatenation, and Kleene
+. We also need below the operation of right derivative of a language L C V* with
respect to a string x € V*, which is defined by L/x = {y € V* | yx € L}.

We pass now to introducing the necessary notions related register machines
and universality, then the spiking neural P systems.

2.1 Universal Register Machines

We use here register machines given in the form M = (m, H,ly, [y, I), where m is
the number of registers, H is the set of instruction labels, [y is the start label, I}
is the halt label (assigned to instruction HALT), and I is the set of instructions;
each label from H is associated with only one instruction from I, thus precisely
identifying it (therefore, there are as many labels as instructions). The instructions
are of the following forms:

216 A. Paun, Gh. Paun

o I;: (ADD(),l;,1l;) (add 1 to register r and then go to one the instructions with
labels I; and I, non-deterministically chosen),

e [; : (SUB(r),l;,1x) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label I;, otherwise go to the instruction with label lj),

e [p : HALT (the halt instruction).

A register machine M generates a set of numbers in the following way: we start
with all registers empty (i.e., storing the number zero), we apply the instruction
with label [y and we proceed to apply instructions as indicated by the labels (and
made possible by the contents of registers); if we reach the halt instruction, then the
number n stored at that moment in a specified register rq is said to be computed
by M; if the computation does not halt, then no number is generated. The set of
all numbers generated by M is denoted by N(M). It is known (see, e.g., [7]) that
register machines generate all sets of numbers which are Turing computable.

A register machine can also compute any Turing computable function: we intro-
duce the arguments in specified registers 71, ..., 7, (without loss of the generality,
we may assume that we use the first k registers), we start with the instruction
with label Iy, and if we stop (with the instruction with label {;,), then the value
of the function is placed in another specified register, r;, with all registers differ-
ent from 7; being empty. The partial function computed in this way is denoted
by M(ny,ns,...,nk). In the computing form, the register machines can be con-
sidered deterministic, without losing the Turing completeness; then, the ADD in-
structions [; : (ADD(r),l;,l) have I; = I (and the instruction is written in the
form ; : (ADD(r),1;)).

In [4], the register machines are used for computing functions, with the univer-
sality defined as follows. Let (g, 1, - ..) be a fixed admissible enumeration of the
unary partial recursive functions. A register machine M,, is said to be universal
if there is a recursive function g such that for all natural numbers z,y we have
0z (y) = My(g(z),y). In [4], several universal register machines are constructed,
with the input (the couple of numbers g(z) and y) introduced in registers 1 and
2, and the result obtained in register 0, so that, from now on we also assume that
the registers are always numbered from 0 to m — 1.

In general, we directly continue here the results from [4], using one of the
universal register machines constructed there, implicitly also the recursive function
g which encodes the partial recursive function ¢, in the form of the number g(x)
as used in the universal register machine.

We give now in the notation introduced above the specific universal register ma-
chine from [4] which will be used in Section 3 below: we have M, = (8, H,lo, I, I),
with the instructions (their labels constitute the set H) presented in Figure 1.
(The machine from [4] contains a separate check for zero of register 6, of the form
“lg : if register(6) = 0, then go to ly, else go to l1p”; this instruction was re-
placed in our setup by lg : (SUB(6),1lo,lo), lg : (ADD(6),110).) Therefore, there are
8 registers (numbered from 0 to 7) and 23 instructions (hence 23 labels), the last
instruction being the halting one. The input numbers (the “code” of the partial

Small Universal Spiking Neural P Systems 217

recursive function to simulate and the argument for this function) are introduced
in registers 1 and 2, and the result is obtained in register 0.

lo : (SUB(1),11,12), Iy : (ADD(7), o),

lo: (ADD(G),Z:{), I3 : (SUB(5),Z2,Z4),

l4 (SUB(G)7 l5, l&), l5 : (ADD(5), l(,),

le : (SUB(T),l7,1s), l7 : (ADD(1), 14),

ls (SUB(G), lg, lo), lg : (ADD(6)7 l10)7

lio : (SUB(ZL),Z(),ZH)7 l11 (SU]3(5)71127113)7
l12: (SUB(5),Z14,Z15), l13 (SUB(Q),lls,llg),
l14 : (SUB(E)),lle,ln)7 l15 (SUB(S),hS,lQo),
I : (ADD(4). I1y), I17 ¢ (ADD(2), Ia1),

l1g (SUB(4),lo,lh), l19 (SUB(O),lo,llg),
l20 (ADD(O),lo)7 l21 (ADD(3),Z18),

Iy : HALT.

Fig. 1. The universal register machine from [4]

2.2 Spiking Neural P Systems

We introduce now the SN P systems in the form necessary for universality consid-
erations, hence computing functions.

A computing spiking neural P system (abbreviated SN P system), of degree
m > 1, is a construct of the form

I =(0,01,...,0m,syn,in,out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. 01,...,0p, are neurons, of the form

oi = (ni, Ri), 1 <i<m,

where:
a) n; > 0 is the initial number of spikes contained in o;;
b) R; is a finite set of rules of the following two forms:
(1) E/a® — a;d, where E is a regular expression over a and ¢ > 1, d > 0;
(2) a® — A, for s > 1, with the restriction that for each rule E/a® — a;d
of type (1) from R;, we have a® ¢ L(F);
3. syn C{1,2,...,m} x{1,2,...,m} with ¢ # j for all (i,5) € syn, 1 <4, <m
(synapses between neurons);
4. in,out € {1,2,...,m} indicate the input and the output neurons, respectively.

218 A. Paun, Gh. Paun

An SN P system with rules as above is said to be of the standard type.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron o; contains k spikes, and a* € L(E),k > ¢, then the
rule E/a® — a;d € R; can be applied. This means consuming (removing) ¢ spikes
(thus only k — ¢ remain in o;; this corresponds to the right derivative operation
L(E)/a%), the neuron is fired, and it produces a spike after d time units (as usual
in membrane computing, a global clock is assumed, marking the time for the whole
system, hence the functioning of the system is synchronized). If d = 0, then the
spike is emitted immediately, if d = 1, then the spike is emitted in the next step,
etc. If the rule is used in step ¢t and d > 1, then in steps ¢t,t+1,t4+2,...,t +d—1
the neuron is closed (this corresponds to the refractory period from neurobiology),
so that it cannot receive new spikes (if a neuron has a synapse to a closed neuron
and tries to send a spike along it, then that particular spike is lost). In the step
t + d, the neuron spikes and becomes again open, so that it can receive spikes
(which can be used starting with the step ¢ + d + 1, when the neuron can again
apply rules).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron o; contains exactly s spikes, then the rule a® — X from R; can be used,
meaning that all s spikes are removed from o;.

If arule E/a® — a;d of type (1) has E = a®, then we write it in the simplified
form a¢ — a;d.

In each time unit, if a neuron o; can use one of its rules, then a rule from
R; must be used. Since two firing rules, E1/a“* — a;d; and Es/a®® — a;ds, can
have L(E1) N L(E3) # 0, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, at most one
in each step, but neurons function in parallel with each other. It is important to
notice that the applicability of a rule is established based on the total number of
spikes contained in the neuron.

The initial configuration of the system is described by the numbers
N1,MN3, ..., Ny, of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration is described by both the number of spikes
present in each neuron and by the state of the neuron, more precisely, by the
number of steps to count down until it becomes open (this number is zero if the

neuron is already open). Thus, (r1/t1,...,7n/tm) is the configuration where neu-
ron o; contains r; > 0 spikes and it will be open after t; > 0 steps, ¢ = 1,2,...,m;
with this notation, the initial configuration is Cy = (n1/0, ..., ny/0).

A computation in a system as above starts in the initial configuration. In
order to compute a function f : N¥ — N, we introduce k natural numbers
ni,...,Nnk in the system by “reading” from the environment a binary sequence
z = 10m~11072=11...10™ 1. This means that the input neuron of I receives
a spike in each step corresponding to a digit 1 from the string z and no spike

Small Universal Spiking Neural P Systems 219

otherwise. Note that we input exactly k + 1 spikes, i.e., after the last spike we
assume that no further spike is coming to the input neuron. The result of the
computation is also encoded in the distance between two spikes: we impose the
restriction that the system outputs exactly two spikes and halt (immediately after
the second spike), hence producing a train spike of the form 0°10"~'1, for some
b > 0 and with » = f(ng,...,nx) (the system outputs no spike a non-specified
number of steps from the beginning of the computation until the first spike).

In Section 5 the SN P systems are used as number generators — in a way which
will be specified there.

An SN P system can be represented graphically in a very natural way: the
neurons are placed in the nodes of a graph representing the synapses, with the
rules and the initial spikes mentioned in each neuron; the input neuron has an
incoming arrow and the output neuron has an outgoing arrow, suggesting their
communication with the environment. In the next sections we will always present
the systems we construct in this way, which is much more transparent (easy to
understand) than the symbolic one.

3 A Small Universal SN P System

We pass now to constructing the first of the four announced universal SN P sys-
tems, namely the one for computing functions and using rules of the standard
type. To this aim, we follow the way used in [3] to simulate a deterministic register
machine by an SN P system. This is done as follows: neurons are associated with
each register and with each label of an instruction of the machine; if a register
contains a number n, then the associated neuron will contain 2n spikes; modules
as in Figures 2 and 3 are associated with the ADD and the SUB instructions (each
of these modules contains two neurons which do not correspond to registers or to
labels of instructions, namely the neurons with labels I}, 7).

The work of the system is triggered by introducing two spikes in the neuron
o1, (associated with the starting instruction of the register machine). In general,
the simulation of an ADD or SUB instruction starts by introducing two spikes in
the neuron with the instruction label (we say that this neuron is activated). We do
not describe here in detail the (pretty transparent) way the modules from Figures
2 and 3 work (if necessary, the reader can consult [3] in this respect), but we only
remark that after incrementing, respectively decrementing (if possible) the value
of register r (the number of spikes in neuron o,.), we activate exactly one neuron,
oy, or oy, as requested by the instruction.

Starting with neurons o and oy already loaded with g(x) and y spikes, respec-
tively, and introducing two spikes in neuron o0;,, we can compute in our system in
the same way as the universal register machine M, from Figure 1; if the compu-
tation halts, then neuron oy will contain the double of ¢, (y) spikes.

There are two additional tasks to solve: to introduce the mentioned spikes in
the neurons o;,, 01, 02, and to output the computed number. The first task is

220 A. Paun, Gh. Paun

l; r
a®> — a;0
a— A

Fig. 2. Module ADD (simulating I; : (ADD(r),;))

Fig. 3. Module SUB (simulating I; : (SUB(r), {;,x))

covered by module INPUT presented in Figure 4. The neurons o, , 0., fire only
after receiving the third spike, and then they send two spikes to neuron oy,, thus
starting the simulation of M,,. At that moment, neurons o7 and o9 are already
loaded: neurons o., and o., send to neuron o; as many pairs of spikes as the
number of steps between the first two input spikes, and after that they get “over
flooded” by the second input spike and are blocked; in turn, neurons o, 0., start
working only after collecting two spikes and stop working after receiving the third
spike.

Small Universal Spiking Neural P Systems 221

Fig. 4. Module INPUT

The second task needs a modification in the universal register machine: the
construction from [3] does not allow subtraction operations on the neuron where
we place the result, but register 0 of M, is subject of such operations. That is why
we have to add a further register — we label it with 8 — and we replace the halt
instruction of M, with the following instructions:

Ip, : (SUB(0),l22,1},), loo: (ADD(8),1s), I}, : HALT.

In this way, we have 9 registers, 24 ADD and SUB instructions, and 25 labels.

We denote by M/, the obtained register machine.

Having the result of the computation in register 8, which is never decremented
during the computation, we can output the result by means of the module OUT-
PUT from Figure 5. When neuron o, receives two spikes, it fires and sends a spike
to neuron og; in this way, the number of spikes of this neuron becomes odd, hence
its rule can be applied. A spike arrives in the output neuron, which spikes. From
the next step on until exhausting the spikes from neuron og, the output neuron
receives two spikes (one from og and one from oy,), hence neuron o, collects
an even number of spikes and cannot fire. When neuron og has only one spike, it
cannot fire anymore, but one further spike comes in neuron o, from neuron g, ,
and thus the output neuron spikes for the second (and last) time.

The overall design of the system is given in Figure 6.

Thus, we have

222 A. Paun, Gh. Paun

U
a? — a;0
a— A
8 dy

Fig. 5. Module OUTPUT

9 neurons for the 9 registers,

25 neurons for the 25 labels,

48 neurons for the 24 ADD and SUB instructions,
7 neurons in the INPUT module,
2 neurons in the OUTPUT module,

which comes to a total of 91 neurons.

This number can be slightly decreased, by some “code optimization”, exploiting
some particularities of the register machine M.

First, let us observe that the sequence of two consecutive ADD instructions

l17 N (ADD(Q),ZQl), 121 . (ADD(?)),llg),

without any other instruction addressing the label l3;, can be simulated by the
module from Figure 7, and in this way we save the neuron associated with l3; and
instead of four auxiliary neurons used in the two separate ADD instructions we
use two neurons.

A similar operation is possible for the following two sequences of ADD — SUB
instructions, where again we can save the intermediate labels (lg and l1p), as well
as one auxiliary neuron for each pair:

l5 : (ADD(5),16)7 16 : (SUB(?),Z7,18),
lg : (ADD(G),lm), lio : (SUB(4),10,111).
Instead of the modules ADD and SUB as in Figures 2 and 3, for each couple of

instructions as above we can use a module as that from Figure 8, where the labeling
of neurons corresponds to the first couple of instructions mentioned above.

Small Universal Spiking Neural P Systems 223

109 10¥1

=

Module INPUT

4 W
(a?)lo (a2g(r))1 a2y)

Register machine simulator

0 8

Module OUTPUT

out

Y

.. 109s -1

Fig. 6. The general design of the universal SN P system

A similar module is used for the second pair of instructions. In each case, we
save two neurons; together with the three neurons saved by the module in Figure
7, we get the improvement from 91 to 84 neurons.

We state this result in the form of a theorem in order to stress its importance:

Theorem 1. There is a universal computing SN P system with standard rules
having 84 neurons.

In the register machine M there are also couples of SUB — ADD instructions
with the label of the second instruction used only in the first instruction, but we
were not able to find a coupled module for this case with a smaller number of
neurons than in the two SUB and ADD modules given in Figures 2 and 3.

4 Using More General Rules

In several of the modules constructed in the previous section we need pairs of
intermediate neurons for duplicating the spike which is transmitted further (such

224 A. Paun, Gh. Paun

lg

Fig. 8. A module simulating consecutive ADD — SUB instructions

as op and oy in Figure 2), and this suggests to consider an extension of the
rules of SN Plsystems: to allow spiking rules of the form E/a® — a?;d, where all
components are as usual, and p > 1. To be “realistic” (conservative), we impose
the restriction ¢ > p (the number of produced spikes is not larger than the number
of consumed spikes).

The rules of this type are said to be extended.

Small Universal Spiking Neural P Systems 225

For reasons which will become apparent below, in this section we return to
the initial universal register machine M,,, hence having 8 registers (with the result
placed in register 0) and 23 instructions.

Using extended rules, the modules for the simulation of ADD and SUB in-
structions become smaller in the number of neurons, but more complex in the
functioning — see Figures 9, 10. Moreover, the delay from firing to spiking is al-
ways zero, that is why from now on we do not mention the delay when writing the
rules.

This time, the encoding of the value n of a register r is done by means of
placing 6n spikes in the neuron o, associated with the register. That is why, the
neuron oy, corresponding to an ADD instruction I; : (ADD(r),[;) has to produce
6 spikes, which are sent both to neuron o, and to the neuron with the label /;.
If I; is a label which also appears in a SUB instruction, then, as one can see in
Figure 10, neuron oy, also fires when receiving 10 or 11 spikes, that is why we also
have the rules a'® — a® and a'! — a% present in neuron o;,. Similarly, because
the neurons oy,,0;; can be involved in SUB instructions, we have considered the
forgetting rules a” — A, a® — X, @ —)\, and a'® — X in both these neurons in
Figure 9. The significance/value of §(l;) will be specified immediately.

Fig. 9. Module ADD (simulating ; : (ADD(r),[;)) for extended rules

226 A. Paun, Gh. Paun

The simulation of a SUB instruction l; : (SUB(r),l;,l;) proceeds as follows.
Assume that at some moment, neuron oy, receives either 6 spikes (if /; is the
“output” label of an ADD instruction), or 10 or 11 spikes (if /; is an “output”
label of a SUB instruction), and fires, producing 4 spikes. These spikes are sent
at the same time to all neurons o, oy, 0, and oy, from Figure 10. There is no
rule for handling 4 spikes in the last two neurons, hence these spikes wait here one
step.

to all neurons oy,
such that {5 # [; and
le : (SUB(7), s, ls),
or ly : (SUB(r),ls,1s)

is an instruction of M,

Fig. 10. Module SUB (simulating l; : (SUB(r),;,[x)) for extended rules

In the next step, neuron oy fires and sends three spikes to all neurons o;, of the
system such that SUB instructions I; : (SUB(7);1s,1s) or Iy = (SUB(r); s, 1s) exist in
the register machine M, with the exception of o;; (hence to all neurons associated
with output labels of SUB instructions which decrement register r, but not to
01,). Simultaneously, o, spikes, because its rules are now applicable, the number
of spikes it holds is no longer a multiple of 6, but it is of the form 6m + 4 for some

Small Universal Spiking Neural P Systems 227

m > 0. If m > 1, this means that the register » was non-empty; the subtraction
is done by the rule a*(a®)* /a'® — a®. Note that in this way the number of spikes
remaining in neuron o, returns to a multiple of 6. The six spikes arrive at the
same time in all neurons associated with output labels of SUB instructions which
decrement register 7. In neuron oy, we have in this way 10 spikes (four were waiting
here from the previous step), and this neuron can fire. In neuron o;, we have 13
spikes (6 coming from o,., 4 waiting here, and 3 just arrived from al;), and they
are removed by the forgetting rule a'® —). In all other neurons associated with
output labels of SUB instructions which decrement register r we have 9 spikes,
and also they are immediately forgotten by the rule a® — X placed in all neurons
associated with labels of M,,.

Fig. 11. The INPUT module in the case of extended rules

If register r was empty, this means that after o, fires, we have only four
spikes in neuron o, hence the rule a* — a* is used. This time, neuron oy, gets
only 8 spikes, and they are removed, but neuron o, gets 11 spikes, and fires. All
other neurons associated with output labels of SUB instructions which decrement
register r have 7 spikes (4 from o, and 3 from O’l;) and these spikes are removed
by the rule a” — X present in all these neurons.

In all cases, the simulation of the SUB instruction is correct: we start by acti-
vating the neuron o;,, we subtract 1 from the contents of register r (i.e., we remove
6 spikes from neuron o,.) if this is possible, and we continue by activating neuron
oy, or, if the register was empty, we just pass to activating neuron oy, . No spike
remains in any other neuron of the form o;, which was involved in this operation.

It is important to note that the neurons o, associated with ADD instructions
are different from those associated with SUB instructions: in the first case we have

228 A. Paun, Gh. Paun

to produce six spikes, in the latter case four. In Figures 9 and 10 we have indicated

this by writing the respective rules in the form a'!

a8 — a%l) where

— a®l) @19 — @90) and

5(1) = 6 if [is the label of an ADD instruction,
“ 14 if!is the label of a SUB instruction.

The simulation of instructions of M, is achieved in this way. The computation
in our SN P system halts if and only if the computation in M, halts, which means
that the halting instruction is reached.

We have now to see how the INPUT and the OUTPUT modules look like in
the case of extended rules. Figures 11 and 12 present these modules. We leave to
the reader the task of checking the functioning of the INPUT module (note that
lo is the label of a SUB instruction of M,), and we only briefly describe here the
work of the OUTPUT module.

We start by activating neuron oy, associated with the halt label of M,,. (From
Figure 1 we know that [}, is present only in a SUB instruction of M, as an output
label, that is why we do not need a rule a® — a® in this neuron.) When firing, o,
produces 3 spikes, which are sent to neuron og. The number of spikes from o is
of the form 6m + 3,m > 0, hence (i) the rules mentioned in Figure 12 for oy can
fire, but (ii) no rule used for SUB instructions (like in Figure 10) can fire (they
need 6m + 4 spikes).

This way to avoid the conflict in using the same neuron in two types of opera-
tions is the basis for avoiding the two additional instructions of M in comparison
with M, as well as the additional register 8.

Now, if register 0 is empty, then we use the rule a® — a3 of Ry immediately
after activating neuron oy, ; the system spikes only once, hence it outputs the
number 0. If register 0 is not empty, then for each unit (for each six spikes from
09) we use once the rule a®(a®)*/a® — a?. This rule does not change the arity of
the number of spikes, hence it is used until only 3 spikes remain in oy. When the
first two spikes arrive in o,,, this neuron spikes. All subsequent pairs of spikes
sent from o(to o, are forgotten. The last time when og spikes, it uses the rule
a® — a3, hence again o,y spikes — and then the system halts. In this way, we get
the spike train 10”11, encoding the number n as the result of the computation.

From Figures 11 and 12 one sees that, in comparison with Figures 4 and 5, we
save two neurons in the first case and one in the second.

The same happens with both intermediate neurons in the ADD + ADD module
from Figure 7 (using the ADD + ADD module instead of two ADD modules, a
label-neuron is saved): we directly send 6 spikes to each neuron oy,,, 02,03 from
Figure 7.

In this way, our system will contain

Small Universal Spiking Neural P Systems 229

Fig. 12. The OUTPUT module in the case of extended rules.

8 neurons
22 neurons
13 neurons

5 neurons

1 neuron

for the 8 registers,

for the 22 labels (one is saved in the ADD + ADD module),
for the 13 SUB instructions,

in the INPUT module,

in the OUTPUT module,

which means in total 49 neurons.
It is also worth noting that all spiking rules from our system have no delay
from firing to spiking.

Theorem 2. There is a universal computing SN P system with extended rules
(without delay) which has 49 neurons.

5 Universal SN P Systems as Number Generators

Let us now consider the case when with an SN P system II we associate a set
N(IT) of numbers as in [3]: the system starts working in its initial configuration;

230 A. Paun, Gh. Paun

because of the non-determinism in using the spiking rules, several computations
are possible; any halting computation provides a result, in the form of the number
of time units between the first two steps when any spike exits the system. Note
that this definition covers both the case of restricted rules, with only one spike
emitted in a time unit by the output neuron, and the case of extended rules, where
it is possible that several spikes are emitted at the same time (they are perceived
in the environment of the system as a single spike; however, in order to avoid any
complication, in the constructions below we make sure that the output neuron
produces always only one spike).

In this framework, an SN P system [II,, is universal if, given a fixed admissi-
ble enumeration of the unary partial recursive functions, (¢g,¢1,...), there is a
recursive function g such that for each natural number z, if we input the number
g(x) in IT,,, by “reading” the sequence 109(*)=11 from the environment, the set of
numbers generated by the system is equal to {n € N | ¢, (n) is defined}. Otherwise
stated, after introducing the “code” g(z) of the partial recursive function ¢, in a
specified neuron, the system generates (hence halts sometimes after sending two
spikes out) all numbers n for which ¢, (n) is defined.

This time, the strategy followed by the universal system is the following;:

1. Read the string 109(*)~11 from the environment and load 2g(z) spikes in neu-
ron oy.

2. Load neuron oy non-deterministically with an arbitrary natural number n (in
the case of using restricted rules this means to introduce 2n spikes in neuron
o2 and in the case of extended rules means to introduce 6n spikes); at the
same time, output the spike train 10"~!1 (hence the number n).

3. Check whether the function ¢, is defined for n. To this aim, start the register
machine M, from Figure 1, with g(z) in register 1 and n in register 2. If the
computation in M, halts, then also the computation in our SN P system halts,
hence n is introduced in the set of generated numbers.

It is worth noting that there is an essential difference between number gener-
ating and function computing: we no longer need to output a result after halting
the computation, but we have to randomly generate a number at the beginning of
the computation. In this way, we have two important consequences for our con-
struction, a simplification and a supplementary task. First, no separate output
module is necessary, the additional register 8 can be omitted, and the simulation
of the last SUB instruction used in a halting computation, l;s : (SUB(4), lo, 1), can
be simplified, just ignoring [;, and halting. On the other hand, the input module
should be combined with the output one, at the same time non-deterministically
producing the number n.

The combined INPUT-OUTPUT module for the case of restricted rules is
presented in Figure 13.

After loading neuron o7 with 2g(x) spikes, we start loading neuron o2 with an
arbitrary number of spikes, by means of neurons o., and o.,, at the same time
sending out the respective number as the distance between two spikes emitted by

Small Universal Spiking Neural P Systems 231

n c3
2
a®/a — a;0
a— a;0 5
a® —a;l
Cq y ©Cs
C1 C2 a3
a® — a;0
a— a;0 a— a;0))
a® — a;0
a— A
1
2 Y

Fig. 13. The INPUT-OUTPUT module for the number generating universal SN P
systems

neuron oo,. The work of neurons og,, 0., stops when neuron o., uses the rule
a’? — a;1, and only after that (after having two spikes emitted by 0,,¢) we load
neuron o, with two spikes (via neurons o, 0.,) and in this way we start the work
of the register machine M,,.

In turn, the simplified module for simulating the instruction ;g : (SUB(4), lo, I1)
is given in Figure 14: when the subtraction is no longer possible, we just halt.

Consequently, the obtained system contains

232 A. Paun, Gh. Paun

Fig. 14. The simplified module for simulating l1s : (SUB(4), lo, 1)

8 neurons for the 8 registers,
22 neurons for the 22 labels (I, is saved),
42 neurons for the 21 ADD and SUB instructions,
1 neuron for the special SUB instruction (Figure 14),
10 neurons in the INPUT-OUTPUT module,

which means in total 83 neurons. From them, 7 neurons can be saved in the way we
have proceeded in the end of Section 3, hence we can conclude with the following
result:

Theorem 3. There is a universal number generating SN P system with standard
rules having 76 neurons.

Passing now to extended rules, we can have the INPUT-OUTPUT module as
shown in Figure 15.

This time the system contains 8 neurons for registers, 21 neurons for labels
(besides the label saved in the ADD + ADD module, we also save [j), 13 for SUB
instructions, and 8 neurons in the INPUT-OUTPUT module, in total 50 neurons.

Again, the rules use no delay between firing and spiking.

Theorem 4. There is a universal number generating SN P system with extended
rules (without delay) having 50 neurons.

6 Closing Remarks

It remains as an open problem to decrease the number of neurons from our uni-
versal SN P systems. Is this possible in the setups used here? As said in the
Introduction, we conjecture that significant improvements are not possible.

Small Universal Spiking Neural P Systems 233

Fig. 15. The INPUT-OUTPUT module in the extended case

Another direction of research is to look for the borderline between universality
and non-universality also starting from below: what is the number of neurons
for which we can prove that an SN P system is not universal? Besides trivial
observations (at least three neurons are necessary, one input, one output, and one
“working” neuron) we do not have any better estimation at this moment.

Of course, some neurons can be saved if the input to the universal SN P system
and its output are not introduced/emitted by means of input or output neurons
as above, but simply placed in the necessary neurons. Input—output modules are
then saved, but we do not find such a definition “fair”, because a “brain” should
have interfaces with its environment.

Anyway, the results above look rather optimistic: there exist pretty small uni-
versal “brains” (it would be of interest to see where on the evolution scale there
are animals with the brain of comparable sizes. ..).

Note. Useful discussions with Rudi Freund and Takashi Yokomori are gratefully
acknowledged.

234

A. Paun, Gh. Paun

References

1.

2.

10.

11.

12.

13.

14.
15.

E. Csuhaj-Varju, M. Margenstern, G. Vaszil, S. Verlan: Small computationally com-
plete symport/antiport P systems. In volume I of the present proceedings.

O.H. Ibarra, A. Paun, Gh. Paun, A. Rodriguez-Patén, P. Sosik, S. Woodworth: Nor-
mal forms for spiking neural P systems. In the present volume.

M. Ionescu, Gh. Paun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279-308.

I. Korec: Small universal register machines. Theoretical Computer Science, 168
(1996), 267-301.

W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32—-36.

W. Maass, C. Bishop, eds.: Pulsed Neural Networks. MIT Press, Cambridge, 1999.
M. Minsky: Computation — Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

Gh. Paun: Membrane Computing — An Introduction. Springer-Verlag, Berlin, 2002.
Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. International Journal of Foundations of Computer Science, to appear (also
available at [15]).

Gh. Paun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural
P systems. Submitted, 2006.

Y. Rogozhin: Small universal Turing machines. Theoretical Computer Science, 168
(1996), 215-240.

J. van Leeuwen, ed.: Handbook of Theoretical Computer Science. Elsevier, Amster-
dam, 1990.

Y. Rogozhin, S. Verlan: On the rule complexity of universal tissue P systems. In
Membrane Computing, International Workshop, WMC6, Vienna, Austria, 2005, Se-
lected and Invited Papers (R. Freund, Gh. Pdun, G. Rozenberg, A. Salomaa, eds.),
LNCS 3850, Springer-Verlag, Berlin, 2006, 356—-363.

D. Wood: Theory of Computation. Harper and Row, New York, 1987.

The P Systems Web Page: http://psystems.disco.unimib.it.

