
Three Quantum Algorithms to Solve 3-SAT

Alberto Leporati, Sara Felloni

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{leporati,sara.felloni}@disco.unimib.it

Summary. We propose three quantum algorithms to solve the 3-SAT NP-complete deci-
sion problem. The first algorithm builds, for any instance φ of 3-SAT, a quantum Fredkin
circuit that computes a superposition of all classical evaluations of φ in a given output
line. Similarly, the second and third algorithms compute the same superposition on a
given register of a quantum register machine, and as the energy of a given membrane in
a quantum P system, respectively.

Assuming that a specific non–unitary operator, built using the well known creation
and annihilation operators, can be realized as a quantum gate, as an instruction of the
quantum register machine, and as a rule of the quantum P system, respectively, we show
how to decide whether φ is a positive instance of 3-SAT. The construction relies also
upon the assumption that an external observer is able to distinguish, as the result of a
measurement, between a null and a non–null vector.

1 Introduction

Membrane systems (also called P systems) have been introduced in [31] as a new
class of distributed and parallel computing devices, inspired by the structure and
functioning of living cells. The basic model consists of a hierarchical structure
composed by several membranes, embedded into a main membrane called the
skin. Membranes divide the Euclidean space into regions, that contain some objects
(represented by symbols of an alphabet) and evolution rules. Using these rules, the
objects may evolve and/or move from a region to a neighboring one. A computation
starts from an initial configuration of the system and terminates when no evolution
rule can be applied. Usually, the result of a computation is the multiset of objects
contained into an output membrane or emitted from the skin of the system.

In [13] a variant of P systems has been introduced, in which a non–negative
integer value is assigned to each membrane. Such value can be conveniently inter-
preted as the energy of the membrane. In such P systems, rules are assigned to
the membranes rather than to the regions of the system. Every rule has the form
(ini : α,∆e, β) or (outi : α, ∆e, β), where i is the number of the membrane in a

138 A. Leporati, S. Felloni

one-to-one labeling, α and β are symbols of the alphabet and ∆e is a (possibly neg-
ative) integer number. The rule (ini : α, ∆e, β) is interpreted as follows: if a copy
of α is in the region immediately surrounding membrane i, then this object crosses
membrane i, is transformed to β, and modifies the energy of membrane i from the
current value ei to the new value ei + ∆e. Similarly, the rule (outi : α,∆e, β) is
interpreted as follows: if a copy of α is in the region surrounded by membrane i,
then this object crosses membrane i, is transformed to β, and modifies the energy
of membrane i from the current value ei to the new value ei + ∆e. Both kind of
rules can be applied only if ei + ∆e is non–negative. Since these rules transform
one copy of an object to (one copy of) another object, in [13] they are referred
to as unit rules. For conciseness, in what follows we will refer to P systems with
unit rules and energy assigned to membranes as UREM P systems. An important
observation is that in [13] the rules of UREM P systems are applied in a sequential
way: at each computation step, one rule is selected from the pool of currently
active rules, and it is applied. In [13] it has been proved that if we assign some
local (that is, affecting every single membrane) priorities to the rules then UREM
P systems are Turing complete. Instead, if we omit the priorities then we do not
get systems with universal computational power.

In [21] a quantum version of UREM P systems has been introduced, and it
has been shown that such model of computation is able to compute every partial
recursive function (that is, it reaches the computational power of Turing machines)
without the need to assign any priority between the rules of the system. In quantum
UREM P systems, the rules (ini : α,∆e, β) and (outi : α, ∆e, β) are realized
through (not necessarily unitary) linear operators, which can be expressed as an
appropriate composition of creation and annihilation operators. The operators
which correspond to the rules have the form |β〉 〈α| ⊗ O, where O is a linear
operator which modifies the energy associated with the membrane.

In [21] also Quantum Register Machines (QRMs, for short) have been intro-
duced. It has been shown that they are able to simulate any classical (determinis-
tic) register machine, and hence they are (at least) Turing complete.

In this paper we show that, under the assumption that an external observer is
able to distinguish between a null vector and a non–null vector, the NP-complete
problem 3-SAT can be solved using quantum circuits, quantum register machines
and quantum UREM P systems. The solutions are presented in the so-called semi–
uniform setting, which means that for every instance φ of 3-SAT a specific com-
putation device (circuit, register machine or P system) that solves it is built. Even
if it is not formally proved, it will be apparent that the proposed constructions
can be performed in polynomial time by a classical deterministic Turing machine
(whose output is a “reasonable” encoding of the machine, in the sense given in
[18]).

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a systematic introduction, we refer
the reader to [32]. The latest information about P systems can be found in [35].

Three Quantum Algorithms to Solve 3-SAT 139

Let us note that this is by no means the first time that energy is considered in P
systems: we recall in particular [1, 12, 34, 17, 23, 24, 22].

For a nice introduction to Quantum Computing see [27, 4]. A comprehensive set
of achievements in this field is contained in [20]. This is not the first paper in which
quantum computers are proposed to solve NP-complete problems; in particular,
see [28]. However, in the solution proposed in [28] the probability to observe the
correct answer at the end of the computation may decrease exponentially with the
number of variables contained into the instance of 3-SAT. To solve this problem,
in [29, 30] it has been proposed to use chaotic systems which are able to amplify
such probability. However, a drawback of this approach is that the use of chaotic
systems brings the computational power of the machinery used to solve 3-SAT
beyond the power of Turing machines.

The paper is organized as follows. In Section 2 some preliminaries are given: in
particular, we recall some basic notions of Quantum Computing (Subsection 2.1)
and the formulation of 3-SAT (Subsection 2.2). In Section 3 we define quantum
Fredkin circuits, and we show first how to associate to any instance φ of 3-SAT
a quantum Fredkin circuit, and then how to extract from it the solution of the
problem. In Section 4 we recall Quantum Register Machines (QRMs), and we
show how to solve any instance of 3-SAT through an appropriately crafted QRM.
In Section 5 we recall quantum UREM P systems, and we show how to solve 3-
SAT also with this kind of computational device. The conclusions, as well as some
directions for future research, are given in Section 6.

2 Preliminaries

2.1 Quantum Computers

From an abstract point of view, a quantum computer can be considered as made
up of interacting parts. The elementary units (memory cells) that compose these
parts are two–levels quantum systems called qubits. A qubit is typically imple-
mented using the energy levels of a two–levels atom, or the two spin states of a
spin–1

2 atomic nucleus, or a polarization photon. The mathematical description
— independent of the practical realization — of a single qubit is based on the
two–dimensional complex Hilbert space C2. The boolean truth values 0 and 1 are
represented in this framework by the unit vectors of the canonical orthonormal
basis, called the computational basis of C2:

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]

Qubits are thus the quantum extension of the classical notion of bit, but whereas
bits can only take two different values, 0 and 1, qubits are not confined to their
two base (also pure) states, |0〉 and |1〉, but can also exist in states which are
coherent superpositions such as ψ = c0 |0〉 + c1 |1〉, where c0 and c1 are complex

140 A. Leporati, S. Felloni

numbers satisfying the condition |c0|2 + |c1|2 = 1. Performing a measurement of
the state alters it. Specifically, performing a measurement on a qubit in the above
superposition will return 0 with probability |c0|2 and 1 with probability |c1|2; the
state of the qubit after the measurement (post–measurement state) will be |0〉 or
|1〉, depending on the outcome.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗nC2 = C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
n times

, representing a set of n

qubits labeled by the index i ∈ {1, . . . , n}. An n–configuration (also pattern) is
a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗nC2, usually written as |x1, . . . , xn〉, considered as
a quantum realization of the boolean tuple (x1, . . . , xn). Let us recall that the
dimension of ⊗nC2 is 2n and that {|x1, . . . , xn〉 : xi ∈ {0, 1}} is an orthonormal
basis of this space called the n–register computational basis.

Computations are usually performed as follows. Each qubit of a given n–register
is prepared in some particular pure state (|0〉 or |1〉) in order to realize the required
n–configuration |x1, . . . , xn〉, quantum realization of an input boolean tuple of
length n. Then, a linear operator G : ⊗nC2 → ⊗nC2 is applied to the n–register.
The application of G has the effect of transforming the n–configuration |x1, . . . , xn〉
into a new n–configuration G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which is the quantum
realization of the output tuple of the computer. We interpret such modification
as a computation step performed by the quantum computer. The action of the
operator G on a superposition Φ =

∑
ci1...in |xi1 , . . . , xin〉, expressed as a lin-

ear combination of the elements of the n–register basis, is obtained by linearity:
G(Φ) =

∑
ci1...inG(|xi1 , . . . , xin〉). We recall that linear operators which act on

n–registers can be represented as order 2n square matrices of complex entries.
Usually (but not in this paper) such operators, as well as the corresponding ma-
trices, are required to be unitary. In particular, this implies that the implemented
operations are logically reversible (an operation is logically reversible if its inputs
can always be deduced from its outputs).

All these notions can be easily extended to quantum systems which have d > 2
pure states. In this setting, the d–valued versions of qubits are usually called qudits
[19]. As it happens with qubits, a qudit is typically implemented using the energy
levels of an atom or a nuclear spin. The mathematical description — independent of
the practical realization — of a single qudit is based on the d–dimensional complex
Hilbert space Cd. In particular, the pure states |0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

are represented by the unit vectors of the canonical orthonormal basis, called the
computational basis of Cd:

|0〉 =




1
0
...
0
0




,

∣∣∣∣
1

d− 1

〉
=




0
1
...
0
0




, · · · ,

∣∣∣∣
d− 2
d− 1

〉
=




0
0
...
1
0




, |1〉 =




0
0
...
0
1




Three Quantum Algorithms to Solve 3-SAT 141

As before, a quantum register of size n can be defined as a collection of n qudits.
It is mathematically described by the Hilbert space ⊗nCd. An n–configuration is
now a vector |x1〉 ⊗ . . .⊗ |xn〉 ∈ ⊗nCd, simply written as |x1, . . . , xn〉, for xi run-
ning on Ld =

{
0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 , 1
}

. An n–configuration can be viewed as the
quantum realization of the “classical” tuple (x1, . . . , xn) ∈ Ln

d . The dimension of
⊗nCd is dn and the set {|x1, . . . , xn〉 : xi ∈ Ld} of all n–configurations is an ortho-
normal basis of this space, called the n–register computational basis. Notice that
the set Ld can also be interpreted as a set of truth values, where 0 denotes falsity,
1 denotes truth and the other elements indicate different degrees of indefiniteness.

Let us now consider the set Ed =
{

ε0, ε 1
d−1

, ε 2
d−1

, . . . , ε d−2
d−1

, ε1

}
⊆ R of real

values; we can think to such quantities as energy values. To each element v ∈ Ld

(and hence to each object |v〉 ∈ A) we associate the energy level εv; moreover, let
us assume that the values of Ed are all positive, equispaced, and ordered according
to the corresponding objects: 0 < ε0 < ε 1

d−1
< · · · < ε d−2

d−1
< ε1. If we denote by

∆ε the gap between two adjacent energy levels then the following linear relation
holds:

εk = ε0 + ∆ε (d− 1) k ∀ k ∈ Ld (1)

Notice that it is not required that ε0 = ∆ε. As explained in [22], the values εk

can be thought of as the energy eigenvalues of the infinite dimensional quantum
harmonic oscillator truncated at the (d− 1)-th excited level.

To modify the state of a qudit we can use creation and annihilation operators
on the Hilbert space Cd, which are defined respectively as:

a† =




0 0 · · · 0 0
1 0 · · · 0 0
0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · √d− 1 0




a =




0 1 0 · · · 0
0 0

√
2 · · · 0

...
...

...
. . .

...
0 0 0 · · · √d− 1
0 0 0 · · · 0




It is easily verified that the action of a† on the vectors of the canonical ortho-
normal basis of Cd is the following:

a†
∣∣∣∣

k

d− 1

〉
=
√

k + 1
∣∣∣∣
k + 1
d− 1

〉
for k ∈ {0, 1, . . . , d− 2}

a† |1〉 = 0

whereas the action of a is:

a

∣∣∣∣
k

d− 1

〉
=
√

k

∣∣∣∣
k − 1
d− 1

〉
for k ∈ {1, 2, . . . , d− 1}

a |0〉 = 0

The collection of all linear operators on Cd is a d2–dimensional linear space
whose canonical basis is:

142 A. Leporati, S. Felloni

{Ex,y = |y〉 〈x| : x, y ∈ Ld}

Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z 6= x, this
operator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all the
other vectors of the canonical orthonormal basis of Cd to the null vector. Each
of the operators Ex,y can be expressed, using the whole algebraic structure of
the associative algebra of operators, as a suitable composition of creation and
annihilation operators, as explained in [22].

2.2 The 3-SAT problem

A boolean variable is a variable which can assume one of two possible truth values:
true and false. As usually done in the literature, we will denote true by 1
and false by 0. A literal is either a directed or a negated boolean variable. A
clause is a disjunction of literals. A 3-clause is a disjunction of exactly three
literals. Given a set X = {x1, x2, . . . , xn} of variables, an assignment is a mapping
a : X → {0, 1} that associates to each variable a truth value. The number of
all possible assignments to the variables of X is 2n. We say that an assignment
satisfies the clause C if, assigned the truth values to all the variables which occur
in C and evaluated the formula which represents C, the result is 1.

The 3-SAT decision problem is defined as follows.

Problem 1. Name: 3-SAT.

• Instance: a set C = {c1, c2, . . . , cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of variables;

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C? ut
Notice that the number m of possible 3-clauses is polynomially bounded with

respect to n: in fact, since each clause contains exactly three literals, we can have
at most (2n)3 = 8n3 clauses.

In what follows we will equivalently say that an instance of 3-SAT is a boolean
formula φn, built on n free variables and expressed in conjunctive normal form,
with each clause containing exactly three literals. The formula φn is thus the
conjunction of the above clauses.

It is well known [18] that 3-SAT is an NP-complete problem.

3 Solving 3-SAT with Quantum Circuits

3.1 Quantum Circuits

A Fredkin gate is a three–input/three–output boolean gate, whose input/ output
map fg : {0, 1}3 → {0, 1}3 associates any input triple (x1, x2, x3) with its corre-
sponding output triple (y1, y2, y3) as follows:

Three Quantum Algorithms to Solve 3-SAT 143

y1 = x1

y2 = (¬x1 ∧ x2) ∨ (x1 ∧ x3)
y3 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

(2)

The Fredkin gate is (logically) reversible, since it computes a bijective map on
{0, 1}3. A useful point of view is that the Fredkin gate behaves as a conditional
switch: that is, FG(1, x2, x3) = (1, x3, x2) and FG(0, x2, x3) = (0, x2, x3) for every
x2, x3 ∈ {0, 1}. Hence, x1 can be considered as a control input whose value de-
termines whether the input values x2 and x3 have to be exchanged or not. The
Fredkin gate is also functionally complete for boolean logic: by fixing x3 = 0 we
get y3 = x1 ∧ x2, whereas by fixing x2 = 1 and x3 = 0 we get y2 = ¬x1.

Putting together Fredkin gates we can build Fredkin circuits, that is, acyclic
and connected directed graphs made up of layers of Fredkin gates. For a precise
and formal definition of circuits see, for example, [37]. Figure 1 depicts an example
of Fredkin circuit having three gates arranged in two layers. Evaluating a Fredkin

x

x

x

x

2

3

4

5

x1 y1

y2

y3

y4

y5

FG x

x

x

x

2

3

4

5

x1

x6

x7

FG

FG

y6

y7

FG

FG

y1

y2

y3

y4

y5

FG

x6

x7

y6

y7

Fig. 1. A Fredkin circuit (on the left) and its normalized version

circuit in topological order (i.e. layer by layer, starting from the layer directly
connected to the input lines) we can define the boolean function computed by
the circuit as the composition of the functions computed by each layer of Fredkin
gates. In evaluating the resources used by a Fredkin circuit to compute a boolean
function we consider the size and the depth of the circuit, respectively defined as
the number of gates and the number of layers of the circuit.

Since the Fredkin gate is functionally complete, for any boolean function f :
{0, 1} → {0, 1} there exists a Fredkin circuit that computes it in some prefixed
output line.

A reversible n–input Fredkin circuit is a Fredkin circuit FCn which computes a
bijective map fFCn : {0, 1}n → {0, 1}n. In a reversible Fredkin circuit the FanOut
function, defined as FanOut(x) = (x, x) for all x ∈ {0, 1}, is explicitly computed
with a gate. Fortunately, the Fredkin gate can also be used for this purpose, since
fg(x, 0, 1) = (x, x,¬x) for x ∈ {0, 1}. Compare this situation with usual (non
reversible) circuits, where the FanOut function is simply implemented by splitting
wires. It should be apparent that for any boolean function f : {0, 1}n → {0, 1}
there also exists a m–input reversible Fredkin circuit FCm (with m ≥ n) that
computes it in some prefixed output line. Without loss of generality, we can assume

144 A. Leporati, S. Felloni

that the value of f always appears in the first output line of FCm. Observe that,
in order to compute f through a reversible Fredkin circuit, we could need more
that n input/output lines: the additional m−n lines are usually called ancillae in
the literature.

A quantum version of the Fredkin gate can be represented with the following
order 8 (= 23, where 3 is the number of input and output lines) unitary matrix:

Ufg =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




In fact it is easily verified that, for all x1, x2, x3 ∈ {0, 1}, Ufg |x1, x2, x3〉 =
|y1, y2, y3〉, where (y1, y2, y3) = fg(x1, x2, x3).

We can also associate an order 2n unitary matrix to any reversible n–input
Fredkin circuit FCn, as follows. Each layer of FCn is composed by some Fredkin
gates, acting in parallel, and some wires which are not affected by any gate. Since
the state of such wires remains unaltered during the computation performed by
the layer, we can think that the identity operator, or identity gate, is applied to
them. The unitary matrix associated with the identity gate which acts on a single
wire is:

id1 =
[
1 0
0 1

]

It is immediately seen that the unitary matrix associated with an n–input/n–
output identity gate is the order 2n identity matrix idn, which can also be expressed
as the n–fold tensor product of id1:

idn = ⊗nid1

Similarly, it is easily seen that the unitary matrix associated with a given layer is
obtained by computing the tensor product of the matrices which correspond to the
Fredkin gates and to the identity gates which occur from the top to the bottom of
the layer. For example, the unitary matrix associated with the first and the second
layers of the circuit depicted in the left side of Figure 1 are:

Ufg ⊗ id1 ⊗ Ufg and id2 ⊗ Ufg ⊗ id2,

respectively.
Observe also that we may need to send the output values of a given layer of a

Fredkin circuit to any input line of the next layer. In other words, we may need
to interleave the layers of Fredkin circuits with appropriate fixed permutations, as
shown in the right side of Figure 1. If desired, we can also move the Fredkin gates

Three Quantum Algorithms to Solve 3-SAT 145

to any position into the layer (in Figure 1 we can see normalized layers, as named
in [24, 25], where the Fredkin gates are all moved as upward as possible). Since a
fixed permutation πn : {0, 1}n → {0, 1}n is a bijection on {0, 1}n, and hence it is
reversible, it can always be represented by an order 2n unitary matrix Uπn

. Indeed
Uπn is a permutation matrix, having a single 1 in every row and in every column. Let
us note in passing that also Ufg, the unitary matrix associated with the Fredkin
gate, is a permutation matrix. A practical problem which may occur during the
construction of the unitary matrices which correspond to fixed permutations is
that these matrices may be very large. Indeed, their size grows exponentially with
respect to the number n of elements to be permuted. A possible solution is to
decompose the permutation into smaller permutations which involve only a small
number of not-too-far elements, thus transforming the fixed permutation layer to
a permutation (sub)circuit.

Let ` be the number of layers of FCn. We can finally build the unitary matrix
UFCn

which corresponds to the entire Fredkin circuit FCn as the product of the
matrices UL1 , UL2 , . . . , UL`

associated with the layers of FCn, as follows:

UFCn
= UL`

· . . . · UL2 · UL1

Now let us show that every matrix UFCn
, which can be obtained as we have just

described, can also be represented as a formula in the associative algebra of all lin-
ear operators on ⊗nC2. The formula consists of the product of the formulas which
represent the matrices UL`

, . . . , UL2 , UL1 associated with the layers L1, L2, . . . , L`

of FCn. On its turn, these formulas are obtained as the tensor product of the
formulas which represent Fredkin gates and identities. Let us assume that the ele-
mentary components which can be used to build the formula which corresponds to
UFCn are the identity (id1), the creation (a†) and the annihilation (a) operators
on C2. Moreover, besides the usual (·) and the tensor (⊗) products we will also
use sums (+), which allow us to build linear combinations of operators. As told
above, the identity idn which acts on n wires can be simply obtained as ⊗nid1.
As for the Fredkin gate, we can express it as follows:

|0〉 〈0| ⊗ id1 + |1〉 〈1| ⊗ (|00〉 〈00|+ |11〉 〈11|+ |01〉 〈10|+ |10〉 〈01|) =

= aa† ⊗ id1 ⊗ id1 + a†a⊗ (
aa† ⊗ aa† + a†a⊗ a†a + a⊗ a† + a† ⊗ a

)

Hence we can conclude that, given a boolean formula φn on n free variables, there
exists a corresponding formula ψm (with m ≥ n) that describes the structure of
the reversible Fredkin circuit FCm which computes the value of φn in its first
output line, built using only the operators a, a† and id1, and the connectives +, ·
and ⊗.

3.2 Solving 3-SAT with Quantum Circuits

Let φn be an instance of 3-SAT with n free variables. As told above, there exists a
reversible Fredkin circuit FCm (with m ≥ n) that computes φn in its first output
line. Let UFCm be the unitary matrix which corresponds to FCm. Moreover, let:

146 A. Leporati, S. Felloni

H1 =
1√
2

[
1 1
1−1

]

be the unitary matrix which corresponds to the Hadamard gate, whose effect on
the base state |0〉 of a single qubit is:

H1 |0〉 =
1√
2

(|0〉+ |1〉)

A well known technique in Quantum Computing is to use the m–fold tensor
product of H1:

Hm = ⊗mH1 =
1√
2m

⊗m

[
1 1
1−1

]

whose effect on the base state |0 · · · 0〉 of the computational basis of ⊗mC2 is:

Hm |0 · · · 0〉 = ⊗mH1 |0〉 = ⊗m 1√
2

(|0〉+ |1〉) =

=
1√
2m

∑

x1,...,xm∈{0,1}
|x1, . . . , xm〉

to create a uniform superposition (that is, a linear combination whose coefficients
are all the same) of all the base states of the computational basis of ⊗mC2. It is
also well known that if we apply the linear operator represented by UFCm to such
superposition we obtain as a result a linear combination of all possible “classical”
results in the output lines. In particular, in the first output line of FCm we will
obtain one of two possible results:

• |0〉, if φn is not satisfiable;
• a linear combination α0 |0〉 + α1 |1〉, with α1 6= 0, if φn is satisfiable. The

quantity |α1| will be directly proportional to the number of assignments which
satisfy φn, and thus it could be exponentially small with respect to α0 (we
recall that |α0|2 + |α1|2 = 1).

Now, the problem is that if we measure the state of the first output line then
it collapses to a classical state in a random way, and the probability to observe
the post–measurement state |i〉, with i ∈ {0, 1}, is |αi|2. This means that, even
if φn is satisfiable, in the worst case we should make an exponential number of
computations and successive measurements to obtain a |1〉 in the first output line
of FCm. This problem also affected the solution of SAT through quantum circuits
exposed in [28]. To solve this problem, it has been subsequently proposed to amplify
|α1| (and thus the probability to observe |1〉) by feeding a “chaotic machine” with
the output generated by the quantum circuit [29]. A drawback of such solution
is that it puts ourselves beyond the computational power of Turing machines,
because the chaotic system used in [29] has super–Turing capabilities. Here we
note that if we are able to build a gate whose linear operator O is represented by
the following (non–unitary) matrix:

Three Quantum Algorithms to Solve 3-SAT 147

2n

[
0 0
0 1

]
= 2na†a = 2n |1〉 〈1| (3)

then also the following “selection” operator can be built:

O(m) = O ⊗ (⊗m−1 id1

)

which applies O to the value of the first output line of the circuit, and the identity
operator to the other lines.

Hence the global operator which describes the computation performed by FCm

on all possible classical inputs, and the subsequent query on the first output line,
is:

O(m) · UFCm ·Hm |0 · · · 0〉
If we observe the resulting vector, we have two possible outcomes:

• the null vector 0, if φn is not satisfiable. This is due to the fact that:

O |0〉 = 2n |1〉 〈1|0〉 = 0

• a non–null vector if φn is satisfiable, since

O
(
α0 |0〉+ α1 |1〉

)
= α02n |1〉 〈1|0〉+ α12n |1〉 〈1|1〉
= 0 + α12n |1〉 = α12n |1〉

Let us note here that the coefficient 2n has been chosen so that the length of
the resulting vector is not too small; this should help to distinguish it from the
null vector.

We can thus conclude that if both the following conditions hold:

1. it is possible to apply the operator 2n |1〉 〈1| to the first output line of the
quantum version of the Fredkin circuit FCm,

2. an external observer is able to distinguish, as the result of a measurement,
between a null and a non–null vector,

then we have a quantum computational device which is able to solve the NP-
complete problem 3-SAT. Let us note that this computational device is built in a
semi–uniform way: the structure (topology) of the quantum circuit FCm depends
upon the instance φn of 3-SAT we want to solve.

4 Solving 3-SAT with QRMs

4.1 Quantum Register Machines

A (classical, deterministic) n–register machine is a construct M = (n, P, l0, lh),
where n is the number of registers, P is a finite set of instructions injectively labeled
with a given set lab(M), l0 is the label of the first instruction to be executed, and
lh is the label of the last instruction of P . Registers contain non–negative integer
values. Without loss of generality, we can assume lab(M) = {1, 2, . . . ,m}, l0 = 1
and lh = m. The instructions of P have the following forms:

148 A. Leporati, S. Felloni

• j : (INC(r), k), with j, k ∈ lab(M)
This instruction increments the value contained in register r, and then jumps
to instruction k.

• j : (DEC(r), k, l), with j, k, l ∈ lab(M)
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

• m : Halt
Stop the machine. Note that this instruction can only be assigned to the final
label m.

Register machines provide a simple universal computational model. Indeed, the
results proved in [14] (based on the results established in [26]) as well as in [15]
and [16] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label lh with registers 1 to β
containing r1 to rβ, and all other registers being empty; if the final label cannot be
reached, then f(n1, . . . , nα) remains undefined.

A quantum n–register machine is defined exactly as in the classical case, as a
four–tuple M = (n, P, l0, lh). Each register of the machine is an infinite dimensional
quantum harmonic oscillator, capable to assume the base states |ε0〉 , |ε1〉 , |ε2〉 , . . .,
corresponding to its energy levels. The program counter of the machine is instead
realized through a quantum system capable to assume m different base states,
from the set {|x〉 : x ∈ Lm}. For simplicity, the instructions of P are denoted in
the usual way:

j : (INC(i), k) and j : (DEC(i), k, l)

This time, however, these instructions are appropriate linear operators acting on
the Hilbert space whose vectors describe the (global) state of M . Precisely, the
instruction j : (INC(r), k) is defined as the operator

OINC
j,r,k = |pk〉 〈pj | ⊗

(⊗r−1I
)⊗ a† ⊗ (⊗n−rI

)

with I the identity operator on H, whereas the instruction j : (DEC(r), k, l) is
defined as the operator

ODEC
j,r,k,l = |pl〉 〈pj | ⊗

(⊗r−1I
)⊗ |ε0〉 〈ε0| ⊗

(⊗n−rI
)
+

|pk〉 〈pj | ⊗
(⊗r−1I

)⊗ a⊗ (⊗n−rI
)

Hence the program P can be formally defined as the sum OP of all these
operators:

OP =
∑

j,r,k

OINC
j,r,k +

∑

j,r,k,l

ODEC
j,r,k,l

Three Quantum Algorithms to Solve 3-SAT 149

Thus OP is the global operator which describes a computation step of M . The
Halt instruction is simply executed by doing nothing when the program counter
assumes the value |pm〉. For such value, OP would produce the null vector as
a result; however, in the following we will add a term to OP that allows us to
extract the solution of the problem from a prefixed register when the program
counter assumes the value |pm〉.

A configuration of M is given by the value of the program counter and the
values contained in the registers. From a mathematical point of view, a configu-
ration of M is a vector of the Hilbert space Cm ⊗ (⊗nH), where H is the Hilbert
space associated with every quantum harmonic oscillator. A transition between
two configurations is obtained by executing one instruction of P (the one pointed
at by the program counter), that is, by applying the operator OP to the current
configuration of M .

As shown in [21], QRMs can simulate any (classical, deterministic) register
machine, and thus they are computationally complete.

4.2 Solving 3-SAT with Quantum Register Machines

Let φn be an instance of 3-SAT containing n free variables. We will first show how
to evaluate φn with a classical register machine; then, we will use the same trick
we have adopted with quantum circuits: we will initialize the input registers with
a superposition of all possible assignments, we will compute the corresponding
superposition of output values into an output register, and finally we will apply
the linear operator 2n |1〉 〈1| to the output register to check whether φn is a positive
instance of 3-SAT.

The register machine that we use to evaluate φn is composed by n+1 registers.
The first n registers correspond (in a one-to-one manner) to the free variables of
φn, while the last register is used to compute the output value. The structure of
the program used to evaluate φn is the following:

φ = 0
if C1 = 0 then goto end
if C2 = 0 then goto end
...
if Cm = 0 then goto end
φ = 1

end:

where φ denotes the output register, and C1, C2, . . . , Cm are the clauses of φn. Let
Xi,j , with j ∈ {1, 2, 3}, be the literals (directed or negated variables) which occur
in the clause Ci (hence Ci = Xi,1 ∨ Xi,2 ∨ Xi,3). We can thus write the above
structure of the program, at a finer grain, as follows:

φ = 0
if X1,1 = 1 then goto end1

150 A. Leporati, S. Felloni

if X1,2 = 1 then goto end1

if X1,3 = 1 then goto end1

goto end
end1: if X2,1 = 1 then goto end2

if X2,2 = 1 then goto end2

(4)
if X2,3 = 1 then goto end2

goto end
end2: · · · · · ·

...
endm−1: if Xm,1 = 1 then goto end

if Xm,2 = 1 then goto end
if Xm,3 = 1 then goto end
φ = 1

end:

In the above structure it is assumed that each literal Xi,j , with 1 ≤ i ≤ m
and j ∈ {1, 2, 3}, is substituted with the corresponding variable which occurs in it;
moreover, if the variable occurs negated into the literal then the comparison must
be done with 0 instead of 1:

if Xi,j = 0 then goto endi

Since the free variables of φn are bijectively associated with the first n registers
of the machine, in order to evaluate φn we need a method to check whether a given
register contains 0 (or 1) without destroying its value. Let us assume that, when
the program counter of the machine reaches the value k, we have to execute the
following instruction:

k: if Xi,j = 1 then goto endi

We translate such instruction as follows (where, instead of Xi,j , we specify the
register which corresponds to the variable indicated in Xi,j):

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

The instruction:

k: if Xi,j = 0 then goto endi

is instead translated as follows:

k: DEC(Xi,j), k + 1, endi

k + 1: INC(Xi,j), k + 2

Notice that the only difference with the above sequence of instructions is in the
position of “endi” and “k + 2”. Moreover, the structure of the program is always
the same. As a consequence, given an instance φn of 3-SAT, the program P of
a register machine which evaluates φn can be obtained in a very straightforward
(mechanical) way. For example, if:

Three Quantum Algorithms to Solve 3-SAT 151

φ4 = (x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x4 ∨ x3)

then the following program P can be immediately obtained (here we assume that
the output register φ has already been initialized with 0):

1: DEC(1), 2, 3 // if x1 = 1 then goto end1

2: INC(1), end1

3: DEC(2), 4, 5 // if x2 = 1 then goto end1

4: INC(2), end1

5: DEC(3), 6, end1 // if x3 = 0 then goto end1

6: INC(3), end // else goto end
7: DEC(1), 8, 9 // if x1 = 1 then goto end
8: INC(1), end
9: DEC(4), 10, 11 // if x4 = 1 then goto end

10: INC(4), end
11: DEC(3), 12, 13 // if x3 = 1 then goto end
12: INC(3), end
13: INC(φ), 14 // φ = 1
14: HALT

where end1 = 7, end = 14 and φ = 5.
On a classical register machine, this program computes the value of φn for a

given assignment to its variables x1, x2, . . . , xn. On a quantum register machine
we can initialize the registers with the following state:

⊗n−1H1 |0〉 ⊗ |0〉

which sets the output register φ to 0 and the registers corresponding to x1, x2, . . . , xn

to a superposition of all possible assignments. Then, we apply the global operator
OP which corresponds to the program P until the program counter reaches the
value |pend〉, thus computing in the output register a superposition of all classical
results. The operator OP is built as described above, with the only difference that
now it contains also the term:

|pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1|

which extracts the result from the output register when the program counter as-
sumes the value |pend〉. The number of times we have to apply OP is equal to the
length of P , that is, 2 · 3m + 2 = 6m + 2: two instructions for each literal in every
clause, plus 2 final instructions.

Now, if φn is not satisfiable then the contents of the output register is |0〉, and
when the program counter reaches the value |pend〉 the operator OP transforms it
to the null vector. On the other end, if φn is satisfiable then the contents of the
output register will be a superposition α0 |0〉 + α1 |1〉, with |α0|2 + |α1|2 = 1 and
α1 6= 0. By applying the operator OP we obtain (here |ψn〉 denotes the state of
the n input registers):

152 A. Leporati, S. Felloni

OP

(|pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉+ α1 |1〉)
)

=

=
(|pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1|)·

· (|pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉+ α1 |1〉)
)

=
= |pend〉 〈pend|pend〉 ⊗ idn |ψn〉 ⊗ 2n |1〉 〈1| (α0 |0〉+ α1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (2nα0 |1〉 〈1|0〉+ 2nα1 |1〉 〈1|1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (0 + 2nα1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ 2nα1 |1〉

that is, a non–null vector.
We can thus conclude that if an external observer is able to distinguish between

a null and a non–null vector, then we have a quantum algorithm that allows to solve
3-SAT on QRMs. Just like the solution proposed for quantum Fredkin circuits, this
algorithm works in a semi–uniform setting: in particular, the program P executed
by the QRM depends upon the instance φn of 3-SAT we want to solve.

5 Solving 3-SAT with Quantum UREM P Systems

5.1 Quantum UREM P Systems

A UREM P system [13] of degree d + 1 is a construct Π of the form:

Π = (A,µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd)

where:

• A is an alphabet of objects;
• µ is a membrane structure, with the membranes labelled by numbers 0, . . . , d

in a one-to-one manner;
• e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d. In

what follows we assume that e0, . . . , ed are non–negative integers;
• w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of µ;
• R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule has the form (α : a,∆e, b), where α ∈ {in, out}, a, b ∈ A, and |∆e| is
the amount of energy that — for ∆e ≥ 0 — is added to or — for ∆e < 0 — is
subtracted from ei (the energy assigned to membrane i) by the application of
the rule.

By writing (αi : a,∆e, b) instead of (α : a,∆e, b) ∈ Ri, we can specify only one
set of rules R with

R = {(αi : a,∆e, b) : (α : a,∆e, b) ∈ Ri, 0 ≤ i ≤ d}

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by non-deterministically

Three Quantum Algorithms to Solve 3-SAT 153

choosing one rule from some Ri and applying it (observe that here we consider
a sequential model of applying the rules instead of choosing rules in a maximally
parallel way, as it is often required in P systems). Applying (ini : a,∆e, b) means
that an object a (being in the membrane immediately outside of i) is changed into
b while entering membrane i, thereby changing the energy value ei of membrane i
by ∆e. On the other hand, the application of a rule (outi : a,∆e, b) changes object
a into b while leaving membrane i, and changes the energy value ei by ∆e. The
rules can be applied only if the amount ei of energy assigned to membrane i fulfills
the requirement ei + ∆e ≥ 0. Moreover, we use some sort of local priorities: if
there are two or more applicable rules in membrane i, then one of the rules with
max |∆e| has to be used.

A sequence of transitions is called a computation; it is successful if and only if
it halts. The result of a successful computation is considered to be the distribution
of energies among the membranes (a non–halting computation does not produce
a result). If we consider the energy distribution of the membrane structure as
the input to be analysed, we obtain a model for accepting sets of (vectors of)
non–negative integers.

The following result, proved in [13], establishes computational completeness for
this model of P systems.

Proposition 2. Every partial recursive function f : Nα → Nβ can be computed by
a UREM P system with (at most) max{α, β}+ 3 membranes.

On the other hand, by omitting the priority feature we do not get systems with
universal computational power. Precisely, in [13] it is proved that UREM P sys-
tems without priorities and with an arbitrary number of membranes characterize
the family PsMATλ of Parikh sets generated by context–free matrix grammars
(without occurrence checking and with λ-rules).

In quantum UREM P systems, all the elements of the model (multisets, the
membrane hierarchy, configurations, and computations) are defined just like the
corresponding elements of the classical P system, but for objects and rules. The
objects of A are represented as pure states of a quantum system. If the al-
phabet contains d ≥ 2 elements, then without loss of generality we can put
A =

{
|0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

}
, that is, A = {|a〉 : a ∈ Ld}. As stated

above, the quantum system will also be able to assume as a state any superposition
of the kind:

c0 |0〉+ c 1
d−1

∣∣∣∣
1

d− 1

〉
+ . . . + c d−2

d−1

∣∣∣∣
d− 2
d− 1

〉
+ c1 |1〉

with c0, c 1
d−1

, . . . , c d−2
d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is simply a
collection of quantum systems, each in its own state.

In order to represent the energy values assigned to membranes we should use
quantum systems which can exist in an infinite (countable) number of states. Hence
we should assume that every membrane of the quantum P system has an associated

154 A. Leporati, S. Felloni

infinite dimensional quantum harmonic oscillator whose state represents the energy
value assigned to the membrane. To modify the state of such harmonic oscillator
we should use the infinite dimensional version of the creation (a†) and annihilation
(a) operators described above, which are commonly used in quantum mechanics.
The actions of a† and a on the state of an infinite dimensional harmonic oscillator
are analogous to the actions on the states of truncated harmonic oscillators; the
only difference is that in the former case there is no state with maximum energy,
and hence the creation operator never produces the null vector. However, as we
will see, in this paper we do not require to store an unlimited amount of energy
into the harmonic oscillators; on the contrary, we will need to put them only in
the base states |ε0〉 and |ε1〉, as well as in superpositions of such states.

As in the classical case, rules are associated to membranes rather than to the
regions enclosed by them. Each rule of Ri is an operator of the form

|y〉 〈x| ⊗O, with x, y ∈ Ld (5)

where O is a linear operator which can be expressed by an appropriate composition
of operators a† and a. The part |y〉 〈x| is the guard of the rule: it makes the rule
“active” (that is, the rule produces an effect) if and only if a quantum system in
the basis state |x〉 is present. The semantics of rule (5) is the following: If an object
in state |x〉 is present in the region immediately outside membrane i, then the state
of the object is changed to |y〉 and the operator O is applied to the state of the
harmonic oscillator associated with the membrane. Notice that the application of
O can result in the null vector, so that the rule has no effect even if its guard
is satisfied; this fact is equivalent to the condition ei + ∆e ≥ 0 on the energy
of membrane i required in the classical case. Differently from the classical case,
no local priorities are assigned to the rules. If two or more rules are associated to
membrane i, then they are summed. This means that, indeed, we can think to each
membrane as having only one rule with many guards. When an object is present,
the inactive parts of the rule (those for which the guard is not satisfied) produce
the null vector as a result. If the region in which the object occurs contains two
or more membranes, then all their rules are applied to the object. Observe that
the object which activates the rules never crosses the membranes. This means that
the objects specified in the initial configuration can change their state but never
move to a different region. Notwithstanding, transmission of information between
different membranes is possible, since different objects may modify in different
ways the energy state of the harmonic oscillators associated with the membranes.

The application of one or more rules determines a transition between two con-
figurations. A halting configuration is a configuration in which no rule can be
applied. A sequence of transitions is a computation. A computation is successful
if and only if it halts, that is, reaches a halting configuration. The result of a
successful computation is considered to be the distribution of energies among the
membranes in the halting configuration. A non–halting computation does not pro-
duce a result. Just like in the classical case, if we consider the energy distribution

Three Quantum Algorithms to Solve 3-SAT 155

of the membrane structure as the input to be analyzed, we obtain a model for
accepting sets of (vectors of) non–negative integers.

In [21] it has been shown that quantum UREM P systems are able to simulate
any QRM, and hence they are (at least) Turing complete.

5.2 Solving 3-SAT with Quantum UREM P Systems

Let φn be an instance of 3-SAT containing n free variables. The structure and the
initial configuration of the P system are shown in Figure 2. As we have done with

1R

1

2R

2

>|εx1 >|εx2

|p
1>

nR

n

>|εxn
|ε

n+1

R n+1

0

φ>

Fig. 2. Structure and initial configuration of the quantum UREM P system used to solve
3-SAT

quantum circuits and with quantum register machines, let us start by showing how
to evaluate φn for a given assignment of truth values to its variables x1, . . . , xn.
The input values are set as the energies |εxi〉 of the harmonic oscillators associated
with the membranes from 1 to n. The energy (eventually) associated with the skin
membrane is not used. The (n + 1)-th membrane, whose harmonic oscillator will
contain the output at the end of the computation, is initialized with |ε0〉. The
alphabet A consists of all the possible values which can be assumed by the program
counter. In the initial configuration the P system contains only one object |p1〉,
corresponding to the initial value of the program counter, in the region enclosed
by the skin membrane (see Figure 2).

The evaluation of φn could be performed by simulating the QRM obtained
from φn as explained in the previous section. However, we can obtain a slightly
more efficient P system as follows. We start from the program structure (4), which
can be obtained from φn in a straightforward way. Now, let us suppose we must
execute the following instruction:

k: if Xi,j = 1 then goto endi

As told above, this instruction is performed as follows in a register machine:

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

156 A. Leporati, S. Felloni

If we had to simulate these two instructions using a quantum UREM P system,
we should use the following sum of rules:

(|pendi
〉 〈pk+1| ⊗ a†

)
︸ ︷︷ ︸

k + 1: INC(Xi,j), endi

+
(|pk+2〉 〈pk| ⊗ |ε0〉 〈ε0|+ |pk+1〉 〈pk| ⊗ a

)
︸ ︷︷ ︸

k: DEC(Xi,j), k + 1, k + 2

∈ R`

where ` = 〈i, j〉 is the index of the variable (in the set {x1, x2, . . . , xn}) which
occurs in literal Xi,j . As we can see, this operator produces the vector |pk+2〉⊗|ε0〉
if the harmonic oscillator of membrane ` is in state |ε0〉; otherwise, it produces the
vector |pendi〉 ⊗ |ε1〉. Hence we can simplify the above expression as follows:

|pendi
〉 〈pk| ⊗ |ε1〉 〈ε1|+ |pk+2〉 〈pk| ⊗ |ε0〉 〈ε0| =

= |pendi〉 〈pk| ⊗ a†a + |pk+2〉 〈pk| ⊗ aa†

We denote this operator by O
(1)
i,j,k. Analogously, if the instruction to be executed

is:

k: if Xi,j = 0 then goto endi

we use the operator

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+2〉 〈pk| ⊗ a†a ∈ R`

which produces the vector |pk+2〉 ⊗ |ε1〉 if the harmonic oscillator of membrane `
is in state |ε1〉, otherwise it produces the vector |pendi〉 ⊗ |ε0〉.

Since the value |pk+1〉 is no longer used, we can “compact” the program by
redefining the operators O

(0)
i,j,k and O

(1)
i,j,k respectively as:

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+1〉 〈pk| ⊗ a†a

O
(1)
i,j,k = |pendi〉 〈pk| ⊗ a†a + |pk+1〉 〈pk| ⊗ aa†

The “goto end” instructions in (4) can be executed as if they were if state-
ments whose condition is the negation of the condition given in the previous if.
Hence the two instructions:

7: if X2,3 = 1 then goto end2

8: goto end

can be thought of as:

7: if X2,3 = 1 then goto end2

8: if X2,3 = 0 then goto end

which are realized by the operators O
(1)
2,3,7 and O

(0)
2,3,8 (to be added to membrane

〈2, 3〉). The last instruction (φ = 1) of the program can be implemented as follows:

|pend〉 〈pend−1| ⊗ a†

Three Quantum Algorithms to Solve 3-SAT 157

to be added to membrane n + 1.
For each membrane i ∈ {1, 2, . . . , n}, the set of rules Ri is obtained by summing

all the operators which concern variable xi.
Note that the formulation given in terms of quantum P systems is simpler than

the one obtained with QRMs. As usual, if we consider a single assignment to the
variables of φn then at the end of the computation we will obtain the result of the
evaluation of φn as the energy of the output membrane. Instead, if we initialize the
harmonic oscillators of the n input membranes with a uniform superposition of all
possible classical assignments to x1, x2, . . . , xn, then at the end of the computation
the harmonic oscillator of membrane n + 1 will be in one of the following states:

• |0〉, if φn is not satisfiable;
• a superposition α0 |0〉 + α1 |1〉, with |α0|2 + |α1|2 = 1 and α1 6= 0, if φn is

satisfiable.

Once again, we add the rule:

|pend〉 〈pend| ⊗ 2n |1〉 〈1| ∈ Rn+1

to membrane n + 1 to extract the result.
We have thus obtained a quantum membrane algorithm which solves 3-SAT. As

with the solutions proposed for quantum circuits and QRMs, also this algorithm
works in the semi–uniform setting: in fact, it is immediately verified that the rules
of the system depend upon the instance φn of 3-SAT to be solved.

6 Conclusions and Directions for Future Research

In this paper we have proposed three quantum algorithms that solve (in the semi–
uniform setting) the 3-SAT NP-complete decision problem. Their construction
relies upon the assumption that an external observer is able to distinguish, as the
result of a measurement, between a null and a non–null vector.

The first algorithm builds, for any instance φn of 3-SAT, a quantum Fredkin
circuit that computes a superposition of all classical evaluations of φn in the first
output line. Similarly, the second and third algorithms compute the same super-
position on a given register of a quantum register machine, and as the energy of
a given membrane in a quantum P system, respectively. Assuming that a given
non–unitary operator, which can be expressed using the well known creation and
annihilation operators, can be realized as a quantum gate, as an instruction of the
quantum register machine, and as a rule of the quantum P system, respectively, we
can apply the operator to the result of the above computation in order to extract
the solution of 3-SAT for the instance φn given in input.

One possible direction for future research is to study the computational prop-
erties of quantum P systems which contain and process entangled objects. Another
line of research is to study the limits of the computational power of quantum P

158 A. Leporati, S. Felloni

systems by attacking harder than NP-complete problems. In particular, we conjec-
ture that EXP-complete problems can be solved in polynomial time with quantum
P systems.

References

1. G. Alford: Membrane systems with heat control. In Pre–Proceedings of the Workshop
on Membrane Computing (WMC-CdeA2002), Curtea de Argeş, Romania, August
2002.

2. A. Alhazov, R. Freund, A. Leporati, M. Oswald, C. Zandron: (Tissue) P systems
with unit rules and energy assigned to membranes. To appear in Fundamenta Infor-
maticae.

3. A. Barenco, D. Deutsch, A. Ekert, R. Jozsa. Conditional quantum control and logic
gates. Physical Review Letters, 74 (1995), 4083–4086.

4. G. Benenti, G. Casati, G. Strini: Principles of Quantum Computation and Informa-
tion – Volume I: Basic Concepts. World Scientific, 2004.

5. P. Benioff: Quantum mechanical Hamiltonian models of discrete processes. Journal
of Mathematical Physics, 22 (1981), 495–507.

6. P. Benioff. Quantum mechanical Hamiltonian models of computers. Annals of the
New York Academy of Science, 480 (1986), 475–486.

7. D. Deutsch: Quantum theory, the Church–Turing principle, and the universal quan-
tum computer. Proceedings of the Royal Society of London, A 400 (1985), 97–117.

8. R.P. Feynman: Simulating physics with computers. International Journal of Theo-
retical Physics, 21, 6–7 (1982), 467–488.

9. R.P. Feynman: Quantum mechanical computers. Optics News, 11 (1985), 11–20.
10. E. Fredkin, T. Toffoli: Conservative logic. International Journal of Theoretical

Physics, 21, 3-4 (1982), 219–253.
11. R. Freund: Sequential P systems. Romanian Journal of Information Science and

Technology, 4, 1–2 (2001), 77–88.
12. R. Freund: Energy-controlled P systems. In Membrane Computing. International

Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, August 2002 (Gh. Păun,
G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer, 2003, 247–260.

13. R. Freund, A. Leporati, M. Oswald, C. Zandron: Sequential P systems with unit rules
and energy assigned to membranes. In Proceedings of Machines, Computations and
Universality, MCU 2004, Saint–Petersburg, Russia, September 21–24, 2004, LNCS
3354, Springer, 2005, 200–210.

14. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Informat-
icae, 49, 1–3 (2002), 81–102.

15. R. Freund, Gh. Păun: On the number of non-terminals in graph-controlled, pro-
grammed, and matrix grammars. In Proc. Conf. Universal Machines and Computa-
tions (M. Margenstern, Y. Rogozhin, eds.), Chişinău (2001), LNCS 2055, Springer,
2001, 214–225.

16. R. Freund, Gh. Păun: From regulated rewriting to computing with membranes: Col-
lapsing hierarchies. Theoretical Computer Science, 312 (2004), 143–188.

17. P. Frisco: The conformon–P system: a molecular and cell biology–inspired com-
putability model. Theoretical Computer Science, 312 (2004), 295–319.

Three Quantum Algorithms to Solve 3-SAT 159

18. M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory on
NP–Completeness. W.H. Freeman and Company, 1979.

19. D. Gottesman: Fault-tolerant quantum computation with higher-dimensional sys-
tems. Chaos, Solitons, and Fractals, 10 (1999), 1749–1758.

20. J. Gruska: Quantum Computing. McGraw–Hill, 1999.
21. A. Leporati, G. Mauri, C. Zandron: Quantum sequential P systems with unit rules

and energy assigned to membranes. In Membrane Computing: 6th International
Workshop, WMC 2005 (R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, eds.),
Vienna, Austria, July 18–21, 2005, LNCS 3850, Springer, 2006, 310–325.

22. A. Leporati, D. Pescini, C. Zandron: Quantum energy–based P systems. In Proceed-
ings of the First Brainstorming Workshop on Uncertainty in Membrane Computing,
Palma de Mallorca, Spain, November 8–10, 2004, 145–167.

23. A. Leporati, C. Zandron, G. Mauri: Simulating the Fredkin gate with energy–based
P systems. Journal of Universal Computer Science, 10, 5 (2004), 600–619. A prelim-
inary version is contained in [33], 292–308.

24. A. Leporati, C. Zandron, G. Mauri: Universal families of reversible P systems. In Pro-
ceedings of Machines, Computations and Universality, MCU 2004, Saint–Petersburg,
Russia, September 21–24, 2004, LNCS 3354, Springer, 2005, 257–268.

25. A. Leporati, C. Zandron, G. Mauri: Reversible P systems to simulate Fredkin circuits.
To appear in Fundamenta Informaticae.

26. M.L. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

27. M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

28. M. Ohya, N. Masuda: NP problem in quantum algorithm. Open Systems & Informa-
tion Dynamics, 7, 1 (2000), 33–39. A preliminary version appears in http://arxiv.

org/abs/quant-ph/9809075.
29. M. Ohya, I.V. Volovich: Quantum computing, NP-complete problems and chaotic

dynamics. In Quantum Information (T. Hita, K. Saito, eds.), World Scientific,
2000, 161–171. A preliminary version appears in http://arxiv.org/abs/quant-ph/

9912100.
30. M. Ohya, I.V. Volovich: Quantum computing and the chaotic amplifier. Journal of

Optics B: Quantum and Semiclassical Optics, 5 (2003), S639–S642.
31. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,

61 (2000), 108–143. See also Turku Centre for Computer Science – TUCS Report
No. 208, 1998.

32. Gh. Păun: Membrane Computing. An Introduction. Springer-, Berlin, 2002.
33. Gh. Păun, A. Riscos Nuñez, A. Romero Jiménez, F. Sancho Caparrini, eds.: Second

Brainstorming Week on Membrane Computing, Seville, Spain, February 2–7, 2004.
Department of Computer Sciences and Artificial Intelligence, University of Seville
TR 01/2004.

34. Gh. Păun, Y. Suzuki, H. Tanaka: P systems with energy accounting. International
Journal Computer Math., 78, 3 (2001), 343–364.

35. The P Systems Web Page: http://psystems.disco.unimib.it/
36. T. Toffoli: Reversible Computing, MIT/LCS Technical Report 151, February 1980.
37. H. Vollmer: Introduction to Circuit Complexity: A Uniform Approach. Springer, 1999.

