
Recognizing Membrane Structures with Tree
Automata?

José M. Sempere, Damián López

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia
46071 Valencia, Spain
E-mail: {jsempere,dlopez}@dsic.upv.es

Summary. In this work we propose a new model of tree automata based on multisets
of states and symbols linked to the finite control. This new model accepts a set of trees
with symmetries between their internal nodes. We name this property as mirroring. We
propose an application of these automata to solve a problem related to P systems such
as recognizing identic membrane structures.

1 Introduction

One of the main components of P systems is the membrane structure that they
define. This structure evolves during the computation time due to the application
of rules associated to the membranes. The membrane structure can be represented
by a tree in which the internal nodes denote regions which have inner regions
inside. So, the root of the tree is always associated to the skin membrane of the P
system.

The relation between regions and trees has been recently stressed by Freund
et al. [6]. These authors have established that any recursively enumerable set of
trees can be generated by a P system with active membranes and string objects.
So, P systems can be viewed as tree generators.

In this work we propose a model to accept the tree structures defined by P
systems. Our model is an extension of classical tree automata [7] in which the
states and symbols of the finite control form multisets. Multiset theory has been
linked to parallel processing as shown in [2].

The use of multisets in the finite control of tree automata implies the definition
of a multiset tree automaton model. This new model is able to process a set of
trees which have some symmetry properties linked to the internal nodes. These
symmetries appear during the representation of membrane structures of P systems.
That is, the initial order given to the regions of any P system is somehow arbitrary.
? Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02.

306 J.M. Sempere, D. López

The renaming of regions and rules in any P system does not change its behavior
during the computation. So, we have an exponential number of names that we can
give to any P system. This fact is what we try to study by introducing symmetries
(mirrorings) in the membrane structure.

The problem of representation that we have referred before opens a new defini-
tion of confluent P systems. We can define structural confluent P systems as those
systems in which the uniqueness of acceptance/rejection configurations is only re-
ferred to the membrane structure that they define. This will be investigated in
future works.

Another aspect that we try to solve is related to editing configurations. Re-
cently, Csuhaj-Varjú et al. [4] have proposed editing distances between configu-
rations of P systems. Here, we initiate the first step towards editing structural
configuration of P systems. That is, we can restrict the editing distances by taking
into account only membrane structures. The new model that we propose in this
work will be useful to calculate such distances. Here we can take advantage of a
previous work on editing distances between trees and tree automata [9].

The structure of this work is as follows. First we introduce basic definitions and
notation about multisets, tree languages and automata and P systems. In section
3, we define the new model of multiset tree automata. We define the relation of
mirroring between trees and we establish some results between tree automata,
multiset tree automata and mirroring trees. In section 4, we apply the new model
to solve the acceptance of membrane structures and the equivalence between them.
Finally, we draw some conclusions and give some guidelines for future works.

2 Notation and Definitions

In the sequel we will provide some concepts from formal language theory, mem-
brane systems and multiset processing. We suggest the books [14], [11], and [2] as
basic references.

Multisets

First, we will provide some definitions from multiset theory as exposed in [15].

Definition 2.1 Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→
N is a function.

Definition 2.2 Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets. The
removal of multiset B from A, denoted by AªB, is the multiset C = 〈D, h〉 where
for all a ∈ D h(a) = max(f(a)− g(a), 0).

Definition 2.3 Let A = 〈D, f〉 be a multiset; we will say that A is empty if for
all a ∈ D, f(a) = 0.

Recognizing Membrane Structures with Tree Automata 307

Definition 2.4 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their sum,
denoted by A⊕ B, is the multiset C = 〈D, h〉, where for all a ∈ D h(a) = f(a) +
g(a).

Definition 2.5 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will say that
A = B if the multiset (AªB)⊕ (B ªA) is empty.

We are specially interested in the class of multisets that we call bounded mul-
tisets. They are multisets that hold the property that the sum of all the elements
is bounded by a constant n. Formally, we will denote by Mn(D) the set of all
multisets 〈D, f〉 such that

∑
a∈D f(a) = n.

A concept that is quite useful to work with sets and multisets is the Parikh
mappings. Formally, a Parikh mapping can be viewed as the application Ψ : D∗ →
Nn where D = {d1, d2, · · · , dn}. Given an element x ∈ D∗ we define Ψ(x) =
(#d1(x), · · · ,#dn

(x)) where #dj
(x) denotes the number of occurrences of dj in x.

Later, we will use tuples of symbols and states as strings and we will apply the
Parikh mapping as defined above.

Tree automata and tree languages

Now, we introduce some concepts from tree languages and automata as exposed
in [3, 7]. First, let a ranked alphabet be the association of an alphabet V together
with a finite relation r in V ×N. We denote by Vn the subset {σ ∈ V | (σ, n) ∈ r}.

Given a ranked alphabet V with r in V × N, we define the maximum arity of
the alphabet as maxarity(V) = max{n | (σ, n) ∈ r}.

The set V T , of trees over V , is defined inductively as follows:

a ∈ V T for every a ∈ V0,
σ(t1, . . . , tn) ∈ V T whenever σ ∈ Vn and t1, . . . , tn ∈ V T , n > 0.

A tree language over V is defined as a subset of V T .
Given the tuple l =< 1, 2, . . . , k > we denote the set of permutations of l by

perm(l). Let t = σ(t1, . . . , tn) be a tree over V T ; we denote the set of permu-
tations of t at first level by perm1(t). Formally, perm1(t) = {σ(ti1 , . . . , tin) |<
i1, i2, . . . , in >∈ perm(< 1, 2, . . . , n >)}.

Let N∗ be the set of finite strings of natural numbers, separated by dots, formed
using the catenation as the composition rule and the empty word λ as the identity.
Let the prefix relation ≤ in N∗ be defined by the condition that u ≤ v if and only
if u · w = v for some w ∈ N∗ (u, v ∈ N∗). A finite subset D of N∗ is called a tree
domain if:

u ≤ v where v ∈ D implies u ∈ D, and
u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j).

Each tree domain D could be seen as an unlabelled tree whose nodes correspond
to the elements of D where the hierarchy relation is the prefix order. Thus, each

308 J.M. Sempere, D. López

tree t over V can be seen as an application t : D → V . The set D is called the
domain of the tree t, and denoted by dom(t). The elements of the tree domain
dom(t) are called positions or nodes of the tree t. We denote by t(x) the label of
a given node x in dom(t).

Let the level of x ∈ dom(t) be |x|. Intuitively, the level of a node measures its
distance from the root of the tree. Then, we can define the depth of a tree t as
depth(t) = max{|x| | x ∈ dom(t)}. In the same way, for any tree t, we denote the
size of the tree by |t| and the set of subtrees of t (denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0,

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, . . . , tn) (n > 0).

Definition 2.6 A finite deterministic tree automaton is defined as a system A =
(Q,V, δ, F), where Q is a finite set of states, V is a ranked alphabet, Q ∩ V = ∅,
F ⊆ Q is the set of final states, and δ =

⋃
i|Vi 6=∅ δi is a set of transitions defined

as follows:

δn : (Vn × (Q ∪ V0)n) → Q, n = 1, . . . , m,

δ0(a) = a, ∀a ∈ V0.

From now on, we will refer to finite deterministic tree automata simply as tree
automata. We suggest [3, 7] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on trees
as follows:

δ(a) = a for any a ∈ V0,

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0).

Note that the symbol δ denotes both the set of transition functions of the
automaton and the extension of these functions to operate on trees. In addition,
one can observe that the tree automaton A cannot accept any tree of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined as
ABT = (Q,V, δ, F), where:

Q = Sub(T),
F = T,

δn(σ, u1, . . . , un) = σ(u1, . . . , un), σ(u1, . . . , un) ∈ Q,

δ0(a) = a, a ∈ V0.

P systems

Finally, we will introduce basic concepts from membrane systems taken from [11].
A general P system of degree m is a construct

Recognizing Membrane Structures with Tree Automata 309

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects),
• T ⊆ V (the output alphabet),
• C ⊆ V , C ∩ T = ∅ (the catalysts),
• µ is a membrane structure consisting of m membranes,
• wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated with the

region i,
• Ri, 1 ≤ i ≤ m, is a finite set of evolution rules over V associated with the ith

region and ρi is a partial order relation over Ri specifying a priority.
An evolution rule is a pair (u, v) (or u → v) where u is a string over V and
v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj
| a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving action).
From now on, we will denote the set {here, out, ink | 1 ≤ k ≤ m} by tar.

• i0 is a number between 1 and m and it specifies the output membrane of Π (in
the case that it equals to ∞ the output is read outside the system).

The language generated by Π in external mode (i0 = ∞) is denoted by L(Π)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging them in the leaving order (if several objects
leave the system at the same time then permutations are allowed). The set of num-
bers that represent the objects in the output membrane i0 will be denote by N(Π).
Obviously, both sets L(Π) and N(Π) are defined only for halting computations.

One of the multiple variations of P systems is related to the creation, division
and modification of membrane structures. There have been several works in which
these variants have been proposed (see, for example, [1, 10, 11, 12]).

In the following, we enumerate some kind of rules which are able to modify the
membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′ ,
2. Creation: a → [hb]h,
3. Dissolving: [ha]h → b.

The power of P systems with the previous operations and other ones (e.g.
exocytosis, endocytosis, etc.) has been widely studied in the previously related
works and other ones.

3 Multiset Tree Automata and Mirrored Trees

We will extend over multisets some definitions of tree automata and tree languages.
First, we will introduce the concept of multiset tree automata and then we will
try to characterize the set of trees that it accepts. Observe that our approach is a

310 J.M. Sempere, D. López

little bit different from Csuhaj-Varjú et al. [5] and from Kudlek et al. [8] where, the
authors consider the case that bags of objects are analyzed by an abstract machine.
Here, we do not consider bags of (sub)trees but we introduce bags of states and
symbols in the finite control of the automata.

Given any tree automata A = (Q,V, δ, F) and δn(σ, p1, p2, . . . , pn) ∈ δ, we
can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is defined
by Ψ(p1p2 . . . pn). The multiset defined in this way will be denoted by MΨ (δn).
Alternatively, we can define MΨ (δn) as MΨ (p1)⊕MΨ (p2)⊕ · · · ⊕MΨ (pn), where
for all 1 ≤ i ≤ n, MΨ (pi) ∈ M1(Q ∪ V0). Observe that if δn(σ, p1, p2, . . . , pn) ∈ δ,
δ′n(σ, p′1, p

′
2, . . . , p

′
n) ∈ δ, and MΨ (δn) = MΨ (δ′n), then δn and δ′n are defined over

the same set of states and symbols but in different order (that is the multiset
induced by 〈p1, p2, · · · , pn〉 equals to the one induced by 〈p′1p′2 . . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up pars-
ing as in the tree automaton case.

Definition 3.1 A multiset tree automaton is defined by the tuple MA =
(Q,V, δ, F), where Q is a finite set of states, V is a ranked alphabet with
maxarity(V) = n, Q ∩ V = ∅, F ⊆ Q is a set of final states, and δ is a set
of transitions defined as follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi,

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)), i = 1, . . . , n,

δ0(a) = MΨ (a) ∈M1(Q ∪ V0), ∀a ∈ V0.

We can take notice that every tree automaton A defines a multiset tree au-
tomaton MA as follows.

Definition 3.2 Let A = (Q,V, δ, F) be a tree automaton. The multiset tree au-
tomaton induced by A is defined by the tuple MA = (Q,V, δ′, F), where each δ′ is
defined as follows: MΨ (r) ∈ δ′n(σ,M) if δn(σ, p1, p2, . . . , pn) = r and MΨ (δn) = M .

Observe that, in the general case, the multiset tree automaton induced by A
is non-deterministic.

As in the case of tree automata, δ′ could also be extended to operate on trees.
Here, the automaton analyzes the leaves of the tree first through δ0. Then, by
making a bottom-up parsing, the tuples of states and/or symbols are transformed
in multisets by using the Parikh mapping Ψ to obtain the multisets in Mn(Q∪V0).
If the analysis is completed and δ′ returns a multiset with at least one final state,
the input tree is accepted. So, δ′ can be extended as follows

Recognizing Membrane Structures with Tree Automata 311

δ′(a) = MΨ (a) for any a ∈ V0,

δ′(t) = {M ∈ δ′n(σ,M1 ⊕ · · · ⊕Mn) | Mi ∈ δ′(ti)1 ≤ i ≤ n},
for t = σ(t1, . . . , tn) (n > 0).

Formally, every multiset tree automaton MA accepts the following language

L(MA) = {t ∈ V T | MΨ (q) ∈ δ′(t), q ∈ F}.
Theorem 3.1 Let A = (Q,V, δ, F) be a tree automaton, MA = (Q,V, δ′, F) be
the multiset tree automaton induced by A, and t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q,
then MΨ (q) ∈ δ′(t).

Proof. We will proceed by induction on the depth of the tree.
Base of induction:

Let us consider that t = σ(a1, . . . , an) with ai ∈ V0 and δn(σ, a1, · · · , an) = q.
The definition of δ′ implies that MΨ (q) ∈ δ′(σ,MΨ (a1a2 . . . an)) so MΨ (q) ∈ δ′(t).
Induction hypothesis:

Let us consider that depth(t) < n. If δ(t) = q then MΨ (q) ∈ δ′(t).
Induction step:

depth(t) = n. Let us suppose that t = σ(t1, · · · , tn) with depth(ti) < n for
1 ≤ i ≤ n. Our induction hypothesis establishes that, if δ(ti) = qi, then MΨ (qi) ∈
δ′(ti) for 1 ≤ i ≤ n, Then, δ′n(σ, t1, · · · , tn) = δ′n(σ, P) with P = MΨ (q1 . . . qn) ∈
Mn(Q ∪ V0). So, if δn(σ, q1, · · · , qn) = r, then the construction of δ′ ensures that
MΨ (r) ∈ δ′n(σ, P) = δ′(t).

Corollary 3.1 Let A = (Q,V, δ, F) be a tree automaton and MA = (Q,V, δ′, F)
be the multiset tree automaton induced by A. If t ∈ L(A), then t ∈ L(MA).

Mirrored equivalent trees

We now introduce the concept of mirroring in tree structures. Informally speaking,
two trees will be related by mirroring if some permutations at the structural level
are mad. For example, the trees given in Figure 1 have identical subtrees except
that some internal nodes have changed their order.

We propose a definition that relates all the trees with this mirroring property.

Definition 3.3 Let t and s be two trees from V T . We say that t and s are mirror
equivalent, denoted by t ./ s, if one of the following conditions holds:

1. t = s = a ∈ V0,
2. t ∈ perm1(s),
3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists < s1, s2, . . . , sk >∈

perm(< s1, s2, . . . , sn >) such that ti ./ si for all 1 ≤ i ≤ n.

Property 3.1 ./ is a binary equivalence relation (i.e., it is reflexive, symmetric
and transitive).

312 J.M. Sempere, D. López

¡
¡

¡@
@@

G H

D
¡

¡
¡@

@
@
E

B

¡
¡

¡¡@
@

@@

A

C

F
¡

¡
¡¡@

@
@

F D

B

¡
¡

¡

@
@@

H G

¡
¡

¡¡@
@

@@

A

C

F

Fig. 1. Two mirrored trees.

Theorem 3.2 Let A = (Q,V, δ, F) be a tree automaton, t = σ(t1, . . . , tn) ∈ V T ,
and s = σ(s1, . . . , sn) ∈ V T . Let MA = (Q,V, δ′, F) be the multiset tree automaton
induced by A. If t ./ s, then δ′(t) = δ′(s).

Proof. We will proceed by induction on the depth of the tree.
Base of induction:

Let us take t and s with depth(t) = depth(s) = 1. It is easy to see that the
transition function δ′ consider in the same way every permutation of the leaves of
t, that is, every mirror equivalent tree to t.
Induction hypothesis:

Let us consider that depth(t) = depth(s) < n. If t ./ s, then δ′(t) = δ′(s).
Induction step:

Finally, take t and s with depth(t) = depth(s) = n. Let us suppose that t ./ s
with t = σ(t1, · · · , tn) and s = σ(s1, · · · , sn). Therefore, for each ti there exist sj

such that ti ./ sj , 1 ≤ i, j ≤ n and, due to our induction hypothesis, δ′(ti) = δ′(sj).
So, the set of multisets defined by δ′(t1)⊕· · ·⊕δ′(tn) is equal to the set of multisets
defined by δ′(s1)⊕ · · · ⊕ δ′(sn) and δ′(t) = δ′(s).

Note that the reciprocal of last theorem is not generally true. For instance,
consider the trees t = σ(a) and s = σ(a, σ(a)) and the tree automaton with the
following transition function:

δ1(σ, a) = q1 ∈ F, δ2(σ, a, q1) = q1 ∈ F.

It is easy to see that δ′(t) = δ′(s) but t is not mirror equivalent to s.

Corollary 3.2 Let A = (Q,V, δ, F) be a tree automaton, MA = (Q,V, δ′, F) the
multiset tree automaton induced by A and t ∈ V T . If t ∈ L(MA), then s ∈ L(MA)
for any s ∈ V T such that t ./ s.

Recognizing Membrane Structures with Tree Automata 313

Proof. Note that if t ∈ L(A) then t ∈ L(MA) due to Theorem 3.1 and Corollary
3.1. Finally, by Theorem 3.2, if t ./ s, then δ′(t) = δ′(s) and s ∈ L(MA).

This result suggests an algorithm to determine whether two trees are mirror
equivalent or not. The algorithm is shown in Figure 2

Input:
Two trees t, s ∈ V T

Output:
Answer to t ./ s

Method:

1. Let ABt = (Q, V, δ, F) be the subtree automaton for the set {t}
2. Let MABt = (Q, V, δ′, F) be the mirrored tree automaton induced by ABt

3. if (δ′(s) ∩ F 6= ∅)
then return TRUE
else return FALSE

fi

Fig. 2. Algorithm to determine if two trees are mirror equivalent.

Note that given s, t ∈ V T , the algorithm constructs ABt and MABt. By Corol-
lary 3.1, t ∈ L(MABt) and, due to Corollary 3.2, if t ./ s, then s ∈ L(MABt).
In addition, if t is not mirror equivalent to s, then δ′(s) is not defined due to the
construction of ABt which is deterministic and accepts only t.

Observe that the multiset tree automaton MABt could be non-deterministic.
For example, if δ(σ, a, b) = q1 and δ(σ, b, a) = q2 is defined for ABt, then
δ′(σ,MΨ (ab)) = {MΨ (q1),MΨ (q2)} is defined for MABt. This case could be
avoided: just rename the state q2 as q1 during the construction in step 2 of the pro-
posed algorithm. So, we can assume that MABt is deterministic too. The subtree
automaton ABt proposed in the algorithm contains neither loops nor cycles.

It is possible to establish in polynomial time if MABt accepts a given tree s.
Furthermore, we will prove that the proposed algorithm runs in polynomial time
with the size of the input tree t.

Lemma 3.1 Algorithm of Figure 2 runs in time O(|t|2).
Proof. First, the operations⊕ and the symmetric difference, defined over multisets,
can be performed in time O(n) where n is the size of the set that defines the
multiset [13]. In this case, n = |t|.

Now we will analyze the time complexity of the algorithm step by step
Step 1 runs in time O(|t|).
Step 2 runs in time O(|t|2). Observe that the number of multiset operations

involved in the construction of MABt is bounded by the size of the automaton
ABt which is bounded by |t|.

314 J.M. Sempere, D. López

Step 3 runs in time O(|t|2). Here, the number of applications of the δ′ function
is bounded by |t|. In addition, every application of δ′ involves again the operations
over multisets that we have referred before.

Consequently, the maximal time needed to run the algorithm is O(|t|2). 2

4 Recognizing Membrane Structures with Multiset Tree
Automata

Recently, in [6], a way to generate trees by membrane systems has been proposed.
Initially, any membrane structure can be represented by a tree taking the mem-
brane structure as a hierarchical order between regions. Freund et al. [6] have
taken advantage of a variant of P systems with active membranes and string ob-
jects. Active membranes have an electrical charge (polarization) together with a set
of rules that allow the membranes to change polarizations, move objects (strings),
dissolving the membranes, 2-dividing the membranes, etc. In [6] it is proved that
any recursively enumerable tree language can be generated by a P system.

Here, we propose a way to recognize two identical membrane structures by
taking advantage of tree representations. For example, let us see Figure 3, in which
we represent a membrane structure with different trees.

¡
¡

¡@
@

@
4 5

2
@

@
@@¡

¡
¡¡
3

1

6

¡
¡

¡@
@

@
5 4

2
¡

¡
¡¡@

@
@@

1

3

6

'

&

$

%

'

&

$

%

'

&

$

%

¾

½

»

¼
¾

½

»

¼

º

¹

·

¸

1

2 3

4

5

6

¡
¡

¡¡@
@

@@
4 5

2

¡
¡

¡¡@
@

@@

1

3

6

Fig. 3. A membrane structure together with different representations by trees.

Recognizing Membrane Structures with Tree Automata 315

Obviously, the initial order of a membrane structure can be fixed. Anyway,
whenever the system evolves (membrane dissolving, division, creation, etc.) this
order can be at least somehow ambiguous. Furthermore, the initial order of a P
system is only a naming convention given that the membrane structure of any
P system can be renamed without changing its behavior due to the parallelism
(observe that if the P system were sequential, then the ordering could be important
for the final output).

The representation by trees could be essential for the analysis of the dynamic
behavior of P systems. Whenever we work with trees to represent the membrane
structure of a given P system, we can find a mirroring effect. Again, take a look
at Figure 3: the three different trees proposed for the membrane structure have
a mirroring property, that is, some nodes at a given level of the tree have been
permuted together (or not) with their descendants.

The method that we propose to establish if two membrane structures µ and µ′

are identical is based on the algorithm from Figure 2. First, we represent µ and
µ′ by t and s, respectively. Then, we apply the proposed algorithm and, if t ./ s,
then we can affirm that µ and µ′ are identical.

5 Conclusions and Future Work

We have proposed a new model of tree automata to evaluate if membrane struc-
tures of P systems are identical. This is a first step to evaluate the number of
membrane rules needed to transform a membrane structure into a different one.
The number of rules needed, if so, establishes an editing distance between P sys-
tems by taking into account only membrane modifications. Finally, this measure
will provide new definitions about structural confluence in P systems, that is,
structural agreement during evolution.

References

1. A. Alhazov, T.O. Ishdorj: Membrane operations in P systems with active membranes.
In Proc. Second Brainstorming Week on Membrane Computing, TR 01/04 of RGNC,
Sevilla University, 2004, 37–44.

2. C. Calude, G. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing. Math-
ematical, Computer Science and Natural Computing Points of View, LNCS 2235,
Springer-Verlag, Berlin, 2001.

3. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tom-
masi: Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997, release October first, 2002.

4. E. Csuhaj-Varjú, A. Di Nola, G. Păun, M. Pérez-Jiménez, G. Vaszil: Editing config-
urations of P systems. In the present volume, 131–154.

5. E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana: Multiset automata. In [2], 69–83.

316 J.M. Sempere, D. López

6. R. Freund, M. Oswald, A. Păun: P systems generating trees. In Pre-proceedings of
Fifth Workshop on Membrane Computing (WMC5), Milano, 2004 (G. Mauri, G.
Păun, C. Zandron, eds.), 221–232.

7. F. Gécseg, M. Steinby: Tree languages. In [14], 1–69.
8. M. Kudlek, C. Mart́ın-Vide, G. Păun: Towards a formal macroset theory. In [2],

123–133.
9. D. López, José M. Sempere, P. Garćıa: Error correcting analysis for tree languages.

International Journal of Pattern Recognition and Artificial Intelligence, 14, 3 (2000),
357–368.

10. A. Păun: On P systems with active membranes. In Proc. of the First Conference on
Unconventionals Models of Computation (UMC2K), Brusells, 2000, 187–201.

11. G. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
12. G. Păun, Y. Suzuki, H. Tanaka, T. Yokomori: On the power of membrane division

on P systems. Theoretical Computer Sci., 324, 1 (2004), 61–85
13. R.L. Rivest T.H. Cormen, C.E. Leiserson, C. Stein. Introduction to Algorithms. MIT

Press and McGraw-Hill, second edition, 2001.
14. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
15. A. Syropoulos: Mathematics of multisets. In [2], 347–358.

