
Further Results on P Systems with
Promoters/Inhibitors

Dragoş Sburlan

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
and
Faculty of Mathematics and Informatics
Ovidius University of Constanta, Romania
E-mail: dsburlan@univ-ovidius.ro

Summary. The paper gives several results regarding P systems with non-cooperative
rules and promoters/inhibitors at the level of rules. For the class of P systems using
inhibitors, generating families of sets of vectors of numbers, the equivalence with the
family of Parikh sets of ET0L languages is presented. In case of P systems with non-
cooperative promoted rules even if an upper bound was not given, the inclusion of the
family PsET0L was proved. Moreover, a characterization of such systems by means of
a particular form of random context grammars, therefore a sequential formal device, is
proposed.

1 Introduction

P systems with promoters/inhibitors represent a possible abstract mathematical
model of several biological activities happening in a cell. For example, the mech-
anism of activating/deactivating enzymes by what is called phosphorization (the
covalent attachment of phosphoryl to the enzyme) as well as the way the enzymes
control different metabolic reaction chains, might be modelled by such systems.

From a formal point of view we are interested to find properties of the languages
generated by such bio-inspired devices. For the general case, when “weak” coop-
erative rules are considered, i.e., involving only one catalyst, the computational
completeness of P systems with promoters/inhibitors was proved in [2] and [4].
Also, when the weight of promoters/inhibitors can be larger than one, universality
results are obtained (see [1]).

Here we deal with systems that use non-cooperative rules and promot-
ers/inhibitors of weight one. Because only promoters/inhibitors cannot restrict the
parallelism of a P systems with non-cooperative rules, as catalysts do for instance

290 D. Sburlan

in the case of catalytic P systems, the common accepted conjecture was that such
systems are not computational complete. In this paper, we give an answer to the
problem regarding the computational capability of the family of P systems with
inhibited non-cooperative rules; the case when promoted non-cooperative rules are
used is left open.

In Section 2 we present basic notions and results regarding Lindenmayer sys-
tems and random context grammars. In addition, for the random context grammar,
we define a new restrictive form – random context grammars with limited checking
– and we show that such grammars can generate strictly more than the family of
languages generated by ET0L systems. We conjecture that such systems are not
computationally complete.

In Section 3 we prove that any P system using inhibitors can finish its compu-
tation having all membranes empty except the output one. Moreover, we show that
such P systems generate exactly the same family of Parikh sets as ET0L systems.
This result has a certain importance not only from formal languages point of view,
but also from a biological perspective because, for instance, the membership and
reachability problems for ET0L systems are decidable.

In Section 4 we give a lower bound for the family of sets of vectors generated
by P systems with non-cooperative promoted rules, namely the family of Parikh
images of ET0L languages. In what concerns the upper bound, we give a charac-
terization by means of random context grammars with limited checking. In this
way, an open problem arises about the maximal parallel computing by means of a
sequential machine.

Along the paper, several open problems and research proposals are also pre-
sented.

2 Preliminaries

Here we recall several notions from the classical theory of formal languages, namely
Lindenmayer systems and random context grammars. For further details regarding
these notions we refer to [6], [3], and [7].

2.1 Lindenmayer Systems

A 0L system is a triple H = (V, P, ω), where V is a finite alphabet, P is a set of
context-free rules over V , and ω ∈ V ∗ is the axiom. The set of rules P has to be
complete, i.e., for each symbol a ∈ V there must be at least one rule a → α ∈ P
with this letter a on the left-hand side.

0L systems use parallel derivations, i.e., x directly derives y in a 0L system H =
(V, P, ω), with x, y ∈ V ∗ , written as x

OL=⇒H y, if x = x1x2 . . . xn, y = y1y2 . . . yn,
where xi ∈ V , yi ∈ V ∗, and xi → yi ∈ P , 1 ≤ i ≤ n.

A T0L system is a triple H = (V, T, ω), where V is a finite alphabet, T =
{T1, . . . , Tk} is a finite set of tables over V , where each table Ti, 1 ≤ i ≤ k is a

Further Results on P Systems with Promoters/Inhibitors 291

complete set of context-free rules over V , and ω ∈ V ∗ is the axiom. We say that
x directly derives y in a T0L system H = (V, T, ω), with x, y ∈ V ∗, written as
x

TOL=⇒H y, if x
OL=⇒Hi

y for some i, 1 ≤ i ≤ k, with the 0L system Hi = (V, Ti, ω).
An ET0L system is a quadruple H = (V, T, ω, ∆), where H = (V, T, ω) is a

T0L system, and ∆ ∈ V , ∆ 6= ∅, is the terminal alphabet. In an ET0L system
H = (V, T, ω, ∆), x directly derives y, with x, y ∈ V ∗, written as x

ETOL=⇒ H y, if

x
TOL=⇒H y. The transitive and reflexive closure of ETOL=⇒ H is denoted by

ETOL

=⇒∗
H .

The language generated by the system H (denoted by L(H)) is L(H) = {w ∈
∆∗ | ω

ETOL

=⇒∗
H w}. Thus in an ET0L system only words over a distinguished

sub-alphabet are in the generated language. A language is said to be an ET0L
language if there is an ET0L system generating it.

A 0L system is a TOL system that has only one table. Adding a number of
tables yields an infinite hierarchy of subclasses of the class of T0L languages. In
turn, every ET0L language can be generated by an ET0L system with only two
tables.

We have that for any ET0L system H there exists an equivalent ET0L system
H = (V, T, ω, ∆) such that V = VN ∪∆, VN ∩∆ = ∅, and each rule from Ti ∈ T ,
1 ≤ i ≤ |T |, is in one of the forms A → α, A ∈ VN , α ∈ V ∗ or a → a, a ∈ ∆.

We will denote by ET0L the family of languages generated by ET0L systems.

2.2 Random Context Grammars

A random context grammar is a quadruple G = (N,T, P, S), where N , T , S are
defined as in the context-free grammars and P is a finite set of random context
rules, that is, triples of the form (A → α,Q, R) where A → α is a context-free
rule with A ∈ N , α ∈ (N ∪ T)∗, and Q, R ⊆ N . For x, y ∈ (N ∪ T)∗ we write
x

rc=⇒ y iff x = x1Ax2, y = x1αx2 for some x1, x2 ∈ (N ∪ T)∗, (A → α,Q, R) is
a triple in P , all symbols of Q appear and no symbol of R appears in x1Ax2. We
will refer Q as the permitting context and R as the forbidding context of the rule
A → α. If the forbidding context is empty for every rule, then we speak about a
random context grammar without appearance checking. The language generated

by a random-context grammar G = (N, T, P, S) is L(G) = {v ∈ T ∗ | S
rc

=⇒∗ v},
where by

rc

=⇒∗ we have denoted the transitive and reflexive closure of rc=⇒.
We denote by RCλ

ac the family of languages generated by random-context
grammars with appearance checking and λ rules. The following result stands:
RCλ

ac = RE.
For any random context grammar with appearance checking and λ rules there

exists an equivalent random context grammar with appearance checking and λ
rules G′ = (N ′, T ′, P ′, S′) such that for the rules (A → α, Q,R) ∈ P ′ we have
|α| ≤ 2, |Q| ≤ 1, |R| ≤ 1.

Definition 1. A random context grammar with limited checking and λ rules is a
random context grammar G = (N, T, P, S) with rules of the form (A → α, Q,R),

292 D. Sburlan

where A → α is a context-free rule with A ∈ N , α ∈ (N ∪ T)∗, and Q, R ⊆ N ,
|Q|+ |R| ≤ 1.

We denote by RCλ
lc the family of languages generated by random context gram-

mars with limited checking and λ rules.
A natural question arise:

Open Problem: what is the generative power of random context grammars with
limited checking?

Conjecture. Random context grammars with limited checking are not universal,
i.e., RCλ

lc ⊂ RE. One can remark that this is a “winning” problem irrespective
which is its answer, since if such grammars prove to be universal, then even if
Theorem 5 become trivial, we will have a new normal form for random context
and matrix grammars with appearing checking, but if they are not universal, then,
as we will see, this implies that P systems with promoters are not universal. We
also suggest an approach that might be useful for proving the non-universality of
catalytic P systems with only one catalyst.

Anyway, random context grammars with limited checking are strictly more
powerful than ET0L systems.

Theorem 1. RCλ
lc ⊃ ET0L.

Proof. Consider an ET0L system H = (V, T, ω, ∆) such that V = VN∪∆, VN∩∆ =
∅, T = {T1, T2, . . . , Tk} and all rules from Ti, 1 ≤ i ≤ k are in one of the forms
A → α, A ∈ VN α ∈ V ∗, or a → a, a ∈ ∆. We will simulate the computation
of the system H with a random context grammars with limited checking G =
(NG, TG, PG, SG).

Since in H the rules a → a, a ∈ ∆, do not affect the derivation process, we
can remove them from tables. Therefore, let Ti = {A(i,j) → α(i,j) | 1 ≤ j ≤ ri},
1 ≤ i ≤ k, be the sets of rules representing the ET0L tables.

We denote:

NG = (V \∆) ∪ {ti,j | 1 ≤ i ≤ k, 1 ≤ j ≤ 2 ∗ ri + 1} ∪ {A | A ∈ V \∆}
TG = ∆.

We define the set of rules PG as follows.

(S → t(i,1)ω, ∅, ∅), with 1 ≤ i ≤ k.

The starting symbol S is non-deterministically changed into one table selector
(t(i,1), 1 ≤ i ≤ k) and the string ω representing the axiom of the ET0L to be
simulated.

Next we have the following rules that correspond to the rules of the tables:

(A(i,j) → α(i,j), {t(i,j)}, ∅), with 1 ≤ i ≤ k, 1 ≤ j ≤ ri.

Further Results on P Systems with Promoters/Inhibitors 293

Basically, each rule produces “colored” (overlined) symbols in the presence of
symbol t(i,j), 1 ≤ i ≤ k, 1 ≤ j ≤ ri, representing the selected table.

The next task needed for a correct simulation is to check whether or not all
symbols in the current sentential form were actually transformed into overlined
ones. In order to accomplish this task we have the rules:

(t(i,j) → t(i,j+1), ∅, {Ai,j}), with 1 ≤ i ≤ k, 1 ≤ j ≤ ri.

In fact, there are needed even a smaller number of rules of the above type. This
is due to the fact that our system might contain more rules with the same symbol
on the left-hand side. However, the reason for adopting such numbers was just for
having a simpler notation.

In case there are still remaining not overlined symbols, a symbol t(i,ri+1), 1 ≤
i ≤ k, 1 ≤ j ≤ ri, is not produced.

We also have the rules:

(A(i,j) → A(i,j), {t(i,ri+1)}, ∅), 1 ≤ i ≤ k, 1 ≤ j ≤ ri.

Their role is to change back the overlined symbols into regular ones. Now, in
order to simulate the selection of a new table and to iterate the process, we have
to be sure that all overlined symbols have been changed back into regular ones.

The procedure is accomplished, in a similar way, by the rules:

(t(i,j) → t(i,j+1), ∅, {A(i,j−ri)}), 1 ≤ i ≤ k, ri + 1 ≤ j ≤ 2 ∗ ri.

Finally, if everything worked as we expected (recall that the simulation is non-
deterministic and if the derivation went in a “wrong” way, then it is blocked),
then we have produced a symbol t(i,ri+1), 1 ≤ i ≤ k. Next, we can use this
symbol to repeat the table selection mechanism or to stop non-deterministically
the generative core. These actions are achieved by making use of the rules:

(t(i,2∗ri+1) → t(h,1), ∅, ∅), with 1 ≤ i, h ≤ k,

(t(1,2∗ri+1) → λ, ∅, ∅).

Because we consider in the language only terminal strings, we have L(H) =
L(G), hence the inclusion RCλ

lc ⊇ ET0L is proved.

In order to prove that the inclusion is strict we have to construct a language that
cannot be generated by an ET0L system. To this aim, we construct G = (V, T, P, S)
that generates the language {(anb)m | m ≥ n ≥ 1} defined as follows:
• V = {S, A,B, C, D, X, Y, N, N ′, P, P ′, P ′′, R, Q,Z, a, b},
• T = {a, b},
• P contains the following rules:

294 D. Sburlan

(S → AX, ∅, ∅) (P ′ → P ′′, ∅, {A})
(A → BB, {X}, ∅) (P ′′ → Q, ∅, {N ′})
(X → Y N, ∅, {A}) (C → bD, {Q}, ∅)
(B → A, {Y }, ∅) (Q → R, ∅, {C})
(Y → X, ∅, {B}) (D → C, {R}, ∅)
(X → P, ∅, ∅) (R → Q, ∅, {D})
(A → aC, {P}, ∅) (Q → Z, ∅, {C})
(P → P ′, {N ′}, ∅) (D → λ, {Z}, ∅)
(N → N ′, ∅, ∅) (Z → λ, ∅, ∅)
(N ′ → λ, ∅, ∅)

The details concerning the way this grammar works are left to the reader. Conse-
quently, we have RCλ

lc ⊃ ET0L. 2

3 Non-cooperative P Systems with Inhibitors

In this section we consider P systems with symbol objects, non-cooperative rules,
inhibitors at the level of rules, and generating sets of vectors of numbers. The
family of sets of vectors generated by systems with at most m ≥ 1 membranes is
denoted by PsPm(ncoo, inhR). In order to prove the main result of the section,
that is PsPm(ncoo, inhR) = PsET0L, we will accomplish the following plan:

• show the equivalence between P systems with non-cooperative inhibited rules
using m membranes, and P systems with non-cooperative inhibited rules and
only one membrane;

• show that any P system with non-cooperative inhibited rules is equivalent with
a P system with non-cooperative inhibited rules having the alphabet made out
of two disjoint sets, the set of terminals and of nonterminals; in addition, all
rules have a non-terminal on their left-hand side; moreover, the set is complete,
i.e., for each nonterminal there exists at least one rule having it on the left-hand
side;

• for a given set of inhibited rules, define saturated classes of rules, i.e., find the
sets containing rules that does not mutually forbids each other;

• show that PsPm(ncoo, inhR) = PsET0L by double inclusion.

Here is how we proceed:

Theorem 2. PsPm(ncoo, inhR) = PsP1(ncoo, inhR), for m ≥ 2.

Proof. The inclusion PsPm(ncoo, inhR) ⊇ PsP1(ncoo, inhR) is trivial. For the
proof of the inclusion PsPm(ncoo, inhR) ⊆ PsP1(ncoo, inhR), we construct a
P system Π1 = (V, C, µ, w,R, ϑ) that simulates the computation of P system
Πm = (V , C, µ, w1, . . . , wm, R1, . . . , Rm, ϑ) in the following way.

First, denote by L = {1, 2, . . . ,m} the set of labels of the regions in Πm. Then,
we define:
• V = {ai | a ∈ V , i ∈ L}.

Further Results on P Systems with Promoters/Inhibitors 295

• C = C = ∅;
Let h : V

∗ × L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L;
2) h(λ, j) = λ, for all j ∈ L;
3) h(x1x2, j) = h(x1, j)h(x2, j), x1, x2 ∈ V

∗
, j ∈ L.

• denote by w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in region
i ∈ L of Πm at the beginning of the computation.
• R is defined as follows. For each rule a → α|¬b ∈ Ri, a, b ∈ V , α is a string over
{c, cout, cin | c ∈ V }, i ∈ L, we add to R the rule h(a, i) → α′|¬h(b,i) where α′ is
the corresponding string over {h(c, i), h(c, j), h(c, k) | c ∈ V , i, j, k ∈ L}, j being
the label of the outer region of i, and k being the label of the inner region of i.
• ϑ = 1;

In other words, for the P system with a single region that simulates a P system
with m regions, we have encoded the regions labels into objects (the subscript as-
sociated to an object indicates the region where the corresponding object belongs)
and we have expressed the rules of regions by the corresponding encoded objects.
In this way we ensured that, when simulating Πm with Π1, both the parallelism at
the level of regions and at the level of whole system Πm is respected. In addition,
one can remark that whenever Πm halts, Π1 halts as well. Moreover, when Π1

halts, we will have in the output region of Π1 all the objects corresponding to the
multisets present in all regions of Πm. However, in the output multiset wΠ1 of Π1

we can distinguish the output multiset wΠm
of Πm because we know which are the

objects corresponding to the output region of Πm (they are the objects that have
as index ϑ). Therefore, we have to delete the unnecessary objects that remain in
the output region of Π1 in a halting configuration since we want to show that Π1

and Πm generate exactly the same set of vectors of numbers. We will modify the
rules presented above in the following manner.

We add to the vocabulary V a new symbol D (the object D stands for the
“deletion command”) and we replace each rule ai → α′|¬bi ∈ R by

ai → α′D|¬bi ∈ R,

and each rule ai → α′ ∈ R by

ai → α′D ∈ R,

respectively.
In addition, we add the following rules

D → λ,

ai → λ|¬D,

for all ai ∈ V , i 6= ϑ

One can remark that in this way we produce at each computational step at least

296 D. Sburlan

one object D and also, in the same time, we delete the already existing object(s)
D. If there exist rules that can be executed (i.e., there will be objects D) rules of
type ai → λ|¬D cannot be applied. When the computation halts, objects D are not
produced anymore, and so, the deletion rules can start and erase the remaining
unnecessary objects. Consequently we have shown that both systems generate the
same family of vectors of natural numbers, hence we have PsPm(ncoo, inhR) ⊆
PsP1(ncoo, inhR). 2

As a consequence of the proof above we have the following corollary:

Corollary 1. For any P system Π with inhibited non-cooperative rules there exists
an equivalent P system Π ′ with inhibited non-cooperative rules such that, for any
halting configuration of Π ′, all regions of Π ′, excepting the output one, are empty.

Remark 1. Later we will show that P systems with inhibited non-cooperative rules
generate exactly PsET0L. Therefore, one can prove the above result also by using
the fact that the family ET0L is closed under arbitrary morphisms (so we can
delete the unnecessary objects in a halting configuration).

Now, let us define the non-excluding inhibiting relation and saturated sets with
respect to this relation.

First, for a given alphabet V , let R = {r1, r2, . . . , rk} be a set of productions
of the form ri : (Ai → αi|¬Bi), Ai, Bi ∈ V , Ai 6= Bi, αi ∈ V ∗, 1 ≤ i ≤ k.

For a rule r : (A → α|¬B) ∈ R we define left(r) = A and inh(r) = B.
Two rules ri, rj ∈ R are said to be in the non-excluding inhibiting relation, and

we denote this by ri ≡nei rj , iff left(ri) 6= inh(rj) and left(rj) 6= inh(ri).

Remark 2. We have the following properties:
• ≡nei is reflexive (obvious),
• ≡nei is symmetric (obvious),
• ≡nei is not transitive.

For example, take R = {r1 : (A → α|¬B), r2 : (D → β|¬C), r3 : (B → γ|¬A)}.
Observe that r1 ≡nei r2, r2 ≡nei r3, but r1 6≡nei r3.

Definition 2. A subset W ⊆ R is said to be saturated (or complete) with respect
to non-excluding inhibiting relation ≡nei iff (∀) ri, rj ∈ W , ri ≡nei rj, and (∀) ri ∈
R \W, (∃) rj ∈ W such that ri 6≡nei rj.

Remark 3. The set R may contain more saturated subsets, say W1,W2, . . . ,Wk,
with respect to the non-excluding inhibiting relation ≡nei. We have W1 ∪ W2 ∪
. . . ∪Wk = R and Wi ∩Wj , 1 ≤ i, j ≤ k, not necessarily empty.

Example 1. Consider the following set of rules

R = {r1 : (A → α1|¬B), r2 : (C → α2|¬D), r3 : (B → α3|¬D),
r4 : (A → α3|¬C), r5 : (D → α4|¬C)}.

Then we have:

Further Results on P Systems with Promoters/Inhibitors 297

W1 : W2 : W3 : W4 :
r1 : (A → α1|¬B) r3 : (B → α3|¬D) r1 : (A → α1|¬B) r2 : (C → α2|¬D)
r2 : (C → α2|¬D) r4 : (A → α3|¬C) r4 : (A → α3|¬C) r3 : (B → α3|¬D)

r5 : (D → α4|¬C)

Lemma 1. For any P system Π1 = (V , C, µ, w, R, ϑ) with non-cooperative rules
and inhibitors there exists an equivalent P system Π1 = (V, C, µ, w,R, ϑ) with
non-cooperative rules and inhibitors such that:

V = VN ∪ VT , VN ∩ VT = ∅,
C = C = ∅,
µ = µ = []1,

w ⊆ VN ,

R = {r1, . . . , rk}, is a set of rules of the form A → α|¬B

or A → α, where A,B ∈ VN , α ∈ V ∗,

ϑ = 1.

Proof. (Sketch) We define the set VN = {A | a ∈ V } ∪ {D} and VT = V . The set
of rules is defined as:

R = {A → ΦD | a → φ ∈ R,A, D ∈ VN , Φ ∈ V ∗
N}

∪ {A → ΦD|¬B | a → φ|¬b ∈ R, A,B,D ∈ VN , Φ ∈ V ∗
N}

∪ {D → λ}
∪ {A → a|¬D | A,D ∈ VN , a ∈ VT }

where by Φ we understand the image of φ through a morphism that maps all
regular letters from V to corresponding capital letters. Basically we detect when
the system halts and only at that time we change the nonterminals into terminals.
2

Remark 4. A similar result stands also for P systems with non-cooperative rules
and promoters. Of course, both results can be extended to P systems having m
membranes and not with only one membrane as we have considered.

Lemma 2. For any P system Π1 = (V , C, µ, w, R, ϑ) with non-cooperative rules
and inhibitors given in the form specified by Lemma 1 there exists an equivalent P
system Π1 = (V, C, µ,w, R, ϑ) with non-cooperative rules and inhibitors such that
the set of rules R is complete (i.e., for each A ∈ V there exists at least one rule
of type A → α ∈ R or A → α|¬B ∈ R).

Proof. (Sketch) Assume that in R there is no rule with object B on its left-hand
side. (i.e., there are no rules of type B → β or B → β|¬C). In addition, assume
that object B is produced by rules of type A → αB or A → αB|¬C . Also, suppose
there is at least one rule of type A → α|¬B .

298 D. Sburlan

We construct the P system Π1, having the set of rules R complete, that simu-
lates the moves of Π1 in the following manner. First, let

• V = V ∪ {D, b}.
The set of rules R is defined as follows:

• for any rule of type A → α ∈ R we add to R the rules:

A → αD,

D → λ;

• for any rule of type A → α|¬C ∈ R we add to R the rules:

A → αD|¬C ,

D → λ;

• for any rule of type A → αB ∈ R or A → αB|¬C ∈ R (therefore rules that
produce at least one object B) we add to R the rules:

B → B,

B → b|¬D.

The explanation of the simulation is rather easy: at each computational step
Π1 produces the same multiset of objects as Π1 and, in addition, several copies
of object D (according to the number of rules applied in Π1). The object D will
be used in Π1 to trigger a signal that the corresponding computation in Π1 halts
(the absence of object D from the current multiset means that no rules from R,
that correspond to rules in R, can be applied anymore).

Now, suppose the object B is produced by a rule at a certain moment. Then,
since in any non-halting configuration there exists object(s) D, the only rule han-
dling object B that can be executed is B → B. Finally, if the computation stops
in Π1, then it means that in Π1 the rules that can be further executed (in a
non-deterministic manner) are B → B and B → b|¬D. In case rule B → b|¬D is
executed for all existing objects B, then the computation stops, Π1 producing the
same multiset of objects as Π1. 2

Remark 5. A similar result stands also for P systems with non-cooperative rules
and promoters. Of course, both results can be extended to P systems having any
number m ≥ 1 membranes.

Now we can state the following result:

Theorem 3. PsPm(ncoo, inhR) = PsET0L.

Proof. We prove this result by double inclusion.
Case 1. PsPm(ncoo, inhR) ⊇ PsET0L.
For an ET0L system H = (V, T = {T1, T2}, ω, ∆) we can construct a P system

Π = (Vπ, C, µ, w,R, ϑ) that simulates any of its derivations in the following way.

Further Results on P Systems with Promoters/Inhibitors 299

Vπ = V ∪ {t1, t2} ∪ {S};
C = ∅;
µ = []1;
w = Sω;
R = {S → St1, S → St2}
∪ {S → λ, t1 → λ, t2 → λ}
∪ {a → α|¬t1 | a → α ∈ T1}
∪ {a → α|¬t2 | a → α ∈ T2}
∪ {A → A|¬S | A ∈ V \∆};

ϑ = 1.

Here is how the system works. The initial multiset consists of the string ω which
corresponds to the ET0L axiom and a symbol S. The rules of types S → St1 (or
S → St2) and S → λ represent the “core engine” that selects non-deterministically
the ET0L table to be simulated; at any moment, in a non-deterministic manner,
the rule S → λ can be applied and the computation stops.

A rule of type S → St1 (or S → St2) forbids the applications of all rules a →
α|¬t1 (or a → α|¬t2 , respectively), but allows the execution of rules corresponding
to the ET0L table T2 (or the execution of rules corresponding to the ET0L table
T1, respectively). In this way, we correctly have simulated the application of the
table t2 (or t1). Also, in the same computational step, either object t1 or object
t2 is deleted from the current multiset by one of the rules t1 → λ or t2 → λ, and
the whole process can be iterated.

If the “core engine” stops (because the rule S → λ was applied), then we may
have two cases.

(i) the current multiset is formed only by symbols from ∆ and then the whole
computation will stop and the system generates exactly the same vector of num-
bers as the Parikh vector of a corresponding successful computation of the ET0L
system.

(ii) the current multiset contains symbols from V \∆ and then the computation
will not stop, because the rules of type A → A|¬S will cycle forever.

In conclusion we have shown that PsPm(ncoo, inhR) ⊇ PsET0L.

Case 2. PsET0L ⊇ PsPm(ncoo, inhR).
Given a P system Πm with m ≥ 1 membranes we construct an equivalent P

system Π1 = (Vπ, C, µ, w, R, ϑ) (see Theorem 2). Without a loss of generality we
consider the system Π1 as being in the form given by Lemma 1 and Lemma 2, i.e.,
with a complete set of context-free rules over the disjoint sets of nonterminals and
terminals.

We construct the ET0L system H = (V, T = {T1, T2, . . . , Tk}, ω,∆) that sim-
ulates Π1, as follows:

• V = Vπ ∪ {#};

300 D. Sburlan

• Let R be the set of all rules of type a → α|¬b ∈ R, b 6= λ, from R. Also, let
Ti, 1 ≤ i ≤ k, be all saturated subsets (with respect to non-excluding inhibiting
relation ≡nei) of R. Then, we define

Ti = {a → α | a → α|¬b ∈ Ti}
∪ {b → # | a → α|¬b ∈ Ti}
∪ {a → α | a → α ∈ R \R and a 6= b (∀) c → α|¬b ∈ Ti}
∪ {# → #}, 1 ≤ i ≤ k;

• ω=w;
• ∆ = VT , where VT ⊂ V is the set of terminals;

Here is how the ET0L system H simulates the computation of Π1. First remark
that, from the way we defined the saturated subsets, the conditions on the rules can
be omitted (observe that two rules r1 : (a1 → α1|¬b1 and r2 : (a2 → α2|¬b2) can
simultaneously rewrite symbols a1 and a2 iff b1 6= a2 and a1 6= b2) in case we divide
them in different tables. In addition, we have added to each table all context-free
rules of the P system that does not violate the saturation relation considered for
the table. We also add rules of type b → # if rules {a → α | a → α|¬b ∈ Ti} ∈ Ti;
in this way we assure that if we choose the “wrong” table, the computation will
never stop since the # is produced (and therefore # → # will always be executed
no matter which table is chosen).

In this way, if the computation stops, then the ET0L generates a language
whose Parikh image is the same with the set of vectors of numbers generated by
Π1, and hence by Πm.

In conclusion we have shown that PsET0L = PsPm(ncoo, inhR). 2

4 Non-cooperative P Systems with Promoters

In this section we prove that P systems with symbol objects and non-cooperative
promoted rules can generate at least the same family of vectors sets as PsET0L.
In what concerns the upper bound we show how these P systems can be simulated
by random context grammars with limited checking.

Theorem 4. PsP1(ncoo, proR) ⊇ PsET0L.

Proof. We will simulate the computation of an ET0L system H = (V, T =
{T1, T2}, ω, ∆) by using a P system

Π1 = (Vπ, ∅, []1, ωt, R, 1)

with
Vπ = V ∪ {t, t1, t2,K, K1},

and the set R containing the following rules:

Further Results on P Systems with Promoters/Inhibitors 301

t → t1,

t → t2,

A → αK|t1 , for all rules A → α ∈ T1,

A → αK|t2 , for all rules A → α ∈ T2,

K → K1,

t1 → t|A, for all A ∈ V \∆,

t2 → t|A, for all A ∈ V \∆,

t1 → λ|K1 ,

t1 → t|K1 ,

t2 → λ|K1 ,

t2 → t|K1 ,

K1 → λ.

At the beginning of the simulation we have inside the region of the P system
the input multiset, consisting of string ω (which is the axiom of the ET0L sys-
tem H), and object t (which represents the starting trigger for the simulation of
the non-deterministic table selection mechanism). Nondeterministically, object t
is transformed into t1 or t2. Once object t1 (or object t2) is produced, the sim-
ulation of the corresponding ET0L table application starts. All rules A → αK|t1
(or A → αK|t2 , respectively) corresponding to ET0L rules A → α ∈ T1 (or
A → α ∈ T2, respectively) are applied in maximal parallel manner. One can notice
that if we applied at least once such rule, we have produced at least one object
K. In this moment we can distinguish two cases: 1) the current configuration is
represented by a multiset that contains objects corresponding to ET0L nontermi-
nals; 2) the current configuration is represented by a multiset that contains only
objects corresponding to ET0L terminals.

In the first case it will be executed one of the rules t1 → t|A or t2 → t|A, as well
as rule K → K1. Since an object t is produced, then the simulation of applying a
table in ET0L is iterated (recall that we do not have a terminal string, therefore
we do not have to stop).

In the second case, rules t1 → t|A or t2 → t|A cannot be executed, because we
assumed that the current configuration is represented by a multiset that contains
only objects corresponding to ET0L terminals. Therefore, rule K → K1 is executed
and afterward one of the rules t1 → λ|K1 (or t2 → λ|K1 respectively) and t1 → t|K1 .
Depending on which rule is chosen we have again two cases – we stop the simulation
having in the output region a terminal string or we continue. In both cases, as a
last step of the iteration, rule K1 → λ is applied.

In conclusion, the above construction proves that PsP1(ncoo, proR) ⊇
PsET0L. 2

Lemma 3. For any P system Π with promoted non-cooperative rules there exists
an equivalent P system Π ′ with promoted non-cooperative rules such that, for any
halting configuration of Π ′, all regions of Π ′, excepting the output one, are empty.

302 D. Sburlan

Proof. (Sketch) We will proceed as in Theorem 2 by first simulating a P system
with promoted non-cooperative rules and m membranes Πm with a P system with
non-cooperative promoted rules and one membrane Π1 = (V, C, µ, w, R, ϑ). Then,
using the same coding technique as in the mentioned theorem, the problem is
reduced to the ability to apply a morphism that deletes all not necessary objects.
Without entering into details we present here just the set of rules R′ of a P system
Π ′

1 = (V ∪ {E, E1, E2, D, D1}, C, µ, wE, R′, ϑ). By ∆ ⊂ V we denote the set of
objects to be deleted in a halting configuration of Π1.

A → A|E , for A ∈ V,

A → αD|B , for all rules A → α|B ∈ R,

E → E1|D,

E1 → E,

D → D1,

A → A|E1 ,

E → E2|D1 ,

D1 → λ,

A → λ|E2 , for all symbols A ∈ ∆,

E2 → λ.

Observe that the technique is to use object D as a “witness”, indicating that
rules of type A → α were applied. Fundamental for the construction is the ability
of promoters (and of inhibitors as well) to react in the same time with the rules
they promote (or inhibit, respectively). Also, the synchronization based on the
external clock that regulates the computation is important because it allows us to
check whether or not a rule was applied. 2

Theorem 5. PsRCλ
lc ⊇ PsPm(ncoo, proR).

Proof. Here we will prove that using random context grammars with limited check-
ing we can simulate a P system with promoted non-cooperative rules and only one
membrane. For the sake of simplicity and because of the arguments exposed in
Lemma 3. we will take the system Π1 = (V, C, µ,w, R, ϑ) and we will construct a
random context grammar with limited checking and λ rules G = (N,T, P, S) that
simulates the moves of Π1.

Before we start, without loosing the generality, let us distinguish a terminal
alphabet ∆ ⊆ V and let us suppose that R contains only rules of type A → α|B ,
A,B ∈ V \∆, α ∈ V ∗. Then we have:

N = (V \∆) ∪ {S, t, tok} ∪ {A, A, Ã} ∪ {ti | 1 ≤ i ≤ 4 ∗ |V |+ 1}
∪ {ti | 4 ∗ |V |+ 2 ≤ i ≤ 4 ∗ |V |+ 2 + k, k is the number of rules A → α|B ∈ R

such that there is no A → β ∈ R},
T = ∆

Further Results on P Systems with Promoters/Inhibitors 303

The set of rules P is constructed in the following way.
First, we add to the set P the rule

(S → wt, ∅, ∅), where w is the input string of Π1.

Its role is to set up a sentential form corresponding to the input multiset of
Π1; the symbol t will be used as a signal indicating that the simulation of the
parallel applications of rules in Π1 is about to start. As in Theorem 1, the trick
is to “paint” all objects respecting the conditions imposed for the rules in the P
system definition, and then non-deterministically check whether or not all rules
that correspond to the ones in P system definition were actually applied. In this
way we are able to simulate the maximal parallelism feature of the P systems.
More formally, we add to the set P the rules:

(A → A, {t}, ∅), for A ∈ V,

(ti → ti+1, ∅, {Ai}), for Ai ∈ V, 1 ≤ i ≤ |V |,
(A → αÃ, {B}, ∅), for all rules A → α|B ,

(A → αÃ, {B̃}, ∅), for all rules A → α|B ,

(t|V |+i → t|V |+i+1, ∅, {Ai}), for Ai ∈ V, 1 ≤ i ≤ |V |,
(Ã → λ, {t2∗|V |+1}, ∅),
(t2∗|V |+i → t2∗|V |+i+1, ∅, {Ãi}), for Ai ∈ V, 1 ≤ i ≤ |V |,
(Ai → Ai, {t3∗|V |+1}, ∅), for Ai ∈ V, 1 ≤ i ≤ |V |,
(t3∗|V |+i → t3∗|V |+i+1, ∅, {Ai}), for Ai, 1 ≤ i ≤ |V |.

Now, if symbol t4∗|V |+1 is obtained, then we know that the parallelism of the
P system was correctly simulated. However, we do not know whether or not the
corresponding configuration of the P system admits a new transition (recall that
in the P system we have objects, therefore there is no difference between terminals
and nonterminals). So, in our grammar we have to be sure when the simulation
core stops (i.e., symbol t4∗|V |+1 appears), and only afterward we have to transform
(in case it was a correct simulation) the nonterminals into terminals. Therefore,
non-deterministically we have to check if we can apply at least one rule of type
A → α|B . This task can be achieved by sequences of “linked” rules that check the
presence of objects A and B:

(t4∗|V |+1 → t4∗|V |+2, {A}, ∅),
(t4∗|V |+2 → tok, {B}, ∅).

Next, if object tok appears in the sentential form then it means that conditions
for applying other rules are fulfilled and so we can restart the whole process or we
can non-deterministically stop. We have also the rules:

(tok → t, ∅, ∅), (tok → λ, ∅, ∅).

304 D. Sburlan

In this way we have shown that random context grammars with limited check-
ing are able to simulate P systems with promoted non-cooperative rules. 2

5 Conclusions

We have defined a particular form of random context grammars, namely random
context grammars with limited checking. We have proved that such grammars can
generate strictly more than the family ET0L. Even if it was not proved whether or
not the random context grammars with limited checking are as powerful as Turing
machines, they are still useful when characterizing P systems with non-cooperative
inhibited rules. Moreover, we conjecture that such grammars can be used to give
an upper bound for the family of sets of vectors generated by P systems with non-
cooperative rules and one catalyst. We have shown that P systems with inhibited
non-cooperative rules generate the same Parikh sets as ET0L systems, therefore we
have for “free” all the proved properties of this classical formalism. In addition, we
have proved that for each P system with non-cooperative promoted (or inhibited)
rules there exists an equivalent P system that halts having all the regions empty,
except the output one. Several open problems are mentioned along this work.

Acknowledgments

This work was done while the author was funded by AECI, Spanish Ministry of
Foreign Affairs. The author is very thankful to all colleagues from the Research
Group on Natural Computing, University of Seville for providing a very good
scientific atmosphere.

References

1. A. Alhazov, D. Sburlan: Ultimately confluent rewriting systems. Parallel multiset–
rewriting with contexts. Submitted 2004.

2. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg: Membrane systems with pro-
moters/inhibitors. Acta Informatica, 38, 10 (2002), 695–720.

3. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

4. M. Ionescu, D. Sburlan: On P systems with promoters/inhibitors. JUCS, 10, 5 (2004),
581–599.

5. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
6. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic Press,

New York, 1980.
7. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,

Berlin, 1997.

