
One More Universality Result for P Systems with
Objects on Membranes

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
and
Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Summary. We continue here the attempt to bridge brane calculi with membrane com-
puting, following the investigation started in [2]. Specifically, we consider P systems with
objects placed on the membranes, and processed by membrane operations. The opera-
tions used in this paper are membrane creation (cre), and membrane dissolution (dis),
defined in a way which reminds the operations pino, exo from a brane calculus from [1].
For P systems based on these operations we prove the universality, for one of the two
possible variants of the operations; for the other variant the problem remains open.

1 Introduction

This paper is a direct continuation of [2], where a first step was made to bridge
membrane computing [4], [5], [6] and brane calculi [1]. The main point of this
effort is to define P systems which work with multisets of objects placed on the
membranes rather than inside the compartments defined by membranes, and to
process these multisets by means of operations with membranes rather than by
multiset rewriting rules acting only on objects. The operations pino, exo, mate,
drip were formalized in [2] as membrane computing rules, and used in defining
P systems based on them. The universality of mate, drip operations was proved
in [2] (for systems using simultaneously at any step of a computation at most
eleven membranes). We give here an universality result for other two operations,
membrane creation (cre), and membrane dissolution (dis), which have the same
syntax as pino, exo operations, but a different interpretation in what concerns
the contents of the handled membranes – details can be found in Section 3 below.
Actually, as it was the case in [2] with pino, exo, we have two variants of each of the
operations cre, dis. For one of these variants, we prove the Turing completeness,

264 Gh. Păun

while the case of the other variant remains open (we believe that a similar result
holds true).

2 Prerequisites

All notions of formal language theory we use are elementary and standard, and can
be found in any basic monograph of formal language theory. For the sake of com-
pleteness, we introduce below only the notion of matrix grammars with appearance
checking – after specifying that by RE we denote the family of recursively enu-
merable languages, and by PsRE the family of Parikh images of languages from
RE.

A matrix grammars with appearance checking [3] is a construct G =
(N, T, S,M, F), where N, T are disjoint alphabets (of non-terminals and termi-
nals, respectively), S ∈ N (axiom), M is a finite set of matrices, that is sequences
of the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T , and
F is a set of occurrences of rules in the matrices of M .

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . , An →
xn) in M and the strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z =
wn+1, and, for all 1 ≤ i ≤ n, either (1) wi = w′iAiw

′′
i , wi+1 = w′ixiw

′′
i , for some

w′i, w
′′
i ∈ (N ∪ T)∗, or (2) wi = wi+1, Ai does not appear in wi, and the rule

Ai → xi appears in F . (If applicable, the rules from F should be applied, but if
they cannot be applied, then we may skip them. That is why the rules from F are
said to be applied in the appearance checking mode.) If F = ∅, then the grammar
is said to be without appearance checking.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w},
where =⇒∗ is the reflexive and transitive closure of the relation =⇒.

The family of languages of this form is denoted by MATac; it is known that
MATac = RE.

We say that a matrix grammar with appearance checking G = (N, T, S, M, F)
is in the Z-binary normal form if N = N1 ∪N2 ∪ {S,Z, #}, with these three sets
mutually disjoint, and the matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → w), with X, Y ∈ N1, A ∈ N2, w ∈ (N2 ∪ T)∗, |w| ≤ 2,
3. (X → Y, A → #), with X ∈ N1, Y ∈ N1 ∪ {Z}, A ∈ N2,
4. (Z → λ).

Moreover, there is only one matrix of type 1, F consists exactly of all rules A → #
appearing in matrices of type 3, and, if a sentential form generated by G contains
the symbol Z, then it is of the form Zw, for some w ∈ (T ∪ {#})∗ (that is, the
appearance of Z makes sure that, except for Z, all symbols are either terminal or
the trap-symbol #). The matrix of type 4 is used only once, in the last step of a
derivation.

For each language L ∈ RE there is a matrix grammar with appearance checking
G in the Z-binary normal form such that L = L(G).

Universality for P Systems with Objects on Membranes 265

As usual, we represent multisets over an alphabet V by strings over V , with the
obvious observation that all permutations of a string represent the same multiset.

3 P Systems Using the Cre/Dis Operations

We start by recalling from [2] the formalization of the operations pino, exo in
terms of membrane computing.

A membrane is represented, as usual, by a pair of square brackets, [], but we
associate here with membranes multisets of object (corresponding to the proteins
embedded in the real membranes). A membrane having associated a multiset u
(represented by a string) is written in the form []u; we also use to say that the
membrane is marked with the multiset u.

The following four operations were defined in [2]:

pinoi : []
uav

→ [[]
ux

]
v
, (1)

exoi : [[]
ua

]
v
→ []

uxv
, (2)

pinoe : []
uav

→ [[]
v
]
ux

, (3)
exoe : [[]

u
]
av
→ []

uxv
. (4)

in all cases with a ∈ V , u, x ∈ V ∗, v ∈ V +, with ux ∈ V + for pino rules, where V
is a given alphabet of objects.

In each case, multisets of proteins are transferred from input membranes to
output membranes as indicated in the rules, with protein a evolved into the mul-
tisets x (which can be empty). The subscripts i and e stand for “internal” and
“external”, respectively, pointing to the “main” membrane of the operation in each
case.

It is important to note that the multisets u, v and the protein a marking the
left hand membranes of these rules correspond to the multisets u, v, x from the
right hand side of the rules; specifically, the multiset uxv resulting when applying
the rule is precisely split into ux and v, with these two multisets assigned to the
two new membranes.

The rules are applied as follows. Assume that we have a membrane []
zuav

, for
a ∈ V, u, v, z ∈ V ∗. By a pinoi rule as in (1), we obtain any one of the pairs of
membranes [[]z1ux]z2v such that z = z1z2, z1, z2 ∈ V ∗, and by a pinoe rule
as in (3), we obtain any one of the pairs of membranes [[]

z1v
]
z2ux

such that
z = z1z2, z1, z2 ∈ V ∗.

In the case of the two exo operations, the result is uniquely determined. From a
pair of membranes [[]z1ua]z2v, by an exoi rule as in (2) we obtain the membrane
[]z1z2uxv, and from [[]z1u]z2av, by an exoe rule as in (4) we obtain the same
membrane []

z1z2uxv
.

The contents of membranes involved in these operations is transferred from the
input membranes to the output membranes in the same way as in brane calculus:

266 Gh. Păun

pinoi : [P]
uav

→ [[]
ux

P]
v
,

exoi : [[P]
ua

Q]
v
→ P [Q]

uxv
,

pinoe : [P]
uav

→ [[]
v

P]
ux

,

exoe : [[P]
u

Q]
av
→ P [Q]

uxv
.

Here we change the interpretation of these rules, as suggested below (because
the new semantics do not correspond to the operations pino, exo, we change the
name of operations to cre, dis, for “membrane creation” and “membrane dissolu-
tion”):

crei : [P]uav → [[P]ux]v,

disi : [[P]ua Q]v → [P Q]uxv,

cree : [P]uav → [[P]v]ux,

dise : [[P]u Q]av → [P Q]uxv.

That is, when a membrane is created inside an existing membrane, the new
membrane contains all previously existing membranes, and while dissolving a mem-
brane, its contents remains inside the membrane where it was placed before the
operation. The interpretation of the latter operation is rather similar to the usual
dissolution operation in membrane computing, while the membrane creation is
understood as doubling the existing membrane, with a distribution of the initial
multiset marking the membrane to the two new membranes.

Using rules as defined above, we can define a P system as

Π = (A, µ, u1, . . . , um, R),

where:

1. A is an alphabet (finite, non-empty) of objects;
2. µ is a membrane structure with m ≥ 2 membranes;
3. u1, . . . , um are multisets of objects (represented by strings over A) bound to

the m membranes of µ at the beginning of the computation; the skin membrane
is marked with u1 = λ;

4. R is a finite set of cre, dis rules, of the forms specified above, with the objects
from the set A.

In what follows, the skin membrane plays no role in the computation, no rule
can be applied to it. Also, we stress the fact that there is no object in the com-
partments of µ; a membrane can contain other membranes inside, but in-between
membranes there is nothing.

When using any rule of any type, we say that the membrane(s) from its left
hand side are involved in the rule; they all are “consumed”, and the membranes
from the right hand side of the rule are produced instead. Similarly, the object
a specified in the left hand side of rules is “consumed”, and it is replaced by the
multiset x.

Universality for P Systems with Objects on Membranes 267

The evolution of the system is defined in the standard way in membrane com-
puting, with the rules used in the non-deterministic maximally parallel manner,
with each membrane involved in at most one rule. Thus, the parallelism is maximal
at the level of membranes – each membrane which can evolve has to do it – but
each multiset of objects evolves in a sequential manner, as only one rule can act
on any multiset in a transition step. More precise details can be found in [2]. A
computation which starts from the initial configuration is successful if (i) it halts,
that is, it reaches a configuration where no rule can be applied, and (ii) in the halt-
ing configuration there are only two membranes, the skin (marked with λ) and an
inner one. The result of a successful computation is the vector of multiplicities of
objects which mark the inner membrane in the halting configuration. The set of
all vectors computed in this way by Π is denoted by Ps(Π).

The family of all sets of vectors Ps(Π) computed by P systems Π using at
any moment during a computation at most m membranes, and crei, disi rules of
weight at most p, q, respectively, is denoted by PsOPm(crep, disq). When one of
the parameters m, p, q is not bounded we replace it with ∗.

We end this section by pointing out some results which follow directly from
the definitions (and from Turing-Church thesis).

Lemma 1. (i) PsOPm(crep, disq) ⊆ PsOPm′(crep′ , disq′), for all m ≤ m′, p ≤
p′, q ≤ q′.

(ii) PsOP∗(cre∗, dis∗) ⊆ PsRE.

We also recall the main result from [2]: PsOP11(mate5, drip5) = PsRE (the
notation is self-explanatory).

4 Universality for the Cre/Dis Operations

In the case of cre, dis operations as defined above, we cannot generate vectors of
norm 0 or 1: in each rule []

uav
→ [[]

ux
]
v
, [[]

ua
]
v
→ []

uxv
(necessary in the

last step of any computation in order to get only one internal membrane) we have
imposed to have |uxv| ≥ 2. That is why the universality below is obtained modulo
vectors of the form (0, . . . , 0) and (0, . . . , 0, 1, 0, . . . , 0). We denote by Ps′RE and
Ps′OPm(crep, disq) the sets of vectors from PsRE and PsOPm(crep, disq) having
the sum of elements greater than or equal to 2.

Theorem 1. Ps′RE = Ps′OPm(crep, disq) for all m ≥ 7, p ≥ 4, and q ≥ 4.

Proof. Let us consider a language L ∈ RE = MATac, L ⊆ V 2V ∗, for an alphabet
V with n symbols. We write this language in the form

L =
⋃

a,b∈V

{ab}∂l
a(L).

Let Gab = (Nab, V, Sab,Mab, Fab) be a matrix grammar with appearance checking
such that L(Gab) = ∂l

ab(L), for a, b ∈ V . We consider these grammars Gab in the

268 Gh. Păun

Z-normal form, with the notations from Section 2, and we construct the matrix
grammar G = (N, V, S, M, F) with

N = N1 ∪N2 ∪ {Zab | a, b ∈ V } ∪ {S, #},
N1 =

⋃

a,b∈V

Nab,1,

N2 =
⋃

a,b∈V

Nab,2,

M = {(S → XA) | for (Sab → XA) ∈ Mab, a, b ∈ V }
∪ {(X → Y, A → w) | for (X → Y, A → w) ∈ Mab, a, b ∈ V }
∪ {(Zab → ab) | for (Z → λ) ∈ Mab, a, b ∈ V }.

Obviously, L(G) = L.
We assume that all two-rules matrices from M are injectively labelled, in the

form ml : (X → Y, A → x), l ∈ Lab, for a set of labels Lab.
Starting from the grammar G we now construct a P system

Π = (A, [[]], λ, S1S2, R),

with the alphabet

A = {Y, Y ′, Y ′′, Y ′′′, Y iv, Y v, Y vi, Y vii, Y ix, Y x | Y ∈ N1}
∪ {α, α′, α′′ | α ∈ N2 ∪ V }
∪ {Ā | A ∈ N2}
∪ {Zab, Z

′
ab, Z

′′
ab, Z

′′′
ab | a, b ∈ V }

∪ {E, H, H ′, S1, S2, S3, c1, . . . , c11, c0, c
′
0, c

′′
0 , c′3, c

′′
3 , d1, d2, d

′
1, d

′
2, f

′, f ′′,#},

and the rules from the set R as constructed below.
Any computation starts from the configuration [[]

S1S2
]
λ
, by using the fol-

lowing rules:

Step 1 : []S1S2
→ [[]X]S2

,

Step 2 : [[]X]S2
→ []Xc0d1S2

,

Step 3 : []XS2c0d1
→ [[]XS3

]c0d1
,

Step 4 : []S3X → [[]EĀ]X , []c0d1
→ [[]c′0

]d1
,

Step 5 : [[]
EĀ

]
X
→ []

EĀX
, [[]

c′0
]
d1
→ []

c′′0 d1
,

Step 6 : []
XĀE

→ [[]
XA

]
E

, []
c′′0 d1

→ [[]
c1

]
d1

,

for each matrix (Sab → XA) ∈ Mab, for a, b ∈ V .
The rules are used as indicated in the table above, with two rules simultaneously

applied in steps 4, 5, 6. The only possible branching is in step 3, when instead of
the rule []

XS2c0d1
→ [[]

XS3
]
c0d1

, we can also use the rule []
c0d1

→ [[]
c′0

]
d1

. In

Universality for P Systems with Objects on Membranes 269

this way we obtain the membranes [[]
c′0

]
d1

, with XS2 distributed among them.
Because S3 will be never introduced, we continue only with rules which process
membranes marked with ci and d1, namely, the rules from the third column of
Table 1; in this way, the computation will never stop, both because we can return
again and again to a pair of membranes of the form [[]

c1
]
d1

, and because pairs
of membranes marked with c′3 will appear and introduce trap objects/membranes
– see also below.

The evolution of the membrane structure is indicated in Figure 1.

Initial [[]
S1S2

]
λ

Step 1 [[[]
X

]
S2

]
λ

Step 2 [[]
Xc0d1S2

]
λ

Step 3 [[[]
XS3

]
c0d1

]
λ

Step 4 [[[[[]
EĀ

]
X

]
c′0

]
d1

]
λ

Step 5 [[[]
EĀX

]
c′′0 d1

]
λ

Step 6 [[[[[]
XA

]
E

]
c1

]
d1

]
λ

Fig. 1. The evolution of membranes at the beginning of computations.

Thus, we end with a configuration of the form [[[[[]
XA

]
E

]
c1

]
d1

]
λ
.

The rules for simulating the two-rules matrices from M are indicated in Table
1; by w′ we denote here the string obtained from w by priming one symbol; if
w = λ, then w′ = f ′, hence α′ = f ′, α′′ = f ′′ and, in row 6, α = λ.

Step ml : (X → Y, A → w) ml : (X → Y, B → #)

1 [[]
X

]
E
→ []

XlE
[[]

X
]
E
→ []

XlE
[[]

c1
]
d1
→ []

c2c3d1

2 []
AEXl

→ [[]
w′]

EXl
[]

XlBE
→ [[]

Xl##
]
E

[]
c3c2d1

→ [[]
c′3

]
c2d1

3 [[]
EXl

]
c′3
→ []

EY ′c′3
[[]

XlE
]
c′3
→ []

Y viHEc′3
[]

c2d1
→ [[]

c4
]
d1

4 []
c′3Y ′E → [[]

c′3Y ′′]
E

[]
Y vic′3EH

→ [[]
c′3Y vii]

EH
[[]

c4
]
d1
→ []

c5d1

5 [[]
α′]

c′3Y ′′ → []
α′′c′3Y ′′ []

Y viic′3
→ [[]

Y viii]
c′3

[]
c5d1

→ [[]
c6

]
d1

[]
HE

→ [[]
H′]

E

6 [[]
α′′c′3Y ′′]E

→ []
αc′3Y ′′E [[]

c′3
]
H′ → []

c′′3 H′ [[]
c6

]
d1
→ []

c7d1

7 []
c′3Y ′′E → [[]

c′3Y ′′′]
E

[[]
Y viii]

c′′3 H′ → []
Y ixc′′3 H′ []

c7d1
→ [[]

c8
]
d1

8 [[]
c′3Y ′′′]

E
→ []

Y ′′′E [[]
Y ixc′′3 H′]E

→ []
Y ixH′E [[]

c8
]
d1
→ []

c9d1

9 []
Y ′′′E → [[]

Y iv]
E

[]
Y ixH′E → []

Y x]
E

[]
c9d1

→ [[]
c10

]
d1

10 [[]
Y iv]

E
→ []

Y vE
[[]

Y x]
E
→ []

Y xE
[[]

c10
]
d1
→ []

c11d1

11 []
Y vE

→ [[]
Y

]
E

[]
Y xE

→ [[]
Y

]
E

[]
c11d1

→ [[]
c1

]
d1

Table 1. Rules for simulating two-rules matrices.

270 Gh. Păun

We also consider the rules

[]
XlE

→ [[]
##

]
E

, for each matrix ml : (X → Y, A → w),

[[]
H′]

E
→ []

##E
,

[]## → [[]#]#,

[[]
#

]
#
→ []

##
.

The simulation of matrices in G is performed by modifying the marking of the
central membranes, those emerging from the initial membranes with markings XA
and E, with these operations being assisted by the two membranes with markings
c1 and d1 and their successors, which are external to the central membranes where
the sentential form of G is produced. Always during the computation, the mem-
branes remain embedded one in another, in a linear manner, never having two
membranes on the same level (here stands the essential difference between the
interpretation of the cre, dis operations and the interpretation of the pino, exo
operations from [1], [2]).

The evolution of the membranes and of their relevant markings can be followed
in Figure 2. If in the second step the rule []

AEXl
→ [[]

w′]
EXl

is not applicable
(hence the matrix ml cannot be applied), then the rule []

XlE
→ [[]

##
]
E

will
be applied, introducing the trap-object #, and the computation will never halt.

Starting [[[[[]
X

]
E

]
c1

]
d1

]
λ

Step 1 [[[]
XlEA

]
c2c3d1

]
λ

Step 2 [[[[[]
w′]

EXl
]
c′3

]
c2d1

]
λ

Step 3 [[[[[]
α′]

EY ′c′3
]
c4

]
d1

]
λ

Step 4 [[[[[]
α′]

c′3Y ′′]
E

]
c5d1

]
λ

Step 5 [[[[[]
α′′c′3Y ′′]

E
]
c6

]
d1

]
λ

Step 6 [[[]
αc′3Y ′′E]

c7d1
]
λ

Step 7 [[[[[]
c′3Y ′′′]

E
]
c8

]
d1

]
λ

Step 8 [[[]
Y ′′′E]

c9d1
]
λ

Step 9 [[[[[]
Y iv]

E
]
c10

]
d1

]
λ

Step 10 [[[]
Y vE

]
c11d1

]
λ

Step 11 [[[[[]
Y

]
E

]
c1

]
d1

]
λ

Fig. 2. The evolution of membranes when simulating ml : (X → Y, A → w).

The evolution of membranes in the case of the simulation of a matrix ml :
(X → Y, B → #) can be followed in Figure 3. This time, if B is present, in step
2 we have to use the rule []

XlBE
→ [[]

Xi##
]
E

, and the computation will
never halt. If no copy of B is present, then the central membrane does not evolve,
waiting for the membrane marked with c′3 to be produced; this membrane can be
used in the next step for evolving the central membrane.

Universality for P Systems with Objects on Membranes 271

Starting [[[[[]
X

]
E

]
c1

]
d1

]
λ

Step 1 [[[]
XlE

]
c2c3d1

]
λ

Step 2 [[[[]
XlE

]
c′3

]
c2d1

]
λ

Step 3 [[[[]
Y viHEc′3

]
c4

]
d1

]
λ

Step 4 [[[[]
c′3Y vii]

EH
]
c5d1

]
λ

Step 5 [[[[[[[]
Y viii]

c′3
]
H′]

E
]
c6

]
d1

]
λ

Step 6 [[[[[]
Y viii]

c′′3 H′]
E

]
c7d1

]
λ

Step 7 [[[[[]
Y ixc′′3 H′]

E
]
c8

]
d1

]
λ

Step 8 [[[]
Y ixH′E]

c9d1
]
λ

Step 9 [[[[[]
Y x]

E
]
c10

]
d1

]
λ

Step 10 [[[]
Y xE

]
c11d1

]
λ

Step 11 [[[[[]
Y

]
E

]
c1

]
d1

]
λ

Fig. 3. The evolution of membranes when simulating ml : (X → Y, B → #).

Another step when we can apply a rule different from that indicated in Table 1
is step 4, when we can also use the rule []

HE
→ [[]

H′]
E

. In this way, we pass to
the configuration of membranes [[[[]

H′w1
]
Ew2

]
c5d1

]
λ
, where w1w2 = Y vic′3.

No rule can be applied to the two inner membranes other than [[]
H′]

E
→ []

##E
,

and again the computation will never stop.
Therefore, the simulation of matrices in G should be done as above, and in

this way we return to a configuration as that we have started with, with four
membranes marked with X, E, c1, d1, respectively (the central membranes also
having on them the symbols of the current sentential form of G which is simulated
in Π).

Note that the rules used for simulating a matrix ml : (X → Y,A → w) cannot
be mixed with the rules used for simulating a matrix ml′ : (X ′ → Y ′, A′ → #),
because of the injective labelling of matrices from M and because of the priming
of symbols from N1.

The process can be iterated, hence at some moment we introduce the symbol
Zab identified by the symbols from N1 used. The respective configuration is of the
form: [[[[[]Zab

]E]c1
]d1

]λ. The central membrane will “swallow” all other
membranes, also removing all auxiliary objects. To this aim, we use the following
rules:

Step 1 [[]Zab
]E → []Z′abE ,

Step 2 [[]Z′abE]c2c3
→ []Z′abbc2c3

,

Step 3 []Z′abc2c3d1
→ [[]Z′ab

]c3d1
,

Step 4 [[]
Z′ab

]
c3d1

→ []
Z′′abc3d1

,

Step 5 []
Z′′abc3d1

→ [[]
Z′′ab

]
d1

,

Step 6 [[]
Z′′ab

]
d1
→ []

Z′′′abd1
,

272 Gh. Păun

Step 7 []
Z′′′abd1b

→ [[]
Z′′′ab

]
b
,

Step 8 [[]
Z′′′ab

]
b
→ []

ab
,

for all a, b ∈ V . Furthermore, we consider the rules

[]Z′abE → [[]##]E ,

[[]c′3
]c′3

→ []##c′3
,

[]#a → [[]##]a, for all a ∈ V.

The first of these rules is used in step 2 if the rule [[]Z′abE]c2c3
→ []Z′abbc2c3

is
not used – the objects c2c3d1 might be used at that time by the rule []c3c2d1

→
[[]

c′3
]
c2d1

from Table 1. Similarly, if this last rule is used in step 3 instead of the
rule []

Z′abc2c3d1
→ [[]

Z′ab
]
c3d1

, then a membrane marked with c′3 is introduced,
which will never be removed. In particular, after 11 steps, we introduce another
membrane marked with c′3, and then the rule [[]

c′3
]
c′3
→ []

##c′3
is used,

preventing the termination of the computation. In conclusion, the evolution of the
membranes in the final stage of the computation is as indicated in Figure 4.

Starting [[[[[]
Zab

]
E

]
c1

]
d1

]
λ

Step 1 [[[]
Z′

ab
E

]
c2c3d1

]
λ

Step 2 [[]
Z′

ab
bc2c3d1

]
λ

Step 3 [[[]
Z′

ab
]
c3d1

]
λ

Step 4 [[]
Z′′

ab
c3d1

]
λ

Step 5 [[[]
Z′′

ab
]
d1

]
λ

Step 6 [[]
Z′′′

ab
d1

]
λ

Step 7 [[[]
Z′′′

ab
]
b

]
λ

Step 8 [[]
ab

]
λ

Fig. 4. The evolution of membranes in the end of computations.

The equality ΨV (L(G)) = Ps(Π) follows from the previous explanations.
With the observation that the maximal number of membranes present in the

system is seven, in step 5 from Figure 3 (during the simulation of matrices with
a rule to be used in the appearance checking mode), and that the rules have the
weight as specified in the theorem, we conclude the proof. ut

5 Final Remarks

The case of using the operations cree, dise remains as a task for the reader, and the
same with other operations from brane calculus – see also [2] for related problems.

Universality for P Systems with Objects on Membranes 273

Improvements of the result in Theorem 1 are also plausible in what concerns the
degree of context-sensitivity of the rules (and maybe also in what concerns the
number of membranes). The same problems can be formulated for the result from
[2].

As a general research topic, it remains to systematically investigate P systems
with multisets of objects placed on membranes (and not in the compartments),
processed by membrane handling operations like in brane calculi (and not by local
multisets rewriting rules).

References

1. L. Cardelli: Brane calculi. Interactions of biological membranes. Proc. Computational
Methods in Systems Biology, 2004, Springer-Verlag, Berlin, to appear.

2. L. Cardelli, Gh. Păun: An universality result for a (mem)brane calculus based on
mate/drip operations. In Cellular Computing. Complexity Aspects (M.A. Gutiérrez-
Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.), Fénix Editora, Sevilla, 2005, 75–94.

3. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

4. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science–TUCS Report 208,
November 1998, www.tucs.fi).

5. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
6. The membrane computing web page: http://psystems.disco. unimib.it.

