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Motivation

This dissertation is comprised within the field of Natural Computing, a broad
discipline inspired by dynamic processes that occur in nature and that are
subject to be interpreted as calculation procedures. Inside this discipline,
models and computational techniques are researched, with the ultimate goal
to better understand the world around us, in terms of information processing.

Membrane Computing [157] is an emerging branch within this area, initi-
ated by Gheorghe Păun at the end of 1998 [148]. It starts from the assumption
that the processes taking place in the compartmental structure of a living cell
can be interpreted as computations. Devices of this machine-oriented com-
puting paradigm are called P systems. They have relatively simple syntactic
ingredients: a membrane structure consisting of a hierarchical arrangement of
membranes embedded in a skin membrane, and delimiting regions or com-
partments where multisets of objects and sets of evolution rules are placed. P
systems have also two main semantic ingredients: their inherent parallelism
and non-determinism. The objects inside the membranes can evolve according
to given rules in a synchronous (in the sense that a global clock is assumed),
parallel, and non-deterministic way.

It is worthy to note that we have here a double parallelism, once at the
level of regions (the rules are used in a parallel way), and once at the level
of the system (all regions evolve concurrently). Is this parallelism and non-
determinism able to solve computationally hard problems in a “feasible” time?
The answer is affirmative [71], but we must point out two considerations. On
the one hand, we have to deal with the non-determinism in such a way that
the classical notion of acceptance is not a true algorithmic concept [49]. On
the other hand, the drastic decrease of the execution time from an exponential
to a polynomial one is not achieved for free, but by the use of an exponential
workspace (in the form of membranes and objects), although this space is
created in polynomial (often linear) time. Nevertheless, designing solutions to
computationally hard problems by means of families of P systems often yields
stablishing borderlines of tractability (in terms of the complexity classes theory
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within membrane computing), and moreover can provide new ways to tackle
the P versus NP problem.

Although initially most of the research in P systems concentrated on the-
oretical results about the computational power and efficiency of the devices
involved, lately an increasing attention is paid to applicatications. More pre-
cisely, to model biological phenomena within the framework of Computational
Systems Biology and Population Dynamics. In this case, P systems are not
used as a computing paradigm, but rather as a formalism for describing the
behavior of the system to be modeled. They offer an approach to the develop-
ment of models for biological systems that meets the requirements of a good
modeling framework: relevance, understandability, extensibility and computa-
tional / mathematical tractability. In this respect, several P systems models
have been proposed to describe, for example: signal transduction [26], gene
regulation control [161], or quorum sensing (by means of multicompartmental
Gillespie Algorithm) [160]. These models differ from each other in the type of
the rewriting rules, membrane structure and the strategy applied to run the
rules in the compartments defined by membranes. Furthermore, probabilistic
P systems have also been successfully applied as a tool for macroscopic level
processes, such as the computational modeling of real ecosystems [17, 29].

It is also worth mentioning promising applications regarding the modelling
of fault diagnosis problems in industrial systems, that come from the hand
of a very recent neural-like membrane system variant called Fuzzy Reasoning
Spiking Neural Systems [130, 181, 205, 206, 175, 176, 102, 177, 183, 179, 180,
184, 185, 182].

In order to experimentally validate P systems based models, it is neces-
sary to develop simulators able to be executed on electronic computers, which
can help researchers to compute, analyze and extract results from a model
[36]. These simulators have to be as efficient as possible to handle large size
instances, what is one of the major challenges facing today’s P systems simula-
tors. In this regard, software applications for Membrane Computing typically
implement sequential (or with a limited parallelism) simulation algorithms
adapted to conventional CPU architectures, so they lack the possibility of ex-
ploiting the massively parallel nature that P systems present by definition.
This is necessary for obtaining a simulation model closer to the theoretical
one.

This parallel computation model leads us to look for a massively-parallel
technology where a parallel simulator can run more efficiently. The newest
generations of Graphics Processor Units (GPUs) are massively parallel proces-
sors which can support several thousand of concurrent threads. To date, many
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general purpose applications have been migrated to these platforms obtaining
good speedups compared to their corresponding sequential versions. Current
NVIDIA GPUs, for example, contain thousands of scalar processing elements
per chip, and they are programmed using a C programming language extension
called CUDA (Compute Unified Device Architecture) [74, 202, 116].

This thesis aims at a double scientific contribution involving P systems. On
the one hand, to provide new computational complexity frontiers in terms of
syntactical ingredients of some P systems variants, namely cell-like P systems
with symport/antiport rules with either membrane division or membrane sep-
aration rules. This contribution is complemented with the development of the
corresponding simulation tools, within the well-known P–Lingua framework,
serving as key assistants providing invaluable help in the design and formal ver-
ification tasks of solutions to decision problems defined in such variants. The
second main contribution involves addressing the notable lack of software tools
for assisting in the research on one of the most hot topics in Membrane Com-
puting: neural-like P systems. In this way, applications to simulate this kind
of systems have been developed for a wide range of Spiking Neural P systems
variants, including an efficient simulation tool working on High Performance
Computing platforms.

The source codes of the implemented simulators are available in the P–
Lingua web page [199], under the GNU GPLv3 license.

Document structure

This document is structured in three parts, whose content is briefly outlined
below.

• Part I: Preliminaries

This part is devoted to present different concepts, notations and prelim-
inary results that will be used throughout this work. The first chapter
provides a short overview concerning to languages and multisets, graphs,
Hamiltonian cycles, combinatorial optimization problems and decision
problems.

In Chapter 2, the disciplines of Natural Computing and Membrane Com-
puting are introduced. Moreover, formal concepts related to the syntactic
and semantics components of P systems are provided. Cell-like P sys-
tems and tissue-like P systems are described and some relevant features
and results related to computational complexity are presented. Chapter
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3 is devoted to the contribution of Membrane Computing to tackle the
P versus NP problem by means of cell-like or tissue-like models. The
state of the art concerning to spiking neural P systems is summarized in
Chapter 4, and a variant (fuzzy reasoning spiking neural P systems with
real numbers) with interesting real applications is described in Chapter
5.

This first part ends with Chapter 6, which describes a chronological
overview of the P-Lingua simulation framework, which is the starting
point of an important part the described work herein.

• Part II: Contributions

This part contains the most significant contributions of this work. They
are structured in four chapters. In Chapter 7, different results about
frontiers of the tractability in terms of syntactical ingredients of cell-
like P systems with symport/antiport rules are presented. Chapter 8 is
devoted to developing simulators of cell-like P systems with symport/an-
tiport rules in the context of P-Lingua. In Chapter 9, new extensions of
spiking neural P systems are introduced and P-Lingua based software are
developed. This part ends by presenting a simulator of fuzzy reasoning
spiking neural P systems with real numbers.

• Part III: Conclusions

The document concludes with a chapter devoted to the presentation of
conclusions and suggestions of future research directions.

Results

It is worth to note the following original contributions of the work described
in this document:

• New frontiers of the efficiency in terms of cell-like P systems with sym-
port/antiport rules.

In the framework of of cell-like P systems with symport/antiport rules,
membrane division rules and membrane separation rules have been con-
sidered in order to generate an exponential amount of space in linear
time. Specifically, new (optimal) frontiers of the efficiency have been
obtained in terms of the length of communication rules: (a) when mem-
brane division rules are allowed, passing from one (non-cooperation) to
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two (minimal cooperation) amounts to passing from non-efficiency to ef-
ficiency; and (b) when membrane separation rules are allowed, passing
from two to three amounts to passing from non-efficiency to efficiency.
Moreover, the role of the environment (from a computational complexity
point of view) in this class of P systems has been studied and similar
results to tissue P systems with symport/antiport rules have been ob-
tained.

• P-Lingua based software for cell-like P systems with symport/antiport
rules.

The hard tasks of designing families solving NP-hard problems in poly-
nomial time within the framework of membrane Computing and the for-
mal verification of these solutions, requires a very important assistant.
In this context, P–Lingua simulators of cell-like P systems with sym-
port/antiport rules with either membrane division or membrane separa-
tion rules and allowing arbitrary object copies in the environment, have
been developed. With respect to the families designs, virtual experiments
on the solutions provided in this work of both HAM-CYCLE and SAT
problem, have been implemented. With respect to the formal verifica-
tion, the simulator has been used to check that the identified invariant
formulas were corroborated in the corresponding configurations.

• New variants of Spiking neural P systems and development of simulators.

An extension of the Spiking neural P system framework, within the Mem-
brane Computing paradigm, has been provided, involving both theoret-
ical (variants, simulation algorithms) and practical (simulation tools)
aspects. Such extension involves producing a general purpose SN P sys-
tems simulator, which has been included into pLinguaCore library. In
particular, P–Lingua language syntax has been extended to incorporate
new features related to SN P systems. Such features include, among
others, different simulation modes, an initial configuration specification,
consisting of set of neurons and a collection of synapses, and the pos-
sibility of defining a simulation input spike train and input and output
neurons.

• Development of efficient simulators for Fuzzy Reasoning Spiking neural
P systems

Fuzzy Reasoning Spiking neural P systems (operating with real num-
bers) incorporate fuzzy logic elements, as they are intended to model the
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fuzzy diagnosis knowledge and reasoning associated to tackling real-life
problems involving uncertain knowledge. In this sense, FRSN P systems
have shown promising applications in the engineering field, addressing
problems like fault diagnosis in electric power systems. Due to the po-
tential interesting applications related to these systems, key goal of the
work object of this dissertation has been providing a first public parallel
simulation tool for FRSN P systems, with a first version of such tool
successfully simulating rFRSN P systems instances on CUDA-enabled
devices. A hybrid sequential/parallel simulator included into pLingua-
Core library which, while externally behaving as any other existing (se-
quential) simulator in the library, has been developed with the ability of
making calls to native CUDA kernels executed on an underlying GPU
architecture.
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3. L.F. Maćıas-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan,
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4. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L.
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T. Song (eds.) Bio-inspired Computing: Theories and Applications. Se-
ries: Communications in Computer and Information Science, Volume
472, 2014, pp. 308-312. (doi: 10.1007/978-3-662-45049-9).
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ing SNP systems asynchronous simulation modes in P lingua. In L.F.
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7. L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos, M. Rius. The effi-
ciency of tissue P systems with cell separation relies on the environment.
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1
Technical prerequisites

This chapter is devoted to present different concepts, notations and preliminary
results that will be used throughout this work.

1.1 Languages and Multisets

An alphabet Γ is a non-empty set and their elements are called symbols. A
string u over Γ is a mapping from a natural number n ∈ N onto Γ. Number
n is called length of the string u and it is denoted by |u|. The empty string
(with length 0) is denoted by λ. A language over Γ is a set of strings over Γ.

The Parikh vector associated with a string u ∈ Σ∗ with respect to the
alphabet Σ = {a1, . . . , ar} is ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes
the number of ocurrences of the symbol ai in the string u. This is called the
Parikh mapping associated with Σ. Notice that in this definition the ordering
of the symbols from Σ is relevant. If Σ1 = {ai1 , . . . , ais} ⊆ Σ then we define
ΨΣ1(u) = (|u|ai1 , . . . , |u|ais ), for each u ∈ Σ∗.

A multiset over an alphabet Γ is an ordered pair (Γ, f), where f is a map-
ping from Γ onto the set of natural numbers N. For each x ∈ Γ we say that f(x)
is the multiplicity of x in that multiset. The support of a multiset m = (Γ, f)
is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support
is a finite set. We denote by ∅ the empty multiset. Let us note that a set is a

13
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particular case of a multiset when each symbol of the support has multiplicity
1.

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ, then the union of m1

and m2, denoted by m1 +m2, is the multiset (Γ, g), where g(x) = f1(x)+f2(x)
for each x ∈ Γ. We say that m1 is contained in m2 and we denote it by
m1 ⊆ m2, if f1(x) ≤ f2(x) for each x ∈ Γ. The relative complement of m2 in
m1, denoted by m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if
f1(x) ≥ f2(x), and g(x) = 0 otherwise.

1.2 Graphs and Hamiltonian cycles

A rooted tree is a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given
a node x (different from the root) in a rooted tree, if the last edge on the
(unique) path from the root to node x is {x, y} (so x 6= y), then y is the
parent of node x and x is a child of node y. We denote it by y = p(x) and
x ∈ ch(y). The root is the only node in the tree with no parent. A node with
no children is called a leaf (see [32] for details).

Let G = (V,E) be a directed graph, where V = {1, . . . , n} and the set of
arcs is E = {(u1, v1), . . . , (um, vm)} ⊂ V × V . We say that a finite sequence
γ = (uα1 , uα2 , . . . , uαr , uαr+1) of nodes of G is a simple path of G of length r ≥ 1
if the following holds:

• ∀i (1 ≤ i ≤ r → (uαi
, uαi+1

) ∈ E).

• |{uα1 , uα2 , . . . , uαr}| = r.

If uαr+1 /∈ {uα1 , uα2 , . . . , uαr}, then we say that γ is a simple path of length r
from uα1 to uαr+1 . If uαr+1 = uα1 and r ≥ 2, then we say that γ is a simple
cycle of length r.

A Hamiltonian path of G from a ∈ V to b ∈ V (a 6= b) is a simple path
γ = (uα1 , uα2 , . . . , uαr , uαr+1) from a to b such that a = uα1 , b = uαr+1 , and
V = {uα1 , uα2 , . . . , uαr , uαr+1}. A Hamiltonian cycle of G is a simple cycle
γ = (uα1 , uα2 , . . . , uαr , uαr+1) of G such that V = {uα1 , uα2 , . . . , uαr}.

If γ = (uα1 , uα2 , . . . , uαr , uαr+1) is a simple path of G then we also denote
it by the set {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαr , uαr+1)r}. That is, (uαk

, uαk+1
)k

can be interpreted as the k-th arc of the path γ, for each k (1 ≤ k ≤ r).

Given a directed graph G = (V,E), throughout this paper we denote
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AG = {(i, j)k | i, j, k ∈ {1, . . . , n} ∧ (i, j) ∈ E}
A′G = {(i, j)′k | i, j, k ∈ {1, . . . , n} ∧ (i, j) ∈ E}
A′′G = {(i, j)′′k | i, j, k ∈ {1, . . . , n} ∧ (i, j) ∈ E}

Proposition 1.1. Let G = (V,E) be a directed graph. Let V = {1, . . . , n} and
AG = {(i, j)k| i, j, k ∈ {1, . . . , n} ∧ (i, j) ∈ E}. If B ⊆ AG then the following
assertions are equivalent:

1. B is a Hamiltonian cycle.

2. |B| = n and the following holds: for each i, i′, j, j′, k, k′ ∈ {1, . . . , n},

(a) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → k 6= k′]

(b) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → i 6= i′]

(c) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → j 6= j′]

(d) [(i, j)k ∈ B ∧ (i′, j′)k+1 ∈ B → j = i′]

Proof: Let B = {(uα1 , uα2)1, (uα2 , uα3)2 . . . , (uαm , uαr+1)n} be a Hamiltonian
cycle of G. Then, |B| = n and conditions (a), (b), (c) and (d) from (2) hold.

Let B ⊆ AG such that |B| = n and conditions (a), (b), (c) and (d) from
(2) hold. Then, from (a) the set B must to be of the form

B = {(uα1 , vα1)1, (uα2 , vα2)2 . . . , (uαn , vαn)n}

where:

• From (d) we deduce that ∀s (1 ≤ s ≤ n− 1→ vαs = uαs+1).

• From (b) we have V = {uα1 , uα2 , . . . , uαn}.

Finally, on the one hand we have vαn ∈ {uα1 , uα2 . . . , uαn}. On the other hand,
by condition (c) we deduce that vαn /∈ {vα1 , . . . , vαn−1} = {uα2 , . . . , uαn}. Thus
vαn = uα1 .

�
Remark 1: Let B ⊆ AG be a Hamiltonian cycle ofG. For each i, i′, j, j′, k, k′ ∈
{1, . . . , n} the following holds:

1. If (i, j)k ∈ B and j 6= j′ then (i, j′)k′ /∈ B.

2. If (i, j)k ∈ B and i 6= i′ then (i′, j)k′ /∈ B.

3. If (i, j)k ∈ B and (i, j) 6= (i′, j′) then (i′, j′)k /∈ B.
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4. If (i, j)k ∈ B and (i′, j′)k+1 ∈ B then j = i′.

Remark 2: Let us notice that if (uα1 , uα2 , . . . , uαn , uα1) is a Hamiltonian cycle
of G of length n, then we can describe it by the following subset of AG:

B1 = {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαn , uα1)n}
But (uα2 , uα3 , . . . , uαm , uα1 , uα2) also represents the same Hamiltonian cycle.
It can be described as follows: B2 = {(uα2 , uα3)1, (uα3 , uα4)2, . . . , (uα1 , uα2)n}.
Thus, given a Hamiltonian cycle γ of G, there are exactly n different subsets
of AG codifying that cycle.
Remark 3: Let us suppose that the total number of Hamiltonian cycles of G
is q. Then, the number of different subsets B of AG verifying conditions (a),
(b), (c), and (d) from Proposition 1.1 is exactly n · q.

1.3 Encoding ordered pairs of natural num-

bers

The pair function 〈n,m〉 = ((n+m)(n+m+ 1)/2) + n is a polynomial–time
computable function from IN × IN onto IN which is also a primitive recursive
and bijective function.
Notation: Given a sequence x1, . . . , xn of symbols, we write x1, . . . x̂k, . . . , xn
to express that term xk does not appear in that sequence.

1.4 Combinatorial Optimization Problems

Roughly speaking, when we deal with combinatorial optimization problems we
wish to find the best solution (according to a given criterion) among a class
of possible (candidate or feasible) solutions. That is, in this kind of problems
there can be many possible solutions, each one has associated a value (a positive
rational number), and we aim to find a solution with the optimal (minimum
or maximum) value.

For example, a vertex cover of an undirected graph is a set of vertices such
that any edge of the graph has, at least, an endpoint in that set. Then, we
may want to find one of the smallest vertex covers among all possible vertex
covers in the input graph. This is the combinatorial optimization problem
called Minimum Vertex Cover Problem.

Definition 1.1. A combinatorial optimization problem, X, is a tuple (IX , sX , fX)
where:



1.4. Combinatorial Optimization Problems 17

• IX is a language over a finite alphabet.

• sX is a function whose domain is IX and, for each a ∈ IX , the set sX(a)
is finite.

• fX is a function (the objective function) that assigns to each instance
a ∈ IX and each ca ∈ sX(a) a positive rational number fX(a, ca).

The elements of IX are called instances of the problem X. For each instance
a ∈ IX , the elements of the finite set sX(a) are called candidate (or feasible)
solutions associated with the instance a of the problem. For each instance
a ∈ IX and each ca ∈ sX(a), the positive rational number fX(a, ca) is called
solution value for ca. The function fX provides the criterion to determine the
best solution.

For example, the Minimum Vertex Cover problem is a combinatorial op-
timization problem such that IX is the set of all undirected graphs, and for
each undirected graph G, sX(G) is the set of all vertex covers of G; that is,
each vertex cover of the graph is a candidate solution for the problem. The
objective function fX is defined as follows: for each undirected graph G and
each vertex cover C of G, fX(G,C) is the cardinality of C.

Definition 1.2. Let X = (IX , sX , fX) be a combinatorial optimization prob-
lem. An optimal solution for an instance a ∈ IX is a candidate solution
c ∈ sX(a) associated with this instance such that,

• either for all c′ ∈ sX(a) we have fX(a, c) ≤ fX(a, c′) (and then we say
that c is a minimal solution for a),

• either for all c′ ∈ sX(a) we have fX(a, c) ≥ fX(a, c′) (and then we say
that c is a maximal solution for a).

A minimization (respectively, maximization) problem is a combinatorial op-
timization problem such that each optimal solution is a minimal (respectively,
maximal) solution.

That is, an optimization problem seeks the best of all possible candidate
solutions, according to a simple cost criterion given by the objective function.
For example, the Minimum Vertex Cover problem is a minimization problem
because a minimal solution associated with an undirected graph G, provides
one of the smallest vertex covers of G.

An approximation computational device, D, for a combinatorial optimiza-
tion problem, X, provides a candidate solution c ∈ sX(a) for each instance
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a ∈ IX . If the provided solution is always optimal, then D is called an opti-
mization computational device for X.

For instance, an approximation machine for the Minimum Vertex Cover
problem needs only find some vertex cover associated with each undirected
graph, whereas an optimization machine must always find a vertex cover with
the least cardinality associated with each undirected graph.

Having in mind that until now polynomial time optimization algorithms
have not be found for many presumably intractable problems (it is believed
that this kind of solutions can never be found), it is convenient to find an
approximation algorithm running in polynomial time and such that, for all
problem instances the candidate solution given by the algorithm is close, in a
sense, to an optimal solution.

1.5 Decision Problems

An important class of combinatorial optimization problems is the class of de-
cision problems, that is, problems that require either an yes or a no answer.

Definition 1.3. A decision problem, X, is a pair (IX , θX) such that IX is a
language over a finite alphabet (whose elements are called instances) and θX
is a total boolean function (that is, a predicate) over IX .

Therefore, a decision problem X = (IX , θX) can be viewed as a combina-
torial optimization problem X = (IX , sX , fX) where for each instance a ∈ IX
we have the following:

• sX(a) = {θX(a)} (the only possible candidate solution associated with
instance a is 0 or 1, depending on the answer of the problem to a).

• fX(a, θX(a)) = 1.

Thus, each decision problem can be considered as a minimization (or maxi-
mization) problem.

There exists a natural correspondence between languages and decision
problems in the following way. Each language L, over an alphabet Σ, has
a decision problem, XL, associated with it as follows: IXL

= Σ∗, and θXL
=

{(x, 1) | x ∈ L} ∪ {(x, 0) | x /∈ L}; reciprocally, given a decision problem
X = (IX , θX), the language LX over the alphabet of IX corresponding to it is
defined as follows: LX = {a ∈ IX | θX(a) = 1}.
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Usually, NP-completeness has been studied in the framework of decision
problems. Many abstract problems are not decision problems, but combinato-
rial optimization problems, in which some value must be optimized (minimized
or maximized). In order to apply the theory of NP-completeness to combina-
torial optimization problems, we must consider them as decision problems.

We can transform any combinatorial optimization problem into a roughly
equivalent decision problem by supplying a target/threshold value for the quan-
tity to be optimized, and asking the question whether this value can be at-
tained. Next we give two examples.

1. The Minimum Vertex Cover Problem.

Optimization version: Given an undirected graph G, find the cardinality
of a minimal set of a vertex cover of G.

Decision version: Given an undirected graph G, and a positive integer
k, determine whether or not G has a vertex cover of size at most k.

2. The Common Algorithmic Problem [62].

Optimization version: given a finite set S and a family F of subsets of
S, find the cardinality of a maximal subset of S which does not include
any set belonging to F .

Decision version: given a finite set S, a family F of subsets of S, and a
positive integer k, we are asked whether there is a subset A of S such
that the cardinality of A is at least k, and which does not include any
set belonging to F .

If a combinatorial optimization problem can be quickly solved, then its decision
version can be quickly solved as well (because we only need to compare the
solution value with a threshold value). Similarly, if we can make clear that a
decision problem is hard, we also make clear that its associated combinatorial
optimization problem is hard.

For example, let A be a polynomial time algorithm for the optimization
version of the Minimum Vertex Cover problem. Then we consider the following
polynomial time algorithm for the decision version of the Minimum Vertex
Cover problem: given an undirected graph G, and a positive integer k, if
k < A(G) (here A(G) is the cardinality of a smallest vertex cover of G), then
answer no; otherwise, the answer is yes.

Reciprocally, let B be a polynomial time algorithm for the decision version
of the Minimum Vertex Cover problem. Then we consider the following poly-
nomial time algorithm for the optimization version of the Minimum Vertex
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Cover problem: given an undirected graph G, repeatedly while k ≤ number
of vertices of G (starting from k = 0, and in the next step considering k + 1)
we execute the algorithm A on input (G, k), until we reach a first yes answer,
and then the result is k.

1.5.1 Solving Decision Problems

Recall that, in a natural way, each decision problems has associated a language
over a finite alphabet. Next, we define the solvability of decision problems
through the recognition of languages associated with them.

In order to specify the concept of solvability we work with an universal
computing model: Turing machines.

Let M be a Turing machine such that the result of any halting computation
is yes or no. Let L be a language over an alphabet Σ.

If M is a deterministic device (with Σ as working alphabet), then we say
that M recognizes or decides L whenever, for any string a over Σ, if a ∈ L,
then the answer of M on input a is yes (that is, M accepts a), and the answer
is no otherwise (that is, M reject a).

If M is a non-deterministic Turing machine, then we say that M recognizes
or decides L if the following is true: for any string a over Σ, a ∈ L if and
only if there exists a computation of M with input a such that the answer
is yes. That is, an input string a is accepted by M if there is an accepting
computation of M on input a. But now we do not have a mechanical criterion
to reject an input string.

Recall that any deterministic Turing machine with multiple tapes can be
simulated by a deterministic Turing machine with one tape with a polynomial
loss of efficiency, whereas the simulation of non-determinism through deter-
minism involves an exponential loss of efficiency.

In the context of computation theory, we consider a problem X to be solved
when we have a general (definite) method (described in a model of computation)
that works for any instance of the problem. From a practical point of view,
such methods only run over a finite set of instances whose sizes depend on the
available resources.

We say that a Turing machine M solves a decision problem X if M rec-
ognizes the language associated with X; that is, for any instance a of the
problem: (1) in the deterministic case, the machine (with input a) output yes
if the answer of the problem is yes, and the output is no otherwise; (2) in
the non-deterministic case, some computation of the machine (with input a)
output yes if the answer of the problem is yes.
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Due to the fact that we represent the instances of abstract problems as
strings we can consider their size in a natural manner: the size of an instance
is the length of the string. Then, how do the resources required to execute
a method increase according to the size of the instance? This is a relevant
question in computational complexity theory.
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2
Membrane Computing

In the last years several computing models using powerful tools from nature
have been developed (because of this, they are known as bio-inspired models)
and several solutions in polynomial time to hard problems from the class NP
have been presented, making use of non-determinism and/or of an exponential
amount of space. This is the reason why a practical implementation of such
models (in biological, electronic, or other media) could provide a significant
advance in the resolution of computationally hard problems.

Membrane Computing, introduced by Gh. Păun at the end of 1998, is a
relatively young branch of Natural Computing providing distributed parallel
computing models whose computational devices are called membrane systems.
These systems are inspired by some basic biological features, specifically by
the structure and functioning of the living cells, as well as from the way the
cells are organized in tissues, organs, and organisms.

There are basically three ways to consider computational devices: cell–
like membrane systems, tissue–like membrane systems and spiking neural–
like membrane systems. The first one ([148]), using the membranes arranged
hierarchically, inspired from the structure of the cell, the second one ([92, 93])
using the membranes placed in the nodes of a directed graph, inspired from
the cell inter–communication in tissues, and the third one ([67]) is inspired by
the neurophysiological behavior of neurons sending electrical impulses (spikes)
along axons to other neurons.

23
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Many variants of all these systems were considered; overview of the do-
main can be found in [151] and [157], with up-to-date information available at
the membrane computing website [200]. Friendly introduction to membrane
computing is [156] as well as the first chapter of [157].

This chapter addresses how hard abstract decision problems could be solved
efficiently using membrane systems. Moreover, the notions from classical com-
putational complexity theory are adapted for the membrane computing frame-
work. Let us note that the purpose of computational complexity theory is
to provide bounds on the amount of resources necessary for any mechanical
procedure (algorithm) that solves a problem.

2.1 Cell-like P systems

In the structure and functioning of a cell, biological membranes play an es-
sential role. The cell is separated from its environment by means of a skin
membrane, and it is internally compartmentalized by means of internal mem-
branes. The class of cell-like P systems (introduced in [148]) use the biological
membranes arranged hierarchically, inspired from the structure of the cell.

Definition 2.1. A basic transition P system of degree q ≥ 1 is a tuple of the
form Π = (Γ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iout), where:

• Γ is a finite alphabet;

• µ is a rooted tree whose nodes are injectively labelled with 1, . . . , q;

• M1, . . . ,Mq are finite multisets over Γ;

• Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the form u → v, where
v = (v1, here)(v2, out), (v3, inj) δ

∗, being u, v1, v2, v3 finite multisets over
Γ, 1 ≤ j ≤ q and δ∗ ∈ {λ, δ};

• iout ∈ {0, 1, . . . , q}.

A basic transition P system (Γ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iout) of degree
q ≤ 1 can be viewed as a set of q membranes, injectively labelled with el-
ements in {1, . . . , q}, arranged in a hierarchical membrane structure µ given
by a rooted tree whose root is called the skin membrane, labelled by 1, and
delimiting regions (space bounded by a membrane and the immediately lower
membranes) such that: (a)M1, . . . ,Mq represent the finite multisets of objects
(symbols of Γ) initially placed in the q regions of the system; (b) R1, . . . ,Rq
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are finite sets of rules over Γ associated with the q; (c) iout ∈ {0, 1, . . . , q}
is a label that represents a distinguished zone called the output zone; (d) 0
is a label that represents the environment of the system where the result is
encoded. We use the term zone i (0 ≤ i ≤ q) to refer to membrane i in the
case 1 ≤ i ≤ q and to refer to the environment in the case i = 0.

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we
denote by p(i) the parent of membrane i in the rooted tree µ. We define
p(1) = 0, that is, by convention the “parent” of the skin membrane is the
environment. The leaves of the rooted tree are called elementary membranes.

An instantaneous description or a configuration Ct at an instant t of a P
system is a tuple whose components are the membrane structure at instant t
and all multisets of objects over Γ associated with all the membranes present
in µ. The initial configuration of Π is (Γ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is
(µ,M1, . . . ,Mq).

A rule of the form u → (v1, here)(v2, out)(v3, inj) δ
∗ ∈ Ri is applicable to

a configuration Ct at an instant t if the following holds: (a) membrane i is in
Ct; (b) multiset u is contained in the multiset associated with such membrane;
(c) if multiset v3 is a nonnempty set then p(j) = i; and (d) if δ∗ = δ then
membrane i is different from the skin membrane (i 6= 1) and different from the
output membrane, if any.

When applying such a rule, all objects in v1 will be placed in the same region
i where the rule is applied; all objects in v2 will be placed in the (parent)
region p(i), all objects in v3 will be placed in the region j, and if δ∗ = δ
then membrane i is dissolved. After dissolving a membrane, all objects and
membranes previously present in it become elements of the contents of the
immediately upper membrane that have not been dissolved.

A configuration is a halting configuration if no rule of the system is applica-
ble to it. We say that configuration C1 yields configuration C2 in one transition
step, denoted C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from
R following the previous remarks. A computation of Π is a (finite or infinite)
sequence of configurations such that: (a) the first term of the sequence is the
initial configuration of the system; (b) each non-initial configuration of the se-
quence is obtained from the previous configuration in one transition step; and
(c) if the sequence is finite (called halting computation), then the last term of
the sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region iout in the halting configuration.
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2.1.1 P systems with active membranes

One of the explicit goals of various branches of natural computing is to find
ways to address computationally hard problems (typically, NP-complete prob-
lems) in order to solve them in a feasible time.

The rules of a basic transition P system are used in parallel. This is a good
degree of parallelism, which, however, is not sufficient to devise polynomial
time solutions to NP-complete problems (unless P = NP, which is not at
all plausible); the proof of this result can be found in [209]. However, biol-
ogy suggests operations with membranes such as membrane division which,
sometimes surprisingly, make possible polynomial (often linear) solutions to
NP-complete problems. Membrane division brings a further level of paral-
lelism, making possible to construct an exponential workspace expressed in
terms of the number of membranes and the number of objects in polynomial
time.

P systems with active membranes having associated electrical charges with
membranes were first introduced by Gh. Păun [149].

Definition 2.2. A P system with active membranes of degree q ≥ 1 is a tuple
Π = (Γ, µ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet;

2. µ is a rooted tree whose nodes are injectively labelled with H = {1, . . . , q};

3. M1, . . . ,Mq are finite multisets over Γ;

4. R is a finite set of rules, of the following forms:

(a) [ a → u ]αh, for h ∈ H, α ∈ {+,−, 0}, a ∈ Γ, u ∈ Γ∗ (object
evolution rules).

(b) a [ ]α1
h → [ b ]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–in
communication rules).

(c) [ a ]α1
h → [ ]α2

h b, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–out
communication rules).

(d) [ a ]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules).

(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ

(division rules for elementary membranes).

(f) [ [ ]α1
h1
. . . [ ]α1

hk
[ ]α2
hk+1

. . . [ ]α2
hn

]αh → [ [ ]α3
h1
. . . [ ]α3

hk
]βh [ [ ]α4

hk+1
. . . [ ]α4

hn
]γh, for

k ≥ 1, n > k, h, h1, . . . , hn ∈ H, α, β, γ, α1, . . . , α4 ∈ {+,−, 0} and
{α1, α2} = {+,−} (division rules for non–elementary membranes).
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5. iout ∈ {0, 1, . . . , q}.

A P system with active membranes Π = (Γ, µ,M1, . . . ,Mq,R, iout), of
degree q ≥ 1 can be viewed as as a set of q membranes (the nodes ot the tree
µ) injectively labelled by 1, . . . , q, with electrical charges (+,−, 0) associated
with them, and with an environment labelled by 0 such that: (a)M1, . . . ,Mq

are finite multisets over Γ representing the objects initially placed in the q
membranes of the system; (b) R is the set of rules that allows to evolve the
system; and (c) iout ∈ {0, 1, 2, . . . , q} represents a distinguished zone which
will encode the output of the system.

P systems with active membranes differ from the basic transition P sys-
tems on the type of rules. These rules are applied according to the following
principles ([151]):

• All the rules are applied in parallel and in a maximal manner. In one
step, one object of a membrane can be used by only one rule (chosen in
a non deterministic way), but any object which can evolve by one rule
of any form, must evolve.

• If a membrane is dissolved, its content (multiset and internal membranes)
is left free in the surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of
type (e) and there are objects in this membrane which evolve by means
of rules of type (a), then we suppose that first the evolution rules of type
(a) are used, and then the division is produced. Of course, this process
takes only one step.

• The rules associated with membranes labelled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only
one rule of types (b)-(e).

Note that these P systems have some important features: (a) they use three
electrical charges; (b) the polarization of a membrane, but not the label, can
be modified by the application of a rule; and (c) they do not use cooperation
(the left-hand side of the rules consist of only one symbol).

2.1.2 Polarizationless P systems with active membranes

Next, P systems with active membranes without electrical charges and with
different kinds of membrane division rules are introduced.
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Definition 2.3. A polarizationless P system with active membranes of degree
q ≥ 1 is a tuple Π = (Γ, µ,M1, . . . ,Mq, R, iout), where:

1. Γ is a finite alphabet;

2. µ is a membrane structure (a rooted tree) consisting of q membranes
injectively labeled by elements of H = {1, . . . , q};

3. M1, . . . ,Mq are finite multisets over Γ; describing the multisets of ob-
jects placed in the q initial regions of µ;

4. R is a finite set of developmental rules, of the following forms:

(a) [ a→ u ]h, for h ∈ H, a ∈ Γ, u ∈ Γ∗ (object evolution rules).

(b) a [ ]h → [ b ]h, for h ∈ H, a, b ∈ Γ (send–in communication rules).

(c) [ a ]h → [ ]h b, for h ∈ H, a, b ∈ Γ (send–out communication rules).

(d) [ a ]h → b, for h ∈ H, a, b ∈ Γ (dissolution rules).

(e) [ a ]h → [ b ]h [ c ]h, for h ∈ H, a, b, c ∈ Γ (division rules for elemen-
tary or weak division rules for non-elementary membranes).

(f) [ [ ]h1 . . . [ ]hk [ ]hk+1
. . . [ ]hn ]h → [ [ ]h1 . . . [ ]hk ]h [ [ ]hk+1

. . . [ ]hn ]h, where
k ≥ 1, n > k, h, h1, . . . , hn ∈ H (strong division rules for non-
elementary membranes).

5. iout ∈ {0, 1, . . . , q}.

These rules are applied according to usual principles of polarizationless P
systems (see [58] for details). Notice that in this polarizationless framework
there is no cooperation, priority, nor changes of the labels of membranes. Be-
sides, throughout this work, rules of type (f) are used only for k = 1, n = 2,
that is, rules of the form (f) [ [ ]h1 [ ]h2 ]h → [ [ ]h1 ]h [ [ ]h2 ]h.

2.2 Tissue P Systems with symport/antiport

rules

In this section we consider computational devices inspired from the cell inter–
communication in tissues, and adding the ingredient of cell division rules of
the same form as in cell–like membrane systems with active membranes, but
without using polarizations. In these systems, the rules are used in the non-
deterministic maximally parallel way, as usual, but we suppose that when
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a cell is divided, its interaction with other cells or with the environment is
blocked; that is, if a division rule is used for dividing a cell, then this cell does
not participate in any other rule, for division or communication. The set of
communication rules implicitely provides the graph associated with the system
through the labels of the membranes. The cells obtained by division have the
same labels as the mother cell, hence the rules to be used for evolving them or
their objects are inherited.

Definition 2.4. A basic tissue P system with symport/antiport rules of degree
q ≥ 1 is a tuple Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet;

2. E ⊆ Γ;

3. M1, . . . ,Mq are finite multisets over Γ;

4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈
{0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ∗, |u|+ |v| > 0;

5. iout ∈ {0, 1, 2, . . . , q}.

A basic tissue P system with symport/antiport rules of degree q ≥ 1

Π = (Γ, E ,M1, . . . ,Mq,R, iout)

can be viewed as a set of q cells, labelled by 1, . . . , q, with an environment la-
belled by 0 such that: (a)M1, . . . ,Mq are finite multisets of objects (elements
in Γ) initially placed in the q cells of the system; (b) E is the set of objects
located initially in the environment of the system, all of them appearing in an
arbitrary number of copies; and (c) iout ∈ {0, 1, 2, . . . , q} represents a distin-
guished zone called the output zone. We use the term zone i (0 ≤ i ≤ q) to
refer to cell i in the case 1 ≤ i ≤ q and to refer to the environment in the case
i = 0.

a distinguished cell or the environment which will encode the output of the
system.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ.
A symport rule (i, u/λ, j), with i 6= 0, j 6= 0, provides a virtual arc from cell i
to cell j. A communication rule (i, u/v, j) is called an antiport rule if u 6= λ
and v 6= λ. An antiport rule (i, u/v, j), with i 6= 0, j 6= 0, provides two arcs:
one from cell i to cell j and another one from cell j to cell i. Thus, every tissue
P systems has an underlying directed graph whose nodes are the cells of the
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system and the arcs are obtained from communication rules. In this context,
the environment can be considered as a virtual node of the graph such that
their connections are defined by the communication rules of the form (i, u/v, j),
with i = 0 or j = 0.

A communication rule (i, u/v, j) is applicable to regions i, j if the multiset u
is contained in region i and multiset v is contained in region j. When applying
a communication rule (i, u/v, j), the objects of the multiset represented by u
are sent from region i to region j and, simultaneously, the objects of multiset v
are sent from region j to region i. The length of communication rule (i, u/v, j)
is defined as |u|+ |v|.

The rules of a system like the one above are used in a non-deterministic
maximally parallel manner as it is customary in Membrane Computing. At
each step, all cells which can evolve must evolve in a maximally parallel way (at
each step we apply a multiset of rules which is maximal, no further applicable
rule can be added).

An instantaneous description or a configuration at any instant of a tissue P
system is described by all multisets of objects over Γ associated with all the cells
present in the system, and the multiset of objects over Γ−E associated with the
environment at that moment. Bearing in mind that the objects from E have
infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, · · · ,Mq; ∅). A configuration is
a halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with symport/antiport rules Π. We say
that configuration C1 yields configuration C2 in one transition step, denoted
C1 ⇒Π C2, if we can pass from C1 to C2 by applying the rules from R following
the previous remarks. A computation of Π is a (finite or infinite) sequence of
configurations such that: (a) the first term of the sequence is an initial con-
figuration of the system; (b) each non-initial configuration of the sequence is
obtained from the previous configuration by applying the rules of the system in
a maximally parallel manner with the restrictions previously mentioned; and
(c) if the sequence is finite (called halting computation), then the last term of
the sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region (a cell or the environment) iout in the halting
configuration.

Notation: If C = {Ci}i<r+1 (r ∈ N) is a halting computation of Π, then the
length of C is r, that is, the number of non-initial configurations which appear
in the finite sequence C. We denote it by |C|. We also denote by Ci(j) the
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contents of cell j at configuration Ci.

Definition 2.5. A tissue P system without environment is a tissue P system
Π = (Γ, E ,M1, . . . ,Mq,R, iout) such that E = ∅.

In this kind of tissue P systems, along any computation, objects in the
environment always have a finite multiplicity.

2.2.1 Tissue P Systems with Cell Division

Cell division is an elegant process that enables organisms to grow and repro-
duce. Mitosis is a process of cell division which results in the production of
two daughter cells from a single parent cell. Daughter cells are identical to one
another and to the original parent cell. Through a sequence of steps, the repli-
cated genetic material in a parent cell is equally distributed to two daughter
cells. While there are some subtle differences, mitosis is remarkably similar
across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where
the cell replicates its genetic material and organelles. Replication is one of the
most important functions of a cell. DNA replication is a simple and precise
process that creates two complete strands of DNA (one for each daughter cell)
where only one existed before (from the parent cell).

Let us recall that the model of tissue P systems with cell division is based
on the membrane division rules from the cell-like model of P systems with
active membranes [150]. Cells obtained by division get exactly the same labels
as the original cell, but no polarizations are used in this model (unlike the
active membranes case).

Definition 2.6. A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

• Π = (Γ, E ,M1, . . . ,Mq,R, iout) is a basic tissue P system with sym-
port/antiport rules of degree q ≥ 1;

• R may also contain a finite set of rules of the form [a]i → [b]i[c]i, being
i ∈ {1, 2, . . . , q}, i 6= iout and a, b, c ∈ Γ (Division rules).

A division rule [a]i → [b]i[c]i is applicable to a configuration at an instant
t, if there is a cell i in that configuration and object a is contained in that cell.
When applying a division rule [a]i → [b]i[c]i, under the influence of object a,
the cell with label i is divided into two cells with the same label; in the first
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copy, object a is replaced by object b, in the second one, object a is replaced
by object c; all the other objects residing in cell i are replicated and copies of
them are placed in the two new cells. The output cell iout cannot be divided.

The rules of a tissue P system with cell division are applied in a non-
deterministic maximally parallel manner as it is customary in membrane com-
puting but with following important remark: if a cell divides, then the division
rule is the only one which is applied for that cell at that step; the objects inside
that cell do not evolve by means of communication rules. In other words, before
division a cell interrupts all its communication channels with the other cells
and with the environment. The new cells resulting from division will interact
with other cells or with the environment only at the next step – providing that
they do not divide once again. The label of a cell precisely identifies the rules
which can be applied to it.

2.2.2 Tissue P Systems with Cell Separation

In formal models of membrane systems with cell separation, the cells are not
polarized; the two cells obtained by separation inherit the same labels as the
original cell, and if a cell is separated, its interaction with other cells or with
the environment is blocked during the separation process. These assumptions,
together with the original abstract concept of a P system [148], and previous
models studied in [92, 92] and [118], motivated the following definition:

Definition 2.7. A tissue P system with cell separation and communication
rules of degree q ≥ 1 is a tuple Π = (Γ,Γ0,Γ1, E ,M1, . . . ,Mq,R, iout), where:

1. Π = (Γ, E ,M1, . . . ,Mq,R, iout) is a basic tissue P system with sym-
port/antiport rules of degree q ≥ 1;

2. {Γ0,Γ1} is a partition of Γ, that is, Γ = Γ0∪Γ1, Γ0,Γ1 6= ∅, Γ0∩Γ1 = ∅.

3. R may also contain a finite set of rules of the form [a]i → [Γ0]i[Γ1]i,
where i ∈ {1, . . . , q}, a ∈ Γ and i 6= iout (Separation rules).

A separation rule [a]i → [Γ0]i[Γ1]i is applicable to a configuration at an
instant t, if cell i belongs to that configuration and object a is contained in
that cell. When applying a separation rule [a]i → [Γ0]i[Γ1]i, in reaction with
an object a, the cell i is separated into two cells with the same label; at the
same time, object a is consumed; the objects from Γ0 are placed in the first
cell, those from Γ1 are placed in the second cell; the output cell iout cannot be
separated.
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The rules of a tissue P system with cell separation are applied in a non-
deterministic maximally parallel manner as it is customary in membrane com-
puting but with following important remark: if a cell separates, then the sep-
aration rule is the only one which is applied for that cell at that step.

2.3 Recognizer membrane systems

Throughout this work we use the term membrane system to refer to both a
cell-like P system or a tissue-like P system. In both cases we can describe
them by Π = (Γ, E , µ,M1, . . . ,Mq,R, iout), where in the case of cell-like P
system, the structure µ is explicitely given, the set R of rules is expressed
by R = R1 ∪ · · · ∪ Rq (the set Ri is associated with membrane i), and the
alphabet of the environment E is considered as the empty set. In the case of
tissue-like P system, the structure µ is implicitely given by the set of rules R
(associated with the whole system).

Throughout this chapter, it is assumed that each decision problem has an
associated fixed reasonable encoding scheme that describes the instances of the
problem by means of strings over a finite alphabet. We do not define reasonable
in a formal way, however, following [49], instances should be encoded in a
concise manner, without irrelevant information, and where relevant numbers
are represented in binary (or any fixed base other than 1). It is possible to use
multiple reasonable encoding schemes to represent instances, but it is proved
that the input sizes differ at most by a polynomial. The size |u| of an instance
u is the length of the string associated with it, in some reasonable encoding
scheme.

In order to study the computational efficiency of membrane systems, the
notions from classical computational complexity theory are adapted for Mem-
brane Computing, and a special class of cell-like P systems is introduced in
[70]: recognizer P systems (called accepting P systems in a previous paper [71]).

Definition 2.8. A recognizer membrane system of degree q ≥ 1 is a tuple
Π = (Γ,Σ, E , µ,M1, . . . ,Mq,R, iin, iout), where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R, iout) is a membrane system;

2. The working alphabet Γ has two distinguished objects yes and no being,
at least, one copy of them present in M1 ∪ · · · ∪Mq, but, in the case of
a tissue-like P system, none of them are present in E;

3. Σ is a finite (input) alphabet strictly contained in Γ such that E ∩Σ = ∅;
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4. M1, . . . ,Mq are finite multisets over Γ \ Σ;

5. iin ∈ {1, . . . , q} is the input region (a membrane in the case of cell-like
P systems and a cell in the case of tissue-like P systems);

6. iout is the label of the environment that represents the output zone;

7. All computations halt;

8. If C is a computation of Π, then either object yes or object no (but not
both) must have been released into the environment, and only at the last
step of the computation.

A recognizer membrane system Π = (Γ,Σ, E , µ,M1, . . . ,Mq,R, iin, iout) of
degree q ≥ 1 can be viewed as a membrane system such that has an input
alphabet Σ and an input region iin. The initial multisets of the system are
multisets over Γ \ Σ.

For each finite multiset m over Σ, the initial configuration of the system Π
with input m is the tuple (µ,M1, . . . ,Miin + m, . . . ,Mq; ∅), where the input
multiset m is added to the content of the input region iin. That is, we have an
initial configuration associated with each input multiset m over Σ in recognizer
P systems. We denote by Π +m the P system Π with input multiset m.

Given a recognizer membrane system Π, and a halting computation C =
{Ci}i<r+1 of Π (r ∈ N), the result of C is yes (respectively, no) if object
yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object yes nor no appears
in the environment associated with any non–halting configuration of C. If the
result of a computation C is yes (respectively, object no), then we say that C
is an accepting computation (respectively, rejecting computation).

2.3.1 Polynomial Complexity Classes of membrane sys-
tems

Many formal machine models (e.g. Turing machines or register machines) have
an infinite number of memory locations. At the same time, P systems, or logic
circuits, are computing devices of finite size and they have a finite description
with a fixed amount of initial resources (number of membranes, objects, gates,
etc.). For this reason, in order to solve a decision problem a (possibly infinite)
family of P systems is considered.

The concept of solvability in the framework of P systems also takes into
account the pre-computational process of (efficiently) constructing the family
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that provides the solution. In this paper, the terminology uniform family is
used to denote that this construction is performed by a single computational
machine.

2.3.1.1 Uniform families of P systems

In the case of recognizer P systems (with input region: membrane/cell), the
term uniform family is consistent with the usual meaning for Boolean circuits:
a family Π = {Π(n) : n ∈ IN} is uniform if there exists a deterministic Turing
machine which constructs the system Π(n) from n ∈ IN (that is, which on
input 1n outputs Π(n)). In such a family, the P system Π(n) will process all
the instances of the problem with numerical parameters (reasonably) encoded
by n – the common case is that Π(n) processes all instances of size n. Note that
this means that, for these families of P systems with input region, further pre–
computational processes are needed in order to (efficiently) determine which P
system (and from which input) deals with a given instance of the problem. The
concept of polynomial encoding introduced below tries to capture this idea.

In the case of P systems without input region a new notion arises: a family
Π = {Π(w) : w ∈ IX} associated with a decision problem X = (IX , θX) is
uniform (some authors [105, 143, 166] use the term semi-uniform here) if there
exists a deterministic Turing machine which constructs the system Π(w) from
the instance w ∈ IX . In such a family, each P system usually processes only
one instance, and the numerical parameters and syntactic specifications of the
latter are part of the definition of the former.

It is important to point out that, in both cases, the family should be
constructed in an efficient way. This requisite was first included within the
term uniform family (introduced by Gh. Păun [151]), but nowadays it is
preferred to use the term polynomially uniform by Turing machines to indicate
a uniform (by a single Turing machine) and effective (in polynomial time)
construction of the family.

Definition 2.9. A family Π = {Π(w) : w ∈ IX} (respectively, Π = {Π(n) :
n ∈ IN}) of recognizer membrane systems without input region (resp., with
input region) is polynomially uniform by Turing machines if there exists a
deterministic Turing machine working in polynomial time which constructs
the system Π(w) (resp., Π(n)) from the instance w ∈ IX (resp., from n ∈ IN).
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2.3.1.2 Confluent P systems.

In order for recognizer P systems to capture the true algorithmic concept, a
condition of confluence is imposed, in the sense that all possible successful
computations must give the same answer. This contrasts with the standard
notion of accepting computations for non-deterministic (classic) models.

Definition 2.10. Let X = (IX , θX) be a decision problem, and Π = {Π(w) :
w ∈ IX} be a family of recognizer P systems without input region.

• Π is said to be sound with respect to X if the following holds: for each
instance of the problem, w ∈ IX , if there exists an accepting computation
of Π(w), then θX(w) = 1.

• Π is said to be complete with respect to X if the following holds: for each
instance of the problem, w ∈ IX , if θX(w) = 1, then every computation
of Π(w) is an accepting computation.

The concepts of soundness and completeness can be extended to families of
recognizer P systems with input region in a natural way. However, an efficient
process of selecting P systems from instances must be made precise.

Definition 2.11. Let X = (IX , θX) be a decision problem, and Π = {Π(n) :
n ∈ IN} a family of recognizer P systems with input region. A polynomial
encoding of X in Π is a pair (cod, s) of polynomial–time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number (obtained
by means of a reasonable encoding scheme) and cod(w) is an input multiset of
the system Π(s(w)).

Polynomial encodings are stable under polynomial–time reductions [70].

Proposition 2.1. Let X1, X2 be decision problems, r a polynomial–time re-
duction from X1 to X2, and (cod, s) a polynomial encoding from X2 to Π.
Then, (cod ◦ r, s ◦ r) is a polynomial encoding from X1 to Π.

Next, the concepts of soundness and completeness are defined for families
of recognizer P systems with input region.

Definition 2.12. Let X = (IX , θX) be a decision problem, Π = {Π(n) :
n ∈ IN} a family of recognizer P systems with input region, and (cod, s) a
polynomial encoding of X in Π.

• Π is said to be sound with respect to (X, cod, s) if the following holds:
for each instance of the problem, w ∈ IX , if there exists an accepting
computation of Π(s(w)) with input cod(w), then θX(w) = 1.
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• Π is said to be complete with respect to (X, cod, s) if the following holds:
for each instance of the problem, w ∈ IX , if θX(w) = 1, then every
computation of Π(s(w)) with input cod(w) is an accepting computation.

Notice that if a family of recognizer P systems is sound and complete, then
every P system of the family processing an instance, is confluent in the sense
previously mentioned.

2.3.2 Semi-Uniform Solutions versus Uniform Solutions

The first results showing that membrane systems could solve computationally
hard problems in polynomial time were obtained using P systems without
input membrane. In that context, a specific P system is associated with each
instance of the problem. In other words, the syntax of the instance is part
of the description of the associated P system. Thus this P system can be
considered special purpose.

Definition 2.13. A decision problem X is solvable in polynomial time by a
family of recognizer P systems without input membrane Π = {Π(w) : w ∈ IX},
denoted by X ∈ PMC∗R, if the following holds:

• The family Π is polynomially uniform by Turing machines.

• The family Π is polynomially bounded; that is, there exists a natural
number k ∈ IN such that for each instance w ∈ IX , every computation of
Π(w) performs at most |w|k steps.

• The family Π is sound and complete with respect to X.

The family Π is said to provide a semi–uniform solution to the problem
X. Let R be a class of recognizer P systems. We denote by PMC∗R the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R.

Now, we define what it means to solve a decision problem in the framework
of membrane systems efficiently and in a uniform way. Since we define each
membrane system to work on a finite number of inputs, to solve a decision
problem we define a numerable family of membrane systems.

Definition 2.14. We say that a decision problem X = (IX , θX) is solvable
in a uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of
recognizer membrane systems if the following holds:
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1. The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over
IX such that:

(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an
input multiset of the system Π(s(u));

(b) for each n ∈ IN, s−1(n) is a finite set;

(c) the family Π is polynomially bounded with regard to (X, cod, s),
that is, there exists a polynomial function p, such that for each
u ∈ IX every computation of Π(s(u)) with input cod(u) is halting
and it performs at most p(|u|) steps;

(d) the family Π is sound and complete with regard to (X, cod, s).

From the soundness and completeness conditions above we deduce that
every P system Π(n) is confluent, in the following sense: every computation of
a system with the same input multiset must always give the same answer.

Let R be a class of recognizer P systems. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial
time by means of families of systems from R. The class PMCR is closed under
complement and polynomial–time reductions [71].

2.4 Spiking Neural P systems

Spiking Neural P systems (SN P systems, for short) are a variant of P systems,
corresponding to a shift from cell-like to neural-like architectures. Formally
introduced in [67], they take inspiration from the way in which neurons in
the brain exchange information by means of the propagation through their
synapses of electrical impulses called action potentials or spikes. Due to their
entity with respect to the work object of this dissertation, they are covered
separately in the Chapter 4.



3
The P versus NP problem from a

Membrane Computing perspective

Classical approach to tackle the P versus NP problem consists of considering
an NP-complete problem (it is enough to work with only one such problem) and
using the following strategy: either (a) try to design a deterministic algorithm
solving that problem in polynomial time, concluding then that P = NP; or else
(b) prove that no deterministic algorithm solves that problem in polynomial
time, concluding then that P 6= NP.

This chapter deals with a new approach to tackle the P versus NP problem
by using a bio-inspired computing paradigm that provides borderlines of the
tractability of abstract problems in terms of syntactical ingredients of these
computing devices. Specifically, the computational complexity theory devel-
oped in the framework of membrane computing allow us to characterize the
ability to solve NP–complete problem in an efficient way.

3.1 Introduction

The P versus NP question is the problem of determining whether every prob-
lem solvable by some non-deterministic Turing machine in polynomial time
can also be solved by some deterministic Turing machine in polynomial time.
In other words, this question can be informally reformulated as asking whether

39
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or not finding solutions of a (search) problem is harder than checking the cor-
rectness of a given solution of it. It can also be expressed as asking whether
or not deciding membership in a set is harder than being convinced of this
membership by an adequate proof ([53]). The classical approach when trying
to solve this question is to focus on one NP-complete problem and try to prove
that it belongs (or that it does not belong) to the class P. A membership proof
can be obtained by designing a deterministic algorithm solving that problem
in polynomial time, and in such case we immediately deduce that P = NP
holds. In the second case, claiming that the problem does not belong to P is
equivalent to proving that no deterministic algorithm working in polynomial
time provides a solution to the problem, and therefore in this case we deduce
P 6= NP.

The P versus NP question is one of the outstanding open problems in
theoretical computer science. A negative answer to this question would confirm
that the majority of current cryptographic systems are secure from a practical
point of view. A positive answer would not only show the uncertainty about
the security of these systems, but also this kind of answer is expected to
come together with a general procedure that provides a deterministic algorithm
solving most of the NP–complete problems in polynomial time.

This chapter studies a new computing approach to attack the P versus
NP question by obtaining frontiers of the tractability in terms of syntactical
ingredients of cell-like P systems and tissue-like P systems. Moreover, each
borderline provides a tool to solve the aforementioned question.

3.2 Frontiers of the Efficiency in Membrane

Systems

In this section the concept of efficient membrane systems is introduced and we
study the efficiency of different classes of recognizer membrane systems with
respect to some syntactical ingredients.

We say that a class of recognizer membrane systems F is presumably ef-
ficient if there exists an NP–complete problem that can be solved in poly-
nomial time by a family of systems from F . From the properties of the
NP–completeness, we deduce that any NP-complete problem can be solved
in polynomial time by families of an presumably efficient class of recognizer
membrane systems. Because class PMCF is closed under complement and
polynomial–time reductions (see [71] for details), if the class F is presumably
efficient then NP ∪ co-NP ⊆ PMCF .
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We say that a class of recognizer membrane systems F is feasible if only
tractable problems can be solved in polynomial time by a family of systems
from F , that is, if PMCF = P. According with these definitions, if P = NP
then a class F is feasible if and only if it is presumably efficient. Besides, if
P 6= NP then each class feasible is not presumably efficient. Nevertheless,
under that hypothesis a class no feasible could be no presumably efficient (as
a consequence of the Ladner theorem by which if P 6= NP then there exist
NP-intermediate problems, that is problems which are neither in the class P
nor in the class of NP-complete problems, see [78] for details).

A good strategy to proof that P=NP is the following: Let us suppose we
have two classes F1 and F2 of recognizer membrane systems such that:

(a) F1 is feasible and F2 is presumably efficient.

(b) Each solution S of a decision problem X in F1 is also a solution in F2;

Feasible Presumably Efficient

2 1
F F

The syntactical ingredients required to add to membrane systems in F1 to
obtain membrane systems in F2 provide a borderline between tractability and
NP–hardness. Therefore, translating an efficient solution of an NP–complete
problem by a family of systems in F2, into an efficient solution by a family of
systems in F1 amounts to proving P=NP.

Let us recall that there are three important techniques (dependency graph
technique, simulation technique and algorithmic technique) that are used when
the feasibility of a class of membrane systems is established.

3.2.1 Dependency graph technique

Let Π be a recognizer membrane system where all its communication rules
have length 1. In this case, each rule of Π can be activated by a single object
(note that this holds also for division or separation rules). Hence, there exists in
some sense, a dependency between the object triggering the rule and the object
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or objects produced by its application. Then, a directed graph (dependency
graph) can be associated with Π verifying the following relevant property: there
exists an accepting computation of Π if and only if there exists a path between
two distinguished nodes in the dependency graph associated with it (see [60]
and [58] for more details).

3.2.2 Simulation technique

Let us define the meaning of efficient simulations in the framework of recognizer
membrane systems. Given two recognizer membrane systems, Π and Π′, we
say that Π′ simulates Π in an efficient way if the following holds: (a) Π′ can be
constructed from Π by a deterministic Turing machine working in polynomial
time; and (b) There exists an injective function, f , from the set Comp(Π) of
computations of Π onto the set Comp(Π′) of computations of Π′ such that:

? There exists a deterministic Turing machine that constructs computation
f(C) from computation C in polynomial time.

? A computation C ∈ Comp(Π) is an accepting computation if and only
if f(C) ∈ Comp(Π′) is an accepting one.

? There exists a polynomial function p(n) such that for each C ∈Comp(Π)
we have |f(C)| ≤ p(|C|).

3.2.3 Algorithmic technique

The technique consists of the construction of a deterministic algorithmA work-
ing in polynomial time that receives as input a membrane system Π from F
and an input multiset m of Π. Then, algorithm A reproduces the behaviour
of a computation of Π + m. In particular, if the given membrane system is
confluent then the algorithm will provide the same answer of the system, that
is, the answer of algorithm A is affirmative if and only if the system Π+m has
an accepting computation (and then, any computation is an accepting one).

3.3 On Efficiency of Cell-like P Systems

In this section we study the computational efficiency (ability to provide poly-
nomial time solution for NP–complete problems) of different models of cell-like
membrane system.
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3.3.1 Feasibility of Transition P Systems

First, the computational efficiency of basic transition P system is established.
Let us recall that in this kind of cell-like membrane systems, only evolution,
communication, and dissolution rules are allowed. Thus, the membrane struc-
ture does not increase. Let us denote T the class of recognizer basic transition
P systems.

An efficient simulation of deterministic Turing machines by recognizer basic
transition P systems was given in [59] and the following holds.

Proposition 3.1. (Sevilla theorem) Every deterministic Turing machine
working in polynomial time can be simulated in polynomial time by a family of
recognizer basic transition P systems with input membrane.

They also proved that each confluent basic transition P system can be (ef-
ficiently) simulated by a deterministic Turing machine [59]. As a consequence,
these P systems efficiently solve at most tractable problems.

Proposition 3.2. If a decision problem is solvable in polynomial time by a
family of recognizer basic transition P systems with input membrane, then there
exists a deterministic Turing machine solving it in polynomial time.

These results are also verified for recognizer basic transition P systems
without input membrane. Therefore, the following holds.

Theorem 3.1. P = PMCT = PMC∗T .

Thus, the ability of a P system in T to create exponential workspace (in
terms of number of objects) in polynomial time (e.g. via evolution rules of
the type [ a→ a2 ]h) is not enough to efficiently solve NP–complete problems
(unless P = NP).

Corollary 3.1. P 6= NP if and only if every, or at least one, NP–complete
problem is not in PMCT = PMC∗T .

In the framework of P systems without input membrane, C. Zandron, C.
Ferretti and G. Mauri [209] proved that confluent recognizer P systems with
active membranes making use of no membrane division rule, can be efficiently
simulated by a deterministic Turing machine.

Proposition 3.3. (Milano theorem)

A deterministic P system with active membranes but without membrane divi-
sion can be simulated by a deterministic Turing machine with a polynomial
slowdown.
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Let NAM be the class of recognizer P systems with active membranes
which do not make use of division rules. As a consequence of the previous
result, the following holds:

Corollary 3.2. PMCNAM ⊆ P.

A.E. Porreca [144] provides a simple proof of each tractable problem being
able to be solved (in a semi–uniform way) by a family of recognizer P sys-
tems with active membranes (without polarizations) operating in exactly one
step and using only send–out communication rules. That proof can be easily
adapted to uniform solutions.

Proposition 3.4. P ⊆ PMCNAM.

Thus, we have a version of Theorem 3.1 for the class NAM.

Theorem 3.2. P = PMCNAM.

3.3.2 Presumable Efficiency of Cell-like Membrane Sys-
tems

The first efficient solutions to NP–complete problems by using P systems with
active membranes were given in a semi–uniform way (where the P systems of
the family depend on the syntactic structure of the instance) by S.N. Krishna
and R. Rama (Hamiltonian Path, Vertex Cover [77]), A. Obtulowicz (SAT
[114]), A. Păun (Hamiltonian Path [125]), Gh. Păun (SAT [149, 126]), and
C. Zandron, C. Ferretti and G. Mauri (SAT, Undirected Hamiltonian Path

[209]).
Let AM(+n) (respectively, AM(−n)) be the class of recognizer P systems

with active membranes using division rules for elementary and non–elementary
membranes (respectively, only for elementary membranes).

In the framework of AM(−n), efficient uniform solutions to weakly NP–
complete problems (Knapsack [136], Subset Sum [137], Partition [57]), and
strongly NP–complete problems (SAT [71], Clique [4], Bin Packing [140],
Common Algorithmic Problem [139]) have been obtained.

Since PMCR is closed under complement and polynomial time reductions,
for any class R of recognizer P systems, the following result is obtained.

Proposition 3.5. NP ∪ co-NP ⊆ PMCAM(−n).

In the framework of AM(+n), P. Sośık [166] gave a efficient semi–uniform
solution to QBF-SAT (satisfiability of quantified propositional formulas), a well
known PSPACE–complete problem [49]. Hence the following is deduced.
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Proposition 3.6. PSPACE ⊆ PMC∗AM(+n).

This result has been extended by A. Alhazov, C. Mart́ın–Vide and L. Pan
[3] showing that QBF-SAT can be solved in a linear time and in a uniform way
by a family of recognizer P systems with active membranes (without using
dissolution rules) and using division rules for elementary and non–elementary
membranes.

Proposition 3.7. PSPACE ⊆ PMCAM(+n).

A.E. Porreca, G. Mauri and C. Zandron [143] described a (deterministic and
efficient) algorithm simulating a single computation of any confluent recognizer
P system with active membranes and without input. Thus,

Proposition 3.8. PMC∗AM(+n) ⊆ EXP.

Therefore, PMCAM(+n) and PMC∗AM(+n) are two membrane computing
complexity classes between PSPACE and EXP.

Corollary 3.3. PSPACE ⊆ PMCAM(+n) ⊆ PMC∗AM(+n) ⊆ EXP.

P. Sośık and A. Rodŕıguez–Patón [167] have proven that the reverse inclu-
sion of Proposition 3.6 holds as well. Nevertheless, the concept of uniform fam-
ily of P systems considered in that paper is different from that of Definition 2.9,
although maybe the proof can be adapted to fit into the framework presented in
this chapter. In this case the following would hold: PSPACE = PMC∗AM(+n).
Thus, the class of recognizer P systems with active membranes, with electrical
charges, using division for elementary and non–elementary membranes would
be computationally equivalent to standard parallel machine models as PRAMs
or alternating Turing machines.

Previous results show that the usual framework of P systems with active
membranes for solving decision problems is too powerful from the computa-
tional complexity point of view. Therefore, it would be interesting to investi-
gate weaker models of P systems with active membranes able to characterize
classical complexity classes below NP and providing borderlines between effi-
ciency and non–efficiency.

At the beginning of 2005, Gh. Păun (problem F from [127]) wrote:

My favorite question (related to complexity aspects in P systems with
active membranes and with electrical charges) is that about the number
of polarizations. Can the polarizations be completely avoided? The
feeling is that this is not possible – and such a result would be rather
sound: passing from no polarization to two polarizations amounts to
passing from non–efficiency to efficiency.
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This so–called Păun’s conjecture can be formally formulated in terms of mem-
brane computing complexity classes as follows: P = PMC

[∗]
AM0(+d,−ne), where

the notation PMC
[∗]
R indicates that the result holds for both PMCR and

PMC∗R and AM0 (+d,−ne) is the class of polarizationless P systems with
active membranes using dissolution, rules and only division for elementary
membranes.

Theorem 3.3. P = PMC
[∗]
AM0 (−d,β)

, where β ∈ {−ne,+ne}.
Thus, polarizationless P systems with active membranes which do not make

use of dissolution rules are non–efficient in the sense that their cannot solve
NP–complete problems in polynomial time (unless P=NP).

Let us now consider polarizationless P systems with active membranes
making use of dissolution rules. Will it be possible to solve NP–complete
problems in that framework?

N. Murphy and D. Woods [105] gave a negative answer in the case that
division rules are used only for elementary membranes and being symmetric,
in the following sense [ a ]h → [ b ]h[ b ]h.

Theorem 3.4. P = PMC
[∗]
AM0 (+d,−n(sym))

.

Several authors [5, 58] gave a positive answer when division for non–
elementary membranes, in the strong sense, is permitted. The mentioned
papers provide semi–uniform solutions in a linear time to SAT and Subset

Sum, respectively. Thus, we have the following result:

Proposition 3.9. NP ∪ co-NP ⊆ PMC∗AM0 (+d,+ns).

As a consequence of Theorem 3.3 and Proposition 3.9, a partial negative an-
swer to Păun’s conjecture is given: assuming that P 6= NP and making use of
dissolution rules and division rules for elementary and non–elementary mem-
branes, computationally hard problems can be efficiently solved avoiding po-
larizations. The answer is partial because efficient solvability of NP–complete
problems by polarizationless P systems with active membranes making use of
dissolution rules and division only for elementary membranes is unknown.

The result of Proposition 3.9 was improved by A. Alhazov and M.J. Pérez–
Jiménez [6] giving a family of recognizer polarizationless P systems with active
membranes using dissolution rules and division for elementary and (strong)
non–elementary membranes solving QBF-SAT in a uniform way and in a linear
time. Then,

Proposition 3.10. PSPACE ⊆ PMCAM0 (+d,+ns).
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3.3.3 Frontiers of the Presumable Efficiency in Cell-like
P Systems

Next, based on the results from previous sections, we present different frontiers
of the efficiency in terms of syntactical ingredients of recognizer tissue P sys-
tems. We can classify them into four categories: the length of communication
rules, the direction of such communication rules, or the use of some kind of
rules or the environment.

1. The class NAM is feasible and the class AM is presumably efficient.
Thus, in the framework of polarizationless P systems with active mem-
branes, passing from forbid division rules to allow them amounts to pass-
ing from feasibility to presumably efficiency.

2. The class AM0(−d,+ne) is feasible and the class AM0(+d,+ne) is
efficient. Thus, in the framework of polarizationless P systems with
active membranes, passing from forbid dissolution rules to allow them
amounts to passing from feasibility to presumably efficiency.

Feasible Presumably Efficient

NAM AM (adding rules)

AM0(−d,+ne) AM0(+d,+ne) (adding rules)

3.4 On Efficiency of Tissue-like P Systems

In this section we study the computational efficiency (ability to provide polyno-
mial time solution for NP–complete problems) of different models of tissue-like
membrane system.

Let us denote TC the class of all recognizer basic tissue P systems with
symport/antiport rules. For each k ≥ 1, we denote by TDC(k) (respectively,
TSC(k)) the class of all recognizer tissue P systems with cell division (respec-
tively, with cell separation) which use symport/antiport rules with length at
most k. In a similar way, we denote by TDA(k) (respectively, TDS(k)) the
class of all recognizer tissue P systems with cell division which use as commu-
nication rules only antiport rules (respectively, symport rules) with length at
most k. Similarly, notations TSA(k) and TSS(k) are introduced by changing
division rules for separation rules. If there is no restriction about the length
of communication rules, then we omit the term (k).



Chapter 3. The P versus NP problem from a Membrane Computing perspective 48

3.4.1 Feasiblility of Tissue-like P Systems

By using the dependency graph technique, it has been shown (see [60] for
details) that only tractable problems can be efficiently solved by using families
of recognizer tissue P systems with cell division (or with cell separation) and
communication rules of length 1, that is,

P = PMCTDC(1) = PMCTSC(1) (3.1)

In particular, the classes TDA(1) and TDS(1) are feasible.
By using the simulation technique, it has been shown that any family of

recognizer tissue P systems with communication rules which solves a decision
problem can be efficiently simulated by a family of basic recognizer P systems
solving the same problem (see [40] for details). This simulation allows us to
transfer the result about the limitations in computational power, from the
model of basic cell-like P systems to the case of tissue P systems (see [58] for
details), that is,

P = PMCTC. (3.2)

By using the algorithmic technique, it has been shown that only tractable
problems can be efficiently solved by using families of recognizer tissue P sys-
tems with cell separation with communication rules with length at most 2 (see
[120] for details), that is,

P = PMCTSC(2) (3.3)

In particular, the following result holds: P = PMCTSA(2). In this context
and by using the same technique, it has been shown (see [83] for details) that
the class of recognizer tissue P systems with cell separation and allowing only
the use of symport rules as communication rules, is feasible, that is,

P = PMCTSS (3.4)

In particular, P = PMCTSS(3) also holds.
In the definition of tissue P systems a special alphabet (the alphabet of the

environment) is considered. Specifically, the elements of that alphabet are as-
sumed to appear at the initial configuration of the system in an arbitrary large
number of copies. This property seems an unfair tool when designing efficient
solutions to computationally hard problems in the framework of membrane
computing, by performing a space–time trade-off. In this context, in [138] and
[87] the role of the environment in the framework of tissue P systems (with
cell division and with cell separation, respectively) has been studied from a
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computational complexity point of view. Specifically, on the one hand, by us-
ing the simulation technique, it has been shown (see [138] for details) that the
environment is irrelevant when we use cell division, that is, for each k ≥ 1 we
have:

PMCTDC(k) = PMC
T̂DC(k)

(3.5)

As a consequence we have the class T̂DC(1) is feasible. On the other hand,
by using the algorithmic technique, it has been shown (see [87] for details)
that the class of recognizer tissue P systems without environment and with
cell separation is feasible, that is, only tractable problems can be efficiently
solved:

P = PMC
T̂SC

(3.6)

3.4.2 Presumably Efficient Classes of Tissue-like P Sys-
tems

In order to establish the presumably efficiency of a class F of recognizer tissue
P systems, the basic technique consists of designing a polynomial time solution
of an NP–complete problem by using a family of systems from F .

The HAM-CYCLE problem, a well known NP-complete problem [49], is the
following: given a directed graph, to determine whether or not there exists a
Hamiltonian cycle in the graph. In [143] it has been shown that the HAM-CYCLE
problem can be solved in a uniform way and in polynomial time in by a family
of recognizer tissue P systems with cell division and communication rules with
length at most 2, that is, HAM-CYCLE ∈ PMCTDC(2). Then, bearing in mind
that for each k ≥ 1 we have PMCTDC(k) = PMC

T̂DC(k)
we deduce that for

each k ≥ 2 the class T̂DC(k) is efficient. It is worth pointing out that the
referred solution to HAM-CYCLE can be slightly adapted so that all communi-
cation rules are of symport type, it suffices to consider that these rules have
length at most 3, that is, HAM-CYCLE ∈ PMCTDS(3).

The SAT problem, a well known NP-complete problem [49], is the following:
given a Boolean formula in conjunctive normal form, determine whether or not
there exists an assignment to its variables on which it evaluates to true. In [135]
it has been shown that the SAT problem can be solved in a uniform way and in
polynomial time by a family of recognizer tissue P systems with cell separation
and communication rules with length at most 3, that is, SAT ∈ PMCTSC(3). It
is worth pointing out that the referred solution to SAT can be slightly adapted
so that all communication rules are of antiport type, it suffices to consider that
these rules have length at most 3, that is, SAT ∈ PMCTSA(3).
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3.4.3 Frontiers of the Presumable Efficiency in Tissue-
like P Systems

Next, based on the results from previous sections, we present different frontiers
of the efficiency in terms of syntactical ingredients of recognizer tissue P sys-
tems. We can classify them into four categories: the length of communication
rules, the direction of such communication rules, or the use of some kind of
rules or the environment.

1. The class TC is feasible and the classes TDC and TSC are presumably
efficient. Thus, the kind of rules provides a borderline of the efficiency in
the sense that, in the framework of recognizer tissue P systems, allowing
the use of division rules or separation rules amounts passing from the
feasibility to the presumably efficiency.

2. The class TDC(1) is feasible and the class TDC(2) is efficient. Thus, in
the framework of recognizer tissue P systems with cell division, passing
from 1 to 2 in the bound of the length of communication rules amounts
to passing from feasibility to presumably efficiency.

3. The class TDA(1) is feasible and the class TDA(3) is presumably effi-
cient. Thus, in the framework of recognizer tissue P systems with cell
division and allowing only antiport rules as communication rules, pass-
ing from 1 to 3 in the allowed length of communication rules amounts to
passing from feasibility to presumably efficiency.

4. The class TDS(1) is feasible and the class TDS(3) is presumably effi-
cient. Thus, in the framework of recognizer tissue P systems with cell
division and allowing only symport rules as communication rules, pass-
ing from 1 to 3 in the allowed length of communication rules amounts to
passing from feasibility to presumably efficiency.

5. The class TSC(2) is feasible and the class TSC(3) is presumably effi-
cient. Thus, in the framework of recognizer tissue P systems with cell
separation, passing from 2 to 3 in the allowed length of communication
rules amounts to passing from from feasibility to presumably efficiency.

6. The class TSC(2) is feasible and the class TDC(2) is presumably effi-
cient. Thus, in the framework of recognizer tissue P systems with the
length of communication rules bounded by 2, allowing division rules in-
stead of separation rules amounts to passing from feasibility to presum-
ably efficiency.
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7. The class T̂SC(3) is feasible and the class TSC(3) is presumably effi-
cient. Thus, in the framework of recognizer tissue P systems with cell
separation and communication rules with length at most 3, the use or
not of the classical environment amounts to passing from feasibility to
presumably efficiency.

8. The class TSA(2) is feasible and the class TSA(3) is presumably effi-
cient. Thus, in the framework of recognizer tissue P systems with cell
separation and using only antiport rules as communication rules, pass-
ing from 1 to 3 in the allowed length of communication rules amounts to
passing from feasibility to presumably efficiency.

9. The class TSS(3) is feasible and the class TSA(3) is presumably efficient.
Thus, in the framework of recognizer tissue P systems with cell separation
and communication rules with length at most 3, replacing the restriction
of using only symport rules as communication rules, by the opposite
restriction (i.e. imposing all communication rules to be of antiport type),
amounts to passing from feasibility to presumably efficiency.

10. For each k ≥ 2, the class T̂SC(k) is feasible and the class T̂DC(k)
is presumably efficient. Thus, in the framework of recognizer tissue P
systems without environment whose communication rules have length at
most k ≥ 2, allowing division rules instead of separation rules amounts
to passing from feasibility to presumably efficiency.

In this context, there is an open problem: determine whether or not the
classes TDS(2) and TDA(2) are feasible or presumably efficient.
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Feasible Presumably Efficient

TC TDC (kind of rules)

TC TSC (kind of rules)

TDC(1) TDC(2) (length of rules)

TDA(1) TDA(3) (length of rules)

TDS(1) TDS(3) (length of rules)

TSC(2) TSC(3) (length of rules)

TSC(2) TDC(2) (kind of rules)

T̂SC(3) TSC(3) (environment)

TSA(2) TSA(3) (length of rules)

TSS(3) TSA(3) (direction of rules)

T̂SC(k), k ≥ 2 T̂DC(k), k ≥ 2 (kind of rules)

Table 3.1: Frontiers of the Efficiency



4
Spiking Neural P systems

4.1 Introduction

Spiking Neural P systems (SN P systems, for short) are a variant of P systems,
corresponding to a shift from cell-like to neural-like architectures. Formally
introduced in [67], they take inspiration from the way in which neurons in the
brain exchange information by means of the synaptic propagation of electrical
impulses called action potentials or spikes. In what follows, we describe the
basics of neuron structure and spikes propagation process (additional useful
references can be found in [67]).

Neurons are specialized cells existing in virtually all kind of animals, char-
acterized by their electrical excitability and the presence of synapses, complex
membrane junctions that transmit signals to other cells. Neurons are assisted
by glial cells, which provide structural and metabolic support—neurons and
glial cells together constituting the nervous system. Neurons are very diverse,
but the structure and functioning of a “typical” neuron can be described as
follows. Structurally, three kind of elements are present in neurons, the soma
or cell body, a set of dendrites and the axon. Axon and dendrites are filaments
that extrude from the soma. Dendrites typically branch profusely, getting thin-
ner with each branching, and extending their farthest branches a few hundred
micrometers from the soma. The axon leaves the soma at a swelling called
the axon hillock, and can extend for great distances, giving rise to hundreds of
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branches. Unlike dendrites, an axon usually maintains the same diameter as
it extends. The soma may give rise to numerous dendrites, but never to more
than one axon. Neurons are connected via synapses. A typical synapse is a
contact between the axon of one neuron and a dendrite or soma of another.
Synapses allow the transmission of neuronal signals among neurons: signals
from other neurons are received by the soma and dendrites; signals to other
neurons are transmitted by the axon.

A neuronal signal is an electric pulse called action potential or spike. Neu-
ronal signals are typically identical, having an amplitude of about 100 mV and
a duration of 1-2 ms, with pulse shape not changing as the action potential
propagates along the axon. As such, neuronal signal themselves do not carry
any information. Instead, the information is encoded in the number and tim-
ing of the spikes. According to the amount of pulses received by a neuron
during a period of time, such pulses may have an inhibitory or excitatory ef-
fect over the neuron. In the first case, the neuron does not generate any pulse
in response to its input spikes. In the excitatory case, the neuron generates
a pulse as well, which originates at the soma and propagates rapidly along
the axon, activating synapses onto other neurons as it goes by. There exists
a refractory period associated to neurons: even with very strong input, it is
impossible to excite a second spike during or immediately after a first one.
The minimal (time) distance between two spikes defines the refractory period
of the neuron. Working as described above, a neuron generates impulses at
regular or irregular intervals, giving place to a sequence of action potentials
called spike train. It is worth pointing out that, according to the spikes being
identical and the described firing mechanism, while the size and the shape of
a spike generated by a neuron is independent of the input of the neuron, the
time when the neuron fires depends on its input.

To conclude with the biological aspects, we now address the synapse acti-
vation mechanism. Synapse activation produces a propagation of the action
potential from the presynaptic neuron to the postsynaptic neuron. How this
activation and propagation takes place depends on the synapse type. The
most common type of synapse in the vertebrate brain is the chemical synapse.
When an action potential arrives at a synapse, it triggers a complex chain of
bio-chemical processing steps leading to the release of neurotransmitters from
the presynaptic neuron into the postsynaptic neuron. As soon as transmit-
ter molecules have reached the postsynaptic side, they will be detected by
specialized receptors in the postsynaptic cell membrane, and through specific
channels, the ions from the extracellular fluid flow into the target cell. The ion
influx, in turn, leads to a change of the membrane potential at the postsynap-
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tic side so that, in the end, the chemical signal is translated into an electrical
response. The voltage response of the postsynaptic neuron to a presynaptic
action potential is called the postsynaptic potential.

SN P systems incorporate the key elements of the structure and function-
ing of neurons and synapses described above. In these systems, cells, which
are called neurons, are placed in the nodes of a directed graph, called the
synapse graph. The content of any neuron consists of copies of a single ob-
ject type, called spike. Every neuron may also have associated a number of
firing and forgetting rules. Firing rules allow a neuron to send information to
its neighbours by means of spikes, which are accumulated at target neurons.
Executing a firing rule involves removing a certain amount of spikes from the
neuron and emitting a spike that is replicated along the outgoing synapses and
finally stored at target neurons. This is accomplished in a two-stage process:
firstly the spikes are removed from the neuron, and after a specific period of
time, determined by the rule, the neuron emits the output spike. During this
period, the neuron becomes “closed” (inactive): it does not accept new spikes
and cannot “fire” any (firing or forgetting) rule. The period of time is spec-
ified by a delay parameter associated to the firing rule. On the other hand,
forgetting rules simply remove a certain amount of spikes from the neuron,
with no spike being emitted. Applicability of a rule is determined by checking
the neuron content against a regular expression associated to the rule. If more
than one rule is applicable, then one of them is non-deterministically chosen.
As usually happens in membrane systems, a global clock is assumed, which
marks the evolution of the system and makes it work in a synchronized way.
While individual neurons works sequentially (only a rule at most can be exe-
cuted at any time by a neuron), the system as a whole works in parallel, since
different neurons can execute rules simultaneously.

It is easy to see that the previous model captures, in a general way, the
structure and functioning of neurons and synapses. Since in real neurons the
shape and size of impulses are not important, having a single object type,
the spike, is enough. Following this, the inhibitory or excitatory effect of the
received impulses over a neuron is determined by the number of spikes received
over time by such neuron so, in the model, a neuron accumulates spikes to count
the number of received impulses. When the amount of spikes within the neuron
reaches certain levels, firing or forgetting rules become applicable. Executing
a firing rule corresponds to the case in which impulses have an excitatory
influence over the neuron: a certain amount of spikes is removed from the
neuron and a single spike is sent along the outgoing synapses, which models
the synapse activation process. Executing a forgetting rule corresponds, in
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turn, with the inhibitory scenario: spikes are removed from the neuron and no
spike is sent out.

The model specified above was originally introduced in [67] and we will
refer to it as the classic model. Since the classic model introduction, many
variants of SN P systems have been developed and their computational prop-
erties studied. In this chapter we review the SN P system variants considered
within the scope of this dissertation. To this end, the classic model is formally
presented firstly in Section 4.2 and, subsequently, variants are specified in an
incremental way, that is, by constructing them as extensions of the classic
model. In this way, Section 4.3 covers in detail the variants of interest. Fi-
nally, relevant theoretical results involving the considered variants are covered
in Section 4.5. It is worth pointing out that the incremental selected approach
to present the SN P systems variants, while intended to be as handy as possi-
ble, has the side effect of presenting some variants in a slightly different way
than in the corresponding introduction in the literature. To minimize this, all
the needed references are provided.

4.2 Basic Spiking Neural P systems

This model was introduced in [67]. Its definition follows.

Definition 4.1. A basic SN P system of degree m ≥ 1 is a tuple of the form:

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1, σ2, . . . σm are neurons of the form σi = (ni, Ri) where:

• ni ≥ 0 is the initial number of spikes contained in σi;

• Ri is a finite set of rules of the two following forms:

(1) E/ac → a; d, with E a regular expression over O, c ≥ 1, d ≥ 0;

(2) as → λ, with s ≥ 1 and the restriction as /∈ L(E) for any rule
of type (1) E/ac → a; d ∈ Ri;

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ n, is
the synapse graph, which defines synapses among neurons;

4. in, out ∈ {1, 2, . . . ,m} are the input and output neurons respectively;
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Type (1) rules, with the form E/ac → a; d, are called standard firing (or
spiking) rules. The term standard refers to the fact that only one spike copy
appears in the right hand side of the rule, which corresponds with the biological
interpretation previously discussed. For simplicity, we will refer to them simply
as firing rules. As mentioned above, E is a regular expression over O. When
L(E) = ac, the rule can be written as ac → a; d. On the other hand, d is a
non-negative integer known as the rule delay. When d = 0, the rule can be
written as E/ac → a. If both L(E) = ac and d = 0, the rule can be written
as ac → a. Finally, type (2) rules, with the form as → λ, are called forgetting
rules.

As usually happens with other P system variants, each neuron has a label.
Notation σi is used to refer to a neuron labelled by i. Synapses are noted as
(σi, σj), meaning a synapse from σi (called the source neuron) to σj (called the
target neuron).

Graphical representation of a SN P system usually consists in a directed
graph describing the initial structure of the system. In this directed graph,
nodes correspond to neurons, and are labelled after them, while directed arcs
correspond to synapses and model the spike flow. Within neurons, initial
number of spikes and rules are drawn. The system output is represented by
an outgoing synapse, coming from the output neuron, which is not connected
to any other neuron of the system, meaning that it is connected to the en-
vironment. Similarly, the system input is represented by an ingoing synapse,
getting to the input neuron, which is not connected to any other neuron, mean-
ing that it is connected to the environment. For instance, the following system
(appearing in [63]):

Π = (O, σ1, σ2, σ3, syn, in, out), with:

O = {a},

σ1 = (2, {a2/a→ a; 0, a→ λ}),

σ2 = (1, {a→ a; 0, a→ a; 1}),

σ3 = (3, {a3 → a; 0, a→ a; 1, a2 → λ}),

syn = {(1, 2), (1, 3), (2, 1), (2, 3)}

in = 1.
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out = 3.

corresponds to the graphical representation given in Fig. 4.1.

Figure 4.1: A simple SN P system.

In what follows, we specify SN P systems semantics. SN P systems are
synchronized devices. A global clock is assumed, which marks the function-
ing of the system. SN P systems operate in a non-deterministic maximally
parallel way with the following special remark: at any time instant t, each
neuron operates sequentially, since at most only one of the applicable rules
over the neuron is applied, which is non-deterministically chosen from the set
of applicable rules for the neuron at t. Nevertheless, neurons, as a whole, op-
erate in parallel, since all the neurons with a selected active rule fire their rules
simultaneously. To complete the semantics specification, we now address the
concepts of applicability and application for firing and forgetting rules.

Applicability

• Given a neuron σi containing k spikes, with k ≥ 0, at a time instant t,
it is said that a firing rule E/ac → a; d ∈ Ri is applicable over σi at t if
and only if the following conditions hold:

(a) σi is not executing any rule;

(b) k ≥ c;

(c) ak ∈ L(E);

• Given a neuron σi containing k spikes, with k ≥ 0, at a time instant t, it
is said that a forgetting rule as → λ is applicable over σi at t if and only
if the following conditions hold:
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(a) σi is not executing any rule;

(b) k = s;

A neuron checks for applicable rules whenever it receives new spikes or
completes a rule execution. Applicable rules are also said to be active or
enabled. Neurons having applicable, active or enabled rules are said to be
active or enabled.

It is possible for two firing rules E1/a
c
1 → a; d1 and E2/a

c
2 → a; d2 belonging

to Ri to become simultaneously applicable, since L(E1) ∩ L(E2) 6= ∅. On the
other hand, when a forgetting rule as → λ belonging to Ri becomes active, only
that rule can be applied, since (a) as /∈ L(E) for any firing rule E/ac → a; d
belonging to Ri; and (b) the number of spikes in σi must be equal to s. When
a neuron has more than one applicable rule at instant t, one, and only one, is
non-deterministically selected to be applied.

Application

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t,
application of an active firing rule r ≡ E/ac → a; d ∈ Ri over σi at t
implies the following:

– At instant t, neuron σi fires rule r and c spikes are removed from σi
immediately, thus k − c spikes are left in the neuron.

– If d ≥ 1, from instant t to t+ d− 1, σi becomes closed and cannot
accept incoming spikes, that is, any spike sent to σi in the interval
[t, t+ d− 1] is lost.

– At instant t+d, neuron σi becomes open (it accepts incoming spikes)
and, simultaneously, it emits a spike (or simply spikes). This spike
is replicated onto the outgoing synapses and sent to the target neu-
rons. Spikes reach the target neurons immediately.

– At instant t+ d+ 1 neuron σi can check again for applicable rules.

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t,
application of an active forgetting rule r ≡ as → λ ∈ Ri over σi at t
implies the following:

– At instant t, neuron σi fires rule r and s spikes are removed from
σi immediately.

– At instant t+ 1 neuron σi can check again for applicable rules.
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Let us notice that for firing rules, if d = 0 the neuron fires (removing the
corresponding spikes) and spikes (sending out a spike) at same instant t, never
being actually closed, so it can accept incoming spikes arriving at that instant
t. Also, it is important to distinguish between the terms firing, the action
of start a rule application, and spiking, the action of sending out a spike.
Neurons applying a firing rule fire and spike (thus firing rules are also called
spiking rules), while neurons applying a forgetting rule fire, but do not spike.

In what follows, we define the concepts of configuration, transition step
and computation for SN P systems.

• A configuration of a SN P system Π at instant i with i ≥ 0, denoted by
Ci, is an instantaneous description of Π at a given time instant. Usually,
Ci denotes the configuration of Π at time instant i, with i ≥ 0 and C0

being the initial configuration of the system. The content of a configu-
ration consists in, for each neuron in the system, the number of spikes
contained in such neuron and the number of time instants left for the
neuron to become open (zero if already open). The initial configura-
tion of Π is defined as C0 = 〈n1/0, n2/0, . . . , nm/0〉, meaning that in the
initial configuration all the neurons of Π are open.

• A transition step (or simply step) of a SN P system Π at instant i, with
i ≥ 1, is the state transition of Π from configuration Ci−1 to Ci, denoted
by Ci−1 ⇒ Ci. The transition step is performed by selecting and applying
rules in a synchronous maximal parallel way as described above. Usually,
the term transition step i is used to refer to the transition step taking
place at instant i.

• A computation C of a SN P system Π is any (finite or infinite) sequence
of configurations starting from the initial configuration C0 and verifying
that the i-th term (i ≥ 1) of the sequence is obtained from the previous
one in one transition step. In this way, the computation C can be written
as C = C0 ⇒ C1 ⇒ C2 ⇒ . . . If the sequence is infinite, the computation
is said to be a non-halting computation. If the sequence is finite, the
computation is said to be a halting computation. The last term of a
halting computation is a halting configuration, that is, a configuration
where all neurons are open and no rules can be applied.

In what follows, we address the notion of valid computation for SN P
systems. This idea was originally considered for asynchronous SN P systems
in [20], but can be extended to other scenarios.
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• Given a SN P system Π = (O, σ1, σ2, . . . , σm, syn, in, out), with σi =
(ni, Ri) and a vector of non-negative integers, (v1, v2, . . . , vm), a compu-
tation of Π is considered valid if and only if it reaches a halting con-
figuration where each neuron σi contains exactly vi spikes. Whenever
a neuron σi contains exactly vi spikes along a computation, it is said
that such neuron is in a valid state. This way of defining a successful
computation, based on a vector (v1, v2, . . . , vm), is called µ-halting.

• It is possible to assure that provided that all neurons reach a valid state
in some configuration, this configuration is halting, and thus the compu-
tation is valid. To accomplish this, the following constraint is imposed on
the rule sets of Π: if vi > 0, then avi /∈ L(E) for any regular expression
E appearing in a rule of neuron σi.

• Finally, it is possible to consider a weak definition of valid computation.
In this case, only some distinguished neurons are required to reach valid
state at halting time (if no neurons are required to reach valid state at
halting time, then all halting computations are valid). Let us notice
that in the weak case, if we want to assure that any computation where
all the distinguished neurons reach valid state is a valid computation,
imposing that avi /∈ L(E) for any regular expression E appearing in a
rule of any distinguished neuron σi is not enough in general. This comes
from the fact that non-distinguished neurons can still spike and modify
the content of some distinguished neuron.

Next, we discuss (according to [128]) how the output of SN P systems can
be encoded and provided. Given a SN P system Π with output neuron out,
when out spikes to the environment it is said that Π spikes. Moreover, it is
possible to define the following:

• Let γ = C0 ⇒ C1 ⇒ C2 ⇒ . . . be a computation of Π, with C0 the
initial configuration and Ci−1 ⇒ Ci the i-th step of γ.

• Let COM(Π) be the set of all computations of Π.

• Let HCOM(Π) be the set of all halting computations of Π.

• Let st(γ) = 〈t1, t2, . . . 〉 with 1 ≤ t1 < t2 < . . . be the spike train of γ,
defined as the sequence of steps of γ when Π spikes. This sequence can
be finite (for halting computations) or infinite (for non-halting computa-
tions). Alternatively, the spike train can be defined as a binary sequence
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containing a 1 for steps i when Π spikes and a 0 for the rest. Within the
scope of this dissertation, we will use the term natural spike train when
referring to the first definition and the term binary spike train when
referring to the second one. Both definitions are interchangeable, since
natural and binary spike trains can be generated from each other.

• Let ST (Π) be the set of all spikes trains for all possible computations of
Π. If Π is deterministic, ST (Π) is singleton.

A system Π can encode and provide its output in many ways from ST (Π):

• As the spike train itself, ST (Π).

• As the set of instants where Π spikes, for every possible computation,
denoted by T (Π), and formally defined as follows:

– Let T (γ) = {t1, t2, . . . | st(γ) = 〈t1, t2, . . . , 〉} be the set of time
instants when Π spikes during γ.

– Let T (Π) =
⋃
γ∈COM(Π) T (γ).

It is also possible to consider only halting computations, defined as

T h(Π) =
⋃

γ∈HCOM(Π)

T (γ).

• As the set of numbers made of the difference between all consecutive
time instants when Π spikes, for every possible computation, defined as

N(Π) = {n |n = ti − ti−1}

with i ≥ 2 ∧ γ ∈ COM(Π) ∧ st(γ) = 〈t1, t2, . . . 〉 ∧ |st(γ)| ≥ 2.

• As the set of numbers made of the difference between all alternate time
instants when Π spikes, for every possible computation, defined as

Na(Π) = {n |n = t2i − t2i−1}

with i ≥ 1 ∧ γ ∈ COM(Π) ∧ st(γ) = 〈t1, t2, . . . 〉 ∧ |st(γ)| ≥ 2.

• As the set of numbers made of the difference between the first two time
instants when Π spikes, for every possible computation, defined as

N2(Π) = {t2 − t1}

with γ ∈ COM(Π) ∧ st(γ) = 〈t1, t2, . . . 〉 ∧ |st(γ)| ≥ 2.
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• As the set of numbers made of the difference between the first k time
instants when Π spikes, for every possible computation, such that

– Π spikes at least k times (weak case), defined as

Nk(Π) = {n |n = ti − ti−1}

with 2 ≤ i ≤ k ∧ γ ∈ COM(Π) ∧ st(γ) = 〈t1, t2, . . . 〉 ∧ |st(γ)| ≥ k.

– Π spikes exactly k times (strong case), defined as

Nk(Π) = {n |n = ti − ti−1}

with 2 ≤ i ≤ k ∧ γ ∈ COM(Π) ∧ st(γ) = 〈t1, t2, . . . 〉 ∧ |st(γ)| = k.

• As the set of numbers made of the difference between all consecutive
time instants when Π spikes, for every possible non-halting computation,
defined as

Nω(Π) = {n |n = ti − ti−1}
with i ≥ 2 ∧ γ ∈ COM(Π) ∧ st(γ) infinite.

• As the set of numbers generated by the difference between all possible
time intervals, defined as

Nall(Π) =
⋃
k≥2

Nk(Π) ∪Nω(Π).

• From the previous definitions, we can also consider:

– Only halting computations: Nh
k (Π), Nh

k (Π), Nh
all(Π), k ≥ 2.

– Alternate times differences: Na
k (Π), Na

k , N
a
ω(Π), Na

all(Π), k ≥ 2.

– Only halting computations with alternate time differences:
Nha
α (Π), α ∈ {ω, all} ∪ {k | k ≥ 2} and Nha

k (Π), k ≥ 2.

Also, it is possible to consider SN P systems with multiple output neurons,
and define the output of the system accordingly. Assuming k ≥ 1, a k-output
SN P system with output neurons o1, . . . , ok generates a k-tuple (n1, . . . , nk) ∈
Nk if, starting from the initial configuration, there is a sequence of steps such
that each output neuron oi encodes ni as output and then the system eventually
halts.
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Finally, we discuss how the input of SN P systems is encoded and provided.
Without loss of generality, we consider only the case of inputting natural num-
bers, since entering other kind of inputs can be reduced to this case by using
an adequate encoding. Given a SN P system Π with input neuron in, we can
define the following:

• Let cod(n) be a function that encodes any natural number n into a
mutiset defined over O.

• Let Π + cod(n) be the SN P system obtained from inputting cod(n) into
Π through input membrane in.

There exist several strategies to encode and provide the input. Some of
them are:

• cod(n) = an; cod(n) is entered in a single step into in.

• cod(n) = a2; cod(n) is entered as the difference between the time instants
when the first two spikes arrive into in.

• cod(n) = ab with b equal to the number of occurrences of 1 in the binary
codification of n; cod(n) is entered into in as a input binary spike train
corresponding to the binary codification of n.

4.2.1 SN P systems as number accepting devices

Definition 4.2. A SN P system of degree m ≥ 1 working as a number accept-
ing device is a tuple of the form:

Π = (O, σ1, σ2, . . . , σm, syn, in),

where:

1. O, σ1, σ2, . . . , σm, syn, in are defined as in classic SN P systems.

2. Semantics of Π are defined as in classic SN P systems.

3. Given an encoding function cod, the following holds:

• n ∈ N is accepted by Π, if and only if any computation of Π+cod(n)
is a halting computation.

• n ∈ N is not accepted by Π, if and only if any computation of Π +
cod(n) is a non-halting computation.
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4.2.2 SN P systems as number generating devices

Definition 4.3. A SN P system of degree m ≥ 1 working as a number gener-
ating device is a tuple of the form:

Π = (O, σ1, σ2, . . . , σm, syn, out),

where:

1. O, σ1, σ2, . . . , σm, syn, out are defined as in classic SN P systems.

2. Semantics of Π are defined as in classic SN P systems.

3. n ∈ N is generated by Π if and only if n is encoded as output by some
computation of Π.

In the case of SN P systems working as number generating devices, one
of the most common ways of encoding the output is as the time difference
between the first two instants when Π spikes.

4.2.3 SN P systems as number computing devices

Definition 4.4. A SN P system of degree m ≥ 1 working as a number com-
puting device for a (possibly partial) computable function f : N→ N is a tuple
of the form:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O, σ1, σ2, . . . , σm, syn, in, out are defined as in classic SN P systems.

2. Semantics of Π are defined as in classic SN P systems.

3. Given an encoding function cod, the following holds:

• If f(x) is undefined, any computation of Π+cod(x) is a non-halting
computation.

• If f(x) is defined, with f(x) = y, y ∈ N, any computation of Π +
cod(x) is a halting computation and encodes y as output.
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In the case of SN P systems working as number computing devices, one
of the most common ways of inputting a number x is encoding it as the time
difference between the instants when the first two spikes are sent into the
input membrane in. The output result is commonly encoded as the time
difference between the first two instants when Π spikes. It is also possible
to compute functions of the form: f : Nk → N by either considering a SN
P system with k input membranes or using a input single membrane and
codifying the input vector (i1, i2, . . . , ik) as a binary sequence of the form:
z = 10i1−110i2−11 . . . 10ik−1.

4.2.4 Recognizer SN P systems

SN P systems can also be used as decision problem solvers. In order to present
this functioning mode, it is necessary to define the concepts of SN P systems
working in recognizer mode (also called recognizer SN P systems) and decision
problems.

Definition 4.5. A recognizer SN P system of degree m ≥ 1 is a tuple of the
form:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O, σ1, σ2, . . . , σm, syn, in, out are defined as in classic SN P systems.

2. Semantics of Π are defined as in classic SN P systems.

3. All computations of Π halt.

4. Given an encoding cod, the following holds:

• n ∈ N is recognized by Π if and only if any computation of Π+cod(n)
encodes answer yes as output.

• n ∈ N is not recognized by Π if a only if any computation Π+cod(n)
encodes answer no as output.

With respect to the way in which answers yes and no are encoded, several
alternatives exist. For example:

• As the number of spikes contained in out when the system halts; for
example, one spike meaning yes and no spike meaning no.
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• As the number of spikes sent to the environment during the computation;
for example, only one spike, which is sent at the last transition step,
meaning yes, and no spikes sent meaning no.

Now we discuss complexity classes of SN P systems regarding the solution
of decision problems by means of SN P systems, according to [79].

Definition 4.6. Let X = (IX , θX) be a decision problem and g : N → N a
computable function. It is said that X is solvable by a family Π = (Π(n))n∈N
of recognizer SN P systems, in time bounded by g, in a non-deterministic and
uniform way (this is denoted by X ∈ NSN(g)), if the following holds:

• The family Π is polynomially uniform by Turing Machines, that is, there
exists a deterministic Turing Machine that working in polynomial time
constructs Π(n) from n ∈ N.

• There exist a pair of polynomial time computable functions (cod, s) over
IX such that:

– The pair (cod, s) is a polynomial encoding of X in Π, that is, for
each instance u ∈ IX , s(u) is a natural number and cod(u) is a valid
input multiset of Π(s(u)).

– The family Π is g-bounded with respect to (X, cod, s), that is, for
each instance u ∈ IX , the minimum length of an accepting compu-
tation of Π(s(u)) + cod(u) is bounded by g(|u|).

– The family Π is sound with respect to (X, cod, s), that is, for each
instance u ∈ IX , if there exists an accepting computation of Π(s(u))+
cod(u), then θX(u) = 1;

– The family Π is complete with respect to (X, cod, s); that is, for
each instance u ∈ IX , if θX(u) = 1 then there exists computation of
Π(s(u)) + cod(u) which is an accepting one.

We say that a decision problem X = (IX , θX) is solvable in polynomial time
by a family Π = (Π(n))n∈N of recognizer SN P systems, in a non-deterministic
and uniform way (this is denoted by X ∈ NPSN), if there exists k ∈ N such
that X is solvable by the family Π in time bounded by a polynomial xk, in a
non-deterministic and uniform way.

Definition 4.7. Let X = (IX , θX) be a decision problem and g : N → N a
computable function. It is said that X is solvable by a family Π = (Π(u))u∈IX
of recognizer SN P systems, in time bounded by g, in a non-deterministic and
semi-uniform way (this is denoted by X ∈ NSN∗(g)), if the following holds:
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• The family Π is polynomially uniform by Turing Machines, that is, there
exists a Deterministic Turing Machine that working in polynomial time
constructs Π(u) from the instance u ∈ IX .

• The family Π is g-bounded with respect to X, that is, for each instance
u ∈ IX , the minimum length of an accepting computation of Π(u) is
bounded by g(|u|).

• The family Π is sound with respect to X, that is, for each instance u ∈
IX , if there exists an accepting computation of Π(u), then θX(u) = 1.

• The family Π is complete with respect to X, that is, for each instance
u ∈ IX , if θX(u) = 1 then there exists a computation of Π(u) which is
an accepting one.

We say that a decision problem X = (IX , θX) is solvable in polynomial time
by a family Π = (Π(n))n∈N of recognizer SN P systems, in a non-deterministic
and semi-uniform way (this is denoted by X ∈ NPSN∗), if there exists k ∈ N
such that X is solvable by the family Π in time bounded by a polynomial xk,
in a non-deterministic and semi-uniform way.

4.3 Spiking Neural P systems variants

Previously, we have presented the SN P system model known as the classic
model. In what follows, we discuss some variants of that model falling within
the object of this dissertation. Variants are obtained from classic SN P systems
by extending/restricting their syntactical elements or changing the way in
which the system operates, that is, their semantics.

4.3.1 SN P systems with extended rules

This variant was introduced in [24]. Its definition follows.

Definition 4.8. A SN P system with extended rules of degree m ≥ 1 is a tuple
of the form:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O, syn, in, out are defined as in classic SN P systems.
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2. σ1, σ2, . . . σm are neurons of the form σi = (ni, Ri) where:

• ni ≥ 0 is the initial number of spikes contained in σi;

• Ri is a finite set of extended rules of the form E/ac → ap; d,
with E a regular expression over O, c ≥ 1, p ≥ 0, c ≥ p, d ≥ 0 and
with the constraint p = 0⇒ d = 0.

Extended rules E/ac → ap; d can be written in abbreviated form, as follows:
(1) if E = ac, E is omitted; (2) if c = 1, c is omitted; (3) if p = 1, p is omitted;
(4) if p = 0, the right hand side of the rule is λ; and (5) if d = 0, d is omitted.
The possible abbreviated forms for extended rules can be found in Table 4.1.

Attending to their syntactical structure, extended rules can be categorized
in the following way:

• Bounded rules. These are rules of the form
ai/ac → ap; d, where 1 ≤ c ≤ i, p ≥ 0, c ≥ p, d ≥ 0.

• Unbounded rules. These are rules of the form
ai(aj)∗/ac → ap; d, where i ≥ 0, j ≥ 1, c ≥ 1, p ≥ 0, c ≥ p, d ≥ 0.

Attending to the kind of associated rules, neurons can be categorized in
the following way:

• Bounded neurons. Every associated rule is bounded.

• Unbounded neurons. Every associated rule is unbounded.

• General neurons. They have associated at least one bounded and one
unbounded rule.

Attending to the kind of neurons, SN P systems with extended rules can
be categorized in the following way:

• Bounded systems. All their neurons are bounded.

• Unbounded systems. All their neurons are unbounded.

• General systems. They contain at least one general neuron.
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Condition(s) Abbreviated form Denomination
- E/ac → ap; d Extended rule

E = ac ac → ap; d -
c = 1, p = 1 E/a→ a; d -
c = 1, p = 0 E/a→ λ -

p = 1 E/ac → a; d (Standard) Firing rule
p = 1, d = 0 E/ac → a (Standard) Firing rule without delay
p = 0, d = 0 E/ac → λ Extended forgetting rule

d = 0 E/ac → ap Extended rule without delay
E = ac, c = 1, p = 1 a→ a; d -
E = ac, c = 1, p = 0 a→ λ -

E = ac, p = 1 ac → a; d -
E = ac, p = 1, d = 0 ac → a -
E = ac, p = 0, d = 0 ac → λ (Standard) Forgetting rule

E = ac, d = 0 ac → ap -
c = 1, p = 1, d = 0 E/a→ a -
c = 1, p = 0, d = 0 E/a→ λ -

E = ac, c = 1, p = 1, d = 0 a→ a -
E = ac, c = 1, p = 0, d = 0 a→ λ -

Table 4.1: Abbreviated forms for extended rules.

As with classic SN P systems, SN P systems with extended rules work
in a non-deterministic maximally parallel way under the guidance of a global
clock, with at most only one of the applicable rules over a given neuron being
applied at each transition step. Such rule is non-deterministically chosen from
the set of applicable rules for the neuron. With respect to the applicability
and application of extended rules, the following holds:

Applicability

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t,
it is said that a extended rule E/ac → ap; d ∈ Ri is applicable over σi at
t if and only if the following conditions hold:

(a) σi is not executing any rule;

(b) k ≥ c;

(c) ak ∈ L(E);

Application

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t,
application of an active extended rule r ≡ E/ac → ap; d ∈ Ri over σi at
t implies the following:
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– At instant t, neuron σi fires rule r and c spikes are removed from σi
immediately, thus k − c spikes are left in the neuron.

– If d = 0, at instant t neuron σi emits p spikes (if p = 0, neuron
σi does not spike). These spikes are replicated onto the outgoing
synapses and sent to the target neurons. Spikes reach the target
neurons immediately. At the same instant, since σi is open, it ac-
cepts incoming spikes.

– If d > 0 then:

∗ From instant t to t+d−1, σi becomes closed and cannot accept
incoming spikes, that is, any spike sent to σi in the interval
[t, t+ d− 1] is lost.

∗ At instant t+ d, neuron σi becomes open (it accepts incoming
spikes) and, simultaneously, emits p spikes. These spikes are
replicated onto the outgoing synapses and sent to the target
neurons. Spikes reach the target neurons immediately.

– At instant t+ d+ 1 neuron σi can check again for applicable rules.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic SN P systems.

4.3.2 Asynchronous SN P systems

In what follows, we discuss some variants of SN P systems working in asyn-
chronous mode. In this mode, neurons with applicable rules at a given com-
putation step may choose not to fire. The “choosing mechanism” may vary,
giving place to several asynchronous SN P systems variants.

4.3.2.1 Asynchronous SN P systems (classic model)

From both mathematical and neurological points of view, it is rather natural
to consider asynchronous SN P systems (ASNPS, for short). This model was
introduced in [20]. In this kind of systems a global clock, marking the time for
all neurons, is still present, but neurons work asynchronously in the following
way: application of rules in each neuron is not obligatory, that is, if a neuron
has one or more enabled rules in a given instant, it may (non-deterministically)
choose whether to fire or not one of them. If the neuron does not fire, new spikes
can come into the neuron rendering some of the previously applicable rules non-
applicable. If a rule is still applicable through successive time instants, it can
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be selected to fire at any time, independently of how much time has passed.
Taking this into account, the concepts of configuration, transition step and
computation can be defined in a similar way to classic SN P systems.

4.3.2.2 1-Asynchronous SN P systems

Let us consider the concept of dormant step for SN P systems. In a given
configuration of the system, if no neuron is applicable but at least one neuron
is closed, the system is said to be in a dormant step. If there is at least
one applicable neuron in a given configuration, the system is said to be in a
non-dormant step.

A 1-Asynchronous SN P system is an asynchronous SN P system where it
is required that in every non-dormant step at least one rule is applied in the
system. On the other hand, a strongly 1-Asynchronous SN P Systems is an
asynchronous SN P system which has the property that in a valid computation,
every step of the computation has at least one applicable neuron, unless the
SN P system is in a halting configuration. Otherwise (i.e., there is a step in
which there is no applicable rule), the computation is viewed as invalid and
no output from such a computation is included in the generated set by the
system.

4.3.2.3 Limited Asynchronous SN P systems

In classic ASNPS there is no restriction imposed on the number of successive
time instants that a given neuron can hold firing an enabled rule. Nevertheless,
from the biological point of view, it is natural to consider a bound imposed on
the number of time units that an enabled rule remains unfired, since in nature
given a long enough time interval, an enabled chemical reaction will conclude
within this interval.

Taking into consideration such biological motivation, Limited Asynchronous
SN P systems (LASNPS, for short) were introduced in [124]. In these systems
a global bound b ≥ 2 (imposed on all rules) is specified in such a way that if
one (and only one) rule in neuron σi is enabled at step t and neuron σi receives
no spike from step t to step t+b−2, then this rule can and must be applied at a
step in the next time interval b (that is, at a non-deterministically chosen step
from t to t+ b− 1). If the enabled rule in neuron σi is not applied, and neuron
σi receives new spikes, making now the rule non-applicable, then the computa-
tion continues in the new circumstance (maybe other rules are enabled now).
If more than one rule is applicable, the neuron non-deterministically chooses
and fires one of them in the interval t to t+ b− 1.
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In addition to the above, there is a special remark with respect to function-
ing of LASNPS not explicitly given in [124]: whenever a neuron σi has to check
for new applicable rules, the implicit counter controlling the number of steps
that σi has been holding the execution of its applicable rules is reset. Let us
recall from classic SN P systems that σi has to check for new applicable rules
whenever it receives new spikes or completes a rule execution. The described
remark implies that at any instant t any applicable rule of a given neuron σi
has been waiting to be applied the same amount of time.

In LASNPS, a configuration is described by the number of spikes present in
each neuron, the number of time units for neurons to become open as well as
the time that has elapsed for each rule since it became applicable. Transition
steps are carried out in a similar way to classic SN P systems, but according
to the limited asynchronous firing mechanism described above. With respect
to the output of the system, the following applies: since an enabled rule at
instant t can be applied at any moment in the time interval t to t+ b− 1 (that
is, in the b steps starting from t), a variable spike train can be produced. For
instance, the binary spike train of the system can have a variable number of
occurrences of 0 between two occurrences of 1, with this variation going from 0
to b. Consequently, defining the result of a computation as the number of steps
between two consecutive spikes (as usual in synchronous systems) is useless.
In its place, the result of a computation is usually defined as the total number
of spikes sent into the environment by the output neuron.

4.3.2.4 Asynchronous SN P systems with Local Synchronization

In classic ASNPS, neurons (asynchronously) fire their rules in a independent
way with respect to each other. Nevertheless, from the biological point of
view it is natural to consider interrelations between neurons in terms of syn-
chronicity. In a biological neural system, neurons involved in carrying out
some specific functions synchronously cooperate with each other to achieve
their goals. Groups of neurons like this can exhibit different topologies, such
as motifs with 4-5 neurons and communities with 12-15 neurons. On the other
hand, non-related neurons in terms of functionality work in an independent,
or asynchronous, way.

Taking into consideration such biological motivation, Asynchronous SN P
systems with Local Synchronization (ASNPSLS, for short) were introduced in
[165]. In ASNPSLS synchronous interrelations between neurons are described
via a family of sets denoted Loc. Each element of the family is a set of lo-
cally synchronous neurons, that is, neurons that work synchronously with each
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other. As such, each element of Loc is called a locally synchronous set (ls-set,
for short). A neuron can be placed in zero, one or more ls-sets. Given an AS-
NPSLS with m neurons σ1, σ2, . . . , σm, the family Loc can be formally defined
in the following way:

Loc = {loc1, loc2, . . . , locl} ⊆ P({σ1, σ2, . . . , σm}),

where P({σ1, σ2, . . . , σm}) is the power set of {σ1, σ2, . . . , σm}.
In ASNPSLS, behaviour of individual neurons is similar to classic Asyn-

chronous SN P systems: at any instant t a neuron with enabled rules non-
deterministically chooses whether to fire or not one of such rules. Neverthe-
less, neurons in the same ls-set fire in a synchronous way: if a enabled neuron
within a ls-set locj fires, then all neurons in locj that have enabled rules must
fire at that instant t. As such, it is possible that all neurons from locj remain
unfired even if they have enabled rules, i.e., all neurons from locj may remain
still, or all neurons from locj with enabled rules fire at the same step. Hence,
neurons work asynchronously at the global level, while working synchronously
within each ls-set.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic ASNPS taking into account the locally
synchronous firing mechanism described above.

4.3.3 Sequential Spiking Neural P systems

In what follows, we discuss some variants of SN P systems working in sequen-
tial mode, introduced in [66]. In this mode, the maximal parallelism present
in classic SN P systems is dropped. The motivation is that the maximal paral-
lelism way of rule application (which is widely used in membrane computing)
is rather non-realistic in some cases. As such, sequential variants of SN P
systems have been introduced, in which only some neurons with applicable
rules are chosen to fire, according to a certain strategy. It is precisely this
“choosing mechanism strategy” what gives place to different sequential SN P
systems variants. Let us notice that semantics of these systems are defined in a
similar way to classic SN P system (including the concepts of applicability, ap-
plication, configuration, transition step, computation), but incorporating the
peculiarities of each strategy.

1. Sequential SN P systems with pure-seq strategy.

This variant corresponds to the classic sequential model introduced in
[66]. The term pure-seq refers to the fact that these systems are totally
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(pure) sequential: at each computation step, one and only one of the
neurons with applicable rules fires. Such neuron is non-deterministically
chosen. If there is no applicable rule, then the system is dormant until
a rule becomes applicable. However, the clock will keep on ticking. This
kind of systems are called strongly sequential if at every step, there is at
least one neuron with an applicable rule.

Alternatively to the classic model, there exist other sequential variants
where the firing strategy depends on the number of spikes stored in each
neuron at each computation step. These variants were introduced in
[147], and are briefly described next.

2. Sequential SN P systems with max-seq strategy.

In this variant, at each computation step the set of neurons with applica-
ble rules is computed. From this set, neurons containing the maximum
number of spikes are chosen. From these chosen neurons, one and only
one neuron is non-deterministically selected to fire.

3. Sequential SN P systems with max-pseudo-seq strategy.

In this variant, at each computation step the set of neurons with applica-
ble rules is computed. From this set, neurons containing the maximum
number of spikes are chosen. All these chosen neurons are selected to
fire. The term pseudo-seq refers to the fact that this strategy is not fully
sequential, since more than one rule can be fired.

4. Sequential SN P systems with min-seq strategy.

In this variant, at each computation step the set of neurons with appli-
cable rules is computed. From this set, neurons containing the minimum
number of spikes are chosen. From these chosen neurons, one and only
one neuron is non-deterministically selected to fire.

5. Sequential SN P systems with min-pseudo-seq strategy.

In this variant, at each computation step the set of neurons with appli-
cable rules is computed. From this set, neurons containing the minimum
number of spikes are chosen. All these chosen neuron are selected to fire.
Again, the term pseudo-seq refers to the fact that this strategy is not
fully sequential, since more than one rule can be fired.



Chapter 4. Spiking Neural P systems 76

4.3.4 SN P systems with division and budding rules

This variant was introduced in [119] and addresses an increment in the number
of neurons and synapses along computations. Its definition follows.

Definition 4.9. A SN P system with neuron division and budding rules of
degree m ≥ 1 is a tuple of the form:

Π = (O,H, syn, n1, . . . , nm, R, in, out),

where:

1. m ≥ 1 (the initial degree of the system);

2. O = {a} is the singleton alphabet (a is called spike);

3. H is a finite set of labels for neurons;

4. syn ⊆ H ×H is a synapse dictionary, with (i, i) 6∈ syn for i ∈ H;

5. in, out ∈ H are the labels of the input and output neurons respectively.

6. ni ≥ 0 is the initial number of spikes contained in neuron i, i ∈ {1, 2, . . . ,m};

7. R is a finite set of developmental rules, of the following forms:

(1) [E/ac → ap; d]i, where i ∈ H, E is a regular expression over O,
c ≥ 1, p ≥ 0, c ≥ p, d ≥ 0 with p = 0⇒ d = 0;

(2) [E]i → []j ‖ []k, where E is a regular expression, i, j, k ∈ H, and
i /∈ {in, out};

(3) [E]i → []i/[]j, where E is a regular expression, i, j ∈ H, and
i 6= out.

Rules of type (1) are extended rules, as previously defined for SN P sys-
tems with extended rules. Rules of type (2) and (3) are division and budding
rules respectively, which enable neuron creation. Applying neuron division
and budding rules allows for two or more neurons to share the same label so,
in general, σi denotes any neuron with label i ∈ H. Since new neurons can
be created, and neuron can share labels, rules are associated to neuron labels,
instead of neurons themselves, as in the case of classic SN P systems. In this
way, Ri is the set of the rules associated with neurons labelled by i.

Division rules create a pair of new membranes from a previously existing
one (that disappears). These membranes are placed in parallel, in the sense
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that they inherit the ingoing and outgoing synapses of the original neuron.
When applying a budding rule, a new neuron is created from an existing neu-
ron, which is preserved. Both neurons are placed serially, in the sense that
outgoing synapses from the existing neuron are transferred to the newly cre-
ated neuron and a new synapse is created from the existing neuron to the new
neuron.

In SN P systems with neuron division and budding rules, the system struc-
ture (both the number of neurons and of synapses between them) is not fixed
and may change along the computation. The way in which synapses are cre-
ated is determined by the neuron division and budding rules as well as the
synapse directory syn, which is a synapse graph of neuron labels. The initial
structure of the system is determined by syn in the following way: (a) for each
different label i ∈ H appearing in syn, an initial neuron with label i is placed
in a node of the SN P system directed graph; and (b) for each arc (i, j) ∈ syn
a synapse is created from the neuron labelled by i to the neuron labelled by
j. Let us stress the fact that, according to this, in the initial configuration,
only one neuron (at most) with a given label may exist. The synapse dictio-
nary also guides creation of new synapses whenever a new neuron is created,
in the following way: if a new neuron with label i is created, then for every
pre-existing neuron with label g, (a) if (i, g) ∈ syn then a synapse from the
new neuron with label i to the pre-existing neuron with label g is created; and
(b) if (g, i) ∈ syn then a synapse from the pre-existing neuron with label g to
the new neuron with label i is created.

In what follows, we discuss semantics of SN P systems with budding and
division rules, starting with the applicability and application of division and
budding rules (extended rules were previously addressed).

Applicability

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t,
it is said that a division rule [E]i → []j ‖ []k is applicable over σi at t if
and only if the following conditions hold:

(a) σi is not executing any rule;

(b) ak ∈ L(E);

(c) 6 ∃σg | g ∈ {j, k} ∧ ((g, i) ∈ syn ∨ (i, g) ∈ syn);

(d) i /∈ {in, out}.
• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t, it

is said that a budding rule [E]i → []i/[]j is applicable over σi at t if and
only if the following conditions hold:
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(a) σi is not executing any rule;

(b) ak ∈ L(E);

(c) 6 ∃σj | (j, i) ∈ syn ∨ (i, j) ∈ syn;

(d) i 6= out.

Application

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant t,
application of an active division rule r ≡ [E]i → []j ‖ []k over σi at t
implies the following:

– At instant t, neuron σi fires rule r. Neuron σi becomes closed (it
cannot accept incoming spikes).

– At instant t, neuron σi is splitted into two newly created closed
empty neurons, labelled by j and k respectively, and denoted by σj
and σk. Ingoing and outgoing synapses of σi are replicated over σj
and σk in the following way:

∗ For each ingoing synapse (σl, σi) between a pre-existing neuron
σl and neuron σi, synapses (σl, σg), with g ∈ {j, k}, are created.

∗ For each outgoing synapse (σi, σl) between neuron σi and a
pre-existing neuron σl, synapses (σg, σl), with g ∈ {j, k}, are
created.

– At instant t new synapses involving neurons σj and σk and pre-
existing neurons are created from syn in the following way:

∗ For every pre-existing neuron σl, if (l, g) ∈ syn, with g ∈ {j, k},
synapse (σl, σg) is created.

∗ For every pre-existing neuron σl, if (g, l) ∈ syn, with g ∈ {j, k},
synapse (σg, σl) is created.

– At instant t + 1, neurons σj and σk become open (they accept in-
coming spikes) and can check for new applicable rules.

• Given a neuron σi containing k spikes, with k ≥ 1, at a time instant
t, application of an active budding rule r ≡ [E]i → []i/[]j over σi at t
implies the following:

– At instant t, neuron σi fires rule r. Neuron σi becomes closed (it
cannot accept incoming spikes). All the spikes in σi are consumed.
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– At instant t, neuron σi generates a newly created closed empty
neuron, labelled by j and denoted by σj. Ingoing synapses of σi are
preserved, while outgoing synapses of σi are transferred to σj in the
following way:

∗ For each outgoing synapse (σi, σl) between neuron σi and a
pre-existing neuron σl, synapse (σj, σl) is created.

– At instant t a new synapse (σi, σj) is created.

– At instant t new synapses involving neuron σj and pre-existing neu-
rons are created from syn in the following way:

∗ For every pre-existing neuron σl, if (l, j) ∈ syn, synapse (σl, σj)
is created.

∗ For every pre-existing neuron σl, if (j, l) ∈ syn, synapse (σj, σl)
is created.

– At instant t + 1, neurons σi and σj become open (they accept in-
coming spikes) and can check for new applicable rules.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic SN P systems, with the following remark:
since the structure of the system is not fixed, every configuration must store
the instantaneous description of the directed graph associated to the system.

4.3.5 SN P systems with astrocytes

In what follows, we discuss a variant of classic SN P systems taking inspiration
from one important biological element existing in the nervous system structure,
the astrocyte.

Astrocytes, also known collectively as astroglia, are characteristic star-
shaped glial cells in the brain and spinal cord that connect to neighbour-
ing synapses. An astrocyte connects to a synapse in the space between the
presynaptic and postsynaptic terminals giving place to the so-called “tripar-
tite synapse” [7], with one single astrocyte being able to connect to different
synapses in this way. Astrocytes propagate intercellular Ca+

2 waves over long
distances in response to stimulation and, similarly to neurons, release transmit-
ters (called gliotransmitters) in a Ca+

2 -dependent manner. Moreover, within
the dorsal horn of the spinal cord, activated astrocytes have the ability to
respond to almost all neurotransmitters [61] and, upon activation, release a
multitude of neuroactive molecules that influences neuronal excitability. That
is, astrocytes can sense the neuronal activity related to their attached synapses
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and carry out a synaptic modulation in an excitatory or inhibitory way. Other
important functionalities of astrocytes include biochemical support of endothe-
lial cells that form the blood-brain barrier, provision of nutrients to the nervous
tissue, maintenance of extracellular ion balance, and a role in the repair and
scarring process of the brain and spinal cord following traumatic injuries. As a
result of all of this, astrocytes constitute an important area of research within
the field of neuroscience and, consequently, they also are an interesting element
to take inspiration from within the membrane computing paradigm.

In SN P systems with astrocytes, new syntactical ingredients are intro-
duced to model astrocytes. One astrocyte can be attached to one or more
synapses and one synapse can be attached to zero, one or more astrocytes.
Attached synapses to a given astrocyte are said to be controlled by the astro-
cyte. Astrocytes sense the spike traffic passing along their controlled synapses
and can have an excitatory or inhibitory influence on such traffic. In general,
excitatory influence implies allowing the spike traffic to go along the controlled
synapses, while the inhibitory influence implies destroying such traffic, with
the spikes being removed from the system. When a synapse is controlled by
two or more astrocytes, only if every astrocyte has an excitatory influence on
the synapse the spikes passing along that synapse survive. In this way, when
neurons spike, the emitted spikes are transmitted along synapses and reach
target neurons unless they are intercepted by astrocytes.

Several variants of SN P systems with astrocytes have been defined and
studied. Within the scope of this dissertation we describe the SN P systems
with hybrid astrocytes.

4.3.5.1 SN P systems with hybrid astrocytes

SN P systems with hybrid astrocytes (SNPSHA, for short) correspond to vari-
ant introduced in [123]. In these systems, astrocytes show an excitatory or
inhibitory influence on controlled synapses by comparing the spike traffic in
such synapses against a threshold associated to the astrocyte. Since they can
show either an excitatory or inhibitory influence, they are called hybrid astro-
cytes within the scope of this dissertation (this term not being used in [123]).
Definition of this model follows.

Definition 4.10. A Spiking Neural P system with hybrid astrocytes of degree
(m, l), with m ≥ 1, l ≥ 1, is a tuple of the form:

Π = (O, σ1, σ2, . . . , σm, ast1, ast2, . . . , astl, syn, in, out),

where:
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1. O, σ1, σ2, . . . , σm, syn, in, out are defined as in classic SN P systems.

2. ast1, ast2, . . . , astl are astrocytes, with astj (1 ≤ j ≤ l) of the form

astj = (synastj , tj),

where:

• synastj ⊆ syn is the set of controlled synapses by the astrocyte;

• tj ∈ N is the threshold of the astrocyte;

Hybrid astrocytes are graphically represented as diamond-shaped figures,
with a number inside corresponding to the threshold and lines connected to
their controlled synapses (see [123] for more details).

Semantics of SNPSHA follows from the classic model, but incorporating
hybrid astrocytes behaviour. Astrocytes of this kind work as follows. For an
astrocyte astj, if at intant t there are k spikes in total passing along its neigh-
bouring synapses synastj then a) if k > tj, the astrocyte astj has an inhibitory
influence on the neighbouring synapses, and the k spikes are simultaneously
suppressed (that is, the spikes are removed from the system); b) if k < tj,
the astrocyte astj has an excitatory influence on the neighbouring synapses,
all spikes survive and get to their destination neurons, reaching them simulta-
neously; and c) if k = tj, the astrocyte astj non-deterministically chooses an
inhibitory or excitatory influence on the neighbouring synapses. It is possible
for two or more astrocytes to control the same synapse. In this case, only if
every astrocyte has an excitatory influence on the synapse the spikes passing
along that synapse survive.

The concepts of configuration, transition step and computation can be
defined in a similar way to classic SN P systems.

4.3.6 SN P systems with anti-spikes

In what follows, we discuss a variant of SN P systems that addresses the
inhibitory nature of some neural impulses by introducing an additional object
type, the anti-spike denoted by a and named after the anti-matter. Anti-spikes
are present in neurons and participate in firing and forgetting rules along with
usual spikes. Spikes and anti-spikes cannot exist simultaneously in the same
neuron, since they annihilate each other, as an implicit rule of the form aa→ λ
exists in every neuron.

This model was introduced in [122]. Its definition follows.
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Definition 4.11. A SN P system with anti-spikes of degree m ≥ 1 is a tuple
of the form:

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a, a} is the alphabet (a is called spike, a is called anti-spike);

2. σ1, σ2, . . . σm are neurons of the form σi = (ni, Ri) where:

• ni ≥ 0 is the initial number of spikes contained in σi;

• Ri is a finite set of rules of the following forms:

(0) aa→ λ

(1) E/bc → b′; d with E a regular expression over a or over a
(but not over a and a simultaneously)

(2) bs → λ with s ≥ 1 and bs /∈ L(E) for any type (1) rule in Ri

verifying that b, b′ ∈ {a, a};

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ n is the
synapse graph, defining the synapses among neurons;

4. in, out ∈ {1, 2, . . . ,m} are the input and output neurons respectively;

5. for any type (1) rule E/bc → b′; d ∈ Ri, if i = out then b′ = a.

Semantics of SN P systems with anti-spikes follows from the classic model,
with the following remarks:

• Type (0) rules are annihilation rules. They are implicitly defined in
every neuron of the system, so they are not specified when describing the
model. A type (0) rule is applied with top-most priority in a maximal
way taking zero time units to complete whenever the neuron receives
spikes or anti-spikes. Consequently, spikes and anti-spikes cannot exist
together in the same neuron.

• Type (1) and (2) rules are firing and forgetting rules with anti-spikes
respectively. Applicability and application for these rules are defined as
in the classic model, with the peculiarity that regular expressions may
involve spikes or anti-spikes (but not both) and that spikes and anti-
spikes may be consumed/produced when applying the rules.
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The concepts of configuration, transition step and computation can be
defined in a similar way to classic SN P systems. With respect to the input
and output of the system, only spikes are allowed to be entered into/sent out
the system.

4.4 Computational power of SN P systems

In what follows, we present major theoretical results concerning the computa-
tional power of SN P systems variants. Proofs are not provided, but can be
found in the corresponding references.

Definition 4.12. Let SpikβαPm(rulek, consp, forgq, dleyr, outds) be the family
of sets Nβ

α (Π) for all systems with at most m neurons, each neuron having
at most k rules, each of the spiking rules consuming at most p spikes and
with a delay at most r, each forgetting rule removing at most q spikes and an
outdegree of the synapse graph at most s. Then α ∈ {2, 2} and β is either
omitted or it belongs to the set {h, h}. Each of the parameters m, k, p, q is
replaced with ∗ if it is not bounded. Notation rule∗k is used when firing rules
are of the form E/ac → a; d with the regular expression of the forms E = ac

or E = a∗. Prefix D is used to refer to deterministic systems and subscript
acc to refer to systems working in accepting mode.

The following results come from [64]:

Theorem 4.1. Spikβ2P∗(rule3, cons4, forga, dley0, outd2) = NRE, where β ∈
{h, h} or β is omitted and a = 5 for β = h, otherwise a = 4.

Theorem 4.2. DSpikβ2accP∗(rule2, cons3, forg2, dley0, outd2) = NRE, where
β ∈ {h, h} or β is omitted.

Theorem 4.3. Spik2P∗(rulek, consp, forg0) = NRE, for all k ≥ 2, p ≥ 3.

Theorem 4.4. Spikβ2P∗(rule3, cons4, forg4, dley0, outd2) = NRE, where ei-
ther β = h or β is omitted.

Theorem 4.5. Spikβ2P∗(rule
∗
2, cons2, forg1, dley2, outd2) = NRE, where ei-

ther β = h or β is omitted.

Theorem 4.6. Spikh2P∗(rule
∗
3, cons2, forg15, dley2, outd2) = NRE.

Theorem 4.7. DSpikβ2accP∗(rule2, cons2, forg1, dley2, outd2) = NRE, where
either β = h or β is omitted.
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Definition 4.13. A partially blind k-output multicounter machine (k-output
PBCM) is a k-output multicounter machine where the registers/counters can-
not be tested for zero. The output counters are non-decreasing. The other
counters can be incremented by 1 or decremented by 1, but if there is an attempt
to decrement a zero counter then the computation aborts (i.e. the computation
becomes invalid). By definition, a successful generation of a k-tuple requires
that the machine enters an accepting state with all non-output counters set to
zero. Such counter machines are known to be not universal.

Definition 4.14. A k-output monotonic CM is a non-deterministic machine
with k counters, all of which are output counters. The counters are initially
zero and can only be incremented by 1 or 0 (they cannot be decremented). When
the machine halts in an accepting state, the k-tuple of values in the k-counter
is said to be generated by the machine. Clearly, a k-output monotonic CM is
a special case of a PBCM, where all the counters are output counters and all
the instructions are addition instructions. It is known that a set Q ⊆ Nk is
semilinear if and only if it can be generated by a k-output monotonic CM.

The following results come from [20]:

Theorem 4.8. A set Q ⊆ Nk is recursively enumerable if and only if it can
be generated by an asynchronous k-output general SN P system with extended
rules. The result holds for systems with or without delays.

Theorem 4.9. A set Q ⊆ Nk is generated by a k-output PBCM if and only
if it can be generated by an asynchronous k-output unbounded SN P system
without delays. Hence, such SN P systems are not universal.

Theorem 4.10. A set Q ⊆ Nk is generated by a k-output PBCM if and only
if it can be generated by an asynchronous k-output unbounded SN P system
with delays. Hence, such SN P systems are not universal.

Theorem 4.11. 1-Asynchronous unbounded k-output SN P systems (with de-
lays) are universal.

Theorem 4.12. Strongly 1-Asynchronous unbounded k-output SN P systems
with delays and k-output PBCMs are equivalent.

Theorem 4.13. A set Q ⊆ Nk can be generated by a k-output monotonic
CM if and only if it can be generated by a k-output asynchronous bounded SN
P system with extended rules. The result holds for systems with or without
delays.
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Definition 4.15. Let Nasynch
gen be the set of numbers generated in the limited

asynchronous way by an SN P system with general rules.

The following result comes from [124]:

Theorem 4.14. Nasynch
gen = NRE.

Definition 4.16. Let NSpikoutP
locsyn
m (α, ls) with α ∈ {gen, boun, unb} and

ls ≥ 0, be the family of number sets generated by asynchronous SN P systems
with local synchronization of type α, such that gen stands for general, boun for
bounded and unb for unbounded, with at most m neurons, and local synchro-
nization degree at most ls. If one of the parameters m and ls is not bounded,
then it is replaced with ∗. The subscript out refers to the fact that the output
of the systems is obtained by interpreting as computation result the count of
all spikes sent into the environment.

The following results come from [165]:

Theorem 4.15. NSpikoutP
locsyn
∗ (boun, ∗) = NRE.

Theorem 4.16. NSpikoutP
locsyn
∗ (unb, ∗) = NRE.

Theorem 4.17. NSpikoutP
locsyn
∗ (boun, ∗) = SLIN .

The following results come from [65]:

Theorem 4.18. The following results hold for sequential SN P systems with
delays:

1. Sequential k-output unbounded SN P systems with standard rules and
strongly sequential k-output general SN P systems with standard rules
are universal.

2. Strongly sequential k-output unbounded SN P systems with standard rules
and k-output PBCMs are equivalent.

The above results also hold for systems with extended rules.

Theorem 4.19. Unbounded SN P systems with delays working in the max-seq
mode are universal, even in the strongly sequential setting.

Theorem 4.20. Extended SN P systems working in max-seq mode with un-
bounded rules and no delays (thus strongly sequential) are universal.
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Theorem 4.21. Unbounded SN P systems working in the max-pseudo-seq
mode, without delays, are universal.

Theorem 4.22. A system of deterministic neurons working in a max-pseudo-
seq manner (as a generator) is non-universal.

Theorem 4.23. A system of deterministic neurons working in a max-pseudo-
seq manner (as an acceptor) is universal.

Theorem 4.24. Unbounded SN P systems without delays, working in the min-
seq mode (hence strongly sequential), are universal. In this case we consider
the output to be given as the number of spikes in a given neuron.

4.5 Computational efficiency of SN P systems

In what follows, we present major theoretical results concerning the computa-
tional efficiency of SN P systems variants. Proofs are not provided, but can
be found in the corresponding references.
The following results come from [80]:

Theorem 4.25. Consider a (possibly universal) deterministic accepting SN
P system Π, of degree m ≥ 1, in which all the regular expressions are of the
following restricted forms: ai, with i ≤ 3, or a(aa)+. Then, any t steps of
computation of Π can be simulated by a deterministic Turing machine in a
time which is polynomial with respect to t and to the description size of Π.

Corollary 4.1. Polynomial size (with respect to the problem instance size)
deterministic SN P systems cannot solve NP-complete problems in polynomial
time, unless P = NP.

The following result comes from [81]:

Theorem 4.26. Non-deterministic SN P systems are able to solve in the semi-
uniform setting any instance of 3-SAT in constant time.

The following result comes from [79]:

Theorem 4.27. A uniform family {ΠSAT (〈n,m〉)}n,m∈N solves all the in-
stances of SAT(n,m) in a number of steps which is linear in n and inde-
pendent of m.

Theorem 4.28. A uniform family {Π3−SAT (n)}n∈N solves all the instances of
3-SAT(n).
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The following result comes from [80]:

Theorem 4.29. A non-deterministic semi-uniform family of SN P systems
solves any instance of SUBSET SUM in only two computation steps.

The following result comes from [79, 81]:

Theorem 4.30. A deterministic uniform family of SN P systems solves any
instance of SUBSET SUM.

The following result comes from [119]:

Theorem 4.31. A deterministic uniform family {ΠSAT (〈n,m〉)}n,m∈N of SN
P systems with budding and division rules solves any instance of SAT(n,m).

The following result comes from [123]:

Theorem 4.32. Asynchronous extended SN P systems with hybrid astrocytes
are universal.
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5
Fuzzy Reasoning SN P systems

5.1 Introduction

In classical logic, there are only two possible truth values, named true, rep-
resented by natural value 1, and false, represented by natural value 0. To
the contrary, in fuzzy logic, truth values vary in a range of real numbers in
[0, 1] representing different degrees of truth. Fuzzy logic is derived from the
theory of fuzzy sets, which extends the classical notion of set. This theory was
proposed by Zadeh [207], with Klaua also developing a similar concept around
the same time [75, 76]. A fuzzy set is a class of objects with a continuum
grade of membership characterized by a membership (characteristic) function
which assigns to each object existing in the universe of discourse a grade of
membership in [0, 1]. Value 0 stands from “the object does not belong to the
set”, value 1 stands for “the object belongs to the set”, while others values in
the interval stand for different degrees of membership to the set.

Soon after the introduction of fuzzy sets, it was pointed out in [54], starting
from the Zadeh approach, and in [76], starting from the Klaua approach, the
intimate relation between fuzzy sets and non-classical logics, i.e. multiple-
valued logics, since membership degrees could be considered as generalized
truth values, i.e. as truth degrees. Fuzzy logic development is motivated by the
need of providing a conceptual framework for dealing with the representation of
common sense knowledge, since such knowledge is by its nature both lexically

89
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imprecise and non-categorical, that is, a framework that can address the issues
of uncertainty and imprecision [208]. Consequently, fuzzy logic can be applied
to scenarios where the nature of the information is uncertain.

Since its introduction, fuzzy set theory has been studied and applied exten-
sively. Most of the early interests in fuzzy set theory addressed representing
uncertainty in human cognitive processes, while nowadays fuzzy set theory is
combined with other methods and applied to problems in engineering, business,
medical and related health sciences, the natural sciences and other disciplines.
As such, different computational models incorporating fuzzy logic elements
have surfaced, oriented to deal with the aforementioned problems. Within the
Membrane Computing framework, SN P system variants incorporating fuzzy
logic elements have been defined. Such variants are collectively called Fuzzy
Reasoning SN P systems (FRSN P systems, for short) and are intended to
model fuzzy diagnosis knowledge and reasoning as required in fault diagnosis
applications, although other practical scenarios have been also considered. A
detailed survey on FRSN P systems can be found in [182], which is the main
reference material for this chapter. Within the scope of this dissertation, two
simulators have been developed for one of the aforementioned variants, which
is called Fuzzy Reasoning SN P systems with real numbers (rFRSN P systems,
for short). One of the simulators is intended to run on sequential platforms,
while the other one runs on the GPU.

This chapter is structured as follows. Section 5.2 covers theoretical aspects
about modelling problems within the fuzzy logic paradigm. Section 5.3 in-
troduces FRSN P systems, focusing on the common features of this family of
membrane systems. Section 5.4 addresses rFRSN P systems in detail. Finally,
an application of rFRSN P systems within the area of fault diagnosis of power
systems is briefly described.

5.2 Modelling problems in fuzzy logic

When modelling a problem within the fuzzy logic framework, usually a fuzzy
knowledge base is built, were fuzzy propositions, expressing facts with an un-
certain truth value and fuzzy production rules, representing logic consequences
involving fuzzy propositions are used to analyse and determine the solution
to the problem. Several approaches to define the fuzzy propositions can be
taken. In what concerns to this work, we will consider the fuzzy production
rules types as defined in [25]. These types are (1) simple fuzzy production
rules, (2) composite fuzzy conjunctive rules in the antecedent, (3) composite
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fuzzy conjunctive rules in the consequent, (4) composite fuzzy disjunctive rules
in the antecedent and (5) composite fuzzy disjunctive rules in the consequent.
Their definitions follow:

A simple fuzzy production rule is of the form

Type 1 Ri: IF pj THEN pk (CF=τi)

where Ri indicates the i-th fuzzy production rule; τi represents its certainty
factor; pj and pk represents two propositions, each of which has a fuzzy truth
value. If fuzzy truth values of propositions pj and pk are αj and αk, respectively,
then αk = αj ∗ τi.

A composite fuzzy conjunctive rule in the antecedent is of the form

Type 2 Ri: IF p1 and · · · and pk−1 THEN pk (CF=τi)

where Ri indicates the i-th fuzzy production rule; τi represents its certainty
factor; p1, · · · , pk−1 are propositions in the antecedent part of the rule; pk
is the proposition in the consequent part of the rule. If fuzzy truth val-
ues of propositions p1, · · · , pk−1 are α1, · · · , αk−1, respectively, then αk =
min(α1, . . . , αk−1) ∗ τi.

A composite fuzzy conjunctive rule in the consequent is of the form

Type 3 Ri: IF p1 THEN p2 and · · · and pk (CF=τi)

where Ri indicates the i-th fuzzy production rule; τi represents its certainty
factor; p1 is a proposition in the antecedent part of the rule; p2, · · · , pk are
propositions in the consequent part of the rule. If fuzzy truth value of propo-
sition p1 is α1, then α2 = α1 ∗ τi, . . . , αk = α1 ∗ τi.

A composite fuzzy disjunctive rule in the antecedent is of the form

Type 4 Ri: IF p1 or p2 or · · · or pk−1 THEN pk (CF=τi)

where Ri indicates the i-th fuzzy production rule; τi represents its certainty
factor; p1, · · · , pk−1 are propositions in the antecedent part of the rule; pk
is the proposition in the consequent part of the rule. If fuzzy truth val-
ues of propositions p1, · · · , pk−1 are α1, · · · , αk−1, respectively, then αk =
max(α1, . . . , αk−1) ∗ τi.

A composite fuzzy disjunctive rule in the consequent is of the form

Type 5 Ri: IF p1 THEN p2 or · · · or pk−1 or pk (CF=τi)
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where Ri indicates the i-th fuzzy production rule; τi represents its certainty
factor; p1 is a proposition in the antecedent part of the rule; p2, · · · , pk−1 are
propositions in the consequent part of the rule. This type of rules is unsuitable
for knowledge representation due to the fact that it does not make any specific
implication [25]. Thus, this type of rules are not considered in relation to
FRSN P systems.

5.3 FRSN P systems generalities

Fuzzy Reasoning SN P systems (FRSN P systems, for short) comprise a some-
how exotic family of SN P systems variants intended to model fuzzy diagnosis
knowledge and reasoning as required in fault diagnosis applications. The term
exotic comes from the fact that, although basic elements of SN P systems like
a synapse graph of neurons that exchange spikes are still present in FRSN P
systems, new ingredients are added to incorporate fuzzy reasoning elements,
such as several types of neurons, spike potentials (modelled after fuzzy truth
values) and a new firing mechanism. In this way, FRSN P systems put together
desirable features (understandable, dynamical, synchronized, non-linear, non-
deterministic, able to handle incomplete and uncertain information) required
to model fault diagnosis problems.

To date, five types of FRSN P systems have been proposed: fuzzy reasoning
spiking neural P systems with real numbers (rFRSN P systems, introduced in
[130] and later updated in [181] and to be further investigated in [205, 206],
fuzzy reasoning spiking neural P systems with linguistic terms (lFRSN P sys-
tems, introduced in [175]), adaptive fuzzy reasoning spiking neural P systems
with real numbers (AFRSN P systems, introduced in [176] and further inves-
tigated in [102]), weighted fuzzy reasoning spiking neural P systems (WFRSN
P systems, introduced in [177] and further investigated in [183]) and fuzzy
reasoning spiking neural P systems with trapezoidal fuzzy numbers (tFRSN
P systems, introduced in [179] and further expanded in [180, 184, 185]). A
comprehensive survey on these variants can be found in [182]. Despite of the
different existing FRSN P systems variants, all of them share common features,
described as follows:

• FRSN P systems model propositions and rules of a fuzzy knowledge base.
As such, two kinds of neurons exist: proposition neurons, modelling
propositions in the fuzzy knowledge base, and rule neurons, modelling
fuzzy production rules. Besides, rule neurons have associated a fuzzy
truth value that can be interpreted as the confidence/certainty factor
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(CF) of the fuzzy production rule. Finally, there exist both a set of
input and output proposition neurons.

• With respect to the synapse graph, proposition neurons are always con-
nected to rule neurons while rule neurons are always connected to propo-
sition neurons. Besides, FRSN P systems are feed-forward systems, pre-
senting an acyclic synapse graph. As such, (a) computations associated
FRSN P systems always halt; and (b) any synapse can carry spikes at
most once during a computation. Input proposition neurons have zero
indegree, while output proposition neurons have zero outdegree.

• With respect to spikes, contrary to classic SN P systems, in FRSN P
systems a neuron may contain at most one spike. Each spike has associ-
ated a fuzzy truth value (that we denote α) which can be interpreted as
the potential value of the pulse/spike from the point of view of biological
neurons. Nevertheless, contrary to biological neurons, the pulse value
may differ among spikes. In the initial configuration of the FRSN P
system every input proposition neuron contains exactly one spike, while
the rest of neurons contain no spike. Neurons store the pulse value of its
internal spike. If a neuron contains a spike, the pulse value α associated
to its internal spike is not null, while if the neuron contains no spike, α
is null. Neurons update the pulse value of its internal spike depending
on pulse values of received spikes and the neuron kind.

• With respect to rules, neurons only have associated one rule, which is of
the firing/spiking kind. As such, any FRSN P system is deterministic so
only one possible computation is associated to its execution. Contrary
to classic SN P systems, a neuron with zero outdegree cannot fire. When
a neuron fires, it consumes its internal spike of pulse value α and sends
out a spike which pulse value β depends on the neuron kind. Neurons
fire in the following circumstances:

– In the case of input proposition neurons, when the number of re-
ceived pulses equals to one.

– In the case of the rest of neurons, when the number of received
pulses equals to the neuron number of ingoing synapses.

As such, in general neurons must track the number of received pulses in
order to determine when to fire.
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5.4 rFRSN P systems

In rFRSN P systems fuzzy truth values are modelled with real numbers (other
variants use either real numbers, linguistic terms or trapezoidal fuzzy num-
bers). In [130, 181] rFRSN P systems were shown to provide promising appli-
cations in the field of fault diagnosis of electrical systems. Also, for this vari-
ant, a matrix-based algorithm was provided which, when executed on parallel
computing platforms, fully exploits the model maximally parallel capacities.

In what follows, we introduce syntax and semantics for rFRSN P systems.
What we present next is a specification incorporating in a explicit way the
general common features for FRSN P systems as described above. As such,
this definition does not exactly match the one introduced in [130], since it aims
to specify features of rFRSN P systems in the most formal possible way.

Definition 5.1. A rFRSN P system of degree (l, q, n, s, k), with l, k ≥ 1,
q, s ≥ 0 and n ≥ l + q + 1, is a construct of the form:

Π = (O, σ1, . . . , σl, σl+1, . . . , σl+q, σl+q+1, . . . , σn,

σn+1, . . . , σn+s, σn+s+1, . . . , σn+k, syn, in, out),

where:

1. O = {a} is the alphabet (a is called spike);

2. σ1, . . . , σn+k are neurons, of the form σi=(pi, αi, τi, ri), 1 ≤ i ≤ n + k,
where:

• σ1, . . . , σn are proposition neurons, from which:

– σ1, . . . , σl are input proposition neurons;

– σl+1, . . . , σl+q are internal proposition neurons;

– σl+q+1, . . . , σn are output proposition neurons;

• σn+1, . . . , σn+k are rule neurons, from which:

– σn+1, . . . , σn+s are AND rule neurons;

– σn+s+1, . . . , σn+k are OR rule neurons;

• pi ∈ N is the number of pulses received by σi;

• αi ∈ [0, 1] is a real fuzzy truth value representing the potential value
of the pulse/spike contained in neuron σi such that if αi = 0 there is
no spike, while if αi > 0 there is one (and only one) spike of pulse
value αi;
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• τi ∈ [0, 1] is a real fuzzy truth value representing:

– the truth value of the fuzzy proposition in case σi is a proposition
neuron, and verifying in this case that (a) τi = αi and (b) τi = 0
means “unknown”;

– the confidence factor (CF) of the fuzzy production rule in case
σi is a rule neuron;

• ri is a firing/spiking rule associated to σi, ri ≡ [E/aα → aβ]i, with E
being a regular expression over {a}, and α, β representing arbitrary
real fuzzy truth values in [0, 1] but ensuring that α ≥ β; assuming
that ni = indegree(σi), rule ri has the following form:

– [aα → aα]i, if σi is an input proposition neuron;

– [ani/aα → aα∗τi ]i if σi is any other kind of neuron;

3. syn ⊆ {1, . . . , n + k} × {1, . . . , n + k} with i 6= j for all (i, j) ∈ syn,
1 ≤ i, j ≤ n + k, is the directed synapse graph between neurons; the
following properties hold:

• syn is acyclic;

• syn is bipartite with respect to proposition and rule neurons, that
is, for all (i, j) ∈ syn, 1 ≤ i, j ≤ n+k either (a) i ∈ {1, . . . , n} and
j ∈ {n+ 1, . . . , k} or (b) i ∈ {n+ 1, . . . , k} and j ∈ {1, . . . , n};
• syn is connected, as follows:

– indegree(σi) = 0 and outdegree(σi) > 0, i ∈ {1, . . . , l};
– indegree(σi) > 0 and outdegree(σi) = 0, i ∈ {l+ q+ 1, . . . , n};
– indegree(σi) > 0 and outdegree(σi) > 0, i ∈ {l+ 1, . . . , n+ k};

4. in = {1, . . . , l} and out = {l + q + 1, . . . , n} are the sets of input and
output proposition neurons respectively, with in ∩ out = ∅;

5. In the initial configuration of Π, neurons σi (1 ≤ i ≤ n + k) verify the
following:

• pi = 1 for all i ∈ {1, . . . , l}, otherwise pi = 0, that is, any input
proposition neuron has received exactly one pulse, while any other
neuron has received no pulse;

• αi > 0 for all i ∈ {1, . . . , l}, otherwise αi = 0, that is, any input
proposition neuron has a spike, while any other neuron has no spike;
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When a neuron σi receives spikes/pulses from its ingoing synapses, a three-
stage process takes place: firstly, σi updates its content, secondly, σi checks if
its rule ri is applicable and thirdly, in case ri is enabled, σi fires the rule. In
what follows, we illustrate this process for a neuron i which state at instant
t is σi = (pi,t, αi,t, τi,t). As such, content of σi is a spike api,t of value, aαi,t ,
with either (a) pi,t = 0, αi,t = 0; or (b) pi,t > 0, αi,t > 0. Also, indegree(σi) =
ni ≥ 1, ingoing synapses of σi are labelled as {ei,1, . . . , ei,ni

} and at instant t

neuron σi receives h pulses of values a
αe′

i,1 , . . . , a
αe′

i,h from the ingoing synapses
labelled as {e′i,1, . . . , e′i,h} ⊆ {ei,1, . . . , ei,ni

} respectively, with 1 ≤ h ≤ ni− pi,t.
The process takes place as follows:

• Update. After updating, neuron state is σi = (pi,t+1, αi,t+1, τi,t+1), where:

– pi,t+1 = pi,t + h;

– If pi,t = 0, αi,t = 0 then:

∗ αi,t+1 =


max{αe′i,1 , . . . , αe′i,h} if σi is prop. neuron;

max{αe′i,1 , . . . , αe′i,h} if σi is OR rule neuron;

min{αe′i,1 , . . . , αe′i,h} if σi is AND rule neuron;

– If pi,t > 0, αi,t > 0 then:

∗ αi,t+1 =


max{αi,t, αe′i,1 , . . . , αe′i,h} if σi is prop. neuron;

max{αi,t, αe′i,1 , . . . , αe′i,h} if σi is OR rule neuron;

min{αi,t, αe′i,1 , . . . , αe′i,h} if σi is AND rule neuron;

– τi,t+1 =

{
αi,t+1 if σi is proposition neuron;
τi,t if σi is rule neuron;

• Rule checking. Neuron σi checks its contents to determine if rule ri is
enabled, as follows:

enabled(ri)⇔


pi,t+1 = 1, αi,t+1 > 0 if σi is input prop. neuron;
pi,t+1 = ni, αi,t+1 > 0 if σi is internal prop. neuron;
pi,t+1 = ni, αi,t+1 > 0 if σi is rule neuron;

Let us notice that output proposition neurons are never enabled, thus
they cannot fire in any case.

• Rule application. Neuron σi fires ri in case it is enabled. Firing involves
consuming the whole pulse contained in σi and emitting a pulse aβi,t+1

that immediately reaches the neurons connected to the outgoing synapses
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from σi. As such, after firing neuron i state is σi = (0, 0, τi,t+1). On the
other hand, truth value βi,t+1 is defined as follows:

βi,t+1 =

{
αi,t+1 if σi is proposition neuron;
αi,t+1 ∗ τi,t+1 if σi is rule neuron;

A configuration of the rFRSN P system is given by the state of its neurons
at any time. The concepts of transition step and computation are defined in
a similar way to classic SN P systems. The output of the system is given by
the pulse values of output neurons when the computation halts.

5.4.1 Mapping fuzzy knowledge into rFRSN P systems

In order to use fuzzy production rules for fuzzy knowledge representation, it is
necessary to map them into rFRSN P systems. In what follows, we summarize
how to produce rFRSN P systems to model individual fuzzy production rules
belonging to the types previously defined, where value τi of rule neuron i is
assigned to the certainty factor of the associated fuzzy production rule.

A simple fuzzy production rule can be modelled by an rFRSN P system Π1,
as shown in Figure 5.1. The system is defined as follows:

Π1 = (O, σi, σj, σk, syn, in, out), where:

(1) O = {a}.

(2) σi is an OR rule neuron with confidence factor τi. Its spiking rule is of
the form aα → aβ, where β = α ∗ τi.

(3) σj and σk are two proposition neurons associated with propositions pj
and pk with truth values αj and αk respectively. Their spiking rules are
of the form aα → aα.

(4) syn = {(j, i), (i, k)}.

(5) in = {σj}, out = {σk}.

A composite fuzzy conjunctive rule in the antecedent can be modelled by an
rFRSN P system Π2, as shown in Figure 5.2. The system is defined as follows:

Π2 = (O, σ1, σ2, . . . , σk, σk+1, syn, in, out), where:

(1) O = {a}.
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Figure 5.1: An rFRSN P system Π1 for simple fuzzy production rules

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions
pj(j = 1, 2, . . . , k) with truth values αj(j = 1, 2, . . . , k) respectively.
Their spiking rules are of the form aα → aα.

(3) σk+1 is an AND rule neuron with confidence factor τi. Its spiking rule is
of the form ak−1/aα → aβ, where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.

(5) in = {σ1, σ2, . . . , σk−1}, out = {σk}.
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Figure 5.2: An rFRSN P system Π2 for composite fuzzy conjunctive rules in
the antecedent

A composite fuzzy conjunctive rule in the consequent can be modelled by
an rFRSN P system Π3, as shown in Figure 5.3. The system is defined as
follows:

Π3 = (O, σ1, σ2, . . . , σk, σk+1, syn, in, out), where:

(1) O = {a}.

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions
pj(j = 1, 2, . . . , k) with truth values αj(j = 1, 2, . . . , k) respectively.
Their spiking rules are of the form aα → aα.

(3) σk+1 is an OR rule neuron with confidence factor τi. Its spiking rule is
of the form aα → aβ, where β = α ∗ τi.
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(4) syn = {(1, k + 1), (k + 1, 2), (k + 1, 3), . . . , (k + 1, k)}.

(5) in = {σ1}, out = {σ2, σ3, . . . , σk}.

Figure 5.3: An rFRSN P system Π3 for composite fuzzy conjunctive rules in
the consequent

A composite fuzzy disjunctive rule in the antecedent can be modelled by an
rFRSN P system Π4, as shown in Figure 5.4. The system is defined as follows:

Π4 = (O, σ1, σ2, . . . , σk, σk+1, syn, in, out), where:

(1) O = {a}.

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions
pj(j = 1, 2, . . . , k) with truth values αj(j = 1, 2, . . . , k) respectively.
Their spiking rules are of the form aα → aα.

(3) σk+1 is an OR rule neuron with confidence factor τi. Its spiking rule is
of the form ak−1/aα → aβ, where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.

(5) in = {σ1, σ2, . . . , σk−1}, out = {σk}.

5.5 Power system fault diagnosis modelling with

rFRSN P systems

This section briefly describes a relevant application of rFRSN P systems within
the area of fault diagnosis of power systems. For more detailed information,
see [130].
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Figure 5.4: An rFRSN P system Π4 for composite fuzzy disjunctive rules in
the antecedent

The contents of this section is as follows. Firstly, some preliminary con-
cepts and the associated problems about fault diagnosis will be introduced in
Section 5.5.1. Secondly, some general principles conercing the modelling of
fault diagnosis methods will be outlined in Section 5.5.2. Thirdly, the applica-
tion of rFRSN P systems to fault diagnosis will be brifely described in Section
5.5.3.

5.5.1 Essentials of electric power system fault diagnosis

Fault diagnosis of a power system is a complex process involving many different
sections such as generators, transmission lines, bus bars and transformers,
protected by a protective system consisting of protective relays, circuit breakers
(CBs) and communication equipments.

Fault diagnosis includes a number of processes, as fault detection, fault
section identification, fault type estimation, failure isolation and recovery [204].
Among the five processes, fault section identification is especially important.
When faults occur in a power system, protective relays detect the faults and
trip their corresponding circuit breakers (CBs) to isolate faulty sections from
the operation of this power system and guarantee the other parts can operate
normally.

The protective system of an electric power system is very important in fault
diagnosis, as well as the protection configuration of this protective system.
The protective relays consist of main protective relays (MPRs), first backup
protective relays (FBPRs) and second backup protective relays (SBPRs). It is
worth pointing out that there is not any FBPR for buses.
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5.5.2 Principles of fault diagnosis modelling

Fault diagnosis of power systems based on SN P systems belongs to the so–
called model–based fault diagnosis methods. The framework of fault diagnosis
in power systems using reasoning model-based method is described in detail
in [206, 55].

There are three essential parts in this framework: real-time data, static
data and a flowchart of identification fault sections.

1. Real-time data. The real-time data about the system, including protec-
tive relay operation and circuit breaker tripping information, is used to
estimate the outage areas to obtain candidate faulty sections using a
network topology analysis method, so as to reduce the subsequent com-
putational burden [55].

2. Static data. The static data, as the network topology and the protection
configuration of a power system, provide the starting point to build a
fault diagnosis model for each candidate section. The inputs of each
fault diagnosis model are initialized by both real-time data and static
data.

3. Flowchart to identify fault sections. Each diagnosis model performs some
reasoning algorithm to obtain fault confidence levels of candidate faulty
sections to determine the ones actually failing. The diagnosis results
include this faulty sections, along with their fault confidence levels.

In recent decades, fault diagnosis has been implemented by various ap-
proaches, such as expert systems, fuzzy logic, artificial neural networks, Petri
nets, Bayesian networks, multi Agent systems, optimization methods, cause-
effect networks or information theory, among others. Each method has its own
merits and demerits.

To a certain extent, these methods deal with the uncertainty in failure
processes with fast diagnosis speed, but it is difficult to dynamically describe
the fault information needed. Therefore, much attention should be paid to the
improvements of the aforementioned methods and the exploration of new ones
to solve fault diagnosis problems.

5.5.3 Fault diagnosis with rFRSN P systems

As just mentioned, significant efforts should be made in finding relevant im-
provements on the methods to model fault diagnosis in electrical power sys-
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tems, and new approaches to attack this kind of complex problems are more
than welcomed.

In this sense, fuzzy reasoning spiking neural P systems with real numbers
(rFRSN P systems) [130] have been proposed for solving fault diagnosis prob-
lems. To come up with this task, these systems make use of the so–called
fuzzy reasoning algorithm (FRA), as detailed in Section 10.4. In [130] fault
diagnosis in a transformer by rFRSN P systems is considered as a case study.

In order to use fuzzy production rules for this purpose, they need to be
mapped into rFRSN P systems, as extensively described in Section 5.4.1. An
application example might be used to test the feasibility and effectiveness of
rFRSN P systems and their associated algorithm (FRA) in the fault diagnosis
of a transformer. Thus, the following fuzzy production rules are obtained from
knowledge base of a transformer fault diagnosis system.



6
Software for Membrane Computing

6.1 Introduction

As previously discussed, Membrane Computing is a branch of Natural Com-
puting aiming to study computational devices, called membrane systems or
P systems, as abstractions inspired from the functioning and structure of liv-
ing cells. Contrary to other branches of Natural Computing, such as DNA
Computing, current human technology is unable to implement P systems on
their natural substrate, the biological cells. Hence, simulation tools, work-
ing on conventional electronic devices, are indispensable to further develop
Membrane Computing discipline. In this way, simulators are crucial assistants
when researching on P systems computational properties and their application
to relevant real-life problems. At this respect, a key design goal is develop-
ing simulators being as efficient as possible, as well as meeting the semantics
specifications of the simulated systems.

Software applications for Membrane Computing appeared right in the early
times of the discipline. With an increasing number of P systems models be-
ing introduced, several simulators were developed to handle many of them.
This resulted in the availability of a mix of coexisting tools, each one usually
targeting at a single variant and with its own way to specify the associated
models.

In 2009, P-Lingua framework is introduced [39], aiming to provide a unified

103
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software environment to define and simulate a wide variety of P systems mod-
els. P–Lingua consists of a general programming language for P systems called
P-Lingua itself and a Java [195] based open source library called pLinguaCore.
While P–Lingua language provides a common syntax for specifying P systems
variants, pLinguaCore provides both parsers and simulators for such variants.
The notable variety of supported models, both of the cell-like and tissue-like
kind, contributed to make P–Lingua widely used among members of the Mem-
brane Computing community, turning its specification language into a sort of
standard.

In [133], MeCoSim, a visual environment for P systems is introduced, aiming
to assist model designers and end users dealing with problems modelled after
membrane systems. On the one hand, MeCoSim provides model designers
with a graphic tool to design, simulate, analyse and verify their models. On
the other hand, end users are provided with customizable applications, whose
user interfaces are adapted for each problem, allowing them to enter the input
data and check the results. MeCoSim is built on top of P–Lingua: models are
specified in P–Lingua language and simulations are performed by executing
simulation algorithms, most of which are provided by pLinguaCore library
(also external simulators might be used).

With some remarkable exceptions (i.e. [36, 94]), it is worth pointing out
that the vast majority of software simulation tools for P systems works on
sequential platforms, using non-parallel-oriented programming languages such
as Java, CLIPS, Prolog or C, where performance is compromised. Sequential P
systems simulators performance is dramatically decreased as they serialize the
natural double massively parallelism of P systems: execution of rules within
each membrane, and the evolution of each membrane. Thus, the sequential
simulation time proportionally increases as long as the quantity of parallelism
presented in the P system. Although the last generation of commodity PCs
is able to support the fast execution of sequential simulators, thus managing
problem instances of enough size for current research lines [131], very large
instance sizes are still unfeasible for them. Handling such instances requires
shifting to parallel architectures. In this regard, High Performance Computing
(HPC) is the field which studies the set of techniques needed to accelerate the
execution of applications using parallel platforms. We can find these techniques
in modern supercomputers and new parallel architectures (GPUs, FPGAs,
CellBE, etc.).
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6.2 Membrane Computing software overview

In this Section, an overview of software applications related to P systems is
presented, in order to provide a context in which the work object of this disser-
tation is set. Including each existing piece of software would be an impossible
task, and would go beyond the scope of this document. An exhaustive refer-
ence about P systems simulators developed from 2000 to 2010 can be found
in [36], which serves as a basis for this overview. In addition, the reader inter-
ested on this is advised to check the software area of the P Systems Webpage
http://ppage.psystems.eu to stay updated with the latest application re-
leases.

The overview is structured as follows. Firstly, an introduction detailing
P systems software applications purpose and architecture is presented. To
continue, a reference on software applications is provided.

6.2.1 Purpose and architecture

According to [36], the purpose of P systems related software can be categorized
in the following way:

• Pedagogical use.

• Assistant in the formal verification of P systems models.

• Solve real-life problems modelled after P systems.

The expected users and interoperability of Membrane Computing applica-
tions differ depending on the their purpose. Software intended to pedagogical
use or to assist in formal verification tasks are usually targeted at P system
designers, while applications solving real-life problems are used by experts in
the domain of the processes under study. With respect to the interoperability,
while in the first and second scenarios P systems software applications usu-
ally works stand-alone, in the last one they may act as modules of complex
applications conforming problem solving suites.

Architecture of Membrane Computing related software is typically struc-
tured into three main modules: input (P system definition), core (simulation
engine itself), and output (presentation of results). A discussion on the features
of each module follows.

http://ppage.psystems.eu
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P system definition module

Simulating a P system requires providing the following information to the
simulator: the kind of P system model to be simulated, the initial membrane
structure and multisets of objects, the set of rules and, when simulating a
P system family, the corresponding values for the initial parameters. Three
alternatives exist when tackling the design of the P system definition module,
depending on how such definition is provided to the simulator: included into
the application source code, through a user interface or by means of external
files.

Including the P system definition into the source code is a good choice
when developing simulator prototypes, since it is the fastest alternative: the
same programming language to both develop the simulator and specify the P
system, saving time during the debugging and testing stages. Nevertheless,
this alternative presents important drawbacks when used for final versions.
Developing an application to simulate a single model is very uncommon and a
more than probable change in the P system definition would require accessing
and modifying the source code. This a difficult task to accomplish by end
users who may not have access to the code or not be familiarised with the
application programming language and its internal data structures, ultimately
experiencing a strong dependence on the programmer. Moreover, even when
the changes are made by the programmer, unnoticed bugs can be introduced.

Another option is to provide the P system definition through a user inter-
face, which is commonly supported on visual elements that can be manipulated
by the user, conforming a Graphic User Interface (or GUI for short). Design-
ing a good GUI to specify the P system definition is a hard task in comparison
to including it in the source code. It is a long and complex technical process
that requires continuous interaction with the different kind of users susceptible
to work with the application, in order to produce a friendly and flexible enough
solution satisfying their diverse needs. Nevertheless, this effort results in an
input module being highly independent from the rest of the application, thus
enabling its modification without adverse side effects and making it relatively
reusable, since it can be integrated in other products as long as they support
its same programming language and software dependencies.

Finally, it is also possible to write the P system definition in external files
that are processed or parsed by the input module of the simulator. In this way,
the definition of the P system is completely independent from the application,
being reusable for several software solutions that can share the same parsing
specification logic. Hybrid designs can also be considered, in which GUIs are
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used to load/edit/store the definitions residing in external files, increasing the
usability of the software. Alternatively, the edition of the files can be delegated
to well-known third party applications.

Simulation core module

This module is tasked with simulating the defined P system (already parsed
and checked by the input module), executing a simulation algorithm that cap-
tures its semantics and reproduces one or several computations. The simu-
lation core can be designed with a sequential or parallel orientation, which
will be ultimately constrained by the underlying hardware platform where it
is executed. In this way, while single CPUs allow an inexistent or reduced par-
allelism level, specialized architectures such as clusters, GPGPUs and FPGAs
allow a high level of real parallelism, enabling the execution of very efficient
simulators. On the other hand, the simulation algorithm can be designed to (a)
execute a single P system definition (typical in solutions where it is included
in the source code); (b) simulate a kind of P system models; or (c) execute
several kind of P system models sharing common semantics.

Presentation of results module

As previously stated, a P system simulation involves reproducing the configu-
rations of one or more computations. This process generates a huge amount
of information, relative to the membrane structure, object multisets, rules ex-
ecuted, etc. Nevertheless, this raw data is not always of interest for the user.
For an application intended to either pedagogical uses or to assist in the formal
verification of models, where the user is commonly a P systems designer, pro-
viding the full computation details is required. However, for those applications
oriented to solve real-life problems, where the user is an expert on the phenom-
ena under study and not necessarily familiar with the Membrane Computing
paradigm, a filtering process to extract relevant information is indispensable.

6.2.2 Software reference

In what follows, a reference about developed software for Membrane Comput-
ing is presented, which is largely based in [36]. The evolution of P systems
applications has taken place as the discipline itself has been developed, with
a change in the orientation of the tools, as mentioned above. Two software
generations (which are overlapped in time) can be identified. First generation
corresponds to software intended to pedagogical/teaching tasks related with
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P systems and to assist in the design and formal verification of complex P
systems, saving researchers from heavy hand-done calculations. As a result of
this, first generation tools provide full information related to computations,
thus requiring a large amount of resources to store/deal with that volume of
data. Consequently, they can only support small instance problems. In the
second generation, the focus shifts from studying P systems themselves to ap-
ply them to model and study real-world problems, specially in the field of
biology. In this generation, only relevant data for the user is handled by the
applications since getting solutions as efficiently as possible becomes one of the
main goals.

The first generation

Some well-known tools falling into the first generation of P system related
software are the following (a complete reference is listed in [36]):

• Malit,a Simulator (2000). Introduced in [91], it was the first developed
simulator. Intended for simulating transition P systems without mem-
brane division, this early simulator applied a restricted parallelism: in
each step, for each membrane, only one rule could be selected and sub-
sequently applied as many times as possible.

• Suzuki and Tanaka Simulator (2000). Introduced in [169], it was in-
tended for simulating transition P systems without membrane division,
with an important constraint: size of multisets was bounded. This sim-
ulator aimed to tackle real-life problems, being successfully used to sim-
ulate the Brusselator model as well as ecological systems [168].

• Balbotin et al. Simulator (2002). Introduced in [11], it was intended for
simulating transition P systems. This simulator outputs the computation
tree step by step until the desired number of evolution steps is reached.
Consequently, when the branching rate of the computation tree is large,
only a few steps can be simulated.

• Baranda Simulator (2002). Introduced in [9], it was intended for simu-
lating transition P systems based on a theoretical formalisation proposed
by members from the Natural Computing Group of the Technical Uni-
versity of Madrid [188].

• Ciobanu and Paraschiv Simulator (2002). Introduced in [27], it was in-
tended for simulating catalytic hierarchical cell systems and P systems
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with active membranes. It allowed interactive definition and visualiza-
tion of membrane systems and a graphical representation of the compu-
tation and final result.

• Sevilla Team Simulators (2004). Two simulators were developed by the
Sevilla Team [191] intended to assist in tasks related with the design and
formal verification of cellular solutions to NP–complete problems. The
first one was written in CLIPS and introduced in [134], while the second
one was implemented in Prolog and introduced in [31]. These simulators
were intended for assisting in the design and verification of cellular so-
lutions to NP–complete problems, with only confluent P systems being
considered.

The second generation

Some well-knows tools falling into the second generation of P system related
software are the following (a complete reference is listed in [36]):

• Ardelean and Cavaliere Simulator (2003). Introduced in [8], it was in-
tended for simulating a special variant of transition P systems, allowing
rewriting and symport/antiport rules. In this simulator, available rules
are applied in the maximally parallel mode by using the weak priority
approach. This software has been used to simulate several important
biological processes [19].

• Verona Team Simulator (2006). Psim simulator was introduced in [12],
intended for simulating metabolic P systems.

• Romero-Campero et al. Simulator (2006). Sevilla and Sheffield Teams
presented two software tools for simulating biological processes with P
systems by implementing the multi-compartmental Gillespie algorithm.
They have allowed addressing several real-life problems such as simula-
tion of pathways associated to the Epidermal Growth Factor Receptor
(EGFR) [141], simulation of FAS–induced apoptosis [26], modelling of
gene expression control [161], or a first computational model of Quorum
Sensing [160] in Vibrio Fischeri.

• Sedwards and Mazza Simulator (2007.) The Cyto-Sim simulator was
introduced in [163], intended for simulating stochastic processes at micro
and macro level.
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• Cazzaniga and Pescini Simulators (2006). One of them simulates the
gene regulation system of the bacterium Vibrio Fischeri using the multi-
compartmental Gillespie algorithm.

• Nishida Simulator (2006). This simulator implements the “membrane
algorithm” presented by Nishida in [113] for NP–complete optimization
problems.

Finally, two recent developments belonging to the second generation and
not included in [36] are:

• Meta P-lab (2009). Introduced in [18], this software consists in a virtual
laboratory aiming to assist designers in both understanding the inter-
nal mechanisms of biological systems and to forecast, in silico, their re-
sponse to external stimuli, environmental condition alterations or struc-
tural changes.

• Infobiotics Workbench (2011). Introduced in [14], it provides an inte-
grated software suite incorporating model specification, simulation, pa-
rameter optimization and model checking for Systems and Synthetic Bi-
ology.

6.3 P–Lingua framework

P–Lingua framework was introduced in [39] providing a general programming
language for P systems, called P–Lingua itself, and a Java [195] based open
source library called pLinguaCore. On the one hand, P–Lingua language pro-
vides a common syntax for specifying P systems of the cell-like, tissue-like
and, as a result of the work discussed in this dissertation, neural-like kind. On
the other hand, pLinguaCore library provides both parsers and simulators for
variants supported in P–Lingua language. The notable variety of supported
models has made P–Lingua a widely used software among members of the
Membrane Computing community, turning its specification language into a
sort of standard.

6.3.1 P–Lingua language

P–Lingua is the P systems specification language of P–Lingua framework. Its
main features are the following:



6.3. P–Lingua framework 111

• Specification provided in plain text files. In this way, the specification is
not coupled to any application, favouring interoperability.

• Close to real mathematical P systems specification language. As a result
of this, the learning curve for those familiar with Membrane Computing
paradigm is short.

• Parametrisation is allowed. Thus, P system families can be specified.

• Specification is organized into modules. This favours reusability, since
a piece of the specification can be used several times in the same or
different P–Lingua programs.

• Common syntax to specify several P systems variants. The language uses
the same directives to specify membrane structures, initial multisets, etc.
independently of the kind of the model defined.

• Easily extensible.

Fig. 6.1 shows a small specification in P–Lingua language, corresponding
to the definition of a simple P system with active membranes and membrane
division rules.

[a −→ a, b]1

b[ ]2 −→ [c]+2

[c]+2 −→ [d]2 [e]−2

1: @model<membrane_division>

2: def main()

3: {

4: @mu = [[]’2]’1;

5: @ms(1) = a;

6: [a --> a,b]’1;

7: b[]’2 --> +[c]’2;

8: +[c]’2 --> [d]’2 -[e]’2;

9: }

Figure 6.1: A simple P system specification in P–Lingua

In the P–Lingua definition (right), the following elements are specified: P
system variant (line 1), mandatory main module (line 2), initial membrane
structure (line 4), initial multisets (line 5), rules (lines 6-9).
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6.3.2 pLinguaCore library

pLinguaCore is a software library belonging to P–Lingua framework, providing
both parsers and simulators for supported variants in P–Lingua language, plus
other utilities. Its main features are the following:

• Implemented in Java1 [195]. Consequently, it is a multi-platform software
that can integrated with other Java based applications such as MeCoSim.

• Free software, released under GNU GPL license [194].

• Supports P system definitions in several input formats, that can be either
simulated or converted to other output formats.

• Multiple simulation algorithms provided. Each variant supported comes
with one or more simulation algorithms.

• Text interface.

pLinguaCore supports specifying P systems in the following file formats:

• P–Lingua language format. This is the “native” format in P-Lingua
framework enabling the specification of any supported variant. A refer-
ences list for P–Lingua format syntax is provided below.

• XML format. This format is intended for interoperability of the frame-
work with other general-purpose systems. Only cell-like variants can be
defined in XML format. Parametrisation is not supported.

• Binary format. This format is intended for interoperability of the frame-
work with CUDA simulators. As these simulators are expected to work
with really huge systems, a compact way to specify them becomes nec-
essary. At present, P systems with active membranes are supported,
with support for PDP systems to be incorporated in the next framework
version.

The previously described formats can be categorized into input or output
formats. Input formats provide P systems specifications to be either parsed
and simulated or compiled to a different output format by the corresponding
simulation and compilation tools included in pLinguaCore. These tools are
described in [45]. Supported input formats are P–Lingua and XML, while
output formats are XML and binary.

1 current version 5.0 of the library includes some kernel CUDA code that is compiled on
the fly along simulation.
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6.3.3 Currently supported P systems variants

Current version of P–Lingua framework is 5.0, which was released coinciding
with the publishing of this dissertation. A list of supported P systems variants
follows (full details about these variants can be found in previous Chapters).

• Cell-like systems. Introduced in [148], they are inspired from the hierar-
chical structure of eukaryotic cells. The following variants are supported:

– Transition P systems. The basic P systems were introduced in [148],
allowing definition of priority-based rules.

– Symport/antiport P systems. Introduced in [145], allowing only
communication rules of the symport or antiport kind.

– Active membranes with division rules. Introduced in [149], allowing
membrane multiplication by means of division of membranes. Sup-
port for object-fired membrane division rules of both elementary
and non-elementary membranes is included.

– Active membranes with creation rules. Considered for the first time
in [69] and [106], allowing membrane multiplication by means of
creation of membranes.

– Probabilistic P systems. Population Dynamics P systems, were in-
troduced with this specific denomination in [29]. This variant takes
its name from its original application to model phenomena related
to real-life ecosystems. It has also proved successful to deal with
other phenomena such as gene networks.

• Tissue-like systems. Introduced in [92, 93], they take inspiration from the
way in which cells organize and communicate within a net-like structure
in tissues. The following variants are supported:

– Tissue P systems with communication and division rules. Intro-
duced in [154], allowing only communication of objects among cells
(or the environment) and multiplication of cells through cell divi-
sion.

– Tissue P systems with communication and separation rules. In-
troduced in [121], allowing only communication of objects among
cells (or the environment) and multiplication of cells through cell
separation.
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• Neural-like systems. Introduced in [67]. Collectively called Spiking Neu-
ral P systems (SN P systems, for short), they are inspired from the way
in which neurons in the brain exchange information by means of the
propagation of spikes. The following variants are supported:

– SN P systems with neuron division and budding rules. Introduced
in [119], allowing neuron multiplication by means of division and
budding rules.

– SN P systems with functional astrocytes. Introduced in [86], al-
lowing astrocytes changing the synapse spike traffic according to
certain functions.

– SN P systems with hybrid astrocytes. Introduced in [123], allow-
ing astrocytes permitting (excitatory behaviour) or forbidding (in-
hibitory behaviour) synapse spike traffic according to a certain thresh-
old.

– SN P systems with anti-spikes. Introduced in [122], allowing anti-
spikes objects which take inspiration by the behaviour of matter vs.
anti-matter.

• Fuzzy Reasoning SN P systems. Introduced in [130], they incorporate
fuzzy diagnosis knowledge and reasoning elements into SN P systems, in
order to model fault diagnosis and other real-life problems. The following
variants are supported:

– Fuzzy Reasoning SN P systems with real numbers. These systems
were introduced in [130].

• Kernel P systems. Introduced in [50, 51], they aim to produce a single
model incorporating features from many other P systems variants, in
order to provide a unified modelling framework suitable to handle a wide
range of scenarios. The following variants are supported:

– Simple Kernel P systems. Introduced in [52]. Kernel P Systems
define a rather complex model; they encompass a wide range of
features from a variety of P system models. With the aim of pro-
viding, a simpler exploratory first step towards this direction was
introduced, through the formalization of a subset of Kernel P sys-
tems known as simple Kernel P systems (skP systems), including
several features and limiting the execution strategies of the former
ones.
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• Probabilistic Guarded P systems. Introduced in [43]. They comprise
a computational probabilistic framework which takes inspiration from
different Membrane Computing paradigms, mainly from Tissue-like P
systems, PDP systems and Kernel P systems. This variant proposes a
modelling framework for ecology in which inconsistency is handled by
the framework itself, instead of delegating to simulation algorithms.

• Numerical P systems. Introduced in [155]. A non-deterministic, parallel
model originally aimed to model the underlying uncertainty of econom-
ical processes. In these P systems, the traditional multisets of objects
associated with membranes are replaced by sets of numerical variables.
These variables evolve by means of programs associated with the mem-
branes. The following variants are supported:

– Enzymatic Numerical P systems. Introduced in [129]. Contrary to
Numerical P systems, this variant describes a deterministic model
of computation. Thus, instead of non-deterministically chosen, the
programs to be applied are controlled by specific variables known
as enzyme-like variables.

Both Numerical and Enzymatic Numerical P systems have been success-
fully applied for modelling robot controllers.

• Simple Regenerative P systems. Introduced in [46]. They aim to model
regenerative processes by means of P systems.

6.3.4 P–Lingua framework version history

P–Lingua has evolved trough its different versions, each one adding new sup-
ported models and implementing new simulation algorithms. Details on P–
Lingua framework (language syntax and library features) are spread over sev-
eral conference and journal papers as well as Ph.D. theses, that can be found at
[199]. The central Ph.D. thesis on the framework is [131]. Next, a chronologi-
cal enumeration of the different versions of P-Lingua framework is presented,
including the features of each version and related papers.

1. P-Lingua 1.0 [38]: only active membranes P systems with cell division
are supported.

2. P-Lingua 2.0 [44, 45]: support for several cell-like P system models is
added:
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• Transition P systems.

• Symport/antiport P systems.

• Active membranes with division rules.

• Active membranes with creation rules.

• Stochastic P systems.

• Probabilistic P systems.

3. P-Lingua 2.1 [100]: support for tissue-like P systems with division rules
is added.

4. P-Lingua 3.0 [97]: support for Population Dynamics P systems (PDP
Systems) is added, and several built-in simulators for this model are
included. Support of stochastic P systems is discontinued, in favour of
Infobiotics Workbench [14].

5. P-Lingua 4.0 [84, 85, 132]: support for tissue-like P systems separation
rules is added. Also, support for SN P systems is added, considering
the following elements2: neuron budding and division rules, functional
astrocytes, hybrid astrocytes and anti-spikes.

6. P-Lingua 5.0: Coinciding with the publishing of this dissertation, ver-
sion 5.0 is released, adding support for the following variants:

• Cell-like systems with symport/antiport rules and arbitrary number
of copies of initial environment objects2 [90].

• Limited Asynchronous SN P systems and Asynchronous SN P sys-
tems with Local Synchronization2 [88].

• Fuzzy Reasoning SN P systems with real numbers2 [130].

• Simple Kernel P systems [51, 52].

• Probabilistic Guarded P systems [43].

• Enzymatic Numerical P systems [48, 47].

• Simple Regenerative P systems [46].

2 support is added as a result of the work related to the object of this dissertation.
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6.4 MeCoSim (Membrane Computing Simu-

lator)

MeCoSim is a visual environment oriented to assist model designers and end
users who deal with problems modelled after P systems. While model design-
ers are interested in solving abstract problems by defining the corresponding
computational models, end users are interested in solving concrete instances
and may not be familiar with the Membrane Computing paradigm. On the
one hand, MeCoSim provides model designers with a graphic tool to design,
simulate, analyse and verify their models. On the other hand, end users are
provided with customizable applications, whose user interfaces are adapted
for each problem, allowing them to enter the input data and check the re-
sults. MeCoSim is built on top of P–Lingua: models are specified in P–Lingua
language and simulations are performed by executing simulation algorithms
provided by pLinguaCore library.

MeCoSim features can be reviewed in detail in [173]. Some of its main
features are the following:

• P–Lingua as its main inference engine. The MeCoSim GUI allows load-
ing, parsing and debugging models written in P–Lingua format. Besides,
available simulation algorithms can be selected for the corresponding
model variant.

• Extended support for parametrised models. MeCoSim enables handling
models whose parameters instantiation is not hardcoded in the model file.
To accomplish this, MeCoSim allows the definition of a custom interface
for each model. In this way, the user can enter the input data for the
model. Similarly, MeCoSim provides a parameter generation language
that can be used to specify how parameters are instantiated from the
input data.

• Customizable output. MeCoSim provides a mechanism to define which
output data should be computed from simulation results and how that
information should be displayed to the user. In this way, complex outputs
can be obtained through a post-processing that includes filtering and
grouping techniques. The output data can be displayed in tables and
charts.

• Plugins architecture. MeCoSim supports extending its core functionali-
ties through plugins. In this way, MeCoSim can make calls to Java-coded
libraries or external programs.
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• Invariant extraction support. A plugin allows MeCoSim to interoperate
with Daikon [193] invariant detector. A trace of the model/solution
computation is sent to Daikon and the result of the invariant detection
is shown.

• Formal verification support. Another plugin allows MeCoSim to interop-
erate with Spin [201] model checker. A Promela model checker language
file is generated from the model and scenario loaded that, after edition
to include the properties to verify, is sent to Spin.

• Repositories management. MeCoSim provides a repository system able
to handle public online resources, such as plugins, custom applications,
models and scenarios.

6.5 Parallel simulation of P systems

Most Membrane Computing simulators have been exclusively implemented
on sequential architectures, which constrain the theoretical maximum perfor-
mance that could be obtained by fully exploiting the parallel nature of P
systems. Consequently, simulators working on high performance architectures
come into scene. In what follows, we review these architectures and the cor-
responding developed P systems applications. Contents of this Section follows
from [43].

6.5.1 FPGA boards

A Field Programmable Gate Array (FPGA) circuit [162, 171, 174] is an array
of (a usually large number of) logic cells placed in a highly configurable infras-
tructure of connections. Each logic cell, also known as Control Logic Block
(CLB) can be programmed to realize a certain function [171].

The seminal work on parallel simulation of P systems on FPGA boards is
a Transition P system simulator by Petreska and Teuscher [142], working as
follows. Each membrane is a construct composed of an 8–bit register per object
in the alphabet, an 8–bit register to store the membrane label and one bit status
flag to indicate if the membrane is enabled (1) or disabled (0). Membranes are
connected by means of bidirectional buses. Instead of individually connecting
membranes to their children, each non–elementary membrane is connected to
one child, which is in turn connected to one of its siblings and so on, in a linked
list manner.
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All rules follow a common pattern, which is u→ v(v1, ini), (v2, out), where
i is the label of a children membrane and u, v, v1, v2 are multisets over the
alphabet. Upon the application of a rule, multiset u evolves into v, multiset
v1 is sent to membrane i and multiset v2 is sent to the parent membrane.
Rules are applied according to a priority list in a strong sense, which indicates
the order in which rules must be applied. Hence, their implementation is
non–deterministic as long as this priority list is randomly generated on each
simulation.

Rule registers in a membrane are connected to a circuit known as reac-
tor. In addition, each membrane integrates three arrays of 8–bit registers:
UpdateBuffer, FromUpperBuffer and ToUpperBuffer, each one with as many
positions as objects are in the alphabet. At every step, each applicable rule
issues an applicable signal. For every rule which has issued signal applicable,
the reaction circuit subtracts cardinalities in u from w and adds objects in v
to buffer UpdateBuffer, objects in v1 to buffer FromUpperBuffer in membrane
i and objects in v2 to buffer ToUpperBuffer. If the rule creates a membrane,
a disabled membrane is enabled, copying all information into the membrane
registers and setting its status flag to enabled. Finally, the membrane label
is set according to rule’s created membrane label. When all applicable rules
are applied, each membrane adds objects in buffer ToUpperBuffer to buffer
UpdateBuffer of its parent membrane. Next, each membrane adds objects in
UpdateBuffer and FromUpperBuffer into w. Finally, if the rule dissolves the
membrane, its status flag is set to disabled and all its objects are sent to its
parent membrane multiset registers. This structure is shown in Fig. 6.2.

Membrane bus wiring

Structure of a membrane
circuitry

Figure 6.2: Overview of Petreska and Teuscher’s FPGA Membrane Computing
simulator
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Another interesting work on the FPGA simulation of P systems is au-
thored by Nguyen et al. [110]. In their work, they present Reconfig–P, a
Java application which generates a FPGA circuit description out of Handel–C
code. Handel–C [82] is an automated synthesis language based on ANSI–C
for defining reconfigurable hardware at a high level of abstraction. Reconfig–P
integrates P Builder, an application which takes into account the variety of
specificities of the input P system and generates a circuit description accord-
ingly. Reconfig–P allows the designer to define plenty of fine–grained details
about the system to simulate, such as resource allocation approaches (object–
oriented and rule–oriented) [111] and conflict resolution strategies to resolve
object competition (time–oriented and space–oriented) [107, 108, 109, 111].
Reconfig–P supports membrane division and dissolution, by allocating cir-
cuitry for new membranes and freeing components from dissolved membranes.
In addition, Reconfig–P and P Builder are designed for extensibility, in such a
way that new P systems and features can be easily incorporated.

6.5.2 Microcontrollers

Microcontrollers have been also used to simulate P systems. Gutiérrez et
al. [56] proposed a network of these devices. The computational workload
is assigned to microcontroller PIC16F88. These devices are low-frequency
computers working at 20Mhz, 8 bits of bus width and 8 bits of word size.
Their relatively low cost ($1.90) makes them appropriate to assemble a massive
network, in which each one of them simulates a different membrane. Their
main drawback is its scarcity of memory, which implies that a different model
of microcontroller needs to be used to store data. In their solution, the authors
suggest devices of type 24LC1025 for memory storage. Due to their Harvard
architecture [164, 10], these devices are appropriate to hold different kind of
data: they contain a non–volatile memory (128 Kbytes) and a volatile memory.
In addition, they can work on fast mode (at 400Khz) and on slow mode (at
100Khz). However, although their embedded memory suffices to store local
data, external modules are required to store global variables.

To implement a general clock which synchronizes the whole system, micro-
controllers are connected to a Personal Computer (PC) which sets the current
execution time. The whole architecture is interconnected by a I2C, which de-
fines a synchronous, bidirectional protocol ensuring that information concern-
ing modification in the cardinality of objects due to the application of rules is
properly transmitted. They estimated the whole cost of a system composed
of 1000 membranes at about $10000, a much more affordable solution than
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cluster–based platforms. Figure 6.3 displays the architecture of the simulator.

General structure Monitoring and clock systems

Figure 6.3: General structure (left) and monitoring system (right) of a Mem-
brane Computing simulator based on microcontroller technology

6.5.3 Computer clusters

Distributed simulation on computer clusters adds up to the parallel approaches
considered to simulate P systems.

In their work, Ciobanu and Guo [28] present a simulator for P systems on
C++ which runs on a computer grid. Workload distribution was achieved by
using Message Passing Interface (MPI ) [117]. MPI is a popular middleware in
which chunks of data are transmitted among distributed nodes in a cluster by
means of function calls. These calls rely on low–level communication structures
such as sockets, semaphores, stubs and message buffers. The authors focus on
transition P systems, which do not implement membrane division. The P
system to simulate is specified on an input file. An output file is produced
containing the current configuration upon the halting of the simulator. In
the implementation, simulation of each membrane is allocated to a different
node in the grid. In each node, each rule is assigned to a different thread, in
such a way that rules are applied concurrently. Issuance of objects is achieved
by relying on MPI messages among nodes. When a node detects that there
are no more applicable rules at a time step, it sends a message to a central
node playing the role of the skin membrane. If, on a transition step, the skin
membrane receives such messages from all nodes in the grid, then it broadcasts
a halting signal to all nodes and the simulation halts. Rule priority is also
implemented on this simulator; prior to the application of a rule, its thread
checks that there are not applicable rules with higher priority. When object
competition among rules takes place, objects are assigned among competing
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rules at random, therefore implementing non–determinism. The simulator’s
interaction consoles are displayed on Figure 6.4.

There are also some works on the distributed simulation of P systems with
Hadoop [41], a popular framework for Parallel Computing based on the Map–
Reduce pattern [178]. This framework applies in parallel an operation Map
to each data and unifies the results of these operations by applying operation
Reduce.

Figure 6.4: Input (left) and output (right) from Ciobanu and Guo’s cluster
simulator

6.6 GPU Computing

In what follows, simulation of P systems by means of Graphic Processing Units
(GPUs) is discussed. Contents of this Section follows from [43], with updated
information included were appropriate. GPUs were originally devised as aux-
iliary computers to assist the main Central Processing Unit (CPU) in carrying
out graphical computations, but it became evident that the parallel archi-
tecture of GPUs could be successfully applied for other parallel applications.
Within a GPU-enabled device, graphical data is streamlined into the GPU
memory by using Direct Memory Address (DMA) [42] circuitry, thus releasing
the CPU from graphical computation. As new data chunks arrived at GPU
memory, they were dynamically allocated to idle graphic processors. This
workflow configures a Parallel Computing scheme: provided a certain degree
of independence between chunk processing, computations carried out at differ-
ent processors do not (at least heavily) depend on each other. This property is
called Data Parallelism. GPUs integrate auxiliary hardware to perform com-
mon graphical tasks, such as raytracing [158], antialiasing [103, 34] and pixel
shading [33]. In reference to general purpose application of GPU technology,
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Mark Harris, engineer at NVIDIA Corp., coined the term General–Purpose
GPU (GPGPU) Computing in 2002 [116]. Nevertheless, the lack of appropri-
ate development frameworks to implement general–purpose parallel algorithms
on GPUs prevented a big development hit in this application field: general–
purpose algorithms had to be translated to graphical structures, i.e., numerical
values had to be mapped to pixels and colour levels so that GPUs could process
them [116].

6.6.1 CUDA programming model

The appearance of GPGPU Computing software development kits (SDKs)
removed the previous translation requirement. In 2007 NVIDIA announced
CUDA (Compute Unified Device Architecture), a programming model specifi-
cally designed for GPGPU Computing. CUDA defines an abstraction of a GPU
known as grid, which mirrors the memory hierarchy and processor distribution
in commercial graphic cards. This abstraction allows the developer to allocate
resources and tasks among processors and memory segments without depend-
ing on any specific device. Hence, from the developer’s perspective, what runs
his program is a parallel architecture of processors, in which information is
expressed in terms of standard data structures.

An NVIDIA GPU is composed of a set of cores or Streaming Processors
(SPs), whose number varies with the graphic cards. SPs are arranged in
Streaming Multiprocessors (SMs). Each SP has access to a set of extremely low
latency registers and to a section of low latency shared memory along with the
other processors in the SM. All SPs, independently of their SM, have access
to a common region of high latency global memory, which reaches 4 GB in
modern Tesla cards [198].

In CUDA programming model [74, 116, 112], threads are arranged in blocks.
CUDA implements synchronization directives at a level of blocks and at a level
of the device as a whole. Threads in the same block have access to a common,
low–latency shared memory hidden from other blocks. Threads in a block can
be easily synchronized with barrier–like directives. In addition, each processor
integrates a set of almost immediate access registers and a quick–access local
memory. Moreover, all processor have access to a global, high–latency memory
to store massive amounts of data. Finally, all threads have access to large,
read–only memory units known as Constant and Texture data. This model is
represented in Figure 6.5.

On runtime, CUDA dynamically assigns bundles of threads or warps to
idle SMs. Each one of these threads executes the same code on different,
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Figure 6.5: The CUDA programming model

thread–dependent data. This Parallel Computing paradigm is known as Single
Instruction Multiple Data (SIMD). It is worth pointing out that the output
of the program should not depend on the order in which these warps are
computed. Otherwise, correct execution is not guaranteed [112]. Warps are
the smallest units of parallelism; if a warp is broken, then its whole execution
is performed sequentially.

CUDA/C++ is a programming language based on C/C++ which imple-
ments the CUDA programming model. A CUDA/C++ program is divided
into two main parts: the host part and the device part. The host is the part of
the code to be run on the CPU, whilst the device is the part to be executed on
the GPU [22]. The host part includes calls to functions belonging to the device
part or kernels. The device part can be composed by one or more kernels that
are suitable for execution on the GPU. A kernel executes a scalar sequential
program on a set of parallel threads. The programmer organizes these threads
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in two ways, showing the two levels of parallelism inside the kernel (threads
and thread blocks). In this way, both parts of the program can cooperate in
order to obtain a global result [112].

6.6.2 OpenCL

Another major standard in GPGPU Computing is OpenCL, a programming
language supported by a consortium of enterprises which seeks out interop-
erability between parallel technologies, not only limiting to GPU devices but
also including other platforms such as FPGA boards. Unlike CUDA, OpenCL
is a free standard, independent from any particular company [170, 104, 189].
OpenCL is also compatible with AMD devices, such as AMD Fusion cards
or Accelerated Processing Unit (APU) [186], which integrate GPU and CPU
features so as to achieve a higher performance than each one of its parts sepa-
rately. OpenCL is also compatible with Intel graphic cards and heterogeneous
architectures composed of a CPU and external computing peripherals, not only
GPUs but also FPGA boards and microcontroller networks. OpenCL defines
a programming model similar to CUDA, but with its own specificities. More
information about OpenCL can be found at [189].

6.6.3 GPGPU simulation in Membrane Computing

A variety of P system models have been simulated by applying GPGPU pa-
radigm. The parallel architecture of GPUs, along with its relatively easy pro-
gramming with GPGPU tools, accounts for its suitability as an appropriate
simulation platform for P systems. In what follows, we discuss GPGPU based
simulators developed for different P systems variants.

6.6.3.1 P systems with Active Membranes

The first Membrane Computing application on GPU technology was a simu-
lator for P systems with active membranes developed by Cecilia et al. [22]. In
their implementation, each step on a simulation consists on two stages: a selec-
tion stage and an execution one. Moreover, a simulator specifically developed
for a model of P systems with Active Membranes solving the SAT problem is
presented in [23, 21]. This simulator is limited to P systems with two mem-
brane levels: one for the skin membrane and other for its inner membranes.
That is, inner membranes must be elementary membranes. These restrictions
meet in the case of the SAT–solver P system introduced in their case study.
Only one computation is simulated, which is enough due to the fact that the
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simulated P systems in the family are recognizer P systems solving a decision
problem, and that family is sound and complete, hence it is confluent. In their
work, the authors reported execution times up to 63 times faster than the se-
quential counterpart. The experiments were undertaken on a Linux server with
a NVIDIA Tesla C1060 graphic card at 1.3 Ghz with 240 processors installed.

6.6.3.2 Spiking Neural P systems

The success obtained by Cecilia et al. encouraged Cabarle et al. [15, 16] to
develop a simulator for SN P systems on the same technology. The features
of these systems are challenging for implementing a GPGPU simulator. Rules
application depends on regular expressions, while rules might define a time
delay which states the number of step cycles after the rule issues spikes to its
neighbours. Due to the inherent difficulty in simulating the model, systems
without delays were first targeted. The implemented simulator is based on
a matrix representation of SN P systems [210], in which rule applications
are mapped into matrix operations. Taking advantage of the suitability of
GPUs for algebraic computing, these operations are accelerated on the GPU.
Their implementation sequentially matches the content of each neuron against
each rule’s expression. Then, it generates all spike trains conducing to all
possible next configurations. All feasible transition steps are applied in parallel,
repeating this process until a halting condition is met or until there is only
one possible next configuration. Finally, the authors report a 2.31x speedup
for 16 neurons in their benchmark, on a Linux server with two NVIDIA Tesla
C1060 graphic card like the one mentioned above. Some ideas of this matrix
representation are also used to simulate SN P systems with energy [72].

6.6.3.3 Population Dynamic P systems

Population Dynamics P (PDP) systems [29], is a framework that was initially
devised to model ecosystems. PDP systems are composed of a directed graph
whose nodes are called environments. Each one of these environments has
an inner cell–like membrane structure, and a set of rules which communicate
membranes inside and among environments. In PDP systems, the membrane
structure and associated rules inside each environment are the same, solely
varying the initial multisets and the probabilities associated with the rules in
each environment. In addition, each rule has an associated probability function
which dictates, provided it is applicable at a given configuration, how likely it
is to be applied.
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In their work, Mart́ınez–del–Amor et al. [99] first developed a C++ sim-
ulator for PDP systems, which was further improved with OpenMP [203].
OpenMP is a programming library for Uniform Memory Access (UMA) par-
allel architectures, that is to say, architectures in which memory is centralized
in a single device rather than distributed among nodes. This implementation
was later adapted to CUDA, so as to run it in NVIDIA graphic cards. This
simulator consists in a parallel implementation of DCBA algorithm (see [98]
for further details). The authors achieve an acceleration up to 7x in compar-
ison with its sequential counterpart and up to 3x compared to a 4–core CPU
using OpenMP. This result proves the power of GPGPU Computing on the
field of Membrane Computing simulation, and shows some limitations on the
parallel simulation of P systems since it is memory bandwidth–bounded. Like
in the case described above, the simulations were carried out on a Linux server
with two NVIDIA Tesla C1060 graphic cards.

6.6.3.4 Kernel P systems

Recently, a simulator on Simple Kernel P systems has been developed by Ipate
et al. [68] In this model, in order for a rule to be applied, it is not enough
the availability of the objects acting as reactants with the needed amount. In
addition to that constraint, a condition over a set of objects must be satisfied.
In their work, the authors test their simulator on a P system solving the Subset
Sum problem [37]. Although authors do not precisely specify how the non–
determinism is implemented in their simulator, they report an acceleration of
10x for 16 subsets. In this case, the authors employed a personal computer
with Windows 7 Professional and a NVIDIA GeForce GT650M with 1 GB of
dedicated RAM installed.

6.6.3.5 Tissue P systems

Mart́ınez–del–Amor et al. [35, 96] developed a GPU-based simulator for a
specific solution to SAT with tissue P systems with cell division. Their im-
plementation consists of five separate stages, as follows: generation, exchange,
synchronization, checking and output. These phases are tightly coupled to
the problem at hand and, due to their lack of generality, are not described
here. The problem addressed by the simulator consists in simulating a P sys-
tem family which solves the SAT problem (we refer to [153] for more details).
They obtained an acceleration factor up to 10x by running their simulations
on the aforementioned Linux server with two NVIDIA C1060 graphic cards.
Furthermore, this work served as the basis of a broader objective, in order to
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study which P system features are managed better by the GPU than by the
CPU. This study was conducted by comparing the simulator for the model
solving the SAT problem with P systems with active membranes and this
tissue simulator. Results show that the simulator for the model with active
membranes runs faster on the GPU (63x vs 10x) due to the usage of charges
and non–cooperative rules.

6.6.3.6 Enzymatic Numerical P systems

A sequential Java-based simulator for Numerical P systems (namely SNUPS )
was developed by Arsene et al. [115]. On the other hand, Garćıa–Quismondo
et al. [43, 47, 48] developed a GPU–based simulator (namely ENPSCUDA)
and a C++ one (namely ENPSC++) in order to conduct the performance gain
analysis. The CUDA simulator was run on an NVIDIA GeForce GTX 460M,
with authors reporting a maximum speed–up factor of about 90x achieved
on the comparison between ENPSCUDA and SNUPS, for a dummy model.
However, the maximum speed–up factor obtained between ENPSCUDA and
ENPSC++ was only 6.5x. The maximum speed–up factor on the simulation
for another model was about 49x on the SNUPS vs ENPSCUDA comparison
and about 10x on the ENPSC++ vs ENPSCUDA comparison.

6.6.3.7 Probabilistic Guarded P systems

Probabilistic Guarded P systems (PGP systems, for short) are intended to
simulate real–life phenomena, specifically attached to ecological processes. In
[43], author introduces a GPU–based simulator (namely PGPCUDA) and a
C++ one (namely PGPC++) in order to conduct the performance gain anal-
ysis. The simulators are used to study a model of the Pieris napi oleracea [73].
In all scenarios, the model was simulated for 10 years varying the number of
simulations per instance. Contrarily to what it would be expected, PGPC++
outperformed PGPCUDA from the very beginning, so the author concluded
that further research remained to be conducted.

6.6.4 The PMCGPU project

PMCGPU project, a result of the work object of [94], was born to provide P
system simulators working on HPC platforms, concretely on the GPU. PM-
CGPU project consists of several subprojects, aiming to simulate different P
systems models:
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• PCUDA: the first P system simulator based on CUDA. It supports P
systems with active membranes, with sequential and parallel versions.

• PCUDASAT : a branch of PCUDA, aiming to a fast simulation of a
family of P systems with active membranes solving SAT. It is an ad-hoc
(non-flexible) platform, so that it behaves as a SAT solver by means of P
systems.

• TSPCUDASAT : a branch of PCUDASAT. A family of tissue P systems
with cell division solving SAT is simulated in a fast and scalable way.

• ABCD-GPU : a project on the simulation of PDP systems. It includes
C++ based simulators running on both multicore (by the OpenMP [203]
library) and manycore (by CUDA) platforms.

6.7 Hardware specifications

All simulations reported in this work have been performed on a laptop with a
NVIDIA GT 520M card and an Intel i5 as CPU processor, as shown in Table
6.1.

Feature Value
CPU Processor Intel i5

CPU RAM Memory 4 GB DDR3
CPU Cache Memory 3 MB

CPU Clock Frequency 2.4 GHz
GPU Model NVIDIA GT 520M

Number of GPU Cores 48
GPU Clock Frequency 1.48 GHz

GPU Memory 3 GB DDR3, shared
GPU Memory Clock Frequency 1.6 GHz

Table 6.1: Hardware specifications of the laptop in which the simulations in
this work have been carried out
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7
New frontiers of the efficiency

In Chapter 3, the computational efficiency of different models in membrane
computing has been presented and new techniques and tools have been de-
veloped to tackle the P versus NP problem. For that, two framework has
been considered: cell-like P systems with active membranes (with or without
using electrical charges) and tissue-like P systems with cell division or cell sep-
aration. In both cases, the communication rules are different. In the case of
cell-like P systems, evolution rules, send-in and send-out rules and dissolution
rules are considered. In the case of tissue-like P systems, communication rules
have been implemented by using symport/antiport rules.

In this chapter, cell-like P systems with symport/antiport rules are con-
sidered and their computational efficiency is studied when membrane division
rules or membrane separation rules are allowed.

7.1 Introduction

Cell membranes contain a variety of transport proteins, each of which is respon-
sible for transferring solute (inorganic ions, small organic molecules, or both)
across the biological membranes. There are two classes of membrane transport
proteins: transporters and channels. If a solute is present at a higher concen-
tration outside the cell than inside and an appropriate channel or transporter
is present in the plasma membrane, the solute will move spontaneously ac-

133
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cross the membrane down its concentration gradient into the cell by passive
transport, without expenditure of energy by its membrane transport protein.
Active transport of solutes against their electrochemical gradient is essential to
maintain the intracellular ionic composition of cells and to import molecules
that are at a lower concentration outside the cell than inside. Transporters
are integral membrane proteins which is involved in movement of two or more
different types of solutes at the same time across biological membranes. If
the transporter moves solutes in the same direction across the membrane, it
is called a symporter (Figure 12–16). If it moves them in opposite directions,
it is called an antiporter. A transporter that ferries only one type of solute
across the membrane (and is therefore not a coupled transporter) is called a
uniporter [1].

Channels form aqueous pores across the lipid bilayer through which solutes
can diffuse. Whereas solute transfer carried out by transporters can be active
or passive, transport by channels is always passive. Most channels are selective
ion channels, which allow inorganic ions of appropriate size and charge to cross
the membrane down their electrochemical gradients.

These kinds of transports have been incorporated in the framework of mem-
brane computing by means of rewritting rules called symport/antiport rules.
Specifically, cell-like P systems with symport/antiport rules were introduced in
[145], aiming to abstract the biological phenomenon of trans-membrane trans-
port of couples of chemical substances, in the same or in opposite directions,
and the computational completeness of these models has been established (five
membranes are enough if at most two objects are used in the rules). On the
other hand, networks of membranes which compute by communication only,
using symport/antiport rules were considered in [146] (tissue P systems with
symport/antiport rules). These networks aim to abstract networks of elemen-
tary cells such that some of them are linked by “communication channels”
abstracting the trans-membrane transport of chemical substances, in the same
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or opposite directions. Such rules are used both for communication with the
environment and for direct communication between different membranes. It
is worth noting that, in these systems, the environment plays an active role
because we cannot only send objects outside the system, but we can also bring
in objects from the environment. In [146] networks with a small number of
membranes were proved to be computationally universal.

Two relevant processes take place in eukaryotic cells take place: mitosis
and membrane fission. The first one is a nuclear division process during which
one cell gives place to two genetically identical children cells. Membrane fis-
sion occurs when a membrane gives place to two separated membranes, that is,
whenever a vesicle is produced or a larger subcellular compartment is divided
into smaller discrete units. These processes have been a source of inspiration
to incorporate new syntactical ingredients in membrane computing in order to
be able to produce exponential workspace in polynomial – often linear – time.
Specifically, inspired by the mitosis process, membrane division rules were de-
fined in the framework of cell-like P systems providing computing devices called
P systems with active membranes [150]). By applying this kind of rules, the
object triggering them is replaced by other objects into the new membranes
and the remaining objects are duplicated. The biological phenomenon of mem-
brane fission was incorporated in Membrane Computing through a new kind of
rules, called membrane separation rules, in the framework of polarizationless P
systems with active membranes [2]. These rules were originally associated to
(eventually) different subsets of the working alphabet. Nevertheless, in [118]
a new definition of separation rules in the framework of P systems with active
membranes was introduced. In the new definition there exists a partition of the
working alphabet in two subsets such that each separation rule is associated
to that given partition. By applying this kind of rules, the object triggering
them is consumed and the remaining objects are distributed both in the created
membranes.

7.1.1 P Systems with Symport/Antiport Rules

In this section, we introduce a kind of cell-like P systems that use communica-
tion rules capturing the biological phenomenon of trans-membrane transports
of several chemical substances. Specifically, two processes have been consid-
ered. The first one allows a multiset of chemical substances to pass through a
membrane in the same direction. In the second one, two multisets of chemi-
cal substances (located in different biological membranes) only pass with the
help of each other (an exchange of objects between both membranes). In what
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follows, we introduce an abstraction of these operations in the framework of
P systems with symport/antiport rules following [146]. In these models, the
membranes are not polarized.

7.1.1.1 Basic P Systems with Symport/Antiport Rules

Definition 7.1. A P system with symport/antiport rules of degree q ≥ 1 is a
tuple Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Γ is a finite alphabet;

2. E ( Γ;

3. µ is a membrane structure (a rooted tree) whose nodes are injectively
labelled with 1, 2 . . . , q (the root of the tree is labelled by 1);

4. M1, . . . ,Mq are finite multises over Γ;

5. R1, · · · ,Rq are finite set of communication rules of the following forms:

? Symport rules: (u, out) or (u, in), where u is a finite multiset over
Γ such that |u| > 0;

? Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ
such that |u| > 0 and |v| > 0;

6. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules of degree q

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a
hierarchical structure µ given by a rooted tree whose root is called the skin
membrane, such that: (a)M1, . . . ,Mq represent the finite multisets of objects
initially placed in the q membranes of the system; (b) E is the set of objects
initially located in the environment of the system, all of them available in an
arbitrary number of copies; (c) R1, · · · ,Rq are finite sets of communication
rules over Γ (the set Ri is associated with the membrane i of µ); and (d) iout
represents a distinguished zone which will encode the output of the system.
We use the term zone i (0 ≤ i ≤ q) to refer to membrane i in the case 1 ≤ i ≤ q
and to refer to the environment in the case i = 0. The length of rule (u, out)
or (u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u|+ |v|).
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For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we
denote by p(i) the parent of membrane i in the rooted tree µ. We define
p(1) = 0, that is, by convention the “parent” of the skin membrane is the
environment.

If the alphabet of the environment is an empty set then we say that the P
system is without environment. This term means that there is not any objects
initially located in the environment of the system available in an arbitrary
number of copies, that is, in P systems without environment there is an en-
vironment (labelled by 0 as usual) but in any moment each object in it has a
finite multiplicity.

An instantaneous description or a configuration at an instant t of a P system
with symport/antiport rules is described by the membrane structure at instant
t, all multisets of objects over Γ associated with all the membranes present
in the system, and the multiset of objects over Γ \ E associated with the
environment at that moment. Recall that there are infinite copies of objects
from E in the environment, and hence this set is not properly changed along the
computation. The initial configuration of the system is (µ,M1, · · · ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an
instant t if membrane i is in Ct and multiset u is contained in such membrane.
When applying a rule (u, out) ∈ Ri, the objects specified by u are sent out
of membrane i into the region immediately outside (the parent p(i) of i), this
can be the environment in the case of the skin membrane.

A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant
t if membrane i is in Ct and multiset u is contained in the parent of i. When
applying a rule (u, in) ∈ Ri, the multiset of objects u goes out from the parent
membrane of i and enters into the region defined by the membrane i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at
an instant t if membrane i is in Ct and multiset u is contained in such mem-
brane, and multiset v is contained in the parent of i. When applying a rule
(u, out; v, in) ∈ Ri, the objects specified by u are sent out of membrane i into
the parent of i and, at the same time, bringing the objects specified by v into
membrane i.

The rules of a P system with symport/antiport rules are applied in a non-
deterministic maximally parallel manner: at each step we apply a multiset of
rules which is maximal, no further applicable rule can be added.

Let us fix a P system with symport/antiport rules Π. We say that configu-
ration C1 yields configuration C2 in one transition step, denoted by C1 ⇒Π C2,
if we can pass from C1 to C2 by applying the rules from R1∪· · ·∪Rq following
the previous remarks. A computation of Π is a (finite or infinite) sequence
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of configurations such that: (a) the first term of the sequence is the initial
configuration of the system; (b) each non-initial configuration of the sequence
is obtained from the previous configuration by applying rules of the system in
a maximally parallel manner with the restrictions previously mentioned; and
(c) if the sequence is finite (called halting computation) then the last term of
the sequence is a halting configuration (a configuration where no rule of the
system is applicable to it).

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output zone iout in the halting configuration. If C = {Ct}t≤r
(r ∈ IN) is a halting computation of Π, then r is the length of C, denoted by
|C|, that is, |C| is the number of non-initial configurations which appear in the
finite sequence C. We denote by Ct(i), 1 ≤ i ≤ q, the multiset of objects over Γ
contained in the membrane labelled by i at configuration Ct. We also denote
by Ct(0) the multiset of objects over Γ \ E contained in the environment at
configuration Ct.

7.1.1.2 P Systems with Symport/Antiport Rules and Division Rules

Definition 7.2. A P system with symport/antiport rules and membrane di-
vision of degree q ≥ 1 is a tuple Π = (Γ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iout),
where:

1. (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/an-
tiport rules.

2. Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the following forms:

(a) Communication rules:

(a.1) Symport rules: (u, out) or (u, in), where u is a finite multiset
over Γ such that |u| > 0;

(a.2) Antiport rules: (u, out; v, in), where u, v are finite multisets
over Γ such that |u| > 0 and |v| > 0;

(b) Division rules: [ a ]i → [ b ]i [ c ]i, where a, b, c ∈ Γ, i ∈ {2, . . . , q},
i 6= iout, and i is the label of a leaf of the tree µ;

3. iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules and membrane division is a P
system with symport/antiport rules where division rules of cells are allowed.
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A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at
an instant t if the following holds: (a) there exists a membrane labeled with
i in Ct; (b) object a is contained in such membrane; and (c) that membrane
is neither the skin membrane nor the output membrane (if iout ∈ {1, . . . , q}).
When applying a division rule [a]i → [b]i[c]i to a membrane labeled with i,
under the influence of object a, the membrane is divided into two new ones
with the same label; in the first new membrane, object a is replaced by object
b, in the second one, object a is replaced by object c; all the other objects
residing in such membrane are replicated and a copy of them is placed in each
one of the two new membranes.

With respect to the semantics of P systems with symport/antiport rules
and membrane division, rules are applied in a non-deterministic maximally
parallel manner with the following important remark: when a membrane i is
affected by a division rule at a computation step, this is the only rule from Ri

which can be applied to such membrane at that step. The new membranes
resulting from division could participate in the interaction with other mem-
branes or the environment by means of communication rules at the next step
– providing that they are not divided once again. The label of a membrane
precisely identifies the rules which can be applied to it.

7.1.1.3 P Systems with Symport/Antiport Rules and Separation
Rules

Definition 7.3. A P system with symport/antiport rules and membrane sep-
aration of degree q ≥ 1 is a tuple

Π = (Γ,Γ0,Γ1, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

where:

1. Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with sym-
port/antiport rules.

2. {Γ0,Γ1} is a partition of Γ, that is, Γ = Γ0∪Γ1, Γ0,Γ1 6= ∅, Γ0∩Γ1 = ∅;

3. R1, · · · ,Rq are finite set of rules of the form:

(a) Communication rules:

(a.1) Symport rules: (u, out) or (u, in), where u is a finite multiset
over Γ such that |u| > 0;
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(a.2) Antiport rules: (u, out; v, in), where u, v are finite multisets
over Γ such that |u| > 0 and |v| > 0;

(b) Separation rules: [a]i → [Γ0]i[Γ1]i, where i /∈ {1, iout} and a ∈ Γ.

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct at
an instant t if the following holds: (a) there exists a membrane labelled with
i in Ct; (b) object a is contained in such membrane; and (c) that membrane i
is neither the skin membrane nor the output membrane (if iout ∈ {1, . . . , q}).
When applying a separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri, in reaction with an
object a, the membrane i is separated into two membranes with the same label;
at the same time, object a is consumed; the objects from Γ0 are placed in the
first membrane, those from Γ1 are placed in the second membrane.

With respect to the semantics of these variants, the rules of such P systems
are applied in a non-deterministic maximally parallel manner (at each step we
apply a multiset of rules which is maximal, no further applicable rule can be
added), with the following important remark: when a membrane i is separated,
the separation rule is the only one from Ri which is applied for that membrane
at that step (however, some rules can be applied in a daughter membrane). The
new membranes resulting from separation could participate in the interaction
with other membranes or the environment by means of communication rules
at the next step – providing that they are not divided (resp. separated) once
again. The label of a membrane precisely identify the rules which can be
applied to it.

The concept of recognizer membrane systems and the concept of efficient
solvability by means of families of membrane systems are extended to P sys-
tems with symport/antiport rules and membrane division or membrane sep-
aration, in a natural way. We denote by CDC(k) (resp. CSC(k)) the class
of recognizer P systems with membrane division (resp. membrane separation)
such that the communication rules (symport/antiport rules) of the system have

length at most k. We also denote by ĈDC(k) (resp. ĈSC(k)) the class of rec-
ognizer P systems with membrane division (resp. membrane separation) and
without environment such that the communication rules of the system have
length at most k. If R is a class of recognizer P system, we denote by PMCR
the set of all decision problems which can be solved in polynomial time (and
in a uniform way) by means of membrane systems from R.
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7.2 Feasibility of Cell-like P Systems with Sym-

port/Antiport

In this section, we investigate the limitation on the computational efficiency
(ability so solve hard problems in polynomial time) in P systems with symport
rules and with membrane division or membrane separation.

7.2.1 A characterization of P by using families from
CDC(1)

First, we study the feasibility of P systems with membrane division and with
symport rules with no cooperation, that is, by using communication rules
involving only one object. Specifically, we show that the polynomial complexity
class associated with the class of recognizer P systems from CDC(1) is equal
to the class P, that is, P = PMCCDC(1)

Let Π = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a recognizer P
system from CDC(1). We denote by M∗

j , 1 ≤ j ≤ q, the multiset over
Γ×{j} obtained fromMj by replacing a ∈ Γ with (a, j). In addition, for each
finite multiset m over Σ, we denote m∗ the multiset over Σ × {iin} obtained
from Mj by replacing a ∈ Σ with (a, iin).

The rules from R1 ∪ · · · ∪ Rq are of the following form: (a, out), (b, in)
and [a]i → [b]i [c]i. These rules can be considered, in a certain sense, as a
dependency between the object triggering the rule and the object produced by
its application.

• The rules inRi of type (a, out) can be described as the pair (a, i) produces
the pair (a, p(i)).

• The rules in Ri of type (b, in) can be described as the pair (b, p(i))
produces the pair (b, i).

• The rules in Ri of type [a]i → [b]i [c]i can be described as the pair (a, i)
produces the pairs (b, i) and (c, i).

We formalize these ideas in the following definition.

Definition 7.4. Let Π = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a
recognizer P system from CDC(1). The dependency graph associated with Π
is the directed graph GΠ = (VΠ, EΠ) defined as follows:
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• The set of vertices is VΠ = {s} ∪ V LΠ ∪ V RΠ, where:

V LΠ = {(a, i) ∈ Γ× {0, . . . , q} | [(a, out) ∈ Ri] ∨ [∃j ∈ ch(i)((a, in) ∈ Rj)]∨
[∃b, c ∈ Γ ([a]i → [b]i[c]i ∈ Ri])};

V RΠ = {(a, i) ∈ Γ× {0, . . . , q} | [(a, in) ∈ Ri] ∨ [∃j ∈ ch(i)((a, out) ∈ Rj)]∨
[∃b, c ∈ Γ([b]i → [a]i[c]i ∈ Ri)]}.

• The set of edges is:

EΠ = {(s, (a, j)) | 1 ≤ j ≤ q ∧ (a, j) ∈M∗j}∪
{((a, i), (b, j)) ∈ VΠ × VΠ | [a = b] ∧ [j = p(i) ∧ (a, out) ∈ Ri] ∨

[a = b] ∧ [i = p(j) ∧ (a, in) ∈ Rj ] ∨
[i = j] ∧ [∃c ∈ Γ ([a]i → [b]i[c]i ∈ Ri)]}.

In what follows, we show that the dependency graph associated with a P
system from CDC(1), can be constructed by a single deterministic Turing
machine working in polynomial time.

Proposition 7.1. Let Π = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a
recognizer P system from CDC(1). There exists a Turing machine that con-
structs the dependency graph, GΠ, associated with Π, in polynomial time (that
is, in a time bounded by a polynomial function depending on the total number
of rules and the maximum length of the rules).

Proof. Given a recognizer P system Π from CDC(1) whose set of rules is
R = R1∪· · ·∪Rq, a deterministic algorithm that constructs the corresponding
dependency graph is the following:

Input: (Π,R)

VΠ ← {s}; EΠ ← ∅
for j = 1 to q do

for each pair (a, j) ∈M∗
j do

EΠ ← EΠ ∪ {(s, (a, j))}
end for

end for

for each rule r ∈ R of Π do

if r = (a, in) ∈ Ri then

VΠ ← VΠ ∪ {(a, p(i)), (a, i)}; EΠ ← EΠ ∪ {((a, p(i)), (a, i))}
end if

if r = (a, out) ∈ Ri then
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VΠ ← VΠ ∪ {(a, i), (a, p(i))}; EΠ ← EΠ ∪ {((a, i), (a, p(i)))}
end if

if r = [a]i → [b]i[c]i ∈ Ri then

VΠ ← VΠ ∪ {(a, i), (b, i), (c, i)};
EΠ ← EΠ ∪ {((a, i)), (b, i))} ∪ {((a, i), (c, i))}

end if

end for

The running time of this algorithm is bounded by O(|R|) ⊂ O(q · |Γ|3).

Proposition 7.2. Let Π = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a
recognizer confluent P system from CDC(1). The following assertions are
equivalent:

(1) There exists an accepting computation of Π.

(2) There exists a path (with length greater than or equal to 2) from s to
(yes, 0) in the dependency graph associated with Π.

Proof. (1) ⇒ (2). First, by induction on the length n of C, we show that for
each accepting computation C of Π there exists a path from s to (yes, 0) in
the dependency graph associated with Π.

Let n = 1 and C = (C0, C1) be an accepting computation of Π with length
1. Then, a rule of the form (yes, out) ∈ R1, with a ∈ Γ, has been applied
at initial configuration C0. Then, yes ∈ C0(1), so (yes, 1) ∈ M∗

1. Hence,
(s, (yes, 1), (yes, 0)) is a path from s to (yes, 0) with length 2, in the depen-
dency graph associated with Π.

Let us suppose that the result holds for n. Let C = (C0, C1, . . . , Cn, Cn+1)
be an accepting computation of Π with length n + 1. In this situation,
C ′ = (C1, . . . , Cn, Cn+1) is an accepting computation of the system Π′ =
(Γ, E ,Σ, µ,M′

1, . . . ,M′
q,R1, . . . ,Rq, iin, iout), withM′

j = {(a, i) ∈ Γ×{0, . . . , q} |
C1(j) = a} being the “content” of membrane j in configuration C1, for 1 ≤ j ≤
q. By induction hypothesis there exists a path γC′ = (s, (b1, i1), . . . , (yes, 0))
from s to (yes, 0) in the dependency graph associated with Π′ (with length
greater than or equal to 2). We distinguish two cases.

• If b1 ∈ C0(i1) (meaning that in the first step of computation C, a division
rule has been applied to membrane i1 such that object b1 does not appear
in the rule), then γC = (s, (b1, i1), . . . , (yes, 0)) is a path from s to (yes, 0)
in the dependency graph associated with Π, and the result holds.
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• Otherwise, there is an element b0 ∈ C0(i0) producing (b1, i1) at the first
step of computation C. Hence, γC = (s, (b0, i0), (b1, i1), . . . , (yes, 0)) is a
path from s to (yes, 0) in the dependency graph associated with Π, and
the result holds.

(2) ⇒ (1). By induction on the length k of the path, let us show that for
each path from s to (yes, 0) in the dependency graph associated with Π, with
length k ≥ 2, there exists an accepting computation of Π.

Let k = 2 and (s, (a0, i0), (yes, 0)). Then, i0 = 1 is the label of the skin
membrane, (a0, out) ∈ R1, a0 = yes, and the computation C = (C0, C1) is
an accepting computation of Π, where the rule (a0, out) ∈ R1 belongs to the
multiset of rules that yields configuration C1 from C0.

Let us suppose that the result holds for k ≥ 2, and let (s, (a0, i0), (a1, i1), . . . ,
(ak−1, ik−1), (yes, 0)) be a path from s to (yes, 0) in the dependency graph of
length k + 1. If (a0, i0) = (a1, i1), then the result holds by induction hy-
pothesis. Otherwise, let C1 be a configuration of Π reached from C0 by the
application of a multiset of rules containing a rule that yields (a1, i1) from
(a0, i0). Then (s, (a1, i1), . . . (ak−1, ik−1), (yes, 0)) is a path from s to (yes, 0)
of length k in the dependency graph of associated with the system Π′ =
(Γ, E ,Σ, µ,M′

1, . . . ,M′
q,R1, . . . ,Rq, iin, iout), where M′

j = {(a, i) | (a, i) ∈
C1(j)} is the content of membrane j in configuration C1, for 1 ≤ j ≤ q. By
induction hypothesis, there exists an accepting computation C ′ = (C1, . . . , Ct)
of Π′. Hence, C = (C0, C1, . . . , Ct) is an accepting computation of Π.

Corollary 7.1. Let X = (IX , θX) be a decision problem. Let Π = {Π(n) | n ∈
N} be a family of recognizer P systems from CDC(1) solving X, according to
Definition 2.14. Let (cod, s) be the polynomial encoding associated with that
solution. Then, for each instance u of the problem X the following assertions
are equivalent:

(a) θX(u) = 1, that is, the answer to the problem is yes for u.

(b) There exists a path from s to (yes, 0) in the dependency graph associated
with the system Π(s(u)) with input multiset cod(u).

Proof. Let u ∈ IX . Then θX(u) = 1 if and only if there exists an accepting
computation of the system Π(s(u)) + cod(u). Bearing in mind that Π(s(u)) +
cod(u) is a confluent system, from Proposition 7.2, we deduce that θX(u) = 1
if and only if there exists a path from s to (yes, 0) in the dependency graph
associated with the system Π(s(u)) + cod(u).
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Theorem 7.1. P = PMCCDC(1).

Proof. We have P ⊆ PMCCDC(1) because PMCCDC(1) is a nonempty class
closed under polynomial–time reduction. Next, we show that PMCCDC(1) ⊆
P. For that, let X ∈ PMCCDC(1) and let Π = (Π(n))n∈N be a family of
recognizer P systems from CDC(1) solving X, according to Definition 2.14.
Let (cod, s) be the polynomial encoding associated with that solution. We
consider the following deterministic algorithm:

Input: An instance u of X

- Construct the system Π(s(u)) + cod(u)

- Construct the dependency graph GΠ(s(u))+cod(u)

- Reachability (GΠ(s(u))+cod(u), s, (yes, 0))

Obviously, this algorithm is polynomial in the size |u| of the input.

7.2.2 A characterization of P by using families from
CSC(2)

In this section, we study the limitations on the computational efficiency of
P systems with membrane separation which use symport/antiport rules with
minimal cooperation. Specifically, we show that only problems in class P can
be efficiently solved in polynomial time by means of families of recognizer P
systems with membrane separation that use symport/antiport rules involving
at most two objects. Hence, we prove that P = PMCCSC(2).

Let us first introduce a new representation for the membrane structure of
recognizer P systems with membrane separation. Let

Π = (Γ,Γ0,Γ1, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

be a recognizer P system of degree q ≥ 1 from CSC(2). In order to identify
the membranes created by the application of a separation rule, we introduce
a new concept related to the labels of the new membranes in the following
recursive manner:

• The label of a membrane will be a pair (i, σ), where 1 ≤ i ≤ q and
σ is a string over {0, 1}. At the initial configuration, the labels of the
membranes are (1, λ), . . . , (q, λ).

• If a separation rule from Ri is applied to a membrane labelled by (i, σ),
then the new created membranes will be labelled by (i, σ0) and (i, σ1),
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respectively. Membrane (i, σ0) will only contain the objects of mem-
brane (i, σ) which belong to Γ0, and membrane (i, σ1) will only contain
the objects of membrane (i, σ) which belong to Γ1. The skin membrane
cannot be separated, so the label of the skin membrane, (1, λ), is not
changed along any computation. Note that we can consider a lexico-
graphical order over the set of labels of cells in the system along any
computation.

If a membrane labelled by (i, σ) is engaged by a communication rule, then,
after the application of the rule, the membrane keeps its label.

A configuration at an instant t of a P system from CSC(2) is described
by the current membrane structure, the multisets of objects over Γ contained
in each membrane, and the multiset of objects over Γ \ E currently in the
environment. Hence, a configuration of Π can be described by a multiset of
labelled objects

{(a, i, σ) | a ∈ Γ ∪ {λ}, 1 ≤ i ≤ q, σ ∈ {0, 1}∗} ∪ {(a, 0) | a ∈ Γ \ E}.

Let us notice that the number of labels we need to identify all membranes
appearing along any computation of a P system from CSC(2) is quadratic
in the size of the initial configuration of the system and the length of the
computation.

Let r = (ab, out) ∈ Ri, 2 ≤ i ≤ q, be a symport rule of Π and n ∈ IN. We
denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, i, σ)n(b, i, σ)n,
and we denote by n·RHS(r, (i, σ), (p(i), τ)) the multiset (a, p(i), τ)n(b, p(i), τ)n.
In a similar way, n ·LHS(r, (i, σ), (p(i), τ)) and n ·RHS(r, (i, σ), (p(i), τ)) are
defined when r is of the form (a, out) ∈ Ri. Note that, at a given instant of
the computation, for each membrane (i, σ) there is a unique parent membrane
(p(i), τ), according to the current membrane structure.

Let r = (ab, out) ∈ R1 be a symport rule of Π and n ∈ IN. We denote by
n · LHS(r, (1, λ), 0) the multiset of objects (a, 1, λ)n(b, 1, λ)n. We denote by
n ·RHS(r, (1, λ), 0) the following multiset of objects:

(a, 0)n(b, 0)n , if a, b ∈ Γ \ E ;
(a, 0)n , if a ∈ Γ \ E and b ∈ E ;
(b, 0)n , if b ∈ Γ \ E and a ∈ E ;

∅ , if a, b ∈ E .

In a similar way, n ·LHS(r, (1, λ), 0) and n ·RHS(r, (1, λ), 0) are defined when
r is of the form (a, out) ∈ R1.
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Let r = (ab, in) ∈ Ri, 2 ≤ i ≤ q, be a symport rule of Π and n ∈ IN.
We denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, p(i), τ)n(b,
p(i), τ)n. We denote by n · RHS(r, (i, σ), (p(i), τ)) the multiset of objects
(a, i, σ)n(b, i, σ)n. Similarly, n·LHS(r, (i, σ), (p(i), τ)) and n·RHS(r, (i, σ), (p(i),
τ)) are defined when r is of the form (a, in) ∈ Ri.

Let r = (ab, in) ∈ R1 be a symport rule of Π and n ∈ IN. We denote by
n · LHS(r, (1, λ), 0) the following multiset of objects:

(a, 0)n(b, 0)n , if a, b ∈ Γ \ E ;
(a, 0)n , if a ∈ Γ \ E and b ∈ E ;
(b, 0)n , if b ∈ Γ \ E and a ∈ E ;

∅ , if a, b ∈ E .

We denote by n ·RHS(r, (1, λ), 0) the multiset of objects (a, 1, λ)n(b, 1, λ)n. In
a similar way, n ·LHS(r, (1, λ), 0) and n ·RHS(r, (1, λ), 0) are defined when r
is of the form (a, in) ∈ R1.

Let r = (a, out; b, in) ∈ Ri, 2 ≤ i ≤ q, be an antiport rule of Π and
n ∈ IN. We denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects
(a, i, σ)n(b, p(i), τ)n. Similarly, we denote by n · RHS(r, (i, σ), (p(i), τ)) the
multiset of objects (a, p(i), τ)n(b, i, σ)n.

Let r = (a, out; b, in) ∈ R1 be an antiport rule of Π. We denote by n ·
LHS(r, (1, λ), 0) the following multiset of objects:{

(a, 1, λ)n(b, 0)n , if b ∈ Γ \ E ;
(a, 1, λ)n , if b ∈ E .

Similarly, we denote by n ·RHS(r, (1, λ), 0) the following multiset of objects:{
(a, 0)n(b, 1, λ)n , if a ∈ Γ \ E ;

(b, 1, λ)n , if a ∈ E .

If Ct is a configuration of Π, then we denote by Ct+{(x, i, σ)/σ′} the multiset
obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′). Besides,
Ct + m (resp., Ct \m) is used to denote that a multiset m of labelled objects
is added (resp., removed) to the configuration.

In order to show that only tractable problems can be solved efficiently by
using families of P systems from CSC(2), we first state a technical result
concerning recognizer P systems from CSC(2) (see [89] for more details).

Lemma 7.1. Let Π = (Γ,Γ0,Γ1, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be
a recognizer P system of degree q ≥ 1 from CSC(2). Let M = |M1 + · · ·+Mq|
and let C = {C0, . . . , Cr} be a computation of Π. Then, we have
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(1) |C∗0 | = M , and for each t, 0 ≤ t < r, C∗t+1 ∩ (Γ \ E) ⊆ C∗t ∩ (Γ \ E);

(2) for each t, 0 ≤ t ≤ r, C∗t ∩ (Γ \ E) ⊆ (M1 + · · · +Mq) ∩ (Γ \ E), and
|C∗t ∩ (Γ \ E)| ≤M ;

(3) for each t, 0 ≤ t < r, |C∗t+1| ≤ |C∗t |+M ;

(4) for each t, 0 ≤ t ≤ r, |C∗t | ≤M · (1 + t);

(5) the number of membranes created along computation C by the application
of separation rules is bounded by 2M · (1 + r).

Next, we present a deterministic algorithm A working in polynomial time
that receives as an input a P system Π from CSC(2) and an input multiset m of
Π, in such manner that algorithmA reproduces the behaviour of a computation
of Π + m. In particular, if Π is confluent, then algorithm A will provide the
same answer of the system Π.

The pseudocode of the algorithm A is described as follows:

Input: A P system Π from CSC(2) and an input multiset m
Initialization phase: C0 is the initial configuration of Π +m
t← 0
while Ct is a non halting configuration do

Selection phase: Input Ct, Output (C ′t, A)
Execution phase: Input (C ′t, A), Output Ct+1

t← t+ 1
end while

Output: Yes if object yes appears in the environment associated

with the halting configuration Ct, No otherwise

The algorithm A receives a recognizer P system

Π = (Γ,Γ0,Γ1, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

from CSC(2) and an input multiset m. Let M = |M1 + · · · +Mq|, p ∈ IN
be a natural number such that any computation of Π +m performs, at most,
p transition steps. Hence, from Lemma 7.1, we know that the number of
membranes in the system along any computation is bounded by 2M(1+p)+q.

A transition step of a recognizer P system Π + m is performed by the
selection and the execution phases. Specifically, the selection phase receives as
an input a configuration Ct of Π +m at an instant t. The output of this phase
is a pair (C ′t, A), where A encodes a multiset of rules selected to be applied
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to Ct, and C ′t is the configuration obtained from Ct once the labelled objects
corresponding to the left-hand side of the rules from A have been consumed.
The execution phase receives as an input the pair (C ′t, A), and the output of this
phase is the next configuration Ct+1 of Ct. More precisely, configuration Ct+1 is
obtained from C ′t by adding the labelled objects produced by the application
of rules from A; that is, the labelled objects corresponding to the right-hand
side of the rules from A.

Selection phase.

Input: A configuration Ct of Π +m at instant t
C ′t ← Ct; A← ∅; B ← ∅
for r = (u, out; v, in) ∈ Ri, 2 ≤ i ≤ q according to the order

chosen do
for each membrane (i, σ) of C ′t according to the lexicographical

order do
nr ← maximum number of times that r is applicable to (i, σ)
if nr > 0 then
C ′t ← C ′t \ nr · LHS(r, (i, σ), (p(i), τ))
A← A ∪ {(r, nr, (i, σ), (p(i), τ))}
B ← B ∪ {(i, σ), (p(i), τ)}

end if
end for

end for
for r = (u, out; v, in) ∈ R1 according to the order chosen do

nr ← maximum number of times that r is applicable to (1, λ)
if nr > 0 then
C ′t ← C ′t \ nr · LHS(r, (1, λ), 0)
A← A ∪ {(r, nr, (1, λ), 0)}

end if
end for
for r = [ a ]i → [ Γ0 ]i[ Γ1 ]i ∈ Ri (i 6= 1) according to the

order chosen do
for each (a, i, σ) ∈ C ′t according to the lexicographical

order, and such that (i, σ) 6∈ B do
C ′t ← C ′t \ {(a, i, σ)}
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end for
end for
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This algorithm is deterministic and works in polynomial time. Indeed, the
running time of the previous algorithm is polynomial in the size of Π because:
the number of cycles of the first main loop for is of order O(|R| ·M · p · q);
the number of cycles of the second main loop for is of order O(|R|); and the
number of cycles of the third main loop for is of order O(|R| ·M · p · q · |Γ|).
Execution phase.

Input: The output (C ′t, A) of the selection phase

for each (r, nr, (i, σ), (p(i), τ)) ∈ A do
C ′t ← C ′t + nr ·RHS(r, (i, σ), (p(i), τ))

end for
for each (r, nr, (1, λ), 0) ∈ A do
C ′t ← C ′t + nr ·RHS(r, (1, λ), 0)

end for
for each (r, 1, (i, σ)) ∈ A do
C ′t ← C ′t + {(λ, i, σ)/σ0}
C ′t ← C ′t + {(λ, i, σ1)}
for each (x, i, σ) ∈ C ′t according to the lexicographical

order do
if x ∈ Γ0 then
C ′t ← C ′t + {(x, i, σ)/σ0}

else
C ′t ← C ′t + {(x, i, σ)/σ1}

end if
end for

end for
Ct+1 ← C ′t
This algorithm is deterministic and works in polynomial time. Indeed, the

running time of the previous algorithm is polynomial in the size of Π because:
the number of cycles of the first main loop for is of order O(|R| ·M · p · q);
the number of cycles of the second main loop for is of order O(|R|); and the
number of cycles of the third main loop for is of order O(|R| ·M · p · q · |Γ|).

Theorem 7.2. P = PMCCSC(2).

Proof. It suffices to show that PMCCSC(2) ⊆ P. Let X ∈ PMCCSC(2) and
let Π = {Π(n) | n ∈ IN} be a family of recognizer P systems from CSC(2)
solving X, according to Definition 2.14. Let (cod, s) be a polynomial encoding
associated with that solution. If u ∈ IX is an instance of the problem X, then
u will be processed by the system Π(s(u)) + cod(u).
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Let us consider the following deterministic algorithm A′:
Input: an instance u of the problem X

Construct the system Π(s(u)) + cod(u)

Run algorithm A with input Π(s(u)) + cod(u)

Output: Yes if algorithm A returns Yes,

No otherwise.

The algorithm A′ receives as an input an instance u of the decision problem
X = (IX , θX) and works in polynomial time with respect to the size of the
input. The following assertions are equivalent:

• θX(u) = 1; that is, the answer of problem X to instance u is affirmative.

• Every computation of Π(s(u)) + cod(u) is an accepting computation.

• The output of algorithm A′ with input u is Yes.

Hence, X ∈ P.

7.2.3 A characterization of P by using families from
ĈSC

Let Π = (Γ,Γ0,Γ1,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a recognizer P

system from ĈSC of degree q ≥ 1.

• We denote by f(i) (resp., ch(i)) the label of the father (resp., a child)
of the membrane labelled by i, the father of the skin membrane is the
environment (we write f(1) = 0). We denote by RC (resp., RS) the set
of communication rules (resp., separation rules) of Π. We will fix total
orders in RC and RS.

• Let C be a computation of Π, and Ct a configuration of C. The application
of a communication rule keeps the multiset of objects of the whole system
unchanged because only movement of objects between the cells of the
system is produced. On the other hand, the application of a separation
rule causes that an object is removed from the system, and since there is
no objects replication, the rest remain unchanged. Thus, the multiset of
objects of the system in any configuration Ct is contained inM0 + · · ·+
Mq. Moreover, if M = |M0 + · · ·+Mq| then the total number of copies
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of membrane i, 1 ≤ i ≤ q, at configuration C is, at most, M because the
copies can only be produced by the application of a separation rule, and
each application of this kind of rule consumes one object. Consequently,
M ·q is an upper bound of the number of membranes at any configuration
of the system.

• In order to identify the membranes created by the application of a sepa-
ration rule, we modify the labels of the new membranes in the following
recursive manner:

– The label of a membrane will be a pair (i, σ) where 0 ≤ i ≤ q
and σ ∈ {0, 1}∗. At the initial configuration, the labels of the
membranes are (1, λ), . . . , (q, λ). The label of the environment is
denoted by (0, λ).

– If a separation rule is applied to a membrane labelled by (i, σ),
then the new created membranes will be labelled by (i, σ0) and
(i, σ1), respectively. Membrane (i, σ0) will only contain the objects
of membrane (i, σ) which belong to Γ0, and membrane (i, σ1) will
only contain the objects of membrane (i, σ) which belong to Γ1 (we
only consider separation rules for elementary membranes). Only
elementary membranes can be separated, so if a membrane i is non
elementary then we denote it by the label (i, λ).

• If a membrane labelled by (i, σ) is engaged by a communication rule,
then, after the application of the rule, the membrane keeps its label.

• A configuration Ct of a P system from ĈSC is described by the current
membrane structure and the multisets of labelled objects over objects

{(a, i, σ) | a ∈ Γ ∪ {λ}, 0 ≤ i ≤ q, σ ∈ {0, 1}∗}

The expression (a, i, σ) ∈ Ct means that object a belongs to membrane
labelled by (i, σ). Let us notice that the number of labels we need to
identify all membranes appearing along any computation of a P system
from CSC(2) is quadratic in the size of the initial configuration of the
system and the length of the computation.

• Let r = (a1, . . . , as , out ; b1, . . . , bs′ , in) ∈ Ri be an antiport rule of Π.
We denote by n · LHS(r, (i, σ)), n ∈ N, the following multiset of ob-
jects (a1, i, σ)n · · · (as, i, σ)n(b1, f(i), τ)n · · · (bs′ , f(i), τ)n, where (f(i), τ)
is the father of membrane (i, σ). Similarly, n ·RHS(r, (i, σ)) denotes the
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multiset of labelled objects produced by applying n times rule r over
membrane (i, σ). That is, n · RHS(r, (i, σ)) is the following multiset
(a1, f(i), τ)n · · · (as, f(i), τ)n(b1, i, σ)n · · · (bs′ , i, σ)n.

• Let r = (a1, . . . , as , out) ∈ Ri be a symport rule of Π (let us recall that
R1 = ∅). We denote by n · LHS(r, (i, σ)), n ∈ N, the following multiset
of labelled objects (a1, i, σ)n · · · (as, i, σ)n. Similarly, n · RHS(r, (i, σ))
denotes the multiset of labelled objects produced by applying n times rule
r over membrane (i, σ). That is, n·RHS(r, (i, σ)) is the following multiset
(a1, f(i), τ)n · · · (as, f(i), τ)n, where (f(i), τ) is the father of membrane
(i, σ).

• Let r = (a1, . . . , as , in) ∈ Ri be a symport rule of Π. We denote
by n · LHS(r, (i, σ)), n ∈ N, the following multiset of labelled objects
(a1, f(i), τ)n · · · (as, f(i), τ)n, where (f(i), τ) is the father of membrane
(i, σ). Similarly, n · RHS(r, (i, σ)) denotes the multiset of labelled ob-
jects produced by applying n times rule r over membrane (i, σ). That
is, n ·RHS(r, (i, σ)) is the following multiset (a1, i, σ)n · · · (as, i, σ)n.

• Let Ct is a configuration of Π, we denote by Ct + {(x, i, σ)/σ′} the multi-
set obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′).
Besides, Ct + m (resp., Ct \ m) is used to denote that a multiset m of
labelled objects is added (resp., removed) to the configuration.

Next, we provide a deterministic algorithm A working in polynomial time

that receives as input a recognizer tissue P system Π from ĈSC together with
an input multiset m of Π. Then algorithm A reproduces the behaviour of a
single computation of such system.

The pseudocode of the algorithm A is described as follows:

Input: A P system Π from ĈSC and an input multiset m of Π

Initialization stage : the initial configuration C0 of Π+m

t← 0

while Ct is a non halting configuration do

Selection stage : Input Ct, Output (C ′t, A)

Execution stage : Input (C ′t, A), Output Ct+1

t← t+ 1

end while

Output: Yes if Ct is an accepting configuration, No otherwise
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The selection stage and the execution stage implement a transition step of
a recognizer P system Π. Specifically, the selection stage receives as input a
configuration Ct of Π at an instant t. The output of this stage is a pair (C ′t, A),
where A encodes a multiset of rules selected to be applied to Ct, and C ′t is the
configuration obtained from Ct once the labelled objects corresponding to the
application of rules from A have been consumed. The execution stage receives
as input the output (C ′t, A) of the selection stage, and the output is the next
configuration Ct+1 of Ct. Specifically, at this stage, the configuration Ct+1 is
obtained from C ′t by adding the labelled objects produced by the application
of rules from A.

Next, selection stage and execution stage are described in detail.

Selection stage.

Input: A configuration Ct of Π at instant t
C′t ← Ct; A← ∅; B ← ∅
for each r ∈ RC ∩Ri according to the order chosen do
for each membrane (i, σ) of C′t according to the lexicographical order do
nr ← maximum number of times that r is applicable to (i, σ)
if nr > 0 then
C′t ← C′t \ nr · LHS(r, (i, σ))
A← A ∪ {(r, nr, (i, σ))}
B ← B ∪ {(i, σ)}

end if
end for

end for
for r ≡ [a]i → [Γ0]i[Γ1]i ∈ Ri according to the order chosen do
if (i, σ) /∈ B then
for each (a, i, σ) ∈ C′t according to the lexicographical order

C′t ← C′t \ {(a, i, σ)}
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end for
end if

end for

This algorithm is deterministic and works in polynomial time. Indeed, the
cost in time of the previous algorithm is polynomial in the size of Π because
the number of cycles of the first main loop for is of order O(|R| ·M · q), and
the number of cycles of the second main loop for is of order O(|R| · |Γ| ·M · q).
Besides, the last loop includes a membership test of order O(M · q).

In order to complete the simulation of a computation step of the system
Π, the execution stage takes care of the effects of applying the rules selected
in the previous stage: updating the objects according to the RHS of the rules.
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Execution stage.

Input: The output C′t and A of the selection stage

for each (r, nr, (i, σ)) ∈ A do
C′t ← C′t + nr ·RHS(r, (i, σ))

end for
for each (r, 1, (i, σ)) ∈ A do
C′t ← C′t + {(λ, i, σ)/σ0}
C′t ← C′t + {(λ, i, σ1)}
for each (x, i, σ) ∈ C′t according to the lexicographical order do

if x ∈ Γ0 then
C′t ← C′t + {(x, i, σ)/σ0}

else
C′t ← C′t + {(x, i, σ)/σ1}

end if
end for

end for
Ct+1 ← C′t

This algorithm is deterministic and works in polynomial time. Indeed, the
cost in time of the previous algorithm is polynomial in the size of Π because
the number of cycles of the first main loop for is of order O(|R|), and the
number of cycles of the second main loop for is of order O(|R| · |Γ| ·M · q).
Besides, inside the body of the last loop there is a membership test of order
O(|Γ|).

Theorem 7.3. P = PMC
ĈSC

.

Proof. It suffices to prove that PMC
ĈSC

⊆ P. Let k ∈ IN such that X ∈
PMC

ĈSC(k)
and let {Π(n) : n ∈ IN} be a family of P systems from ĈSC(k)

solving X according to Definition 2.14. Let (cod, s) be a polinomial encoding
associated with that solution. Let us recall that instance u ∈ IX of the problem
X is processed by the system Π(s(u)) + cod(u).

Let us consider the following algorithm A′:
Input: an instance u of the decision problem X = (IX , θX).

Construct the system Π(s(u)) + cod(u)
Run algorithm A with input Π(s(u)) + cod(u)

Output: Yes if Π(s(u)) + cod(u) has an accepting computation, No

otherwise

The algorithm A′ receives as input an instance u of the decision problem
X = (IX , θX). The following assertions are equivalent:

1. θX(u) = 1, that is, the answer of problem X to instance u is affirmative.
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2. Every computation of Π(s(u)) + cod(u) is an accepting computation.

3. The output of the algorithm with input u is Yes.

Therefore, algorithm A′ provide a solution of the decision problem X. Bearing
in mind that A′ works in polynomial time, we finally deduce that X ∈ P.

7.3 Computational Efficiency of Cell-like P Sys-

tems with Symport/Antiport

In this section we study the ability to solve NP–complete problems in an effi-
cient way by means of families of recognizer P systems with membrane division
or membrane separation. Specifically, we show that minimal cooperation in
communication rules is enough when division rules are allowed. Nevertheless,
by using membranes separation the computational efficiency is reached when
the length of communication rules is at most three.

7.3.1 Computational Efficiency of Systems in CDC(2)

In this section we give a polynomial time solution to HAM-CYCLE problem, a
well known NP-complete problem [49], by means of a family of recognizer P
systems with membrane division which use symport/antiport rules involving
minimal cooperation.

Let us recall that HAM-CYCLE problem is the following: Given a directed
graph, determine whether or not there exists a Hamiltonian cycle in the graph.

7.3.1.1 A polynomial time solution of HAM-CYCLE problem in CDC(2)

For each n,m ∈ IN, we consider the recognizer P system with symport/antiport
rules and membrane division of degree 11 + 2n+ n3

Π(〈n,m〉) = (Γ, E ,Σ, µ,Mr (1 ≤ r ≤ 11) ,Ma1,j (1 ≤ j ≤ n), Ma2,j (1 ≤ j ≤ n) ,
Mei,j,k(1 ≤ i, j, k ≤ n) , Rr (1 ≤ r ≤ 11) , Ra1,j (1 ≤ j ≤ n) ,
Ra2,j (1 ≤ j ≤ n) Rei,j,k(1 ≤ i, j, k ≤ n))

defined as follows:

(1) Working alphabet:
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Γ = Σ ∪ E ∪ {βr | 0 ≤ r ≤ n3 + 7} ∪ {b′r, b′′r , b′′′r , c′r, c′′r , c′′′r , c′′′′r | 1 ≤ r ≤ n3}∪
{(i, j)′k , (i, j)′′k | 1 ≤ i, j, k ≤ n} ∪ {(i, j)′′k,r | 1 ≤ i, j, k ≤ n ∧ 1 ≤ r ≤ n3}∪
{α0, a, a

′, a′′, b, b′, b′′, b′′′, c, c′, c′′, c′′′, c′′′′, yes, no},

where the input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}, and the
alphabet of the environment is E = {αr | 1 ≤ r ≤ n3 + 6}

(2) Membrane structure µ: the root is labelled by 1, and the remaining nodes
are children of the root, being labelled by

2, 3, . . . , 11, a1,j (1 ≤ j ≤ n), a2,j (1 ≤ j ≤ n), ei,j,k (1 ≤ i, j, k ≤ n),

respectively.

(3) Initial multisets:

M1 = {α0} ∪ {βr | 1 ≤ r ≤ n3 + 7} ∪ {b′r, b′′r , b′′′r , c′r, c′′r , c′′′r , c′′′′r | 1 ≤ r ≤ n3 − 1};
M2 = {an, b, c};
M3 = {b′n3} ; M4 = {b′′n3} ; M5 = {b′′′n3};
M6 = {c′n3} ; M7 = {c′′n3} ; M8 = {c′′′n3} ; M9 = {c′′′′n3};
M10 = {yes} ; M11 = {no, β0};
Ma1,j = {a′n3} ,Ma2,j = {a′′n3}, 1 ≤ j ≤ n;
Mei,j,k = {(i, j)′′k,n3}, 1 ≤ i, j, k ≤ n.

(4) Rules of the system:

• Rules in R1:

1.1 Rules to control the output of the computations by counters of type
αr.

(αr , out ; αr+1 , in) , 0 ≤ r ≤ n3 + 5.

Rules 1.2 and 1.3 produce the output of the computations:

1.2 (yes , out)

1.3 (noαn3+6 , out)

• Rules in R2:

2.1 Rules to produce all possible subsets of A′G in membranes labelled
by 2 at configuration Cn3+1:

[ (i, j)k ]2 → [ (i, j)′k ]2 [ # ]2, 1 ≤ i, j, k ≤ n.



Chapter 7. New frontiers of the efficiency 158

Rules 2.2, 2.3, 2.4 and 2.5 allow to introduce objects a′, a′′, b′, b′′,
c′′′, c′, c′′, c′′′ and c′′′′ in membranes labelled by 2 at configurations
Cn3+2, Cn3+3, Cn3+4 and Cn3+5, respectively:

2.2 (a , out ; a′ , in); (a′ , out ; a′′ , in);

2.3 (b , out ; b′ , in); (b′ , out ; b′′ , in); (b′′ , out ; b′′′ , in);

2.4 (c , out ; c′ , in); (c′ , out ; c′′ , in); (c′′ , out ; c′′′ , in) ; (c′′′ , out ; c′′′′ , in);

2.5 (a′′ b′′′ , out); (b′′′ c′′′′ , out).

2.6 Rules to produce in each membrane labelled by 2 at configuration
Cn3+2 a subset of A′′G from a subset of A′G at configuration Cn3+1:

((i, j)′k , out ; (i, j)′′k , in) , 1 ≤ i, j, k ≤ n.

2.7 Rules to generate in each membrane labelled by 2 at configura-
tion Cn3+1 a subset of A′′G encoding a possible Hamiltonian cycle.
((i, j)′′k (i, j′)′′k′ , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n;
((i, j)′′k (i′, j)′′k′ , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n;
((i, j)′′k (i′, j′)′′k+1 , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n, j 6= i′;
((i, j)′′k (i′, j′)′′k , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n.

2.8 Rules to check if the subset represented by each membrane with
label 2 at configuration Cn3+3 encodes a Hamiltonian cycle of the
input graph:

(a′′ (i, j)′′k , out), 1 ≤ i, j, k ≤ n.

• Rules in R3:

Rules to produce 2n·p copies of objects b′ in the skin membrane of con-
figuration Cn3+1:

3.1 (b′r , out ; b′r−1 , in), n ·m+ 1 ≤ r ≤ n3;

3.2 [ b′r ]3 → [ b′r−1 ]3 [ b′r−1 ]3, 2 ≤ r ≤ n ·m;

3.3 [ b′1 ]3 → [ b′ ]3 [ b′ ]3;

3.4 (b′ , out).

• Rules in R4:

Rules to produce 2n·p copies of objects b′′ in the skin membrane at con-
figuration Cn3+1:

4.1 (b′′r , out ; b′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
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4.2 [ b′′r ]4 → [ b′′r−1 ]4 b′′r−1 ]4, 2 ≤ r ≤ n ·m;

4.3 [ b′′1 ]4 → [ b′′ ]4 [ b′′ ]4;

4.4 (b′′ , out).

• Rules in R5:

Rules to produce 2n·p copies of objects b′′′ in the skin membrane at con-
figuration Cn3+1:

5.1 (b′′′r , out ; b′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;

5.2 [ b′′′r ]5 → [ b′′′r−1 ]5 [ b′′′r−1 ]5, 2 ≤ r ≤ n ·m;

5.3 [ b′′′1 ]5 → [ b′′′ ]5 [ b′′′ ]5;

5.4 (b′′′ , out).

• Rules in R6:

Rules to produce 2n·p copies of objects c′ in the skin membrane at con-
figuration Cn3+1:

6.1 (c′r , out ; c′r−1 , in), n ·m+ 1 ≤ r ≤ n3;

6.2 [ c′r ]6 → [ c′r−1 ]6 [ c′r−1 ]6, 2 ≤ r ≤ n ·m;

6.3 [ c′1 ]6 → [ c′ ]6 [ c′ ]6;

6.4 (c′ , out).

• Rules in R7:

Rules to produce 2n·p copies of objects c′′ in the skin membrane at con-
figuration Cn3+1:

7.1 (c′′r , out ; c′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;

7.2 [ c′′r ]7 → [ c′′r−1 ]7 [ c′′r−1 ]7, 2 ≤ r ≤ n ·m;

7.3 [ c′′1 ]7 → [ c′′ ]7 [ c′′ ]7;

7.4 (c′′ , out).

• Rules in R8:

Rules to produce 2n·p copies of objects c′′′ in the skin membrane at con-
figuration Cn3+1:

8.1 (c′′′r , out ; c′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
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8.2 [ c′′′r ]8 → [ c′′′r−1 ]8 [ c′′′r−1 ]8, 2 ≤ r ≤ n ·m;

8.3 [ c′′′1 ]8 → [ c′′′ ]8 [ c′′′ ]8;

8.4 (c′′′ , out).

• Rules in R9:

Rules to produce 2n·p copies of objects c′′′′ in the skin membrane at
configuration Cn3+1:

9.1 (c′′′′r , out ; c′′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;

9.2 [ c′′′′r ]9 → [ c′′′′r−1 ]9 [ c′′′′r−1 ]9, 2 ≤ r ≤ n ·m;

9.3 [ c′′′′1 ]9 → [ c′′′′ ]9 [ c′′′′ ]9;

9.4 (c′′′′ , out).

• Rules in R10:

Rules to produce an affirmative answer:

10.1 (αn3+6 c
′′′′ , in) ; (c′′′′ yes , out)

• Rules in R11:

Rules to control the negative answer of the computations by counters βr:

11.1 (βr out ; βr+1 , in), 0 ≤ r ≤ n3 + 6;

11.2 (βn3+7 no , out).

• Rules in Ra1,j , 1 ≤ j ≤ n:

Rules to produce 2n
3

copies of objects a′ in the skin membrane at con-
figuration Cn3+1:

a1,j.1 [ a′r ]a1,j → [ a′r−1 ]a1,j [ a′r−1 ]a1,j , 2 ≤ r ≤ n3;

a1,j.2 [ a′1 ]a1,j → [ a′ ]a1,j [ a′ ]a1,j ;

a1,j.3 (a′ , out).

• Rules in Ra2,j , 1 ≤ j ≤ n:

Rules to produce 2n
3

copies of objects a′′ in the skin membrane at con-
figuration Cn3+1:
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a2,j.1 [ a′′r ]a2,j → [ a′′r−1 ]a2,j [ a′′r−1 ]a2,j , 2 ≤ r ≤ n3;

a2,j.2 [ a′′1 ]a2,j → [ a′′ ]a2,j [ a′′ ]a2,j ;

a2,j.3 (a′′ , out).

• Rules in Rei,j,k , 1 ≤ i, j, k ≤ n:

Rules to produce 2n
3

copies of objects (i, j)′′k in the skin membrane at
configuration Cn3+1:

ei,j,k.1 [ (i, j)′′k,r ]ei,j,k → [ (i, j)′′k,r−1 ]ei,j,k [ (i, j)′′k,r−1 ]ei,j,k , 2 ≤ r ≤ n3;

ei,j,k.2 [ (i, j)′′k,1 ]ei,j,k → [ (i, j)′′k ]ei,j,k [ (i, j)′′k ]ei,j,k ;

ei,j,k.3 ((i, j)′′k , out).

(5) The input membrane is the membrane labelled by 2 and the output zone
is the environment of the system (labelled by 0).

7.3.1.2 An overview of the computations

Now we briefly show how each system Π(〈n,m〉) works in order to process any
directed graph with n nodes and m arcs.

We consider the ensuing polynomial encoding (cod, s) from HAM-CYCLE in
Π: for each instance G = (V,E) of HAM-CYCLE problem, with V = {1, . . . , n}
and E = {(i1, j1), . . . , (im, jm)}, we define s(G) = 〈n,m〉 and cod(G) =
{(i, j)k | (i, j) ∈ E, 1 ≤ k ≤ n}. The expression (i, j)k in cod(G) can be
interpreted as follows: arc (i, j) is “placed” in “position k” in a potential path.
According to this polynomial encoding, graph G will be processed by system
Π(s(G)) with input multiset cod(G). In what follows, we informally describe
how system Π(s(G))+cod(G) works. The solution is structured in the following
stages:

• Generation Stage: All possible combinations of arcs from the input
graph, including a code of their position in potential paths, are generated
by using cell division in an adequate way.

• Checking Stage: It is checked whether or not the different combinations
of arcs generated in the previous stage encode Hamiltonian cycles of the
input graph.

• Output Stage: The system sends the right answer to the environment
according to the results obtained in the previous stage.
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Generation stage

At this stage, the system generates all the possible subsets of arcs of the
graph (in fact, subsets of A′G) which contain their potential positions in a
path according to the notations introduced in Subsection 1.2. In this way, by
applying rules of type 2.1 at configuration C2n·m , there will be 2n·m membranes
labelled by 2 such that each of them encodes a different combination of arcs
from the input graph. Simultaneously, by applying rules of types 1, 2 and 3
from R3, R4, R5, R6, R7, R8 and R9, 2n·m copies of objects b′, b′′, b′′′, c′, c′′, c′′′

and c′′′′ are produced in membranes labelled by 3, 4, 5, 6, 7, 8, 9, respectively,
and 2n

3
copies of objects a′, a′′ and (i, j)′′k are produced in membranes labelled

by a1,j, a2,j, and ei,j,k, respectively. The generation stage takes n3 steps.

Checking stage

At this stage, the system checks whether or not there exists a membrane
labelled by 2 at configuration Cn3+5 containing a subset of A′′G that encodes a
Hamiltonian cycle of G. This is done in 4 steps.

At step n3 + 1, the contents of membranes labelled by 3, 4, 5, 6, 7, 8, 9,
a1,j (1 ≤ j ≤ n), a2,j (1 ≤ j ≤ n) and ei,j,k (1 ≤ i, j, k ≤ n) are sent to the skin
membrane by applying rules 3.4, 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, a1,j.2, a2,j.2, ei,j,k.3.
From this moment on, none of these membranes will participate in the evolu-
tion of the configurations.

At step n3 + 2, objects a, b, c in membrane labelled by 2 at configuration
Cn3+1 are replaced by objects a′, b′, c′ from the skin membrane by applying
rules 2.2, 2.3, and 2.4. Simultaneously, by applying rules 2.6, each subset of
A′G contained in a membrane labelled by 2 at configuration Cn3+1 produces the
“corresponding” subset of A′′G. Besides, Cn3+2(10) = {yes} and Cn3+2(11) =
{βn3+2 , no}.

At step n3 + 3, by applying rules 2.3 and 2.4, objects a′, b′, c′ in membranes
labelled by 2 at configuration Cn3+2 are replaced by objects a′′, b′′, c′′ from the
skin membrane. Simultaneously, by applying rules of type 2.7, each subset
contained in a membrane labelled by 2 at configuration Cn3+2 is transformed
into a subset encoding each possible path in the input graph. This way, ac-
cording to Proposition 1.1, we have that the input graph (with n nodes and
m arcs) has a Hamiltonian cycle if and only if at configuration Cn3+3 there ex-
ists some membrane labelled by 2 at configuration Cn3+3 such that the subset
of A′′G contained in it has size equal to n. Besides, Cn3+3(10) = {yes} and
Cn3+3(11) = {βn3+3 , no}.

At step n3 + 4, by applying rules 2.3 and 2.4, objects b′′, c′′ in membranes
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labelled by 2 are substituted by objects b′′′, c′′′ from the skin membrane. Simul-
taneously, by applying rules 2.8, each object contained in the subset associated
with each membrane labelled by 2 at configuration Cn3+3 is sent to the skin
membrane cooperating with an object a′′. Therefore, the number of copies
of object a′′ appearing in a membrane labelled by 2 at configuration Cn3+4 is
equal to n − γ, where γ is the size of the path in the input graph encoded
by that membrane. Then, the input graph (with n nodes and m arcs) has
a Hamiltonian cycle if and only if there exists a membrane labelled by 2 at
configuration Cn3+4 such that it does not contain any object a′′.

At step n3+5, by applying rules of type 2.5, objects a′′ and b′′′ in membrane
labelled by 2 at configuration Cn3+5 are sent to the skin membrane. Simulta-
neously, rule (c′′′ , out ; c′′′′ , in) produces an object c′′′′ in each membrane
labelled by 2 at configuration Cn3+5.

Output stage

Finally, the output stage takes 4 steps. Only membranes labelled by 2 at
configuration Cn3+5 containing some object b′′′ (i.e., membrane encoding a
Hamiltonian cycle) can evolve, and only rule (c′′′ , out ; c′′′′ , in) ∈ R2 is ap-
plicable to that membrane. In this case, an object c′′′′ will appear in each
membrane labelled by 2 at that configuration. Besides, if a membrane with
label 2 at the mentioned configuration does not encode a Hamiltonian cycle
of the input graph, then it contains objects b′′, so rule (a′′ b′′′ , out) ∈ R2 will
be applied. That is, the input graph has a Hamiltonian cycle if and only if
some object c′′′′ appears in the skin membrane at configuration Cn3+6. Besides,
Cn3+6(10) = {yes} and Cn3+6(11) = {βn3+6 , no}.

If the input graph has a Hamiltonian cycle, then only rules (αn3+6 c
′′′′ , in) ∈

R10 and (βn3+6 , out ; βn3+7 , in) ∈ R11 are applicable to configuration Cn3+6.
Otherwise, only rule (βn3+6 out ; βn3+7 , in) is applicable to that configuration.
Therefore, the answer of the problem is affirmative if and only if Cn3+7(10) =
{αn3+6 c

′′′′ , yes}. Besides, in any case, Cn3+7(11) = {βn3+7 , no}. Then, if there
exists a Hamiltonian path, then rules (c′′′′ yes , out) ∈ R10 and (βn3+7 no , out) ∈
R11 are applicable to configuration Cn3+7. Otherwise, only rule (βn3+7 no , out) ∈
R11 is applicable to that configuration. Hence, the answer of the problem is
affirmative if and only if the skin membrane at configuration Cn3+8 contains ob-
ject yes (together with objects c′′′′, βn3+7, no), but no object αn3+6. Otherwise,
the skin membrane at configuration Cn3+8 contains objects βn3+7, no, αn3+6, but
no object yes.

At the last step, in cases when an affirmative answer results, rule (yes , out)
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is applied to configuration Cn3+8, producing an object yes in the environment,
and the computation halts. Otherwise, rule (noαn3+6 , out) is applied to that
configuration, thus producing a negative answer.

7.3.1.3 Main result

Theorem 7.4. HAM-CYCLE ∈ PMCCDC(2).

Proof. The family of P systems with symport/antiport rules and membrane
division constructed in Subsection 4.3.1.1 verifies the following:

(a) Every system of the family Π is a recognizer P system with membrane
division and symport/antiport rules of length at most 2.

(b) The family Π is polynomially uniform by Turing machines because, for
each n,m ∈ IN, the rules of Π(〈n,m〉) of the family are recursively defined
from n,m ∈ IN, and the amount of resources needed to build an element
of the family is of a polynomial order in n, as shown below:

• Size of the alphabet: n6 + 12n3 + 29 ∈ Θ(n6);

• Initial number of membranes: n3 + 2n+ 11 ∈ Θ(n3);

• Initial number of objects: 9n3 + 3n+ 13 ∈ Θ(n3);

• Number of rules: n6 + 4n5 + n4 + 13n3 + 2n+ 30 ∈ Θ(n6);

• Maximal length of a rule: 2 ∈ Θ(1).

(c) The pair (cod, s) of polynomial–time computable functions defined in
Subsection 7.3.1.2 is a polynomial encoding from HAM− CYCLE to Π.

(d) The family Π is polynomially bounded, sound and complete with regard
to (HAM-CYCLE, cod, s) (see Subsection 7.3.1.2).

Therefore, according to Definition 2.14, the family Π from CDC(2) solves
HAM-CYCLE problem in polynomial time with respect to the number of nodes.

Corollary 7.2. NP ∪ co-NP ⊆ PMCCDC(2).

Proof. It suffices to notice that HAM-CYCLE problem is an NP-complete prob-
lem, HAM-CYCLE∈ PMCCDC(2), and the complexity class PMCCDC(2) is closed
under polynomial-time reduction and under complement.
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7.3.2 Computational Efficiency of Systems in CSC(3)

The limitations on the efficiency of P systems with membrane separation whose
symport/antiport rules involve at most two objects, have been established [89].
Specifically, it has been proved that only tractable problems can be efficiently
solved by using families of P systems with membrane separation which make
use of symport/antiport rules with length at most 2. In this Section we analyze
the computational efficiency of familes of P systems from CSC(3), and it is
given a polynomial time solution to SAT problem by means of a family of such
P systems, in a uniform way, according to Definition 2.14.

7.3.2.1 A polynomial time solution to SAT problem in CSC(3)

We consider a family Π = {Π(t) | t ∈ IN} of recognizer P system from
CSC(3), such that each system Π(t), with t = 〈n,m〉, will process all instances
of SAT problem (an instance is a Boolean formula ϕ in conjunctive normal form
with n variables and m clauses) provided that the appropriate input multiset
cod(ϕ) is supplied to the system.

For each n,m ∈ IN, we consider the recognizer P system from CSC(3)

Π(〈n,m〉) = (Γ,Γ0,Γ1, E ,Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

defined as follows:

(1) Working alphabet:

Γ = Σ ∪ E ∪ {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1}∪
{A1, B1, b1, b

′
1, c1, c

′
1, v1, q1,1, β0, β

′
0, β
′′
0 , γ0, γ

′
0, γ
′′
0 , γ
′′′
0 , f0, yes, no}∪

{f ′i | 0 ≤ i ≤ 3n+ 2m+ 1},∪{ρi,0, τi,0 | 1 ≤ i ≤ n},∪{δj,0 | 0 ≤ j ≤ m}∪

where the input alphabet is Σ = {xi,j, xi,j | 1 ≤ i ≤ n∧ 1 ≤ j ≤ m}, and
the alphabet of the environment is:
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E = {αi,j,k, α′i,j,k | 1 ≤ i ≤ n− 1 ∧ 1 ≤ j ≤ 3(n− 1) ∧ 0 ≤ k ≤ 1}∪
{βj , β′j , β′′j , γj , γ′j , γ′′j , γ′′′j | 1 ≤ j ≤ 3(n− 1)}∪
{ρi,j , τi,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3n− 1}∪
{Ti,j , T ′i,j , Fi,j , F ′i,j | 1 ≤ i < j ∧ 1 ≤ j ≤ n}∪
{Ti,i, F ′i,i, Ti, Fi | 1 ≤ i ≤ n} ∪ {Ai, A′i, Bi, B′i | 2 ≤ i ≤ n+ 1}∪
{bi, b′i, ci, c′i | 2 ≤ i ≤ n} ∪ {vi | 2 ≤ i ≤ n− 1}∪
{yi, ai, wi | 1 ≤ i ≤ n− 1} ∪ {zi | 1 ≤ i ≤ n− 2}∪
{qi,j | 1 ≤ i ≤ j ∧ 2 ≤ j ≤ n− 1} ∪ {ui,j | 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 2}∪
{ti,j , fi,j , ri,j , si,j | 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 1}∪
{di,j,k, di,j,k | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 1}∪
{fr | 1 ≤ r ≤ 3n+ 2m} ∪ {ei,j , ei,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{δj,r | 0 ≤ j ≤ m ∧ 1 ≤ r ≤ 3n} ∪ {Ej | 0 ≤ j ≤ m} ∪ {S}

(2) The partition is {Γ0,Γ1}, where Γ0 = Γ \ Γ1 and

Γ1 = {T ′i,j F ′i,j | 1 ≤ i < j ∧ 1 ≤ j ≤ n} ∪ {F ′i,i | 1 ≤ i ≤ n}∪
{A′i, B′i | 2 ≤ i ≤ n+ 1}

(3) Membrane structure: µ = [ [ ]2 [ ]3]1. The input membrane is the
membrane labelled with 1.

(4) Initial multisets:

M1 = {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1} ∪ {ρi,0, τi,0 | 1 ≤ i ≤ n}∪
{β0, β

′
0, β

′′
0 , γ0, γ

′
0, γ
′′
0 , γ

′′′
0 , c1, c

′
1, b1, b

′
1, v1, q1,1, f0, yes}∪

{δj,0 | 0 ≤ j ≤ m} ∪ {f ′p | 1 ≤ p ≤ 3n+ 2m+ 1}
M2 = {A1, B1}
M3 = {f ′0, no}

(5) Rules in R1 :

1.1 Rules to generate in the membrane 1 of configuration C3p+1 (p =
1, . . . , n− 1) the objects T 2p−1

i,p+1, T
′2p−1

i,p+1 , F
2p−1

i,p+1, F
′2p−1

i,p+1 :

(αi,0,k, out;αi,1,k, in)
(α′i,0,k, out;α

′
i,1,k, in)

(αi,1,k, out;αi,2,k, in)
(α′i,1,k, out;α

′
i,2,k, in)

(αi,2,k, out;αi,3,k, in)
(α′i,2,k, out;α

′
i,3,k, in)


1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
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(αi,3p,k , out;αi,3p+1,k ∆k
i,p+1 , in) : 1 ≤ i ≤ p ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(α′i,3p,k , out;α
′
i,3p+1,k ∆′ki,p+1 , in) : 1 ≤ i ≤ p ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p,k , out;αi,3p+1,k , in) : p+ 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1
(α′i,3p,k , out;α

′
i,3p+1,k , in) : p+ 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p+1,k , out;αi,3p+2,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1
(α′i,3p+1,k , out;α

′
i,3p+2,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p+2,k , out;α
2
i,3p+3,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(α′i,3p+2,k , out;α
′2
i,3p+3,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3(n−1),k , out; ∆k
i,n , in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(α′i,3(n−1),k , out; ∆′ki,n , in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

where ∆0
i,j = Fi,j, ∆′0i,j = F ′i,j, ∆1

i,j = Ti,j, ∆′1i,j = T ′i,j.

1.2 Rules to generate in the membrane 1 of configuration C3p+1 (p =
0, 1, . . . , n− 1) the objects B2p

p+2, B
′2p
p+2, S

2p :

(β3p , out; β3p+1 Bp+2 , in)
(β′3p , out; β

′
3p+1 B

′
p+2 , in)

(β′′3p , out; β
′′
3p+1 S , in)

(β3p+1 , out; β3p+2 , in)
(β′3p+1 , out; β

′
3p+2 , in)

(β′′3p+1 , out; β
′′
3p+2 , in)

(β3p+2 , out; β
2
3p+3 , in)

(β′3p+2 , out; β
′2
3p+3 , in)

(β′′3p+2 , out; β
′′2
3p+3 , in)


0 ≤ p ≤ n− 3

(β3(n−2) , out; β3(n−2)+1Bn , in)
(β′3(n−2) , out; β

′
3(n−2)+1B

′
n , in)

(β′′3(n−2) , out; β
′′
3(n−2)+1 S , in)

(β3(n−2)+1 , out; β3(n−2)+2 , in)
(β′3(n−2)+1 , out; β

′
3(n−2)+2 , in)

(β′′3(n−2)+1 , out; β
′′
3(n−2)+2 , in)

(β3(n−2)+2 , out; β
2
3(n−2)+3 , in)

(β′3(n−2)+2 , out; β
′2
3(n−2)+3 , in)

(β′′3(n−2)+2 , out; β
′′2
3(n−2)+3 , in)


(β3(n−1) , out;Bn+1 , in)
(β′3(n−1) , out;B

′
n+1 , in)

(β′′3(n−1) , out;S , in)
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1.3 Rules to generate in the membrane 1 of configuration C3p+1 (p =
0, 1, . . . , n− 1) the objects T 2p

p+1,p+1, T
′2p
p+1,p+1, A

2p

p+2, A
′2p
p+2:

(γ3p , out; γ3p+1 Tp+1,p+1 , in)
(γ′3p , out; γ

′
3p+1 F

′
p+1,p+1 , in)

(γ′′3p , out; γ
′′
3p+1 Ap+2 , in)

(γ′′′3p , out; γ
′′′
3p+1 A

′
p+2 , in)

(γ3p+1 , out; γ3p+2 , in)
(γ′3p+1 , out; γ

′
3p+2 , in)

(γ′′3p+1 , out; γ
′′
3p+2 , in)

(γ′′′3p+1 , out; γ
′′′
3p+2 , in)

(γ3p+2 , out; γ
2
3p+3 , in)

(γ′3p+2 , out; γ
′2
3p+3 , in)

(γ′′3p+2 , out; γ
′′2
3p+3 , in)

(γ′′′3p+2 , out; γ
′′′2
3p+3 , in)



0 ≤ p ≤ n− 3

(γ3(n−2) , out; γ3(n−2)+1 Tn−1,n−1 , in)
(γ′3(n−2) , out; γ

′
3(n−2)+1 F

′
n−1,n−1 , in)

(γ′′3(n−2) , out; γ
′′
3(n−2)+1 An , in)

(γ′′′3(n−2) , out; γ
′′
3(n−2)+1 A

′
n , in)

(γ3(n−2)+1 , out; γ3(n−2)+2 in)
(γ′3(n−2)+1 , out; γ

′
3(n−2)+2 in)

(γ′′3(n−2)+1 , out; γ
′′
3(n−2)+2 in)

(γ′′′3(n−2)+1 , out; γ
′′′
3(n−2)+2 in)

(γ3(n−2)+2 , out; γ
2
3(n−2)+3 in)

(γ′3(n−2)+2 , out; γ
′2
3(n−2)+3 in)

(γ′′3(n−2)+2 , out; γ
′′2
3(n−2)+3 in)

(γ′′′3(n−2)+2 , out; γ
′′′2
3(n−2)+3 in)


(γ3(n−1) , out; Tn,n , in)
(γ′3(n−1) , out; F

′
n,n , in)

(γ′′3(n−1) , out; An+1 , in)

(γ′′′3(n−1) , out; A
′
n+1 , in)


1.4 Rules to generate in the membrane 1 of configuration C3n the ob-

jects T 2n−1

i , F 2n−1

i (1 ≤ i ≤ n):
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(ρi,0 , out; ρi,1 , in)
(τi,0 , out; τi,1 , in)
(ρi,1 , out; ρi,2 , in)
(τi,1 , out; τi,2 , in)
(ρi,2 , out; ρi,3 , in)
(τi,2 , out; τi,3 , in)


1 ≤ i ≤ n

(ρi,3p , out; ρi,3p+1 , in)
(τi,3p , out; τi,3p+1 , in)

(ρi,3p+1 , out; ρ
2
i,3p+2 , in)

(τi,3p+1 , out; τ
2
i,3p+2 , in)

(ρi,3p+2 , out; ρi,3p+3 , in)
(τi,3p+2 , out; τi,3p+3 , in)


1 ≤ i ≤ n ∧ 1 ≤ p ≤ n− 2

(ρi,3(n−1) , out; ρi,3(n−1)+1 , in)
(τi,3(n−1) , out; τi,3(n−1)+1 , in)

(ρi,3(n−1)+1 , out; ρ
2
i,3(n−1)+2 , in)

(τi,3(n−1)+1 , out; τ
2
i,3(n−1)+2 , in)

(ρi,3(n−1)+2 , out;Ti , in)
(τi,3(n−1)+2 , out;Fi , in)


1 ≤ i ≤ n

(Ai , out; ai , in)
(A′i , out; ai , in)
(Bi , out; ai , in)
(B′i , out; ai , in)

 1 ≤ i ≤ n− 1

(yi , out; ziwi , in) : 1 ≤ i ≤ n− 2
(yn−1 , out;wn−1 , in) :

}

(wi , out; ci+1 c
′
i+1 , in) : 1 ≤ i ≤ n− 1

(zi , out; vi+1 , in) : 1 ≤ i ≤ n− 2

}

(vi , out; y
2
i , in)

(ai , out; bi+1 b
′
i+1 , in)

}
1 ≤ i ≤ n− 1

(q1,1 , out; r1,1 , in)
(qi,j , out; r

2
i,j , in) : 1 ≤ i ≤ n− 1 ∧ i ≤ j ≤ n− 1

}
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(ri,j , out; si,j ui,j , in) : 1 ≤ i ≤ n− 2 ∧ i ≤ j ≤ n− 2
(ri,n−1 , out; si,n−1 , in) : 1 ≤ i ≤ n− 1

}

(si,j , out; ti,j fi,j , in) : 1 ≤ i ≤ n− 1 ∧ i ≤ j ≤ n− 1

(u1,j , out; q1,j+1 q2,j+1 , in) : 1 ≤ j ≤ n− 2
(ui,j , out; qi+1,j+1 , in) : 2 ≤ i ≤ j ∧ 2 ≤ j ≤ n− 2

}
(Ti,j ti,j, out)
(T ′i,j ti,j, out)
(Fi,j fi,j, out)
(F ′i,j fi,j, out)

 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n

1.5 Rules allowing that each object xi,j (meaning that xi ∈ Cj) and
xi,j (meaning that ¬xi ∈ Cj) results in the corresponding ei,j and
ei,j objects with multiplicity 2n−1 in membrane 1 of configuration
Cn+1.

(xi,j , out; d
2
i,j,1 ; in)

(xi,j , out; d
2

i,j,1 ; in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(di,j,k , out; d
2
i,j,k+1 , in)

(di,j,k , out; d
2

i,j,k+1 , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

(di,j,n−1 , out; ei,j , in)

(di,j,n−1 , out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

1.6 Output rule with affirmative answer: (E0 f3n+2m yes ; out).

1.7 Output rule with negative answer: (f3n+2m no ; out).

1.8 Rules to generate in the membrane 1 of configuration C3n the ob-
jects E2n

1 , and in the membrane 1 of configuration C3n+1 the objects
E2n

0 , E2n

2 , . . . , E2n

m :

(δj,3p , out; δj,3p+1, in)
(δj,3p+1 , out; δ

2
j,3p+2, in)

}
0 ≤ j ≤ m ∧ 0 ≤ p ≤ n− 1
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(δj,3p+2 , out; δj,3p+3, in) 0 ≤ j ≤ m ∧ 0 ≤ p ≤ n− 2

(δ1,3(n−1)+2 , out;E1, in)

(δj,3(n−1)+2 , out; δj,3(n−1)+3, in)
(δj,3n , out;Ej, in)

}
0 ≤ j ≤ m ∧ j 6= 1

(fp , out; fp+1 ; in) 0 ≤ p ≤ 3n+ 2m− 1

1.9 Rules to remove a part of the garbage:

(ti,k Ti,k , out)
(ti,k T

′
i,k , out)

(fi,k Fi,k , out)
(fi,k F

′
i,k , out)

 1 ≤ i < k ∧ 2 ≤ k ≤ n

(ti,i Ti,i , out)
(fi,i F

′
i,i , out)

}
1 ≤ i ≤ n

(bk Bk+1 , out)
(b′k B

′
k+1 , out)

(ck Ak+1 , out)
(c′k A

′
k+1 , out)

n− 1 ≤ k ≤ n

(6) Rules in R2 :

2.1 Separation rule: [S ]2 → [ Γ0 ]2 [ Γ1 ]2.

2.2 Rules to produce objects Ti,i, Ai+1, F
′
i,i, A

′
i+1 in each membrane 2:

(Ai, out; ci c
′
i, in)

(A′i, out; ci c
′
i, in)

(Bi, out; bi b
′
i, in)

(B′i, out; bi b
′
i, in)

(bi, out;Bi+1 S, in)
(b′i, out;B

′
i+1, in)

(ci, out;Ti,iAi+1, in)
(c′i, out;F

′
i,iA

′
i+1, in)


1 ≤ i ≤ n



Chapter 7. New frontiers of the efficiency 172

2.3 Rules to produce an object E1 in each membrane 2 of configuration
C3n+1 and an object E0 in each membrane 2 of configuration C3n+2:

(Bn+1, out;E1, in)
(B′n+1, out;E1, in)
(An+1, out;E0, in)
(A′n+1, out;E0, in)

2.4 Rules to produce a truth assignment in each membrane 2 of con-
figuration C3n+1:

(Ti,j, out; ti,j, in)
(T ′i,j, out; ti,j, in)
(Fi,j, out; fi,j, in)
(F ′i,j, out; fi,j, in)

 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n

(ti,j, out;Ti,j+1 T
′
i,j+1, in)

(fi,j, out;Fi,j+1 F
′
i,j+1, in)

}
1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 1

(Ti,n, out;Ti, in)
(T ′i,n, out;Ti, in)
(Fi,n, out;Fi, in)
(F ′i,n, out;Fi, in)

 1 ≤ i ≤ n

2.5 Rules to check clause Cj through the truth assignment encoded by
a membrane 2:

(Ej Ti, out; ei,j, in)
(Ej Fi, out; ei,j, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

2.6 Rules to restore the truth assignment encoded by a membrane 2
which makes clause Cj true:

(ei,j, out, Ej+1 Ti, in)
(ei,j, out, Ej+1 Fi, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m− 1

2.7 Rules to send an object E0 to membrane 1 of configuration C3n+2m+1,
meaning that some truth assignment encoded by a membrane la-
belled with 2 makes the input formula ϕ true:

(ei,mE0 ; out)
(ei,mE0 ; out)

}
1 ≤ i ≤ n
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(7) Rules in R3 :

3.1 Rules to produce objects f ′3n+2m+1 and no in the membrane 1 of
configuration C3n+2m+2.

(f ′p, out; f
′
p+1, in) 0 ≤ p ≤ 3n+ 2m

(f ′3n+2m+1 no ; out)

7.3.2.2 An overview of the computations

A family of recognizer P systems with symport/antiport rules and membrane
separation is constructed above. For an instance of SAT problem ϕ = C1∧· · ·∧
Cm, consisting of m clauses Cj = lj,1 ∨ · · · ∨ lj,rj , 1 ≤ j ≤ m, where V ar(ϕ) =
{x1, · · · , xn}, and lj,k ∈ {xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ k ≤ rj. Let us
assume that the number of variables, n, and the number of clauses, m, of the
input formula ϕ, are greater or equal to 2.

The size mapping on the set of instances is defined as s(ϕ) = 〈m,n〉, for
each ϕ ∈ ISAT, and the encoding of the instance ϕ is the multiset

cod(ϕ) = {xi,j : xi ∈ Cj} ∪ {xi,j : ¬xi ∈ Cj}

That is, xi,j (respectively, xi,j) denotes variable xi (respectively, ¬xi) belonging
to clause Cj. Then, the Boolean formula ϕ will be processed by the system
Π(s(ϕ)) with input multiset cod(ϕ).

Next, we informally describe how the system Π(s(ϕ)) + cod(ϕ) works, in
order to process the instance ϕ of SAT problem. The solution proposed follows
a brute force algorithm in the framework of recognizer P systems with sym-
port/antiport rules and membrane separation, and it consists of the following
phases:

• Generation phase: using separation rules, all truth assignments for the
variables associated with the Boolean formula ϕ(x1, . . . , xn) are pro-
duced. This phase exactly takes 3n+ 1 computation steps.

• Checking phase: checking whether or not the input formula ϕ is satisfied
by some truth assignment generated in the previous phase. This phase
takes, exactly, 3m+1 steps, being m the number of clauses of the formula
ϕ.
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• Output phase: the system sends the right answer to the environment
depending on the results of the previous phase. This phase takes, exactly,
1 step if the answer affirmative, and 2 steps if the answer is negative.

Generation phase

In this phase, all truth assignments for the variables associated with the
Boolean formula ϕ(x1, . . . , xn) are generated, by applying separation rules in
membranes labelled with 2. This way, after completing the phase, there will
exist 2n membranes labelled with 2 such that each of them encodes a different
truth assignment of the variables {x1, . . . , xn}.

This phase consists in a loop with n iterations and one additional final step.
Each iteration of the loop takes three steps and, consequently, this phase takes
3n+ 1 steps.

To do this, in the configurations of the kind C3p+2 (0 ≤ p ≤ n − 1) there
exist 2p membranes labelled with 2 containing objects

Ap+2, A
′
p+2, Bp+2, B

′
p+2, Tp+1,p+1, F

′
p+1,p+1, S

along with 2p–tuples of objects (π1,p+1, π
′
1,p+1, . . . , πp,p+1, π

′
p,p+1), with π ∈

{T, F}, in such a way that the corresponding tuples are all different in the
different membranes.

Thus, a separation rule can be applied to each membrane labelled with 2.
As a consequence, in configuration C3p+3 (0 ≤ p ≤ n− 2) there will exist 2p+1

membranes labelled with 2. 2p of them will contain objects Ap+2 and Bp+2,
as well as (p+ 1)–tuples (π1,p+1, . . . , πp+1,p+1), with π ∈ {T, F}, in such a way
that πp+1,p+1 = Tp+1,p+1, and the corresponding tuples of these membranes
are all different. The other 2p membranes labelled with 2 contain the objects
A′p+2 and B′p+2, as well as (p+1)–tuples (π′1,p+1, . . . , π

′
p+1,p+1) with π ∈ {T, F},

in such a way that π′p+1,p+1 = F ′p+1,p+1 and the corresponding tuples of these
membranes are all different.

Finally, in configuration C3n there exist 2n membranes labelled with 2. 2n−1

of them contain the objects An+1 and Bn+1, as well as n–tuples (π1,n, . . . , πn,n)
with π ∈ {T, F}, in such a way that πn,n = Tn,n and the corresponding tuples
of these membranes are all different. The other 2n−1 membranes labelled with
2 contain the objects A′n+1 and B′n+1, as well as n–tuples (π′1,n, . . . , π

′
n,n) with

π ∈ {T, F}, in such a way that π′n,n = F ′n,n and the corresponding tuples of
these membranes are all different.
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This phase ends in the step 3n + 1, where configuration C3n+1 contains 2n

membranes labelled with 2, each one of them containing the objects An+1 and
E1, as well as n–tuples (π1, . . . , πn) with π ∈ {T, F}, and the corresponding
tuples of these membranes are all different.

Simultaneously, during the generation phase, from the input multiset placed
initially in the skin membrane, 2n−1 copies of each object of that multiset are
generated in that membrane, corresponding to configuration Cn. Due to tech-
nical reasons, we will change variables xi,j and xi,j by ei,j and ei,j, respectively.
This is accomplished by using the following rules from R1:

(xi,j , out; d
2
i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(xi,j , out; d
2

i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m
(di,j,k , out; d

2
i,j,k+1 , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

(di,j,k , out; d
2

i,j,k+1 , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2
(di,j,n−1 , out; ei,j , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(di,j,n−1 , out; ei,j , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m


The cited multiset that codifies the input formula will be denoted by

(cod(ϕ))2n−1

e .

Checking phase

This phase begins at computation step 3n + 2 and consists in a loop with m
iterations, taking each of them 2 steps. Hence, the checking phase takes 2m
steps.

In the configuration C3n+1, the presence of an object E1 in each membrane
labelled with 2, along with the code of a truth assignment, marks the beginning
of this phase. In the first iteration of the loop, the truth assignments making
clause C1 of ϕ true are found. To do this, the following rules of R2 are applied:

(E1 Ti, out; ei,1, in)
(E1 Fi, out; ei,1, in)

}
1 ≤ i ≤ n

Simultaneously, in the computation step (3n + 1) + 2, the object E0 is incor-
porated to each of the membranes labelled with 2 by means of the application
of the following rules of R2: (An+1, out, E0, in) and (A′n+1, out, E0, in).

At this point, the presence of an object ei,1 or an object ei,1 in a membrane
2 of the configuration C(3n+1)+1 indicates that this membrane codifies a truth
assignment making the first clause true.
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In the next computation step, those membranes will incorporate an object
E2 coming from the skin by applying the following rules from R2:

(ei,1, out, E2 Ti, in)
(ei,1, out, E2 Fi, in)

}
1 ≤ i ≤ n

This way, the presence of an object E2 in a membrane 2 of the configuration
C(3n+1)+2 indicates that this membrane codifies a truth assignment making true
the first clause and that is ready to check the second clause of the formula.
That is, from this moment, the membranes labelled with 2 not making true
the first clause will not evolve.

In the j-th iteration (2 ≤ j ≤ m) of the aforementioned loop, the truth
assignments making true the clause Cj of the formula are checked, taking
into account that only the truth assignments containing the object Ej will be
checked, since only these membranes make clauses C1, . . . , Cj−1 of ϕ true. This
is accomplished by applying the following rules from R2:

(Ej Ti, out; ei,j, in)
(Ej Fi, out; ei,j, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

Then, the presence of an object ei,j or an object ei,j in a membrane 2 of the
configuration C(3n+1)+2·(j−1)+1 indicates that this membrane codifies a truth
assignment making clauses C1, . . . , Cj of ϕ true. Following this, those mem-
branes will incorporate an object Ej+1 coming from the skin by applying the
following rules from R2:

(ei,j, out, Ej+1 Ti, in)
(ei,j, out, Ej+1 Fi, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m− 1

If the input formula ϕ is satisfiable, then in some membrane labelled with 2
of the configuration C(3n+1)+2(m−1)+1 there will exist an object ei,m or an object
ei,m. This indicates that the truth assignment that this membrane codifies
makes true all the clauses from ϕ and, consequently, makes true the input
formula. In this case, the checking phase ends up by applying a rule from R2

of the kind (ei,mE0 ; out) or (ei,mE0 ; out) making an object E0 go to the skin
membrane of the configuration C(3n+1)+2(m−1)+2, where also the object f3n+2m

has been produced.

If the input formula ϕ is not satisfiable, the no membrane labelled with 2
of the configuration C(3n+1)+2(m−1)+1 contains an object ei,m neither an ob-
ject ei,m. In this case, the checking phase ends up by applying the rule
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(f ′3n+2m , out; f
′
3n+2m+1 , in) ∈ R3 (in fact, this is the only rule applicable to

the configuration C(3n+1)+2(m−1)+1).

The checking phase ends at step (3n+ 1) + 2(m− 1) + 2 = 3n+ 2m+ 1.

Output phase

If the input formula ϕ is satisfiable, then objects E0 and f3n+2m will appear
in the input membrane of the configuration C3n+2m+1 . Then, by applying
the rule (E0 f3n+2m yes ; out) in the skin membrane, the object yes is released
into the environment, providing and affirmative answer at computation step
(3n+ 1) + 2m+ 1 = 3n+ 2m+ 2.

If the input formula ϕ is not satisfiable, then objects f3n+2m and yes are
present in the skin membrane of the configuration C(3n+1)+2(m−1)+1 = C3n+2m,
but not the object E0. In this case, the only applicable rule in the system
is (f ′3n+2m , out; f

′
3n+2m+1 , in) in the membrane 3 and in the next computation

step only the rule (f ′3n+2m+1 no ; out) ∈ R3 is applicable. Consequently, objects
f3n+2m, yes, f

′
3n+2m+1 and no appear in the skin membrane of the configuration

C3n+2m+2. Then, by applying the rule (f3n+2m no ; out) in the skin membrane,
an object no will be released into the environment, providing a negative answer
in the step 3n+ 2m+ 3.

Hence, the output phase takes 1 computation step in the case of an affir-
mative answer, and 2 computation steps in the case of a negative answer.

7.3.2.3 Main result

Theorem 7.5. SAT ∈ PMCCSC(3).

Proof. The family of P systems with symport/antiport rules and membrane
division constructed in Subsection 4.3.2.1 verifies the following:

(a) Every system of the family Π is a recognizer P system with membrane
separation and symport/antiport rules of length at most 3.

(b) The family Π is polynomially uniform by Turing machines because, for
each n,m ∈ IN, the rules of Π(〈n,m〉) of the family are recursively defined
from n,m ∈ IN, and the amount of resources needed to build an element
of the family is of a polynomial order in n, as shown below:

• The size of the working alphabet is of the order Θ(n2 ·m).

• The initial number of cells is 3 ∈ Θ(1).
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• The initial number of objects in membranes is 9n + 3m + 17 ∈
Θ(max{n,m}).
• The total number of rules is of order Θ(n2 ·m).

• The maximum length of a rule is 3 ∈ Θ(1).

(c) The pair (cod, s) of polynomial–time computable functions defined in
Subsection 7.3.2.2 is a polynomial encoding from SAT to Π.

(d) The family Π is polynomially bounded, sound and complete with regard
to (SAT, cod, s) (see Subsection 7.3.2.2).

Therefore, according to Definition 2.14, the family Π from CSC(3) solves
SAT problem in polynomial time with respect to the maximum of number of
variables and number of clauses.

Corollary 7.3. NP ∪ co-NP ⊆ PMCCSC(3).

Proof. It suffices to notice that SAT problem is an NP-complete problem, SAT∈
PMCCSC(3), and the complexity class PMCCSC(3) is closed under polynomial-
time reduction and under complement.

7.3.3 P systems with symport/antiport rules and with
cell division but without environment

In this subsection we show that the environment play an irrelevant role with re-
spect the complexity classes associated with P systems with symport/antiport
rules and with cell division. That is, the following holds: for each k ∈ IN we
have PMCCDC(k+1) = PMC

ĈDC(k+1)
.

Firs, we prove two technical results concerning recognizer P systems.

Proposition 7.3. Let Π = (Γ, E ,Σ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a rec-
ognizer P systems with symport/antiport rules with length at most k, k ≥ 2,
and without membrane division. Let M = |M1 + · · · + Mq| and let C =
(C0, C1, . . . , Cm) be a computation of Π Then, |C∗0 | = M , and for each t, 0 ≤
t < m, we have |C∗t+1| ≤ |C∗t | · k, and |C∗t+1| ≤M · kt.

Proof: Obviously, |C∗0 | = |C0(0)+C0(1)+ · · ·+C0(q)| = |M1 + · · ·+Mq| = M .
Let t, 0 ≤ t < m, and let us compute C∗t+1 = Ct+1(0) + Ct+1(1) + · · ·+ Ct+1(q).
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Bearing in mind that only the skin membrane can send and receive objects
from the environment, we have

Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q) ⊆ Ct(0) + Ct(1) + · · ·+ Ct(q)

Next, let us see what are the objects that membrane 1 can receive at step t+1.

• On the one hand, can receive objects from Ct(0).

• On the one hand, can receive objects from E by means of rules in the
skin membrane of the type:

– (a ei1 . . . eir , in) with a ∈ Ct(0) and ei1 , . . . , eir ∈ E , r ≤ k − 1.

– (a, out; ei1 . . . eir , in) with a ∈ Ct(1) and ei1 , . . . , eir ∈ E , r ≤ k − 1.

Then, |Ct+1(1)| ≤ |Ct(0) + Ct(1)| · (k − 1). So, we have

|C∗t+1| = |Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q)|+ |Ct+1(1)|
≤ |Ct(0) + Ct(1) + · · ·+ Ct(q)|+ |Ct(0) + Ct(1)| · (k − 1)
≤ |C∗t |+ |C∗t | · (k − 1) ≤ |C∗t | · k

Finally, let us see that |C∗t+1| ≤ M · kt by induction on t. For t = 1 the result
is trivial because of |C∗1 | ≤ (|C∗0 |+M) · (k − 1) = 2M · (k − 1).

Let t be such that 1 < t < m and the result holds for t. Then,

|C∗t+1| ≤ |C∗t | · k
h.i

≤ M · kt−1 · k ≤M · kt

�

Proposition 7.4. Let Π = {Π(n) | n ∈ IN} a family of recognizer P systems
from CDC(k), where k ≥ 2, solving a decision problem X = (IX , θX) in
polynomial time according to Definition 2.14. Let (cod, s) be a polynomial
encoding associated with that solution. There exists a polynomial function r(n)
such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number of
objects in all membranes of the system Π(s(u))+cod(u) along any computation.

Proof: Let p(n) be a polynomial function such that for each u ∈ IX every
computation of Π(s(u))+cod(u) is halting and it performs at most p(|u|) steps.

Let u ∈ IX be an instance of X and

Π(s(u)) + cod(u) = (Γ, E ,Σ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)
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Let M = |M1 + · · · +Mq|. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ p(|u|), be a
computation of Π.

First, let us suppose that we apply only communication rules at m con-
secutive transition steps. From Proposition 7.3 we deduce that |C∗0 | = M and
|C∗t+1| ≤M · kt, for each t, 0 ≤ t < m.

Thus, if we apply in a consecutive way the maximum possible number
of communication rules (without applying any division rules) to the system
Π(s(u)) + cod(u), in any instant of any computation of the system, M · kp(|u|)
is an upper bound of the number of objects in the whole system.

Now, let us consider the effect of applying in a consecutive way the max-
imum possible number of division rules (without applying any communica-
tion rules) to the system Π(s(u)) + cod(u) when the initial configuration has
M · kp(|u|) objects. After that, an upper bound of the number of objects in
the whole system by any computation is M · kp(|u|) · 2p(|u|) · p(|u|). Then, we
consider a polynomial function r(n) such that r(|u|) ≥ log(M) + p(|u|) · (1 +
log k) + log(p(|u|)), for each instance u ∈ IX . The polynomial function r(n)
fulfills the property required.

�

Corollary 7.4. Let Π = {Π(n) | n ∈ IN} a family of recognizer P systems
with symport/antiport rules and membrane division, solving a decision problem
X = (IX , θX) in polynomial time according to Definition 2.14. Let (cod, s) a
polynomial encoding associated with that solution. Then, there exists a polyno-
mial function r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound
of the number of objects from E which are moved from the environment to all
membranes of the system Π(s(u)) + cod(u) along any computation.

Proof: It suffices to note that from Proposition 7.4 there exists a polynomial
function r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound of
the number of objects in all membranes of the system Π(s(u)) + cod(u).

�

7.3.3.1 Simulating systems from CDC(k) by means of systems from

ĈDC(k)

The goal of this section is to show that any recognizer P system with sym-
port/antiport rules and membrane division can be simulated by a recognizer P
system symport/antiport rules, membrane division and without environment,
in an efficient way.

First of all, we define the meaning of efficient simulations in the framework
of recognizer P systems with symport/antiport rules.
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Definition 7.5. Let Π and Π′ be recognizer P systems with symport/antiport
rules. We say that Π′ simulates Π in an efficient way if the following holds:

1. Π′ can be constructed from Π by a deterministic Turing machine working
in polynomial time.

2. There exists an injective function, f , from the set Comp(Π) of compu-
tations of Π onto the set Comp(Π′) of computations of Π′ such that:

? There exists a deterministic Turing machine that constructs com-
putation f(C) from computation C in polynomial time.

? A computation C ∈ Comp(Π) is an accepting computation if and
only if f(C) ∈ Comp(Π′) is an accepting one.

? There exists a polynomial function p(n) such that for each C ∈
Comp(Π) we have |f(C)| ≤ p(|C|).

Now, for every family of recognizer P system with symport/antiport rules
and membrane division solving a decision problem, we design a family of recog-
nizer P systems with symport/antiport rules, membrane division and without
environment efficiently simulating it, according to Definition 7.5.

In what follows throghout this Section, let Π = {Π(n) | n ∈ IN} a family
of recognizer P systems with symport/antiport rules and membrane division
solving a decision problem X = (IX , θX) in polynomial time according to Def-
inition 2.14, and let r(n) be a polynomial function such that for each instance
u ∈ IX , 2r(|u|) is an upper bound of the number of objects from E which are
moved from the environment to all membranes of the system by any compu-
tation of Π(s(u)) + cod(u).

Definition 7.6. For each n ∈ IN, let

Π(n) = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

an element of the previous family, and for the sake of simplicity we denote r
instead of r(n) and 1 is the label of the skin membrane. Let us consider the
recognizer P system with symport/antiport rules of degree q1 = 1+q·(r+2)+|E|,
with membrane division and without environment

S(Π(n)) = (Γ′,Σ′, µ′,M′
0,M′

1, . . . ,M′
q1
,R′0,R′1, . . . ,R′q1 , i′in, i′out)

defined as follows:

• Γ′ = Γ ∪ {αi : 0 ≤ i ≤ r − 1}.
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• Σ′ = Σ.

• Each membrane i ∈ {1, . . . , q} of Π provides a membrane of S(Π(n))
with the same label. In addition, S(Π(n)) has:

? r+1 new membranes, labelled by (i, 0), (i, 1), . . . , (i, r), respectively,
for each i ∈ {1, . . . , q}.

? A distinguished membrane labelled by 0.

? A new membrane, labelled by lb, for each b ∈ E.

• µ′ is the rooted tree obtained from µ as follows:

? Membrane 0 is the root of µ′ and it is the father of the root of µ.

? For each b ∈ E, membrane 0 is the father of membrane lb.

? We consider a linear structure whose nodes are (i, 0), (i, 1), . . . , (i, r)
and such that (i, j) is the father of (i, j− 1), for each 1 ≤ i ≤ q and
1 ≤ j ≤ r.

? For each membrane i of µ we add the previous linear structure being
membrane i the father of membrane (i, r).

• Initial multisets: M′
0 = ∅, M′

lb
= {α0}, for each b ∈ E, and

M′
(i,0) = Mi

M′
(i,1) = ∅

. . . . . . . . .
M′

(i,r) = ∅
M′

i = ∅

 (1 ≤ i ≤ q)

• Set of rules:

R′0 ∪R′1 ∪ · · · ∪ R′q ∪ {R′(i,j) : 1 ≤ i ≤ q, 0 ≤ j ≤ r} ∪ {R′lb : b ∈ E}

where R′0 = ∅, R′i = Ri for 1 ≤ i ≤ q, and

R′(i,j) = {
(
a, out;λ, in) : a ∈ Γ}, for 1 ≤ i ≤ q ∧ 0 ≤ j ≤ r}

R′lb = {[αj]lb → [αj+1]lb [αj+1]lb : 0 ≤ j ≤ r − 2} ∪
{[αr−1]lb → [b]lb [b]lb , (lb, out;λ, in)}, for b ∈ E

• i′in = (iin, 0), and i′out = 0.
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Let us notice that S(Π(n)) can be considered as an extension of Π(n)
without environment, in the following sense:

? Γ ⊆ Γ′,Σ ⊆ Σ′ and E = ∅.

? Each membrane in Π is also a membrane in S(Π(n)).

? There is a distinguished membrane in S(Π(n)) labelled by 0 which plays
the role of environment of Π(n).

? µ is a subtree of µ′.

? R ⊆ R′, and now 0 is the label of a “ordinary membrane” in S(Π(n)).

Next, we analyze the structure of the computations of system S(Π(n)) and
we compare them with the computations of Π(n).

Lemma 7.2. Let C ′ = (C ′0, C ′1, . . . ) be a computation of S(Π(n)). For each t
(1 ≤ t ≤ r) the following holds:

• C ′t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C ′t(i, j) =

{
Mi, if j = t
∅, if j 6= t

• For each b ∈ E, there exist 2t membranes labelled by lb whose father is
membrane 0 and their content is:

C ′t(lb) =

{
{αt}, if 1 ≤ t ≤ r − 1
{b}, if t = r

Proof: By induction on t.
Let us start with the basic case t = 1. The initial configuration of system

S(Π(n)) is the following:

• C ′0(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q we have C ′0(i, 0) =Mi, and C ′0(i, j) = ∅, for 1 ≤ j ≤ r.

• For each b ∈ E , there exists only one membrane labelled by lb whose
contents is {α0}.
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At configuration C ′0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .

•
(
a, out;λ, in

)
∈ R(i,0), for each a ∈ supp(Mi).

Thus,

(a) For each i (1 ≤ i ≤ q) we have:
C ′1(i) = ∅
C ′1(0) = ∅
C ′1(i, 0) = ∅
C ′1(i, 1) = Mi

C ′1(i, j) = ∅, for 2 ≤ j ≤ r

(b) For each b ∈ E , there are 2 membranes labelled by lb whose father is
membrane 0 and their content is {α1}.

Hence, the result holds for t = 1.

By induction hypothesis, let t be such that 1 ≤ t < r, and let us suppose
the result holds for t, that is,

• C ′t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C ′t(i, j) =

{
Mi, if j = t
∅, if j 6= t

• For each b ∈ E , there exist 2t membranes labelled by lb whose father is
membrane 0 and their content is C ′t(lb) = {αt} (because t ≤ r − 1).

Then, at configuration C ′t only the following rules are applicable:

(1) If t ≤ r − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .

(2) If t = r − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .

(3)
(
a, out;λ, in

)
∈ R(i,t), for each a ∈ supp(Mi).
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From the application of rules of types (1) or (2) at configuration C ′t, we deduce
that there are 2t+1 membranes labelled by lb in C ′t+1, for each b ∈ E , whose
father is membrane 0 and their content is {αt+1}, if t ≤ r − 2, or {b}, if
t = r − 1.

From the application of rules of type (3) at configuration C ′t, we deduce
that

C ′t+1(i, j) =

{
Mi, if j = t+ 1
∅, if 0 ≤ j ≤ r ∧ j 6= t+ 1

Bearing in mind that no other rule of system S(Π(n)) is applicable, we deduce
that C ′t+1(i) = ∅, for 0 ≤ i ≤ q.

This completes the proof of this Lemma.
�

Lemma 7.3. Let C ′ = (C ′0, C ′1, . . . ) be a computation of the P system S(Π(n)).
Configuration C ′r+1 is the following:

(1) C ′r+1(0) = b2r

1 . . . b2r

α , where E = {b1, . . . , bα}.

(2) C ′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.

(3) C ′r+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ r.

(4) For each b ∈ E, there exist 2r membranes labelled by lb whose father is
membrane 0 and their content is empty.

Proof: From Lemma 7.2, the configuration C ′r is the following:

• C ′r(i) = ∅, for 0 ≤ i ≤ q.

• For each i (1 ≤ i ≤ q) we have

C ′r(i, j) =

{
Mi, if j = r
∅, if j 6= r

• For each b ∈ E , there exist 2r membranes labelled by lb whose father is
membrane 0 and their content is {b}.

At configuration C ′r only the following rules are applicables:

•
(
a, out;λ, in

)
∈ R(i,r), for each a ∈ Γ ∩ supp(Mi).

•
(
b, out;λ, in

)
∈ Rlb , for each b ∈ E .
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Thus,

• C ′r+1(0) = b2r

1 . . . b2r

α , where E = {b1, . . . , bα}.

• C ′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.

• C ′r+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ r.

• For each b ∈ E , there exist 2r membranes labelled by lb whose father is
membrane 0 and their content is empty.

�

Definition 7.7. Let C = (C0, C1, . . . , Cm) be a halting computation of Π(n).
Then we define the computation S(C) = (C ′0, C ′1, . . . , C ′r, C ′r+1, . . . , C ′r+1+m) of
S(Π(n)) as follows:

(1) The initial configuration is:
C ′0(i) = ∅, for 0 ≤ i ≤ q
C ′0(i, 0) = C0(i), for 1 ≤ i ≤ q
C ′0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ r
C ′0(lb) = α0, for each b ∈ E

(2) The configuration C ′t, for 1 ≤ t ≤ r, is described by Lemma 7.2.

(3) The configuration C ′r+1 is described by Lemma 7.3.

(4) The configuration C ′r+1+s, for 0 ≤ s ≤ m, coincides with the configuration
Cs of Π, that is, Cs(i) = C ′r+1+s(i), for 1 ≤ i ≤ q. The content of the
remaining membranes (excluding membrane 0) at configuration C ′r+1+s

is equal to the content of that membrane at configuration C ′r+1, that is,
these membranes do not evolve after step r + 1.

That is, every computation C of Π(n) can be “reproduced” by a compu-
tation S(C) of S(Π(n)) with a delay: from step r + 1 to step r + 1 + m, the
computation S(C) restricted to membranes 1, . . . , q provides the computation
C of Π(n).

From Lemma 7.2 and Lemma 7.3 we deduce the following:

(a) S(C) is a computation of S(Π(n)).

(b) S is an injective function from Comp(Π(n)) onto Comp(S(Π(n))).
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Proposition 7.5. The P system S(Π(n)) defined in 7.6 simulates Π(n) in an
efficient way.

Proof. In order to show that S(Π(n)) can be constructed from Π(n) by a deter-
ministic Turing machine working in polynomial time, it is enough to note that
the amount of resources needed to construct S(Π(n)) from Π(n) is polynomial
in the size of the initial resources of Π(n). Indeed,

1. The size of the alphabet of S(Π(n)) is |Γ′| = |Γ|+ r.

2. The initial number of membranes of S(Π(n)) is 1 + q · (r + 2) + |E|.

3. The initial number of objects of S(Π(n)) is the initial number of objects
of Π(n) plus |E|.

4. The number of rules of S(Π(n)) is |R′| = |R|+(r+1) · |E|+ |Γ| ·q ·(r+1).

5. The maximal length of a communication rule of S(Π(n)) is equal to the
maximal length of a communication rule of Π(n).

From Lemma 7.2 and Lemma 7.3 we deduce that:

(a) Every computation C ′ of S(Π(n)) has associated a computation C of Π(n)
such that S(C) = C ′ in a natural way.

(b) The function S is injective.

(c) A computation C of Π(n) is an accepting computation if and only if S(C)
is an accepting computation of S(Π(n)).

Finally, let us notice that if C is a computation of Π(n) with length m, then
S(C) is a computation of S(Π(n)) with length r + 1 +m.

7.3.3.2 Computational efficiency of P systems with membrane di-
vision and without environment

In this Section, we analyze the role of the environment in the efficiency of
P systems with membrane division. That is, we study the ability of these P
systems with respect to the computational efficiency when the alphabet of the
environment is an empty set.

Theorem 7.6. For each k ≥ 1 we have PMCCDC(k) = PMC
ĈDC(k)

.
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Proof: Let us recall that PMCCDC(1) = P. Then,

P ⊆ PMC
ĈDC(1)

⊆ PMCCDC(1) = P

Thus, the result holds for k = 1. Let us show the result for k ≥ 2. Since

ĈDC(k) ⊆ CDC(k) it suffices to prove that PMCCDC(k) ⊆ PMC
ĈDC(k)

.

For that, let X ∈ PMCCDC(k).
Let {Π(n) : n ∈ N} be a family of P systems from CDC(k) solving X

according to Definition 2.14. Let (cod, s) be a polinomial encoding associated
with that solution. Let u ∈ IX be an instance of the problem X that will be
processed by the system Π(s(u)) + cod(u). According to Proposition 7.4, let
r(n) be a polynomial function such that 2r(|u|) is an upper bound of the number
of objects from E which are moved from the environment to all membranes of
the system by any computation of

Π(s(u)) + cod(u) = (Γ, E ,Σ,M1, . . . ,Miin + cod(u), . . . ,Mq1 ,R, iin, iout)

Then, we consider the P system without environment

S(Π(s(u)))+cod(u) = (Γ′,Σ′,M′
0,M′

1, . . . ,M′
iin

+cod(u), . . . ,M′
q1
,R′, i′in, i′out)

according to Definition 7.6, where q1 = 1 + q · (r(|u|) + 2) + |E|.
Therefore, S(Π(s(u))) + cod(u) is a P system from ĈDC(k) such that

verifies the following:

• A distinguished membrane labelled by 0 has been considered, which will
play the role of the environment at the system Π(s(u)) + cod(u).

• At the initial configuration, it has enough objects in membrane 0 in order
to simulate the behaviour of the environment of the system Π(s(u))) +
cod(u).

• After r(n) + 1 step, computations of Π(s(u)) + cod(u) are reproduced by
the computations of S(Π(s(u))) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bα}. In order to simulate Π(s(u))+ cod(u) by
a P system without environment in an efficient way, we need to have enough
objects in the membrane of S(Π(s(u))) + cod(u) labelled by 0 available. That
is, 2r(n) objects in that membrane are enough.

In order to start the simulation of any computation C of Π(s(u)) + cod(u),
it would be enough to have 2r(n) copies of each object bj ∈ E in the membrane
of S(Π(s(u))) + cod(u) labelled by 0. For this purpose
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• For each b ∈ E we consider a membrane in S(Π(s(u)))+cod(u) labelled by
lb which only contains object α0 initially. We also consider the following
rules:

– [αj]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ r(|u|)− 2.

– [αp(n)−1]lb → [b]lb [b]lb .

– (b, out) ∈ Rlb .

• By applying the previous rules, after r(|u|) transition steps we get 2r(|u|)

membranes labelled by lb, for each b ∈ E in such a way that each of them
contains only object b. Finally, by applying the third rule we get 2r(|u|)

copies of objects b in membrane 0, for each b ∈ E .

Therefore, after the execution of r(|u|) + 1 transition steps in each compu-
tation of S(Π(s(u))) + cod(u) in membrane 0 of the corresponding configu-
ration, we have 2r(|u|) copies of each object b ∈ E . This number of copies is
enough to simulate any computation C of Π(s(u))+cod(u) through the system
S(Π(s(u)) + cod(u)).

From Proposition 7.5 we deduce that the family {S(Π(n))| n ∈ N} solves
X in polynomial time according to Definition 2.14. Hence, X ∈ PMC

ĈDC(k)
.

�

7.4 Frontiers of the Efficiency in P Systems

with Symport/Antiport

Next, based on the results from previous sections, we present different frontiers
of the efficiency in terms of syntactical ingredients of recognizer P systems with
symport/antiport rules and membrane division or membranes separation (with
or without environment).

1. The class CDC(1) is feasible and the class CDC(2) is presumably effi-
cient. Hence, the length of communication rules in systems from CDC
provides a borderline of the efficiency. Specifically, in the framework of
recognizer P systems with membrane division, passing from non cooper-
ation (length of communication rules equal to 1) to minimal cooperation
(length of communication rules at most 2) amounts to passing from fea-
sibility to presumable efficiency. An optimal frontier of the efficiency is
obtained passing from 1 to 2.
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2. The class CSC(2) is feasible and the class CDC(2) is presumably effi-
cient. Hence, when only minimal cooperation is used in communication
rules, allowing division rules instead separation rules amounts to passing
from feasibility to presumable efficiency.

3. The class CSC(2) is feasible and the classe CSC(3) is presumably effi-
cient. Hence, the length of communication rules in systems from CSC
provides a borderline of the efficiency. Specifically, in the framework
of recognizer P systems with membrane division, passing from minimal
cooperation (length of communication rules at most 2) to allow commu-
nication rules with length at most 3, amounts to passing from feasibility
to presumable efficiency. An optimal frontier of the efficiency is obtained
passing from 2 to 3.

4. The class ĈSC is feasible. In particular, the class ĈSC(3) is feasible
but the classe CSC(3) is presumably efficient. Hence, in the framework
of recognizer P systems with membrane separation and communication
rules with length at most 3, the use of objects with infty multiplicity
provides a borderline between tractability and NP–hardness.

5. For each k ≥ 2, the class ĈSC(k) is feasible and the class ĈDC(k) is
presumably efficient. Thus, in the framework of recognizer P systems
without environment whose communication rules have length at most
k ≥ 2, allowing division rules instead of separation rules amounts to
passing from feasibility to presumably efficiency.

7.4.1 Does structure matter?

In this subsection we analyze the role played by the structure associated with
different membrane systems which use symport/antiport rules as communica-
tion among processing units (membranes in the case of cell-like approach or
cells in the case of tissue-like approach) from a computational complexity point
of view. These structures are rooted trees (in cell-like P systems) an undirected
graphs (in tissue-like P systems). It is clear that a rooted tree is a particular
case of an undirected graph. Then, is there some qualitative advantage to
consider tissue-like structure instead of cell-like structure?

According with the results presented in Section 3.4.3 and in Section 7.4 we
have the following:
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Feasible Presumable Efficiency

CDC(1) CDC(2) (length of rules)

CSC(2) CDC(2) (kind of rules)

CSC(2) CSC(3) (length of rules)

ĈSC(3) CSC(3) (the environment)

ĈSC(k) ĈDC(k) (k ≥ 2 : kind of rules)

Table 7.1: Frontiers of the Presumable Efficiency

These results show that the structure associated with membrane systems
(rooted trees in cell-like P systems versus undirected graphs in tissue-like P
systems) is not relevant from a computational complexity point of view.
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Feasible Presumable Efficiency

TDC(1) TDC(2) (length of rules)

CDC(1) CDC(2) (length of rules)

TSC(2) TDC(2) (kind of rules)

CSC(2) CDC(2) (kind of rules)

TSC(2) TSC(3) (length of rules)

CSC(2) CSC(3) (length of rules)

T̂SC(3) TSC(3) (the environment)

ĈSC(3) CSC(3) (the environment)

T̂SC(k) T̂DC(k) (k ≥ 2 : kind of rules)

ĈSC(k) ĈDC(k) (k ≥ 2 : kind of rules)

Table 7.2: Frontiers of the Presumable Efficiency



8
P–Lingua based software for Cell-like P
systems with Symport/Antiport Rules

8.1 Introduction

In Chapter 7 an extensive study on how cell-like P systems with symport/an-
tiport rules enable finding new boundaries of the efficiency, when tackling NP-
complete problems. It has been shown, by means of constructive proofs, that
CDC(2) and CSC(3) provide frontiers between efficiency and non-efficiency
in terms of computational complexity. In this way, a P system family from
CDC(2) has been shown to solve HAM–CYCLE in polynomial time, while
a family from CSC(3) has been shown to solve SAT in polynomial time.

Due to the extraordinary hardness of the families designs, the aforemen-
tioned results could not have been achieved without the assistance of a newly
developed simulator, which has been included into P–Lingua framework. In
this way, each family design has been structured into different modules (a task
associated with each of them), each one being checked by using the simulator
with several relevant instances. Subsequently, the module has been incor-
porated into the complete design. With respect to the formal verification,
the simulator has been used to check that the identified invariant formulas
were corroborated in the corresponding configurations. At the same time, this
process has allowed to check the functioning of the simulator, by performing

193



Chapter 8. Simulating SAMDS P systems in P–Lingua 194

virtual experiments on the solutions of both HAM-CYCLE and SAT. The
same procedure was also conducted when addressing a characterization of SAT
by means of a family of recognizer P systems in CDC(3), as described in [90].

The developed simulator has been included within the newly released ver-
sion 5.0 of pLinguaCore library. It is worth pointing out that previous versions
of P–Lingua framework provided support for cell-like symport/antiport P sys-
tems with membrane division or membrane separation rules, but only allowing
finite multiplicities of objects in the environment. As such, the new simulator
fixes an open issue in the framework, since it provides full support for arbi-
trary number of object copies in the environment, in a similar way for existing
simulators for tissue-like P systems.

In this Chapter, P–Lingua simulation of cell-like P systems with sym-
port/antiport rules with either membrane division or membrane separation
rules and allowing arbitrary object copies in the environment, that we will col-
lectively abbreviate as SAMDS P systems, is discussed. Section 8.2 covers the
P–Lingua syntax for defining models belonging to such variant. Section 8.3
shows full examples of the P–Lingua definition for concrete instances of the so-
lutions of HAM–CYCLE and SAT in CDC(2) and CSC(3), respectively,
in order to illustrate the complexity of the families design. Section 8.4 in-
troduces a simulation algorithm reproducing semantics of SACDS P systems,
which has been implemented into pLinguaCore library. Finally, Section 8.5
covers performance results of the developed simulator in reference to concrete
instances of the solutions of SAT in CDC(3) and CSC(3), respectively.

8.2 P–Lingua syntax for SAMDS P systems

Taking the existing P–Lingua syntax for tissue-like P systems introduced in
[131, 132] as a starting point, we now review the syntax for SAMDS P systems.

8.2.1 Reserved words

The set of reserved words has been updated by adding the following text string:

@msInfEnv

8.2.2 Model specification

Any P–Lingua file defining a SAMDS P system must begin with the following
sentence:
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@model<infEnv_symport_antiport>

8.2.3 Initial membrane structure

SAMDS P systems are a variant of cell-like P systems where the environment
plays an active role. In order to specify the initial membrane structure, the
same syntax for cell-like P systems from [131] applies, with one constraint:
the environment must be defined with a virtual membrane labelled with the
environment label. This virtual membrane will be placed as the outer-most
membrane in the structure specification, in the following way:

@mu = [ ... ]’environment;

where ... stands for the definition of the membrane structure as usual (start-
ing with the skin membrane).

8.2.4 Definition of initial multisets

When defining SAMDS P systems, it is necessary to specify the objects initially
placed both in the membranes and the environment.

Membranes

Syntax for specifying the initial multiset for a membrane labelled with label

is the same from [131]. The following sentence is used:

@ms(label) = MULTISET_OF_OBJECTS;

where MULTISET OF OBJECTS is a comma-separated list of objects, which mul-
tiplicity can be expressed with the operator *. Character # represents the
empty multiset. Example:

@ms(2) = a1*10,b;

Using the operator = enables specifying the multiset contents with a single
sentence. Alternatively, the operator += enables cumulative addition of objects
to the corresponding multiset through a sequence of several sentences.
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Environment

In order to specify the objects initially placed in environment (each appearing
in an arbitrary number of copies), the following sentence must be written:

@msInfEnv = OBJECTS;

where OBJECTS is a comma-separated list of objects (no multiplicity is specified,
as it is supposed to be arbitrary). Example:

@msInfEnv = a,b,c;

The operator += can be used also, as described above.

8.2.5 Definition of the partition of the working alphabet

In order to define the partition Γ1 and Γ2 of the working alphabet Γ, associated
with a SAMDS P system with membrane separation, the following pair of
sentences is used:

@ms1 = OBJECTS1;

@ms2 = OBJECTS2;

where OBJECTS1 and OBJECTS2 are comma-separated lists of objects. Exam-
ples:

@ms1 = b,c;

@ms2 = e,f;

The operator += can be used also, as described above.

8.2.6 Definition of rules

Four types of rules can be defined:

(1) Symport rules, that can be specified in the following ways:

• Rules of type (u , in) ∈ Ri are defined as

u[]’i --> [u]’i;

• Rules of type (u , out) ∈ Ri are defined as
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[u]’i --> u[]’i;

(2) Antiport rules, of the form (u , out ; v , in) ∈ Ri, are defined as

u[v]’i --> v[u]’i;

(3) Membrane division rules, of the form [ a ]i → [ b ]i [ c ]i, are defined as

[a]’i --> [b]’i[c]’i;

(4) Membrane separation rules, of the form [ a ]i → [ Γ1 ]i [ Γ2 ]i, are defined
as

[a]’i --> []’i[]’i;

where i is a membrane label of the SAMDS P system described, u and v are
multisets of objects and a and b are objects.

8.2.7 Two basic examples

Next, we show two basic models defined in P–Lingua to illustrate the described
syntax.

The first one corresponds to a model in CDC.

@model<infEnv_symport_antiport>

def main()

{

call module_init_conf();

call module_rules();

}

def module_init_conf()

{

@mu = [ [ [ []’2 ]’1]’0 ]’environment; /* defining membrane structure */

@ms(1) = a,b,c; /* initial multiset for membrane 1 */

@ms(2) = e,f; /* initial multiset for membrane 2 */

@msInfEnv = d; /* environment objects with arbitrary number of copies */

}

def module_rules()

{

[b]’1 --> b[]’1; /* Communication rule */

[a]’1 --> [b]’1[c]’1; /* Division rule */

[f]’2 --> [g]’2[h]’2; /* Division rule */

}
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The second one corresponds to a model in CSC.

def main()

{

call module_init_conf();

call module_rules();

}

def module_init_conf()

{

@mu = [ [ [ []’2 ]’1]’0 ]’environment; /* defining membrane structure */

@ms(1) = a,b,c,e,f; /* initial multiset for membrane 1 */

@ms(2) = g,h; /* initial multiset for membrane 2 */

@msInfEnv = d; /* environment objects with arbitrary number of copies */

@ms1 += b,c; /* first partition */

@ms2 += e,f; /* second partition */

}

def module_rules()

{

b[]’1 --> [b]’1; /* Communication rule */

[a]’1 --> []’1[]’1; /* Separation rule */

}

8.3 Full examples

In this Section we show full examples of the P–Lingua definition for con-
crete instances of the solutions of HAM–CYCLE and SAT in CDC(2) and
CSC(3), respectively, provided in Chapter 7, in order to illustrate the com-
plexity of the families designed.

8.3.1 HAM–CYCLE in CDC(2)

The solution provided for HAM–CYCLE in CDC(2) requires an exponential
amount of space to be executed. Specifically, the space is of order O(2n·p +
n3 · 2n3

), where n is the number of nodes and p is the number of egdes of the
graph. Consequently, the simulator only runs for small instances.

Let us consider the instance of HAM–CYCLE(3,3) shown at Fig.8.1.
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1 2

3

Figure 8.1: A simple instance of HAM–CYCLE

The following model in CDC(2) written in P–Lingua solves such instance:

@model<infEnv_symport_antiport>

def main()

{

let n = 3; /* nodes */

let p = 3; /* edges */

call module_init_conf(n);

call module_rules(n,p);

call module_input_instance();

}

def module_init_conf(n)

{

@mu = [[ []’2 []’3 []’4 []’5 []’6 []’7 []’8 []’9 []’10 []’11

[]’a{1,1} []’a{1,2} []’a{1,3} []’a{2,1} []’a{2,2} []’a{2,3}

[]’e{1,1,1} []’e{1,1,2} []’e{1,1,3} []’e{1,2,1} []’e{1,2,2}

[]’e{1,2,3} []’e{1,3,1} []’e{1,3,2} []’e{1,3,3}

[]’e{2,1,1} []’e{2,1,2} []’e{2,1,3} []’e{2,2,1} []’e{2,2,2}

[]’e{2,2,3} []’e{2,3,1} []’e{2,3,2} []’e{2,3,3}

[]’e{3,1,1} []’e{3,1,2} []’e{3,1,3} []’e{3,2,1} []’e{3,2,2}

[]’e{3,2,3} []’e{3,3,1} []’e{3,3,2} []’e{3,3,3}

]’1]’environment;

@msInfEnv += alpha{r} : 1 <= r <= n^3 + 6;

@ms(1) += alpha{0};

@ms(1) += beta{r} : 1 <= r <= n^3 + 7;

@ms(1) += bp{r},bpp{r},bppp{r} : 1 <= r <= n^3 - 1;

@ms(1) += cp{r},cpp{r},cppp{r},cpppp{r} : 1 <= r <= n^3 - 1;

@ms(2) += a*n,b,c;

@ms(3) += bp{n^3};

@ms(4) += bpp{n^3};

@ms(5) += bppp{n^3};

@ms(6) += cp{n^3};

@ms(7) += cpp{n^3};

@ms(8) += cppp{n^3};

@ms(9) += cpppp{n^3};

@ms(10) += yes;

@ms(11) += no,beta{0};

@ms(a{1,j}) = ap{n^3} : 1 <= j <= n;

@ms(a{2,j}) = app{n^3} : 1 <= j <= n;

@ms(e{i,j,k}) = epp{i,j,k,n^3} : 1<=i<=n, 1<=j<=n, 1<=k<=n;

}
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def module_rules(n,p)

{

/* R1 */

alpha{r+1}[alpha{r}]’1 --> alpha{r}[alpha{r+1}]’1 : 0 <= r <= n^3+5;

[yes]’1 --> yes[]’1;

[no,alpha{n^3+6}]’1 --> no,alpha{n^3+6}[]’1;

/* R2 */

[e{i,j,k}]’2 --> [ep{i,j,k}]’2 [sharp]’2 :

1 <= i <= n, 1 <= j <= n, 1 <= k <= n;

ap[a]’2 --> a[ap]’2;

app[ap]’2 --> ap[app]’2;

bp[b]’2 --> b[bp]’2;

bpp[bp]’2 --> bp[bpp]’2;

bppp[bpp]’2 --> bpp[bppp]’2;

cp[c]’2 --> c[cp]’2;

cpp[cp]’2 --> cp[cpp]’2;

cppp[cpp]’2 --> cpp[cppp]’2;

cpppp[cppp]’2 --> cppp[cpppp]’2;

[app,bppp]’2 --> app,bppp[]’2;

[bppp,cpppp]’2 --> bppp,cpppp[]’2;

epp{i,j,k}[ep{i,j,k}]’2 --> ep{i,j,k}[epp{i,j,k}]’2 :

1 <= i <= n, 1 <= ip <= n, 1 <= j <= n, 1 <= jp <= n,

1 <= k <= n, 1 <= kp <= n;

[epp{i,j,k},epp{i,jp,kp}]’2 --> epp{i,j,k},epp{i,jp,kp}[]’2 :

1 <= i <= n, 1 <= ip <= n, 1 <= j <= n, 1 <= jp <= n,

1 <= k <= n, 1 <= kp <= n;

[epp{i,j,k},epp{ip,j,kp}]’2 --> epp{i,j,k},epp{ip,j,kp}[]’2 :

1 <= i <= n, 1 <= ip <= n, 1 <= j <= n, 1 <= jp <= n,

1 <= k <= n, 1 <= kp <= n;

[epp{i,j,k},epp{ip,jp,k+1}]’2 --> epp{i,j,k},epp{ip,jp,k+1}[]’2 :

1 <= i <= n, j <> ip, 1 <= ip <= n, 1 <= j <= n, 1 <= jp <= n,

1 <= k <= n, 1 <= kp <= n;

[epp{i,j,k},epp{ip,jp,k}]’2 --> epp{i,j,k},epp{ip,jp,k}[]’2 :

1 <= i <= n, 1 <= ip <= n, 1 <= j <= n, 1 <= jp <= n,

1 <= k <= n, 1 <= kp <= n;

[app,epp{i,j,k}]’2 --> app,epp{i,j,k}[]’2 : 1 <= i <= n,

1 <= j <= n, 1 <= k <= n;

/* R3 */

bp{r-1}[bp{r}]’3 --> bp{r}[bp{r-1}]’3 : n*p + 1 <= r <= n^3;

[bp{r}]’3 --> [bp{r-1}]’3 [bp{r-1}]’3 : 2 <= r <= n*p;

[bp{1}]’3 --> [bp]’3 [bp]’3;

[bp]’3 --> bp[]’3;

/* R4 */
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bpp{r-1}[bpp{r}]’4 --> bpp{r}[bpp{r-1}]’4 : n*p + 1 <= r <= n^3;

[bpp{r}]’4 --> [bpp{r-1}]’4 [bpp{r-1}]’4 : 2 <= r <= n*p;

[bpp{1}]’4 --> [bpp]’4 [bpp]’4;

[bpp]’4 --> bpp[]’4;

/* R5 */

bppp{r-1}[bppp{r}]’5 --> bppp{r}[bppp{r-1}]’5 : n*p + 1 <= r <= n^3;

[bppp{r}]’5 --> [bppp{r-1}]’5 [bppp{r-1}]’5 : 2 <= r <= n*p;

[bppp{1}]’5 --> [bppp]’5 [bppp]’5;

[bppp]’5 --> bppp[]’5;

/* R6 */

cp{r-1}[cp{r}]’6 --> cp{r}[cp{r-1}]’6 : n*p + 1 <= r <= n^3;

[cp{r}]’6 --> [cp{r-1}]’6 [cp{r-1}]’6 : 2 <= r <= n*p;

[cp{1}]’6 --> [cp]’6 [cp]’6;

[cp]’6 --> cp[]’6;

/* R7 */

cpp{r-1}[cpp{r}]’7 --> cpp{r}[cpp{r-1}]’7 : n*p + 1 <= r <= n^3;

[cpp{r}]’7 --> [cpp{r-1}]’7 [cpp{r-1}]’7 : 2 <= r <= n*p;

[cpp{1}]’7 --> [cpp]’7 [cpp]’7;

[cpp]’7 --> cpp[]’7;

/* R8 */

cppp{r-1}[cppp{r}]’8 --> cppp{r}[cppp{r-1}]’8 : n*p + 1 <= r <= n^3;

[cppp{r}]’8 --> [cppp{r-1}]’8 [cppp{r-1}]’8 : 2 <= r <= n*p;

[cppp{1}]’8 --> [cppp]’8 [cppp]’8;

[cppp]’8 --> cppp[]’8;

/* R9 */

cpppp{r-1}[cpppp{r}]’9 --> cpppp{r}[cpppp{r-1}]’9 : n*p + 1 <= r <= n^3;

[cpppp{r}]’9 --> [cpppp{r-1}]’9 [cpppp{r-1}]’9 : 2 <= r <= n*p;

[cpppp{1}]’9 --> [cpppp]’9 [cpppp]’9;

[cpppp]’9 --> cpppp[]’9;

/* R10 */

alpha{n^3+6},cpppp[]’10 --> [alpha{n^3+6},cpppp]’10;

[cpppp,yes]’10 --> cpppp,yes[]’10;

/* R11 */

beta{r+1}[beta{r}]’11 --> beta{r}[beta{r+1}]’11 : 0 <= r <= n^3 + 6;

[beta{n^3+7},no]’11 --> beta{n^3+7},no[]’11;

/* Ra{1,j} : 1 <= j <= n */

[ap{r}]’a{1,j} --> [ap{r-1}]’a{1,j} [ap{r-1}]’a{1,j} : 2 <= r <= n^3, 1 <= j <= n;

[ap{1}]’a{1,j} --> [ap]’a{1,j} [ap]’a{1,j} : 1 <= j <= n;

[ap]’a{1,j} --> ap[]’a{1,j} : 1 <= j <= n;

/* Ra{2,j} : 1 <= j <= n */
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[app{r}]’a{2,j} --> [app{r-1}]’a{2,j} [app{r-1}]’a{2,j} : 2 <= r <= n^3, 1 <= j <= n;

[app{1}]’a{2,j} --> [app]’a{2,j} [app]’a{2,j} : 1 <= j <= n;

[app]’a{2,j} --> app[]’a{2,j} : 1 <= j <= n;

/* Re{i,j,k} : 1 <= i,j,k <= n */

[epp{i,j,k,r}]’e{i,j,k} --> [epp{i,j,k,r-1}]’e{i,j,k} [epp{i,j,k,r-1}]’e{i,j,k} :

2 <= r <= n^3, 1 <= i <= n, 1 <= j <= n, 1 <= k <= n;

[epp{i,j,k,1}]’e{i,j,k} --> [epp{i,j,k}]’e{i,j,k} [epp{i,j,k}]’e{i,j,k} :

1 <= i <= n, 1 <= j <= n, 1 <= k <= n;

[epp{i,j,k}]’e{i,j,k} --> epp{i,j,k}[]’e{i,j,k} :

1 <= i <= n, 1 <= j <= n, 1 <= k <= n;

}

def module_input_instance()

{

@ms(2) += e{1,2,1},e{1,2,2},e{1,2,3},e{3,1,1},e{3,1,2},e{3,1,3},e{3,2,1},e{3,2,2},e{3,2,3};

}

8.3.2 SAT in CSC(3)

An arbitrary instance of the SAT problem is a boolean formula in conjunctive
normal form ϕ = C1 ∧ . . . ∧ Cm with n variables {x1, . . . , xn} and m clauses
{C1, . . . , Cm}. We denote it by ϕ ∈ SAT(n,m). Let us recall that formula ϕ
can be codified as cod(ϕ) = {xi,j | xi ∈ Cj} ∪ {xi,j | ¬xi ∈ Cj}.
Let us consider the instance of SAT(9, 10) encoded by

cod(ϕ) =



x3,1, x8,1,
x1,2, x2,2, x5,2, x6,2, x9,2,
x3,3, x6,3, x9,3,
x3,4, x5,4, x6,4, x8,4,
x1,5, x2,5, x5,5, x7,5, x8,5, x9,5,
x1,6, x2,6, x4,6, x5,6, x6,6, x7,6, x9,6,
x1,7, x2,7, x4,7, x6,7, x8,7, x9,7,
x1,8, x2,8, x3,8, x4,8, x7,8, x8,8,
x1,9, x2,9, x3,9, x5,9, x6,9, x8,9, x9,9,
x2,10, x3,10, x4,10, x6,10, x7,10, x9,10


The following model in CSC(3) written in P–Lingua solves such instance:

@model<infEnv_symport_antiport>

def main()

{

let n = 9; /* variables */
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let m = 10; /* clauses */

call module_alphabet(n,m);

call module_init_conf(n,m);

call module_rules(n,m);

call module_input();

}

def module_alphabet (n,m)

{

@msInfEnv += alpha{i,j,k}, alphap{i,j,k} : 0 <= k <= 1, 1 <= j <= 3*(n-1), 1 <= i <= n-1;

@msInfEnv += beta{j},betap{j},betapp{j},gamma{j},gammap{j},gammapp{j},gammappp{j} :

0 <= j <= 3*(n-1);

@msInfEnv += rho{i,j}, tau{i,j} : 1 <= j <= 3*n-1, 1 <= i <= n;

@msInfEnv += T{i,j},Tp{i,j},F{i,j},Fp{i,j} : i< j <= n, 1 <= i <= n-1;

@msInfEnv += T{i,i},Fp{i,i} : 1 <= i <= n;

@msInfEnv += T{i},F{i} : 1 <= i <= n;

@msInfEnv += A{i},Ap{i},B{i},Bp{i} : 2 <= i <= n + 1;

@msInfEnv += b{i},bp{i},c{i},cp{i} : 2 <= i <= n;

@msInfEnv += v{i} : 2 <= i <= n-1;

@msInfEnv += y{i},a{i},w{i} : 1 <= i <= n-1;

@msInfEnv += z{i} : 1 <= i <= n-2;

@msInfEnv += q{i,j},t{i,j},f{i,j},r{i,j},s{i,j} : i <= j <= n-1, 1 <= i <= n-1;

@msInfEnv += u{i,j} : i <= j <= n-2, 1 <= i <= n-2;

@msInfEnv += e{i,j},_e{i,j} : 1 <= j <= m, 1 <= i <= n;

@msInfEnv += d{i,j,k},_d{i,j,k} : 1 <= k <= n-1, 1 <= j <= m, 1 <= i <= n;

@msInfEnv += f{r} : 1 <= r <= 3*n+2*m;

@msInfEnv += fp{r} : 1 <= r <= 3*n+2*m+1;

@msInfEnv += delta{s,j} : 1 <= j <= 3*n, 0 <= s <= m;

@msInfEnv += E{s} : 0 <= s <= m;

@msInfEnv += S;

}

def module_init_conf(n,m)

{

@mu = [ [[]’2 []’3]’1 ]’environment;

@ms1 += A{i},B{i} : 1 <= i <= n + 1;

@ms1 += T{i,j},F{i,j} : 1 <= j <= n, 1 <= i <= n;

@ms2 += Ap{i},Bp{i} : 2 <= i <= n + 1;

@ms2 += Tp{i,j},Fp{i,j} : i < j <= n, 1 <= i <= n-1;

@ms2 += Fp{i,i} : 1 <= i <= n;

@ms(1) += alpha{i,0,k},alphap{i,0,k} : 0 <= k <= 1, 1 <= i <= n-1;

@ms(1) += rho{i,0},tau{i,0} : 1 <= i <= n;

@ms(1) += beta{0},betap{0},betapp{0},

gamma{0},gammap{0},gammapp{0},gammappp{0},sigma{0},sigmap{0};

@ms(1) += c{1},cp{1},b{1},bp{1},v{1},q{1,1}, f{0},yes;

@ms(1) += delta{j,0} : 0 <= j <= m;

@ms(1) += fp{r} : 1 <= r <= 3*n+2*m+1;

@ms(2) += A{1},B{1};

@ms(3) += fp{0},no;
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}

def module_rules(n,m)

{

call module_rules_R1(n,m);

call module_rules_R2(n,m);

call module_rules_R3(n,m);

}

def module_rules_R1 (n,m)

{

alpha{i,j+1,k}[alpha{i,j,k}]’1 -->

alpha{i,j,k}[alpha{i,j+1,k}]’1 : 0<=j<=2, 0 <= k <= 1, 1 <= i <= n-1;

alphap{i,j+1,k}[alphap{i,j,k}]’1 -->

alphap{i,j,k}[alphap{i,j+1,k}]’1 : 0<=j<=2, 0 <= k <= 1, 1 <= i <= n-1;

alpha{i,3*r+1,0},F{i,r+1}[alpha{i,3*r,0}]’1 -->

alpha{i,3*r,0}[alpha{i,3*r+1,0},F{i,r+1}]’1 : 1 <= i <= r, 1 <= r <= n - 2;

alpha{i,3*r+1,1},T{i,r+1}[alpha{i,3*r,1}]’1 -->

alpha{i,3*r,1}[alpha{i,3*r+1,1},T{i,r+1}]’1 : 1 <= i <= r, 1 <= r <= n - 2;

alphap{i,3*r+1,0},Fp{i,r+1}[alphap{i,3*r,0}]’1 -->

alphap{i,3*r,0}[alphap{i,3*r+1,0},Fp{i,r+1}]’1 : 1 <= i <= r, 1 <= r <= n - 2;

alphap{i,3*r+1,1},Tp{i,r+1}[alphap{i,3*r,1}]’1 -->

alphap{i,3*r,1}[alphap{i,3*r+1,1},Tp{i,r+1}]’1 : 1 <= i <= r, 1 <= r <= n - 2;

alpha{i,3*r+1,k}[alpha{i,3*r,k}]’1 -->

alpha{i,3*r,k}[alpha{i,3*r+1,k}]’1 : 0 <= k <= 1, r + 1 <= i <= n - 1 , 1 <= r <= n - 2;

alphap{i,3*r+1,k}[alphap{i,3*r,k}]’1 -->

alphap{i,3*r,k}[alphap{i,3*r+1,k}]’1 : 0 <= k <= 1, r + 1 <= i <= n - 1 , 1 <= r <= n - 2;

alpha{i,3*r+2,k}[alpha{i,3*r+1,k}]’1 -->

alpha{i,3*r+1,k}[alpha{i,3*r+2,k}]’1 : 0 <= k <= 1, 1 <= i <= n - 1, 1 <= r <= n - 2;

alphap{i,3*r+2,k}[alphap{i,3*r+1,k}]’1 -->

alphap{i,3*r+1,k}[alphap{i,3*r+2,k}]’1 : 0 <= k <= 1, 1 <= i <= n - 1, 1 <= r <= n - 2;

alpha{i,3*r+3,k}*2[alpha{i,3*r+2,k}]’1 -->

alpha{i,3*r+2,k}[alpha{i,3*r+3,k}*2]’1 : 0 <= k <= 1, 1 <= i <= n - 1, 1 <= r <= n - 2;

alphap{i,3*r+3,k}*2[alphap{i,3*r+2,k}]’1 -->

alphap{i,3*r+2,k}[alphap{i,3*r+3,k}*2]’1 : 1 <= i <= n - 1, 1 <= r <= n - 2, 0 <= k <= 1;

F{i,n}[alpha{i,3*(n-1),0}]’1 --> alpha{i,3*(n-1),0}[F{i,n}]’1 : 1 <= i <= n - 1;

T{i,n}[alpha{i,3*(n-1),1}]’1 --> alpha{i,3*(n-1),1}[T{i,n}]’1 : 1 <= i <= n - 1;

Fp{i,n}[alphap{i,3*(n-1),0}]’1 --> alphap{i,3*(n-1),0}[Fp{i,n}]’1 : 1 <= i <= n - 1;

Tp{i,n}[alphap{i,3*(n-1),1}]’1 --> alphap{i,3*(n-1),1}[Tp{i,n}]’1 : 1 <= i <= n - 1;

/* First group of "beta rules" */

beta{3*r+1},B{r+2}[beta{3*r}]’1 --> beta{3*r}[beta{3*r+1},B{r+2}]’1 : 0 <= r <= n - 3;

betap{3*r+1},Bp{r+2}[betap{3*r}]’1 --> betap{3*r}[betap{3*r+1},Bp{r+2}]’1 : 0 <= r <= n - 3;

betapp{3*r+1},S[betapp{3*r}]’1 --> betapp{3*r}[betapp{3*r+1},S]’1 : 0 <= r <= n - 3;
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beta{3*r+2}[beta{3*r+1}]’1 --> beta{3*r+1}[beta{3*r+2}]’1 : 0 <= r <= n - 3;

betap{3*r+2}[betap{3*r+1}]’1 --> betap{3*r+1}[betap{3*r+2}]’1 : 0 <= r <= n - 3;

betapp{3*r+2}[betapp{3*r+1}]’1 --> betapp{3*r+1}[betapp{3*r+2}]’1 : 0 <= r <= n - 3;

beta{3*r+3}*2[beta{3*r+2}]’1 --> beta{3*r+2}[beta{3*r+3}*2]’1 : 0 <= r <= n - 3;

betap{3*r+3}*2[betap{3*r+2}]’1 --> betap{3*r+2}[betap{3*r+3}*2]’1 : 0 <= r <= n - 3;

betapp{3*r+3}*2[betapp{3*r+2}]’1 --> betapp{3*r+2}[betapp{3*r+3}*2]’1 : 0 <= r <= n - 3;

/* Second group of "beta rules" */

beta{3*(n-2)+1},B{n}[beta{3*(n-2)}]’1 --> beta{3*(n-2)}[beta{3*(n-2)+1},B{n}]’1;

betap{3*(n-2)+1},Bp{n}[betap{3*(n-2)}]’1 --> betap{3*(n-2)}[betap{3*(n-2)+1},Bp{n}]’1;

betapp{3*(n-2)+1},S[betapp{3*(n-2)}]’1 --> betapp{3*(n-2)}[betapp{3*(n-2)+1},S]’1;

beta{3*(n-2)+2}[beta{3*(n-2)+1}]’1 --> beta{3*(n-2)+1}[beta{3*(n-2)+2}]’1;

betap{3*(n-2)+2}[betap{3*(n-2)+1}]’1 --> betap{3*(n-2)+1}[betap{3*(n-2)+2}]’1;

betapp{3*(n-2)+2}[betapp{3*(n-2)+1}]’1 --> betapp{3*(n-2)+1}[betapp{3*(n-2)+2}]’1;

beta{3*(n-2)+3}*2[beta{3*(n-2)+2}]’1 --> beta{3*(n-2)+2}[beta{3*(n-2)+3}*2]’1;

betap{3*(n-2)+3}*2[betap{3*(n-2)+2}]’1 --> betap{3*(n-2)+2}[betap{3*(n-2)+3}*2]’1;

betapp{3*(n-2)+3}*2[betapp{3*(n-2)+2}]’1 --> betapp{3*(n-2)+2}[betapp{3*(n-2)+3}*2]’1;

/* Third group of "beta rules" */

B{n+1}[beta{3*(n-1)}]’1 --> beta{3*(n-1)}[B{n+1}]’1;

Bp{n+1}[betap{3*(n-1)}]’1 --> betap{3*(n-1)}[Bp{n+1}]’1;

S[betapp{3*(n-1)}]’1 --> betapp{3*(n-1)}[S]’1;

/* First group of "gamma rules" */

gamma{3*r+1},T{r+1,r+1}[gamma{3*r}]’1 -->

gamma{3*r}[gamma{3*r+1},T{r+1,r+1}]’1 : 0 <= r <= n - 3;

gammap{3*r+1},Fp{r+1,r+1}[gammap{3*r}]’1 -->

gammap{3*r}[gammap{3*r+1},Fp{r+1,r+1}]’1 : 0 <= r <= n - 3;

gammapp{3*r+1},A{r+2}[gammapp{3*r}]’1 -->

gammapp{3*r}[gammapp{3*r+1},A{r+2}]’1 : 0 <= r <= n - 3;

gammappp{3*r+1},Ap{r+2}[gammappp{3*r}]’1 -->

gammappp{3*r}[gammappp{3*r+1},Ap{r+2}]’1 : 0 <= r <= n - 3;

gamma{3*r+2}[gamma{3*r+1}]’1 --> gamma{3*r+1}[gamma{3*r+2}]’1 : 0 <= r <= n - 3;

gammap{3*r+2}[gammap{3*r+1}]’1 --> gammap{3*r+1}[gammap{3*r+2}]’1 : 0 <= r <= n - 3;

gammapp{3*r+2}[gammapp{3*r+1}]’1 --> gammapp{3*r+1}[gammapp{3*r+2}]’1 : 0 <= r <= n - 3;

gammappp{3*r+2}[gammappp{3*r+1}]’1 --> gammappp{3*r+1}[gammappp{3*r+2}]’1 : 0 <= r <= n - 3;

gamma{3*r+3}*2[gamma{3*r+2}]’1 --> gamma{3*r+2}[gamma{3*r+3}*2]’1 : 0 <= r <= n - 3;

gammap{3*r+3}*2[gammap{3*r+2}]’1 --> gammap{3*r+2}[gammap{3*r+3}*2]’1 : 0 <= r <= n - 3;

gammapp{3*r+3}*2[gammapp{3*r+2}]’1 --> gammapp{3*r+2}[gammapp{3*r+3}*2]’1 : 0 <= r <= n - 3;

gammappp{3*r+3}*2[gammappp{3*r+2}]’1 -->

gammappp{3*r+2}[gammappp{3*r+3}*2]’1 : 0 <= r <= n - 3;

/* Second group of "gamma rules" */

gamma{3*(n-2)+1},T{n-1,n-1}[gamma{3*(n-2)}]’1 -->

gamma{3*(n-2)}[gamma{3*(n-2)+1},T{n-1,n-1}]’1;

gammap{3*(n-2)+1},Fp{n-1,n-1}[gammap{3*(n-2)}]’1 -->

gammap{3*(n-2)}[gammap{3*(n-2)+1},Fp{n-1,n-1}]’1;
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gammapp{3*(n-2)+1},A{n}[gammapp{3*(n-2)}]’1 -->

gammapp{3*(n-2)}[gammapp{3*(n-2)+1},A{n}]’1;

gammappp{3*(n-2)+1},Ap{n}[gammappp{3*(n-2)}]’1 -->

gammappp{3*(n-2)}[gammappp{3*(n-2)+1},Ap{n}]’1;

gamma{3*(n-2)+2}[gamma{3*(n-2)+1}]’1 --> gamma{3*(n-2)+1}[gamma{3*(n-2)+2}]’1;

gammap{3*(n-2)+2}[gammap{3*(n-2)+1}]’1 --> gammap{3*(n-2)+1}[gammap{3*(n-2)+2}]’1;

gammapp{3*(n-2)+2}[gammapp{3*(n-2)+1}]’1 --> gammapp{3*(n-2)+1}[gammapp{3*(n-2)+2}]’1;

gammappp{3*(n-2)+2}[gammappp{3*(n-2)+1}]’1 --> gammappp{3*(n-2)+1}[gammappp{3*(n-2)+2}]’1;

gamma{3*(n-2)+3}*2[gamma{3*(n-2)+2}]’1 --> gamma{3*(n-2)+2}[gamma{3*(n-2)+3}*2]’1;

gammap{3*(n-2)+3}*2[gammap{3*(n-2)+2}]’1 --> gammap{3*(n-2)+2}[gammap{3*(n-2)+3}*2]’1;

gammapp{3*(n-2)+3}*2[gammapp{3*(n-2)+2}]’1 --> gammapp{3*(n-2)+2}[gammapp{3*(n-2)+3}*2]’1;

gammappp{3*(n-2)+3}*2[gammappp{3*(n-2)+2}]’1 -->

gammappp{3*(n-2)+2}[gammappp{3*(n-2)+3}*2]’1;

/* Third group of "gamma rules" */

T{n,n}[gamma{3*(n-1)}]’1 --> gamma{3*(n-1)}[T{n,n}]’1;

Fp{n,n}[gammap{3*(n-1)}]’1 --> gammap{3*(n-1)}[Fp{n,n}]’1;

A{n+1}[gammapp{3*(n-1)}]’1 --> gammapp{3*(n-1)}[A{n+1}]’1;

Ap{n+1}[gammappp{3*(n-1)}]’1 --> gammappp{3*(n-1)}[Ap{n+1}]’1;

/* First group of "rho-tau rules"*/

rho{i,j+1}[rho{i,j}]’1 --> rho{i,j}[rho{i,j+1}]’1 : 0<=j<=2, 1 <= i <= n;

tau{i,j+1}[tau{i,j}]’1 --> tau{i,j}[tau{i,j+1}]’1 : 0<=j<=2, 1 <= i <= n;

/* Second group of "rho-tau rules"*/

rho{i,3*r+1}[rho{i,3*r}]’1 --> rho{i,3*r}[rho{i,3*r+1}]’1 : 1 <= r <= n - 2, 1 <= i <= n;

tau{i,3*r+1}[tau{i,3*r}]’1 --> tau{i,3*r}[tau{i,3*r+1}]’1 : 1 <= r <= n - 2, 1 <= i <= n;

rho{i,3*r+2}*2[rho{i,3*r+1}]’1 -->

rho{i,3*r+1}[rho{i,3*r+2}*2]’1 : 1 <= r <= n - 2, 1 <= i <= n;

tau{i,3*r+2}*2[tau{i,3*r+1}]’1 -->

tau{i,3*r+1}[tau{i,3*r+2}*2]’1 : 1 <= r <= n - 2, 1 <= i <= n;

rho{i,3*r+3}[rho{i,3*r+2}]’1 -->

rho{i,3*r+2}[rho{i,3*r+3}]’1 : 1 <= r <= n - 2, 1 <= i <= n;

tau{i,3*r+3}[tau{i,3*r+2}]’1 -->

tau{i,3*r+2}[tau{i,3*r+3}]’1 : 1 <= r <= n - 2, 1 <= i <= n;

/* Third group of "rho-tau rules"*/

rho{i,3*(n-1)+1}[rho{i,3*(n-1)}]’1 -->

rho{i,3*(n-1)}[rho{i,3*(n-1)+1}]’1 : 1 <= i <= n;

tau{i,3*(n-1)+1}[tau{i,3*(n-1)}]’1 -->

tau{i,3*(n-1)}[tau{i,3*(n-1)+1}]’1 : 1 <= i <= n;

rho{i,3*(n-1)+2}*2[rho{i,3*(n-1)+1}]’1 -->

rho{i,3*(n-1)+1}[rho{i,3*(n-1)+2}*2]’1 : 1 <= i <= n;

tau{i,3*(n-1)+2}*2[tau{i,3*(n-1)+1}]’1 -->
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tau{i,3*(n-1)+1}[tau{i,3*(n-1)+2}*2]’1 : 1 <= i <= n;

T{i}[rho{i,3*(n-1)+2}]’1 --> rho{i,3*(n-1)+2}[T{i}]’1 : 1 <= i <= n;

F{i}[tau{i,3*(n-1)+2}]’1 --> tau{i,3*(n-1)+2}[F{i}]’1 : 1 <= i <= n;

a{i}[A{i}]’1 --> A{i}[a{i}]’1 : 1 <= i <= n - 1;

a{i}[Ap{i}]’1 --> Ap{i}[a{i}]’1 : 1 <= i <= n - 1;

a{i}[B{i}]’1 --> B{i}[a{i}]’1 : 1 <= i <= n - 1;

a{i}[Bp{i}]’1 --> Bp{i}[a{i}]’1 : 1 <= i <= n - 1;

z{i},w{i}[y{i}]’1 --> y{i}[z{i},w{i}]’1 : 1 <= i <= n - 2;

w{n-1}[y{n-1}]’1 --> y{n-1}[w{n-1}]’1;

c{i+1},cp{i+1}[w{i}]’1 --> w{i}[c{i+1},cp{i+1}]’1 : 1 <= i <= n - 1;

v{i+1}[z{i}]’1 --> z{i}[v{i+1}]’1 : 1 <= i <= n - 2;

y{i}*2[v{i}]’1 --> v{i}[y{i}*2]’1 : 1 <= i <= n - 1;

b{i+1},bp{i+1}[a{i}]’1 --> a{i}[b{i+1},bp{i+1}]’1 : 1 <= i <= n - 1;

r{1,1}[q{1,1}]’1 --> q{1,1}[r{1,1}]’1;

r{i,j}*2[q{i,j}]’1 --> q{i,j}[r{i,j}*2]’1 : i <= j <= n - 1, 1 <= i <= n - 1;

s{i,j},u{i,j}[r{i,j}]’1 --> r{i,j}[s{i,j},u{i,j}]’1 : i <= j <= n - 2, 1 <= i <= n - 2;

s{i,n-1}[r{i,n-1}]’1 --> r{i,n-1}[s{i,n-1}]’1 : 1 <= i <= n - 1;

t{i,j},f{i,j}[s{i,j}]’1 --> s{i,j}[t{i,j},f{i,j}]’1 : i <= j <= n - 1, 1 <= i <= n - 1;

q{1,j+1},q{2,j+1}[u{1,j}]’1 --> u{1,j}[q{1,j+1},q{2,j+1}]’1 : 1 <= j <= n - 2;

q{i+1,j+1}[u{i,j}]’1 --> u{i,j}[q{i+1,j+1}]’1 : 2 <= i <= j, 2 <= j <= n - 2;

[T{i,j},t{i,j}]’1 --> T{i,j},t{i,j}[]’1 : 1 <= i <= j,1 <= j <= n;

[Tp{i,j},t{i,j}]’1 --> Tp{i,j},t{i,j}[]’1 : 1 <= i <= j,1 <= j <= n;

[F{i,j},f{i,j}]’1 --> F{i,j},f{i,j}[]’1 : 1 <= i <= j,1 <= j <= n;

[Fp{i,j},f{i,j}]’1 --> Fp{i,j},f{i,j}[]’1 : 1 <= i <= j,1 <= j <= n;

d{i,j,1}*2[x{i,j}]’1 --> x{i,j}[d{i,j,1}*2]’1 : 1 <= j <= m, 1 <= i <= n;

_d{i,j,1}*2[_x{i,j}]’1 --> _x{i,j}[_d{i,j,1}*2]’1 : 1 <= j <= m, 1 <= i <= n;

d{i,j,k+1}*2[d{i,j,k}]’1 -->

d{i,j,k}[d{i,j,k+1}*2]’1 : 1 <= k <= n-2, 1 <= j <= m, 1 <= i <= n;

_d{i,j,k+1}*2[_d{i,j,k}]’1 -->

_d{i,j,k}[_d{i,j,k+1}*2]’1 : 1 <= k <= n-2, 1 <= j <= m, 1 <= i <= n;

e{i,j}[d{i,j,n-1}]’1 --> d{i,j,n-1}[e{i,j}]’1 : 1 <= j <= m, 1 <= i <= n;

_e{i,j}[_d{i,j,n-1}]’1 --> _d{i,j,n-1}[_e{i,j}]’1 : 1 <= j <= m, 1 <= i <= n;

[E{0},f{3*n+2*m},yes]’1 --> E{0},f{3*n+2*m},yes[]’1;

[f{3*n+2*m},no]’1 --> f{3*n+2*m},no[]’1;

delta{j,3*r+1}[delta{j,3*r}]’1 -->

delta{j,3*r}[delta{j,3*r+1}]’1 : 0 <= r <= n - 1, 0 <= j <= m;

delta{j,3*r+2}*2[delta{j,3*r+1}]’1 -->

delta{j,3*r+1}[delta{j,3*r+2}*2]’1 : 0 <= r <= n - 1, 0 <= j <= m;

delta{j,3*r+3}[delta{j,3*r+2}]’1 -->

delta{j,3*r+2}[delta{j,3*r+3}]’1 : 0 <= r <= n - 2, 0 <= j <= m;
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E{1}[delta{1,3*(n-1)+2}]’1 --> delta{1,3*(n-1)+2}[E{1}]’1;

delta{j,3*(n-1)+3}[delta{j,3*(n-1)+2}]’1 -->

delta{j,3*(n-1)+2}[delta{j,3*(n-1)+3}]’1 : 0 <= j <= m, j <> 1;

E{j}[delta{j,3*n}]’1 --> delta{j,3*n}[E{j}]’1 : 0 <= j <= m, j <> 1;

f{i+1}[f{i}]’1 --> f{i}[f{i+1}]’1 : 0 <= i <= 3*n + 2*m - 1;

/* garbage rules */

[t{i,k},T{i,k}]’1 --> t{i,k},T{i,k}[]’1 : 1 <= i < k, 2 <= k <= n;

[t{i,k},Tp{i,k}]’1 --> t{i,k},Tp{i,k}[]’1 : 1 <= i < k, 2 <= k <= n;

[f{i,k},F{i,k}]’1 --> f{i,k},F{i,k}[]’1 : 1 <= i < k, 2 <= k <= n;

[f{i,k},Fp{i,k}]’1 --> f{i,k},Fp{i,k}[]’1 : 1 <= i < k, 2 <= k <= n;

[t{i,i},T{i,i}]’1 --> t{i,i},T{i,i}[]’1 : 1 <= i <= n;

[f{i,i},Fp{i,i}]’1 --> f{i,i},Fp{i,i}[]’1 : 1 <= i <= n;

[b{k},B{k+1}]’1 --> b{k},B{k+1}[]’1 : n - 1 <= k <= n;

[bp{k},Bp{k+1}]’1 --> bp{k},Bp{k+1}[]’1 : n - 1 <= k <= n;

[cp{k},Ap{k+1}]’1 --> cp{k},Ap{k+1}[]’1 : n - 1 <= k <= n;

[c{k},A{k+1}]’1 --> c{k},A{k+1}[]’1 : n - 1 <= k <= n;

}

def module_rules_R2 (n,m)

{

[S]’2 --> []’2[]’2;

c{i},cp{i}[A{i}]’2 --> A{i}[c{i},cp{i}]’2 : 1<= i <= n;

c{i},cp{i}[Ap{i}]’2 --> Ap{i}[c{i},cp{i}]’2 : 1<= i <= n;

b{i},bp{i}[B{i}]’2 --> B{i}[b{i},bp{i}]’2 : 1<= i <= n;

b{i},bp{i}[Bp{i}]’2 --> Bp{i}[b{i},bp{i}]’2 : 1<= i <= n;

B{i+1},S[b{i}]’2 --> b{i}[B{i+1},S]’2 : 1<= i <= n;

Bp{i+1}[bp{i}]’2 --> bp{i}[Bp{i+1}]’2 : 1<= i <= n;

T{i,i},A{i+1}[c{i}]’2 --> c{i}[T{i,i},A{i+1}]’2 : 1<= i <= n;

Fp{i,i},Ap{i+1}[cp{i}]’2 --> cp{i}[Fp{i,i},Ap{i+1}]’2 : 1<= i <= n;

E{1}[B{n+1}]’2 --> B{n+1}[E{1}]’2;

E{1}[Bp{n+1}]’2 --> Bp{n+1}[E{1}]’2;

E{0}[A{n+1}]’2 --> A{n+1}[E{0}]’2;

E{0}[Ap{n+1}]’2 --> Ap{n+1}[E{0}]’2;

t{i,j}[T{i,j}]’2 --> T{i,j}[t{i,j}]’2 : 1 <= i <= j,1 <= j <= n;

t{i,j}[Tp{i,j}]’2 --> Tp{i,j}[t{i,j}]’2 : 1 <= i <= j,1 <= j <= n;

f{i,j}[F{i,j}]’2 --> F{i,j}[f{i,j}]’2 : 1 <= i <= j,1 <= j <= n;

f{i,j}[Fp{i,j}]’2 --> Fp{i,j}[f{i,j}]’2 : 1 <= i <= j,1 <= j <= n;

T{i,j+1},Tp{i,j+1}[t{i,j}]’2 --> t{i,j}[T{i,j+1},Tp{i,j+1}]’2 : 1 <= i <= j,1 <= j <= n-1;

F{i,j+1},Fp{i,j+1}[f{i,j}]’2 --> f{i,j}[F{i,j+1},Fp{i,j+1}]’2 : 1 <= i <= j,1 <= j <= n-1;

T{i}[T{i,n}]’2 --> T{i,n}[T{i}]’2 : 1 <= i <= n;

T{i}[Tp{i,n}]’2 --> Tp{i,n}[T{i}]’2 : 1 <= i <= n;
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F{i}[F{i,n}]’2 --> F{i,n}[F{i}]’2 : 1 <= i <= n;

F{i}[Fp{i,n}]’2 --> Fp{i,n}[F{i}]’2 : 1 <= i <= n;

e{i,j}[E{j},T{i}]’2 --> E{j},T{i}[e{i,j}]’2 : 1 <= j <= m, 1 <= i <= n;

_e{i,j}[E{j},F{i}]’2 --> E{j},F{i}[_e{i,j}]’2 : 1 <= j <= m, 1 <= i <= n;

E{j+1},T{i}[e{i,j}]’2 --> e{i,j}[E{j+1},T{i}]’2 : 1 <= j <= m - 1, 1 <= i <= n;

E{j+1},F{i}[_e{i,j}]’2 --> _e{i,j}[E{j+1},F{i}]’2 : 1 <= j <= m - 1, 1 <= i <= n;

[e{i,m},E{0}]’2 --> e{i,m},E{0}[]’2 : 1 <= i <= n;

[_e{i,m},E{0}]’2 --> _e{i,m},E{0}[]’2 : 1 <= i <= n;

}

def module_rules_R3 (n,m)

{

/* R3 */

fp{r+1}[fp{r}]’3 --> fp{r}[fp{r+1}]’3 : 0 <= r <= 3*n+2*m;

[fp{3*n+2*m+1},no]’3 --> fp{3*n+2*m+1},no[]’3;

}

def module_input ()

{

/* We define here the input for the P system */

@ms(1) += x{3,1},x{8,1},

x{1,2},_x{2,2},x{5,2},_x{6,2},x{9,2},

x{3,3},x{6,3},x{9,3},

x{3,4},x{5,4},_x{6,4},_x{8,4},

x{1,5},x{2,5},_x{5,5},x{7,5},_x{8,5},_x{9,5},

_x{1,6},x{2,6},_x{4,6},x{5,6},_x{6,6},_x{7,6},x{9,6},

x{1,7},x{2,7},x{4,7},_x{6,7},x{8,7},_x{9,7},

_x{1,8},x{2,8},_x{3,8},_x{4,8},x{7,8},_x{8,8},

_x{1,9},x{2,9},x{3,9},x{5,9},_x{6,9},x{8,9},_x{9,9},

x{2,10},_x{3,10},x{4,10},_x{6,10},_x{7,10},_x{9,10};

}

8.4 SAMDS P systems simulation algorithm

Simulators for computational models usually are very interesting assistants to
help in design tasks and the formal verification of solutions to decision problems
defined in such models. Simulators work with an inference engine implemented
through an algorithm capturing the semantics of the corresponding model.
When a family of recognizer P systems is used to solve a decision problem, each
member of the family processing an instance is confluent, in the sense that all
computations for a given input must generate the same output. Consequently,
a simulation algorithm for recognizer P systems only has to reproduce one
possible computation of the simulated P system.

The simulation algorithm described below generates one possible compu-
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tation of a P system in the class CDC or CSC, that we collectively denom-
inate SAMDS P systems. We denote (u, in)i ((u, out)i or (u , out ; v , in)i,
respectively) instead of (u , in) ∈ Ri ((u , out) ∈ Ri or (u , out ; v , in) ∈ Ri,
respectively) for simplicity.

I. Initialization

1. Let C0 be the initial configuration with q membranes

denoted by m1, . . . ,mq

2. Let m0 be a virtual membrane with label 0 representing

the environment, where all initial objects have infinite multiplicity

3. Let Rsel ← {} be a set of tuples containing the selected rules

to be executed at each computation step, the identifiers

of the membranes involved and the number of times that each rule

will be executed (omitted if 1)

4. Let Ct ← C0 be the current configuration

5. Let SetSymAnt← {} be the set of membranes that are executing

a symport/antiport rule in the current configuration

6. Let SetDivSep← {} be the set of membranes that are executing

a division or separation rule in the current configuration

II. Selection of symport/antiport rules

1. For each membrane mi ∈ Ct with label i do

(a) For each send-in symport rule (u , in)i do

• Let mk be the parent membrane of mi

• Let M be the greatest number such that the multiset of mk

contains M copies of the multiset u
• Remove M copies of u from the multiset of mk

• Add 〈mi,mk, (u , in)i,M〉 to Rsel

• Add mi to SetSymAnt

(b) For each send-out symport rule (u , out)i do

• Let mk be the parent membrane of mi

• Let M be the greatest number such that the multiset of mi

contains M copies of the multiset u
• Remove M copies of u from the multiset of mi

• Add 〈mi,mk, (u , out)i,M〉 to Rsel

• Add mi to SetSymAnt

(c) For each antiport rule (u , out ; v , in)i do

• Let mk be the parent membrane of mi

• Let M be the greatest number such that the multiset of mi

contains M copies of the multiset u
• Let N be the greatest number (considering that N ≤ M) such

that the multiset of mk contains N copies of the multiset v
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• Remove N copies of u from the multiset of mi

• Remove N copies of v from the multiset of mk

• Add 〈mi,mk, (u , out ; v , in)i, N〉 to Rsel

• Add mi to SetSymAnt

III. Selection of division and separation rules

1. For each membrane mi at configuration Ct with label i not contained in

SetSymAnt and not contained in SetDivSep do

(a) If the simulated P system is in the class CDC, then

i. For each division rule [a]i → [b]i[c]i do
• If a is contained in the multiset of mi, then

– Remove one instance of a from the multiset of mi

– Add 〈mi, [a]i → [b]i[c]i〉 to Rsel

– Add mi to SetDivSep

(b) If the simulated P system is in the class CSC, then

i. For each separation rule [a]i → [Γ1]i[Γ2]i do

• If a is contained in the multiset of mi, then
– Remove one instance of a from the multiset of mi

– Add 〈mi, [a]i → [Γ1]i[Γ2]i〉 to Rsel

– Add mi to SetDivSep

IV. Execution of rules

1. For each tuple 〈mi,mk, (u , in)i,M〉 from Rsel do

(a) Add M copies of u to the multiset of mi

2. For each tuple 〈mi,mk, (u , out)i,M〉 from Rsel do

(a) Add M copies of u to the multiset of mk

3. For each tuple 〈mi,mk, (u , out ; v , in)i, N〉 from Rsel do

(a) Add N copies of v to the multiset of mi

(b) Add N copies of u to the multiset of mk

4. For each tuple 〈mi, [a]i → [b]i[c]i〉 from Rsel do

(a) Create a new cell m′i with label i and empty multiset

(b) Copy in the multiset of m′i the objects that are contained

in the multiset of mi

(c) Add one instance of b to the multiset of mi

(d) Add one instance of c to the multiset of m′i

5. For each tuple 〈mi, [a]i → [Γ1]i[Γ2]i〉 from Rsel do

(a) Create a new cell m′i with label i and empty multiset

(b) Copy in the multiset of m′i the objects of Γ2 that are contained

in the multiset of mi
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(c) Remove from the multiset of mi the objects of Γ2

V. Ending

1. If Rsel 6= ∅, then

• Let Ct+1 ← Ct

• Let Rsel ← {}
• Let SetSymAnt← {}
• Let SetDivSep← {}
• Goto II

2. End

A total order in the finite set of rules is considered. At each computation
step, for each membrane, the algorithm processes the symport/antiport rules
first and then goes through the membrane division or membrane separation
rules (depending on the kind of P system specified) for those membranes not
executing any of the previously processed symport/antiport rules. This strat-
egy is motivated by the intuition that division and separation rules add more
descriptive complexity than symport/antiport rules, so we give them “lower
priority”.

8.5 Performance results

In this Section performance results of the developed simulator in reference to
concrete instances of the solutions of SAT in CDC(3) and CSC(3), respec-
tively, are shown. To obtain such results, several P systems of the families solv-
ing different instances of the SAT problem in CDC(3) (see [90]) and CSC(3)
(see Chapter 7) have been simulated. Simulation results are shown in Tables
8.1 and 8.2. We denote ¬x by x, l1 ∨ l2 by l1 + l2 and C1 ∧ C2 by C1 · C2,
where x is a propositional variable, li are literals and Cj are clauses. Execution
times have been calculated averaging the times obtained after performing three
simulations for each instance. Simulation platform features are described in
Section 6.7.

Clearly, the simulation time of the solution to the SAT problem by using a
family of P systems in CSC(3) takes much more time than the simulation of
the solution by P systems in CDC(3). This can be explained by the following
fact. In the P systems of CDC(3), a replication of objects by means of division
rules takes place. Nevertheless, in the P systems of CSC(3), there is no
replication of objects, but a distribution of them, consequently, in order to
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generate an exponential amount of some objects, it is necessary to use the
skin membrane, interacting with the environment by using antiport rules with
length 3 (in a computation step an object is released into the environment and,
simultaneously, two objects enter the system).

It is worth pointing out that the developed simulator is based on sequen-
tial technology, so the inherent parallelism of P systems cannot be exploited.
This limitation cannot be overcome because a real implementation of P sys-
tems does not exist, but some performance improvements can be achieved
by means of some parallel architectures and programming models, such as
GPGPU (General-Purpose Computing on Graphics Processing Units). Specif-
ically, the technology NVIDIA GPU with CUDA (Compute Unified Device
Architecture) has been considered for the development of parallel simulators
of P systems such as tissue P systems with cell division [95]. It is still of in-
terest to develop parallel architectures for simulating P systems in the classes
CDC and CSC.

Table 8.1: Satisfiability and simulation time for instances solved in CDC(3)
Formula n m SAT Time (s)

(x̄1 + x̄2) · x1 · x2 2 3 F 0,121
(x̄1 + x̄2) · x2 · (x̄1 + x2) 2 3 T 0,099
(x1 + x2) · (x1 + x2 + x̄3) · x̄1 · x̄2 3 4 F 0,219
(x̄1 + x2) · x̄1 · x3 · (x̄1 + x3) 3 4 T 0,201
(x1 + x4) · (x1 + x̄4) · x3 · (x2 + x̄3 + x4) · x̄1 4 5 F 0,315
(x3 + x̄4) · (x̄1 +x2 + x̄3 +x4) · (x1 +x2) · (x̄1 +x2 +x3 +x4) · (x̄1 +x3) 4 5 T 0,325
(x1 + x̄2 + x3 + x5) · (x̄1 + x4) · (x̄2 + x̄4) · x4 · x2 · (x̄1 + x2 + x̄3 + x4) 5 6 F 0,570
(x3 + x4) · (x4 + x̄5) · (x̄1 + x2 + x̄3 + x̄4) · (x1 + x̄2 + x4)· (x1 + x̄3 +
x4) · (x3 + x5)

5 6 T 0,564

(x3 + x5 + x6) · (x3 + x̄4 + x5 + x̄6) · x̄3 · x̄6 · (x1 + x̄2 + x̄3 + x5 + x6) ·
(x1 + x4 + x5) · (x̄5 + x6)

6 7 F 0,932

(x̄1 + x̄2 + x5) · (x2 + x3) · (x3 + x̄5 + x̄6) · (x̄1 + x2 + x̄3 + x4 + x5 +
x6) · (x̄2 + x̄3) · (x2 + x3 + x6) · (x1 + x̄2 + x3 + x4 + x5 + x6)

6 7 T 1,017

(x̄5 + x̄6 + x̄7) · (x3 + x̄4 + x7) · (x̄1 + x3 + x5 + x6 + x̄7) · (x1 + x3 +
x̄5 + x6 + x7) · (x2 + x6) · (x2 + x̄6) · x̄2 · (x2 + x3 + x4 + x̄5 + x7)

7 8 F 1,974

(x̄2 + x5 + x6 + x7) · (x2 + x̄4 + x̄5 + x̄7) · (x1 + x2 + x̄3 + x̄6 + x7) ·
(x1 + x2 + x3 + x̄5 + x6 + x̄7) · (x̄3 + x̄5 + x6 + x̄7) · (x1 + x2 + x̄3 +
x̄7) · (x̄1 + x2 + x̄4 + x̄6) · (x3 + x5 + x6 + x̄7)

7 8 T 1,804

(x3+x4+x̄6+x̄8)·(x6+x̄7)·(x̄2+x3+x̄4+x5+x8)·x7 ·(x1+x̄2+x5+
x̄7+x̄8)·(x2+x7+x8)·(x̄6+x̄7)·(x1+x5+x̄8)·(x1+x̄4+x5+x̄6+x7)

8 9 F 3,530

(x1 + x̄5 + x̄6 + x̄7 + x̄8) · (x2 +x3 +x4 + x̄6 + x̄7 +x8) · (x3 +x4 + x̄5 +
x̄6+x̄7+x̄8)·(x̄1+x̄3+x̄4+x̄5+x6+x̄7+x8)·(x̄3+x̄7)·(x4+x5+x̄7)·
(x1+x3+x̄4)·(x1+x̄2+x̄3+x̄4+x̄5+x̄6+x̄7)·(x4+x̄5+x̄6+x7+x̄8)

8 9 T 3,632
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(x̄2 + x̄3 + x5 + x7) · (x2 + x5 + x6 + x7 + x9) · (x̄3 + x5 + x7 + x8) ·
(x1 + x̄4 + x̄5 + x6 + x8) · (x̄2 + x3 + x5 + x7 + x8 + x̄9) · (x̄2 + x̄4 +
x7 + x9) · (x̄2 + x4 + x6 + x9) · x1 · x5 · (x̄1 + x̄5)

9 10 F 8,262

(x3 + x8) · (x1 + x̄2 + x5 + x̄6 + x9) · (x3 + x6 + x9) · (x3 + x5 + x̄6 +
x̄8) · (x1 + x2 + x̄5 + x7 + x̄8 + x̄9) · (x̄1 + x2 + x̄4 + x5 + x̄6 + x̄7 +
x9) · (x1 + x2 + x4 + x̄6 + x8 + x̄9) · (x̄1 + x2 + x̄3 + x̄4 + x7 + x̄8) ·
(x̄1 + x2 + x3 + x5 + x̄6 + x8 + x̄9) · (x2 + x̄3 + x4 + x̄6 + x̄7 + x̄9)

9 10 T 7,993

Table 8.2: Satisfiability and simulation time for instances solved in CSC(3)
Formula n m SAT Time (s)

(x̄1 + x̄2) · x1 · x2 2 3 F 0,233
(x̄1 + x̄2) · x2 · (x̄1 + x2) 2 3 T 0,224
(x1 + x2) · (x1 + x2 + x̄3) · x̄1 · x̄2 3 4 F 0,491
(x̄1 + x2) · x̄1 · x3 · (x̄1 + x3) 3 4 T 0,487
(x1 + x4) · (x1 + x̄4) · x3 · (x2 + x̄3 + x4) · x̄1 4 5 F 0,827
(x3 + x̄4) · (x̄1 +x2 + x̄3 +x4) · (x1 +x2) · (x̄1 +x2 +x3 +x4) · (x̄1 +x3) 4 5 T 0,981
(x1 + x̄2 + x3 + x5) · (x̄1 + x4) · (x̄2 + x̄4) · x4 · x2 · (x̄1 + x2 + x̄3 + x4) 5 6 F 2,369
(x3 + x4) · (x4 + x̄5) · (x̄1 + x2 + x̄3 + x̄4) · (x1 + x̄2 + x4)· (x1 + x̄3 +
x4) · (x3 + x5)

5 6 T 2,312

(x3 + x5 + x6) · (x3 + x̄4 + x5 + x̄6) · x̄3 · x̄6 · (x1 + x̄2 + x̄3 + x5 + x6) ·
(x1 + x4 + x5) · (x̄5 + x6)

6 7 F 4,877

(x̄1 + x̄2 + x5) · (x2 + x3) · (x3 + x̄5 + x̄6) · (x̄1 + x2 + x̄3 + x4 + x5 +
x6) · (x̄2 + x̄3) · (x2 + x3 + x6) · (x1 + x̄2 + x3 + x4 + x5 + x6)

6 7 T 4,195

(x̄5 + x̄6 + x̄7) · (x3 + x̄4 + x7) · (x̄1 + x3 + x5 + x6 + x̄7) · (x1 + x3 +
x̄5 + x6 + x7) · (x2 + x6) · (x2 + x̄6) · x̄2 · (x2 + x3 + x4 + x̄5 + x7)

7 8 F 10,320

(x̄2 + x5 + x6 + x7) · (x2 + x̄4 + x̄5 + x̄7) · (x1 + x2 + x̄3 + x̄6 + x7) ·
(x1 + x2 + x3 + x̄5 + x6 + x̄7) · (x̄3 + x̄5 + x6 + x̄7) · (x1 + x2 + x̄3 +
x̄7) · (x̄1 + x2 + x̄4 + x̄6) · (x3 + x5 + x6 + x̄7)

7 8 T 8,862

(x3+x4+x̄6+x̄8)·(x6+x̄7)·(x̄2+x3+x̄4+x5+x8)·x7 ·(x1+x̄2+x5+
x̄7+x̄8)·(x2+x7+x8)·(x̄6+x̄7)·(x1+x5+x̄8)·(x1+x̄4+x5+x̄6+x7)

8 9 F 16,364

(x1 + x̄5 + x̄6 + x̄7 + x̄8) · (x2 +x3 +x4 + x̄6 + x̄7 +x8) · (x3 +x4 + x̄5 +
x̄6+x̄7+x̄8)·(x̄1+x̄3+x̄4+x̄5+x6+x̄7+x8)·(x̄3+x̄7)·(x4+x5+x̄7)·
(x1+x3+x̄4)·(x1+x̄2+x̄3+x̄4+x̄5+x̄6+x̄7)·(x4+x̄5+x̄6+x7+x̄8)

8 9 T 18,856

(x̄2 + x̄3 + x5 + x7) · (x2 + x5 + x6 + x7 + x9) · (x̄3 + x5 + x7 + x8) ·
(x1 + x̄4 + x̄5 + x6 + x8) · (x̄2 + x3 + x5 + x7 + x8 + x̄9) · (x̄2 + x̄4 +
x7 + x9) · (x̄2 + x4 + x6 + x9) · x1 · x5 · (x̄1 + x̄5)

9 10 F 34,669

(x3 + x8) · (x1 + x̄2 + x5 + x̄6 + x9) · (x3 + x6 + x9) · (x3 + x5 + x̄6 +
x̄8) · (x1 + x2 + x̄5 + x7 + x̄8 + x̄9) · (x̄1 + x2 + x̄4 + x5 + x̄6 + x̄7 +
x9) · (x1 + x2 + x4 + x̄6 + x8 + x̄9) · (x̄1 + x2 + x̄3 + x̄4 + x7 + x̄8) ·
(x̄1 + x2 + x3 + x5 + x̄6 + x8 + x̄9) · (x2 + x̄3 + x4 + x̄6 + x̄7 + x̄9)

9 10 T 36,450



9
Extending the SN P systems framework

9.1 Introduction

SN P systems have become a hot topic in Membrane Computing [128, 211],
with a focus on the use this kind of neural-like systems to solve engineering
problems. In this way, SN P systems variants have appeared in quick succes-
sion, along with the corresponding research on their computational properties
and possible practical applications. This research boom contrasts with the
scarcity of SN P systems simulation tools. Prior to the work object of this dis-
sertation, to the best knowledge of the author only the following SN P systems
simulators have been made publicly available1:

• Ramı́rez-Mart́ınez et al. Simulator (2007). Introduced in [159], it is
the first developed SN P systems simulator. It provides a GUI that
allows defining the P system in a graphical way (definition in text files
is also supported) as well as performing the simulation, which result is a
collection of images showing the transition diagram for each simulation
step.

1 it is also worth mentioning the work by Padmavati et al. in [101] which describes an
algorithm to translate SN P systems without delays into Petri Nets, therefore allowing their
simulation with Petri Nets related software tools such as PNet Lab [190].

215
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• Cabarle et al. Simulator (2012). Introduced in [15] and improved in [16],
able to simulate SN P systems without delays on CUDA architectures.
Its simulation algorithm uses a matrix representation of the model [210]
that allows a straightforward implementation on the GPU.

Due to this unbalanced relation between research interest and availability
of software applications, developing a simulator tool to support a wide range
of SN P systems variants has become a key part of the work object of this
dissertation. Development of this tool has involved an extensive research on
SN P systems, focusing on correctly capturing their semantics and defining the
corresponding simulation algorithms. Three have been the main design goals
when constructing the application: (1) to support as many SN P systems
variants as possible; (2) to define a unified simulation algorithm able to cover
the features of all the considered variants, which greatly favours the simplicity
and reusability of the developed code; and (3) to make the simulation tool able
to run on virtually any platform.

It is worth pointing out that, although the use of GPUs have shown that
SN P systems can be efficiently simulated on parallel devices, their related
programming models impose some constraints that make difficult for GPUs
based simulators to easily capture the whole syntactic ingredients participating
in the definition of the SN P systems models, such as delays and regular
expressions, as well as to keep in pace with the aforementioned research boom
that SN P systems are experiencing. Moreover, not all the simulator potential
users may have access to HPC environments. In consequence, according to the
design goals (1) and (3) stated above, at the expense of sacrificing efficiency
for expressivity, other alternatives involving sequential approaches must be
considered. At this respect, P–Lingua is a natural choice as it offers the high
flexibility of the Java programming language as well as a general acceptance
within the Membrane Computing community.

On the other hand, as a result of the research conducted on SN P systems,
two achievements involving theoretical aspects of SN P systems have been
reached: (1) designing a simulation algorithm for Limited Asynchronous SN P
systems (LASNPS, for short) by re-interpreting this variant specification; and
(2) defining a brand new variant of SN P systems incorporating a novel kind
of astrocytes, called functional astrocytes, giving place to the eponymous SN
P systems with Functional Astrocytes (SNPSFA, for short).

Therefore, an extension of the SN P systems framework, within the Mem-
brane Computing paradigm, has been produced as a result of all this work,
involving both theoretical (variants, simulation algorithms) and practical (sim-
ulation tools) aspects. Such extension involves producing a general purpose
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SN P systems simulator, which has been included into pLinguaCore library.
SN P systems variants incorporating the following ingredients fall into this
extension (see Chapter 4):

? extended spiking rules
? neuron division and budding rules
? sequential modes
? asynchronous modes
? hybrid astrocytes
? functional astrocytes
? anti-spikes

In this Chapter the aforementioned extension of the SN P systems frame-
work is discussed. Section 9.2 presents the simulation algorithm for LASNPS,
while Section 9.3 introduces the SNPSFA variant, along with its correspond-
ing simulation algorithm and some example models. Section 9.4 details P–
Lingua syntax for specifying the considered SN P systems variants. Section
9.5 presents the unified simulation algorithm implemented into pLinguaCore
library. Finally, Section 9.6 provides some P–Lingua example programs corre-
sponding to the addressed SN P systems variants. Before going on with this
Chapter, the reader is advised to review contents of Chapters 4 and 6 for the
shake of a better understanding.

9.2 A simulation algorithm for Limited Asyn-

chronous SN P systems

Recalling from Section 4.3.2.3, in LASNPS a global bound b ≥ 2 (imposed on
all rules) is specified in such a way that if one (and only one) rule in neuron
σi is enabled at step t and neuron σi receives no spike from step t to step
t + b − 2, then this rule can and must be applied at a step in the next time
interval b (that is, at a non-deterministically chosen step from t to t+ b− 1).
If the enabled rule in neuron σi is not applied, and neuron σi receives new
spikes, making now the rule non-applicable, then the computation continues
in the new circumstance (maybe other rules are enabled now). If more than
one rule is applicable, the neuron non-deterministically chooses and fires one
of them in the interval t to t+ b− 1. In LASNPS, a configuration is described
by the number of spikes present in each neuron, the number of time units for
neurons to become open as well as the time that has elapsed for each rule since
it became applicable.
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Since the same global bound b applies to all the rules, it is possible to
easily simulate the limited asynchronous firing mechanism by adding a virtual
syntactic ingredient to each neuron σi called bound counter, and denoted by
bi. This counter takes value in [−1, b−1] (in the initial configuration bi = 0 for
all neurons). The bound counter controls (a) if the neuron can hold applicable
rules execution in relation to the global bound b; and (b) if the neuron must
check for new applicable rules.

For each time instant t the firing mechanism can be reproduced by the
following simulation algorithm:

1. If σi is executing a rule at step t, then GOTO t+ 1.

2. If σi received spikes in the previous step, then: bi ← 0.

3. If σi is not executing a rule, then σi decides if it has to check for new applicable rules:

• If bi = −1, then no new applicable rules exist.

• If bi > −1, then new applicable rules may exist.

4. If no new applicable rules exist, then GOTO t+ 1.

5. If new applicable rules may exist, then σi checks for them.

6. If no new applicable rules exist, then:

• bi ← −1.

• GOTO t+ 1.

7. If applicable rules exist, then:

• bi is updated:

– If bi = 0, then bi ← b− 1.

– If bi > 0, then bi ← bi − 1.

• σi non-deterministically selects an applicable rule.

• σi decides whether to fire or not:

– If bi > 0, then σi non-deterministically chooses whether to fire or not the
selected rule.

– If bi = 0, then σi must fire the selected rule.

• If neuron σi does not have to fire, then GOTO t+ 1.

• If neuron σi has to fire, then:

– bi ← 0.

– σi fires the selected rule.
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It is worth pointing out that under the assumption of that a bound counter
is associated to each neuron, a configuration may be described by the number
of spikes present in each neuron, the number of time units for each neuron to
become open as well as the number of time units that neuron can postpone
the application of one of its applicable rules, that is, the current value of the
neuron bound counter.

9.3 SN P systems with Functional Astrocytes

In this Section, a new variant of SN P systems incorporating functional as-
trocytes is introduced. This variant is called SN P systems with functional
astrocytes (SNPSFA, for short). Astrocytes are glial cells connected to one or
more synapses that can sense the whole spike traffic passing along their neigh-
bouring synapses and, eventually, modify it. Biological background related to
astrocytes can be consulted in Section 4.3.5.

9.3.1 Antecedents

The first SN P systems variant containing astrocytes was introduced in [13].
The model presented there, pretty complex, was then simplified in [152], in
which only inhibitory astrocytes were considered. This simplification was re-
vised again in [123], where hybrid astrocytes were introduced. Behaviour of
an astrocyte of this kind, inhibitory or excitatory, relied on the amount of
spikes passing on its neighbouring synapses, in relation to a given threshold
associated to it. This kind of systems were also discussed in Section 4.3.5.

SN P systems with functional astrocytes take inspiration from the original
model defined in [13]. In the SNPSFA variant, new ingredients are introduced
in order to turn astrocytes into function computation devices. They operate in
the following general way. A set of pairs (threshold, function) is associated with
each astrocyte. Existing spike traffic measured on distinguished neighbouring
control synapses attached to the astrocyte is matched against the thresholds
until one of them is selected. Subsequently, the associated function to the
matched threshold is selected. At this point, that function is computed taking
as arguments the amounts of spikes measured on distinguished neighbouring
operand synapses attached to the astrocyte. Finally, the result of the function
computation is sent through a distinguished output operand synapse. With this
mechanism any computable partial function between natural numbers can be
computed in a single computation step. Moreover, this kind of astrocytes eases
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the design of machines that calculate functions, as astrocytes can be viewed
as “macros”.

9.3.2 Formal definition

Definition 9.1. A SN P system with functional astrocytes of degree (m, l),
with m ≥ 1, l ≥ 1, is a tuple of the form:

Π = (O, σ1, σ2, . . . , σm, ast1, ast2, . . . , astl, syn, in, out),

where:

1. O, σ1, σ2, . . . , σm, syn, in, out are defined as in classic SN P systems.

2. ast1, ast2, . . . , astl are astrocytes, with astj (1 ≤ j ≤ l) of the form

astj = (synoj , syn
c
j, ωj, Tj, Fj, pj(0), γj),

where:

• synoj = {soj,1, . . . , soj,rj} ⊆ syn, rj ≥ 1, is the astrocyte finite set
of operand synapses, ordered by a lexicographical order imposed on
synoj ;

• syncj = {scj,1, . . . , scj,qj} ⊆ syn, qj ≥ 0, is the astrocyte finite set of
control synapses;

• ωj ∈ {true, false} is the astrocyte control-as-operand flag;

• Tj = {Tj,1, . . . , Tj,kj}, kj ≥ 1, is the astrocyte finite set of thresholds,
such that, Tj,α ∈ N, (1 ≤ α ≤ kj) and Tj,1 < · · · < Tj,kj ;

• Fj = {fj,1, . . . , fj,kj} is the astrocyte finite multiset (some elements
in Fj can be the same) of natural functions such that for each α
(1 ≤ α ≤ kj):

– fj,α is a computable function between natural numbers;

– if ωj = true then fj,α is a unary function;

– if ωj = false and rj = 1 then fj,α is a unary constant function;

– if ωj = false and rj > 1 then fj,α has arity rj − 1;

• pj(0) ∈ N is the astrocyte initial potential;

• γj ∈ {true, false} is the astrocyte potential update flag;
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Functional astrocytes are graphically represented as diamond-shaped fig-
ures, with ingoing synapses coming from the control synapses and outgoing
synapses connected to the operand synapses. An example is shown in Fig.
9.1.

Figure 9.1: A functional astrocyte.

9.3.3 Semantics and associated simulation algorithm

Semantics of SNPSFA follows from the SN P systems classic model (see Section
4.2), but incorporating functional astrocytes behaviour. A functional astrocyte
can sense the spike traffic passing along its controlled synapses, both control
and operand ones, and eventually modify it. When neurons spike, spikes reach
the target neurons going along the synapses unless they are intercepted by
astrocytes.

Astrocytes behaviour can be modelled by the following simulation algo-
rithm:

1. Let astj be an astrocyte, such that, at instant t, the following holds:

• A total amount of k spikes are passing along its control synapses;

• x1, x2, . . . , xrj spikes are passing along its operand synapses;

• Potential of astj is p;

2. Value s = k + p is computed.

3. Value h satisfying that s ∈ [Tj,h, Tj,h+1) is computed out of s, with the constraints
that if s < Tj,1 then h = 1, and if s > Tj,kj

then h = kj .

4. Value s′ is computed as follows: if ωj = true then s′ = fj,h(s) directly; otherwise,
two cases are considered:
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• If |synoj | = 1 then s′ = fj,h(0).

• If |synoj | > 1 then s′ = fj,h(x1, x2, . . . , xrj−1).

5. For control synapses, astj shows an excitatory influence, all spikes are allowed to
survive and reach their destination neurons.

6. For operand synapses, astj shows both an inhibitory and excitatory influence, in the
following way:

• Synapses soj,1, . . . , sj,rj−1 are applied an inhibitory influence, all the spikes pass-
ing along them are removed from the system.

• Synapse sj,rj is applied an excitatory influence, s′ spikes are added to the spikes
passing along the synapse, and the resulting amount of spikes is allowed to reach
their destination.

7. If γj = true then astrocyte potential in t+1 will be incremented in s units. Otherwise,
the astrocyte potential does not change.

On the other hand, the concepts of configuration, transition step and com-
putation can be defined in a similar way to classic SN P systems.

9.3.4 Some example models

In what follows, some example models showing SNPSFA capabilities are shown.

Excitatory and Inhibitory Astrocytes

First couple of examples shows how to implement excitatory and inhibitory
astrocytes respectively, with a given threshold k. Implementation involves
defining two functions: f(x), which is the identically zero function of arity
one, and g(x).

Excitatory astrocyte, astexc, is depicted in the Fig. 9.2 with its formal
specification being:

astexc = ({(p′, q)}, {(p, q′)}, true, {0, k}, {f(x), g(x)}, 0, false)
and its working equation, assuming that α spikes pass through synapse

(p, q′) at a given instant t, being:

astexc(α, t) =

{
f(α) = 0 if 0 ≤ α < k
g(α) if α ≥ k
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Figure 9.2: Excitatory astrocyte.

Inhibitory astrocyte, astinh, is structurally identical to astexc, with its for-
mal specification being:

astinh = ({(p′, q)}, {(p, q′)}, true, {0, k + 1}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α spikes pass through synapse
(p, q′) at a given instant t, being:

astinh(α, t) =

{
g(α) if 0 ≤ α ≤ k
f(α) = 0 if α ≥ k + 1

Logic Gates

Second couple of examples shows how to implement logical gates, concretely
AND-gates and NAND-gates respectively. Implementation involves defining
two functions, f(x) and g(x), both of them unary constant functions, which
associates the 0 and 1 natural values respectively for every x ∈ N.

AND-gate astrocyte, astand, is depicted in the Fig. 9.3 with its formal
specification being:

astand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {f(x), g(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass
through synapses (A,A′) and (B,B′) at a given instant t, being:
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astand(α, t) =

{
f(0) = 0 if 0 ≤ α ≤ 1
g(0) = 1 if α = 2

Figure 9.3: AND-gate astrocyte.

NAND-gate astrocyte, astnand, is structurally identical to astand, with its
formal specification being:

astnand = ({(p, q)}, {(A,A′), (B,B′)}, false, {1, 2}, {g(x), f(x)}, 0, false)

and its working equation, assuming that α, 0 ≤ α ≤ 2 spikes in total pass
through synapses (A,A′) and (B,B′) at a given instant t, being:

astnand(α, t) =

{
g(0) = 1 if 0 ≤ α ≤ 1
f(0) = 0 if α = 2

Discrete Amplifier

Last example shows how to implement a discrete amplifier which, as soon as
the spike amount passing through control synapse (B,B′) goes beyond a given
threshold k, computes the amplification function f∗,n(x) = n∗x from the input
given at E, otherwise no amplification is performed. Rules al → al belonging
to neuron p are interpreted in the same way as in [13]. Implementation involves
defining two functions: g(x) = f∗,n(x) and f(x), which associates x for every
x ∈ N.

Discrete amplifier astrocyte, astamp, is depicted in the Fig. 9.4 with its
formal specification being:
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astamp = ({(p, p′), (q′, q)}, {(B,B′)}, false, {0, k}, {f(x), g(x)}, 0, false)

and its working equation, assuming that at a given instant t α spikes pass
through synapse (B,B′) and β spikes pass through synapse (p, p′), being:

astamp(α, β, t) =

{
f(β) = β if 0 ≤ α < k
g(β) = n ∗ β if α ≥ k

Figure 9.4: Discrete amplifier astrocyte.

9.4 P–Lingua syntax for SN P systems

Next, we detail the P–Lingua syntax for specifying SN P systems in P–Lingua.
The starting point for this syntax is the one introduced in [131] and [45, 100,
132]. From there, P–Lingua language syntax is extended to incorporate new
features related to SN P systems. Such features include, among others, dif-
ferent simulation modes, an initial configuration specification, consisting of
set of neurons and a collection of synapses, and the possibility of defining a
simulation input spike train and input and output neurons.

9.4.1 Reserved words

The set of reserved words has been updated by adding the following text
strings:
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|, @masynch, @mseq, @mvalid, @marcs, @mdict, @min, @minst,

@mout, @moutres_binary, @moutres_natural, @moutres_summatories,

@mastf, @masth, @mastfunc, zero, identity, pol,

@mboundall, @mlocset

A detailed explanation about this set of reserved words is provided in what
follows.

9.4.2 Model specification

Any P–Lingua file defining a SN P system must begin with the following
sentence:

@model<spiking_psystems>

9.4.3 Valid computation specification

The next sentence can be used to define a valid computation:

@mvalid = (m1,n1), (m2,n2),..., (mN,nN);

where, for each integer i ∈ [1, . . . , N ]:

• mi is a neuron label in the SN P system.

• ni is an integer expression which specifies the number of spikes contained
in mi at the end of the computation.

If the sentence is not used then every halting computation is considered
valid.

9.4.4 Asynchronous modes

P–Lingua supports several asynchronous modes for SN P systems. To specify
the asynchronous mode, the following sentence must be written, preferably
after the model specification.

@masynch = v1;

where v1 ∈ {0, 1, 2, 3}. If this sentence is not present, then v1 defaults to 0.
These values denote the following modes (see Chapter 4 and [63, 124, 165] for
details):
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0: Synchronous (standard) mode.
1: Asynchronous mode.
2: Limited asynchronous mode.
3: Asynchronous with local synchronization mode.

If @masynch is set to 2, then the following sentence must be used to set the
global upper bound:

@mboundall = b;

where b is the global upper bound, with b ≥ 2.

If @masynch is set to 3, then the following sentence must be used to set the
local synchronizing sets:

@mlocset = {ls-1, ls-2, ..., ls-m};

where for an arbitrary element lsh we have that lsh = {σh,1, . . . , σh,uh}, which
is a non-empty set of neuron labels.

9.4.5 Sequential modes

P–Lingua supports several sequential modes for SN P systems. To specify the
sequential mode, the following sentence must be written, preferably after the
model specification.

@mseq = v2;

where v2 ∈ {0, . . . , 5}. If this sentence is not present, then v2 defaults to 0.
These values denote the following modes (see Chapter 4 and [63] for details):

0: parallel (standard) mode.
1: pure-seq mode.
2: max-pseudo-seq mode.
3: max-seq mode.
4: min-pseudo-seq mode.
5: min-seq mode.
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9.4.6 Initial membrane structure

A SN P system specification in P–Lingua must define an initial membrane
structure, which is composed of a set of neurons connected by synapses. These
synapses are specified as a set of arcs. If a SN P system with division and bud-
ding rules is being specified, then defining a synapse dictionary is mandatory.
Besides, an input neuron, a set of output neurons and an input spike train can
also be specified.

Let us consider an initial membrane structure of a SN P system with N
neurons and M synapses. In what follows, defining that initial membrane
structure is explained:

Initial neurons

Initial neurons must be specified with the following sentence:

@mu = m1, m2, ..., mN;

where, for each integer i ∈ [1, . . . , N ], mi is the label of neuron i. The label
environment cannot be used.

Initial synapses

Initial synapses must be specified with the following sentence:

@marcs = arc1, arc2,..., arcM;

where, for each integer i ∈ [1, . . . ,M ], arci = (mk,ml), mk and ml being two
neuron labels of a SN P system configuration and mk 6=ml.

Synapse dictionary

The synapse dictionary can be specified with the following sentence:

@mdict = e1, e2, ..., eD;

where D is the number of entries of the dictionary and, for each integer p ∈
[1, . . . , D], ep = (li, lj), li and lj are neuron labels verifying li 6=lj.

If the SN P system specification contains division or budding rules the
dictionary is mandatory. Besides, an implicit dictionary is built from the
@marcs sentence. This dictionary is extended by the “explicit” dictionary
defined by the @mdict sentence.
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Input neuron

In order to specify the (optional) input neuron of the SN P system, the fol-
lowing sentence may be written:

@min = in;

where in is the label of a neuron existing in the SN P system initial membrane
structure. SN P systems without input neuron can also be specified in P-
Lingua, by just omitting this sentence.

Input spike train

Let us consider an input spike train consisting of S steps for a SN P system
with an input neuron. In order to specify this input spike train, the following
sentence must be written:

@minst = r1, r2, ..., rS;

where, for each integer i ∈ [1, . . . , S], sti = (i, ai), i and ai are two integer
expressions, with i≥1 and ai≥0. The pair sti = (i, ai) is interpreted in the
following way: at step i a number of ai spikes are introduced in the input
neuron. When the pair stj = (j, aj) is undefined for some step j the simulator
assumes that zero spikes are introduced in the system at that step. Only
spikes, but not anti-spikes, can be introduced as part of the input spike train.

Output neurons

In order to specify the (optional) output neurons of the SN P system, the
following sentence may be written:

@mout = o1, o2, ..., oL;

where, for each integer i ∈ [1, . . . , L], oi denotes the label of a neuron existing
in the initial SN P system membrane structure. SN P systems without output
neurons can also be specified in P-Lingua, by just omitting this sentence.
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9.4.7 An initial membrane structure definition example

The following piece of code shows the first lines of a P-Lingua SN P system
definition file. These lines show examples of the previously introduced syntax.

@model<spiking_psystems>

@masynch = 2;

@mvalid = (1, 3), (2, 6), (3, 4);

@mseq = 2;

@mu = 1,2,3;

@marcs = (1,2), (1,3);

@mdict = (1,d),(2,f);

@min = 1;

@minst = (1,3), (5,4), (8,2);

@mout = 1,2;

9.4.8 Alphabet symbols

In SN P systems, as originally defined, the alphabet only contains one symbol,
which is called spike and denoted by a. In SN P systems with anti-spikes,
the symbol a is used to denote the anti-spike. The corresponding alphabet
symbols are written in P–Lingua as a and a respectively.

9.4.9 Initial multisets

Initial multisets of objects for neurons can be defined in the same way as initial
multisets of objects for cell-like systems, with the restriction that only objects
a and a can be used. Examples:

@ms(0) = a*15;

@ms(3) = _a*9;

9.4.10 Regular expressions

In SN P systems, regular expressions are associated to the activation of rules.
Consequently, it is necessary to provide a mechanism to define and evalu-
ate regular expressions in P–Lingua. Since P–Lingua is written in Java, the
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standard Java support for regular expression provided by the Java package
java.util.regex is used. Details about this package can be found at [187].

In P–Lingua, the following subset of symbols can be used to construct
regular expressions, according to the syntax specified in [187]:

’a’, ’_a’, ’(’, ’)’, ’[’, ’]’, ’{’, ’}’, ’,’, ’^’,

’*’, ’+’,’?’, ’|’

Regular expressions are not checked by P–Lingua parser. Instead, they
are piped directly into the simulator, which performs the parsing. A regular
expression E is written double-quoted in P–Lingua in this way: “E”. Some
examples are provided below.

9.4.11 Rules

SN P systems without anti-spikes

Four types of rules can be defined:

(1) Firing rules, that can be specified in the following ways:

• [a*c]’h --> [a*p]’h "e" :: d;

• [a*c --> a*p]’h "e" :: d;

(2) Forgetting rules, that can be specified in the following ways:

• [a*c]’h --> [#]’h "e" :: d;

• [a*c --> #]’h "e" :: d;

(3) Neuron division rules, that can be specified in the following way:

[]’i --> [#]’j || [#]’k "e";

(4) Neuron budding rules, that can be specified in the following way:

[]’i --> [#]’i / [#]’j "e";
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where h, i, j and k are neuron labels, c, p and d are integer expressions which
satisfy c≥1, c≥p and d≥0, and e is a regular expression over {a}.

For firing and forgetting rules, both d and e are optional with d defaulting
to 0. In forgetting rules d is always set to 0. When e is not present in the
rule, it defaults to the left hand side of the rule.

Division and budding rules have no delays, so d is not used, but the regular
expression e is mandatory.

For instance, the following rules are valid firing/forgetting rules in P-
Lingua:

• [a*3]’1 --> [a*2]’1 "a^3" :: 3;

• [a*3 --> a*2]’1 "a?" :: 6;

• [a*3 --> #]’1 "a+a^3" :: 3;

• [a*3 --> #]’1 "a*" :: 5;

Also, the following rules are valid division and budding rules in P-Lingua:

• []’1 --> []’2 || []’3 "a*";

• []’1 --> []’1 / []’2 "(a^3)|a";

Let us recall that in P-Lingua, the symbol # is optional (it can be omitted).
For instance, the following rules:

• []’1 --> [#]’2 || [#]’3 "a*";

• []’1 --> [#]’1 / [#]’2 "(a^3)|a";

• [a*3 --> #]’1 "a+a^3" :: 3;

• [a*3 --> #]’1 "a*" :: 5;

can be written equivalently as:

• []’1 --> []’2 || []’3 "a*";

• []’1 --> []’1 / []’2 "(a^3)|a";

• [a*3 --> ]’1 "a+a^3" :: 3;

• [a*3 --> ]’1 "a*" :: 5;
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SN P systems with anti-spikes

Two kinds of rules involving anti-spikes can be defined:

(1) Firing rules, that can be specified in the following ways:

• [b*c]’h --> [b’*p]’h "e" :: d;

• [b*c --> b’*p]’h "e" :: d;

(2) Forgetting rules, that can be specified in the following ways:

• [b*c]’h --> [#]’h "e" :: d;

• [b*c --> #]’h "e" :: d;

where h is a neuron label, c, p and d are integer expressions which satisfy c≥1,
c≥p and d≥0, b ∈ {a, a}, and e is a regular expression either over a or over a
(but not over a and a simultaneously).

For instance, the following rules are valid firing/forgetting rules in P-
Lingua:

• [a*3]’1 --> [_a*2]’1 "a^3" :: 3;

• [_a*3 --> a*2]’1 "_a?" :: 6;

• [a*3 --> #]’1 "a+a^3" :: 3;

• [_a*3 --> #]’1 "_a*" :: 5;

9.4.12 Output results

Let Π be a SN P system with output neurons o = {o1, . . . , oL}. Without loss
of generality, we can assume a total ordering < among elements of o given by
the lexicographical ordering of the neuron labels. Let γ = C0 ⇒ C1 ⇒ . . . be
a computation of Π (C0 is the initial configuration, and Ci−1 ⇒ Ci is the i-th
step of γ). Then, for each step t (t ≥ 1):

• We denote bsi(t) as the binary spike train generated by output neuron
oi until step t, which is a binary sequence where the steps from γ when
neuron oi fires are marked with 1 and the steps when neuron oi does not
fire are marked with 0. This sequence can be formally defined as follows:



Chapter 9. Extending the SN P systems framework 234

bsi(t) = 〈bs(1)
i , . . . , bs

(t)
i 〉, 1 ≤ i ≤ L, such that

bs
(j)
i =

{
1 if oi fired at step j
0 otherwise

, 1 ≤ j ≤ t.

• We denote bs(t) = 〈bs1(t), . . . , bsL(t)〉 as the binary spike train generated
by system Π until step t.

Let us notice that there is an implicit total order < on elements bsi(t) ∈
bs(t) given by the total order among elements of o.

• We denote nsi(t) as the natural spike train generated by output neuron
oi until step t, which is an ordered sequence of steps from γ where only
those steps when neuron oi fires appear. This sequence can be formally
defined in the following way:

– Ki(t) = {j | bs(j)
i = 1 ∧ 1 ≤ i ≤ L, 1 ≤ j ≤ t}, with |Ki(t)| = ki,t.

– We impose a total order < among elements of Ki(t) following the
natural order of its elements, and write the sequence as follows:
nsi(t) = 〈nsi,1, . . . , nsi,ki,t〉, 1 ≤ i ≤ L, 1 ≤ ki,t ≤ t.

• We denote ns(t) = 〈ns1(t), . . . , nsL(t)〉 as the natural spike train gener-
ated by system Π until step t.

Let us notice that there is an implicit total order < on elements nsi(t) ∈
ns(t) given by the total order among elements of o.

The previous definitions generalize the concept of output spike trains for SN
P systems with multiple output neurons for each computation step t, following
from the discussion on SN P systems output (see Section 4.2, and [63, 128] for
more details). From here, it is also possible to consider generalized versions of
other outputs such as (alternate) differences between spiking instants for each
output neuron, requiring for a given output neuron to fire at least k times
(weak case) or exactly k times (strong case), etc.

According to all of this, the simulator provides the following output infor-
mation for each step t:

• bs(t), binary spike train generated by Π until step t.

• ns(t), natural spike train generated by Π until step t.
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• Ct, configuration generated by Π after step t, which also includes the
number of spikes placed in the environment.

For halting computations, additional output information can be provided
by the simulator writing the following optional sentences in the P–Lingua
specification file:

@moutres_binary;

@moutres_natural(k,strong,alternate);

@moutres_summatories;

Let us suppose that computation halts in t′ steps. Then we have the
following:

• When sentence @moutres binary is specified, the complete binary spike
train generated by Π is shown, that is: bs(t′) = 〈bs1(t′), . . . , bsL(t′)〉.

• When sentence @moutres natural(k,strong,alternate) is specified,
a sequence of time instants between spikes generated by output neurons
of Π is shown, with parameters k, strong and alternate determining how
to generate the output. Parameter k is an integer expression with k≥2,
which indicates the number of spiking times for each output neuron. Pa-
rameter strong takes a boolean value (true or false), which indicates if
the output is computed in a strong case (the output neuron fires exactly
k times) or not. Parameter alternate also takes boolean values and de-
termines if all the times differences (false) should be considered, or only
alternate ones (true).

• When sentence @moutres summatories is specified, the output of Π is
calculated as a set consisting of, for each output neuron, the total number
of spikes/anti-spikes sent by the neuron to the environment.

9.4.13 Astrocytes

In what follows, we present P–Lingua syntax for defining astrocytes. Two kinds
of astrocytes are considered: functional astrocytes and hybrid astrocytes.
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Syntax for functional astrocytes

Neuron division rules cannot be used together with functional astrocytes. This
comes from a model design issue that arises when splitting into two new
synapses an existing operand synapse as a result of a neuron division. As
functions have a fixed number of operands, it would be necessary to define
which synapse would be associated to the function operand. P–Lingua syntax
for defining SN P systems with functional astrocytes follows:

• Astrocytes.

The following sentence can be used to define a functional astrocyte astfj :

@mastf =

(

label-j,

operand-synapses-j,control-synapses-j,control-operand-flag-j,

set-thresholds-j,set-functions-j,

potential-j,update-potential-j

);

where:

– label-j is the label of the astrocyte;

– operand-synapses-j is the set of operand synapses associated to the
astrocyte, being that set {soj,1, . . . , soj,rj}, where soj,v = (σo,1j,v , σ

o,2
j,v ), a

pair of neuron labels defining the synapse;

– control-synapses-j is the set of control synapses associated to the
astrocyte, being that set {scj,1, . . . , scj,qj}, with scj,u = (σc,1j,u, σ

c,2
j,u), a

pair of neuron labels defining the synapse;

– control-operand-flag-j is the astrocyte control-as-operand flag, with
control-operand-flag-j ∈ {true, false};

– set-thresholds-j is the astrocyte natural set of thresholds, being
that set {Tj,1, . . . , Tj,kj}, with Tj,1 < · · · < Tj,kj ;

– set-functions-j is the astrocyte set of natural computable func-
tions, being that set {fj,1, . . . , fj,kj}, with all functions having the
same arity;

– potential-j is the astrocyte initial potential, with potential-j ∈ N;
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– update-potential-j is the astrocyte potential update flag, verifying
that update-potential-j ∈ {true, false};

• Functions.

The following sentence can be used to define a function of name f-name:

@mastfunc =

(

f-name(x1,...,xN),

f-name(x1,...,xN) = "expr(x1,...,xN)"

);

where:

– f -name is the function name, a P–Lingua identifier;

– x1, . . . , xN is the list of arguments; notation for naming arguments
must follow the convention of starting with x and immediately being
followed by a integer literal, starting with 1 and being incremented
by one each time;

– exp(x1, ..., xN) is an expression defining the function, which must
yield a natural value;

For defining and dynamically calculate functions value, an external li-
brary called exp4j [30] is used. Version of the library used is 0.2.9, which
syntax offers a variety of operators and built-in functions. This syntax
can be consulted at http://projects.congrace.de/exp4j/. Let us
notice that, as we are restricted when defining functions, SN P systems
with functional astrocytes are only partially simulated. The following
functions are pre-defined and can be used directly, without having to be
explicitly defined in the P–Lingua source file:

– zero(x1) is the identically zero function of arity one;

– identity(x1) is the identity function of arity one;

– pol() is a function template allowing the definition of a polynomial
astrocyte function pol(x0, x1, . . . , xn, x) of any arity n + 2, defined
as follows:
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pol(x0, x1, . . . , xn, x) = x0 +
n∑
i=1

xi ∗ xi

x0, . . . , xn, x arguments over N that take value from the number of
spikes/anti-spikes passing through the operand synapses associated
to a given astrocyte astj at a instant t in the following way:

x0 ← soj,1(t)
x1 ← soj,2(t)
. . .
xn ← soj,rj−2

(t)

x← soj,rj−1
(t)

– sub() is a function template allowing the definition of a natural
substraction function sub(x1, . . . , xn) of any arity n ≥ 1, defined as
follows:

sub(x1, . . . , xn) =

{
x1 − x2 − · · · − xn if x1 − x2 − · · · − xn ≥ 0;
0 otherwise;

with xi ∈ N, 1 ≤ i ≤ n;

x1, . . . , xn arguments take value from the spikes passing through
the operand synapses of a given astrocyte astj at an instant t in the
following way: 

x1 ← soj,1(t)
. . .
xn ← soj,rj−1

(t)

Syntax for hybrid astrocytes

The following P–Lingua sentence can be used to define hybrid astrocyte asthj :

@masth = (label-j,synapses-j,potential-j);

where:

• label-j is the label of the astrocyte;
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• synapses-j is the set of neighbouring synapses associated to the astro-
cyte, being that set {sj,1, . . . , sj,rj}, with sj,y = (σ1

j,y, σ
2
j,y), a pair of

neuron labels defining the synapse;

• potential-j is the astrocyte potential with potential-j ∈ N;

Using functional and hybrid astrocytes together

P–Lingua allows using both kind of astrocytes, functional and hybrid, together,
but the following restrictions apples: it is not allowed to connect a synapse
associated to an excitatory/inhibitatory astrocyte to an operand synapse as-
sociated to a functional astrocyte.

9.5 A unified algorithm for simulating SN P

systems in P–Lingua

Let us recall that when a family of recognizer P systems is used to solve a de-
cision problem, each member of the family processing an instance is confluent,
in the sense that all computations for a given input must generate the same
output. Consequently, a simulation algorithm for recognizer P systems only
has to reproduce one possible computation of the simulated P system.

The unified simulation algorithm described below generates one possible
computation for a recognizer SN P system, incorporating all the features of
the previously discussed SN P systems variants, with an initial configuration
C0 containing n neurons m1, . . . ,mn plus a virtual neuron m0 representing the
environment.

The simulation algorithm is structured in the following stages:

I. Initialization

Data structures needed to perform the simulation are initialized.

II. Selection of rules

The set of rules to be executed in the current step is calculated.

III. Sequential filtering

A filtering on the neurons to execute rules is applied according to
the sequential mode in which the simulator operates.

IV. Asynchronous filtering
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A filtering on the neurons to execute rules is applied according to
the asynchronous mode in which the simulator operates.

V. Remove left hand rule objects

For those rules that start their execution in the current steps, the
associate neurons remove the left hand rule objects.

VI. Classify selected rules

The rules to be executed are split into different sets, according to
their kind.

VII. Execute division and budding rules

In this stage, division and budding rules are executed. The execu-
tion is performed in two phases: in the first one, new neurons are
calculated out of existing neurons by applying budding and divi-
sion rules; in the second one, additional synapses are introduced
according to the synapse dictionary.

VIII. Execute spiking rules

Execution of spiking rules is performed.

IX. Ending

The current configuration is updated with the newly calculated one
and the halting condition is checked (that is, if no more rules are
applicable).

The simulation algorithm follows.

I. Initialization

1. Let C0 be the initial configuration with n neurons

denoted by m1, . . . ,mn plus a virtual neuron m0

representing the environment

2. Let Ct ← C0 be the current configuration

3. Let asynch be the asynchronous mode in which the simulation

is performed; the following values are possible:

0: synchronous (standard) mode.

1: asynchronous mode.

2: limited asynchronous mode.

3: asynchronous with local synchronization mode.

4. Let seq be the sequential mode in which the simulation

is performed; the following values are possible:
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0: parallel (standard) mode.

1: pure-seq mode.

2: max-pseudo-seq mode.

3: max-seq mode.

4: min-pseudo-seq mode.

5: min-seq mode.

5. For each neuron mi ∈ Ct the following information is stored:

• Let id(mi) be the neuron identifier of mi

(each time a neuron is created, an identifier is assigned,

starting from 0, which is associated to the environment)

• Let l(mi) be the neuron label of mi

• Let r(mi)← 〈〉 be the last selected rule to be executed by mi

(〈〉, the void rule, denotes no selected rule)

• Let o(mi)← a the kind of object (spike/anti-spike)

contained in mi

• Let n(mi) the number of spikes/anti-spikes contained in mi

• Let d(mi)← 0 be an integer that controls if mi is open or closed;

it functions as follows:

– If d(mi) = 0 then mi is open, otherwise it is closed
– If r(mi) is a firing/forgetting rule then d(mi) stores

the number of steps left for mi to become open
– If r(mi) is a budding/division rule then d(mi) is equal to −1

• Let b(mi)← 0 be an integer with a double function:

– Controlling if mi has changed its state from

the last computation step;

if b(mi) = −1 then mi has not changed its state and

does not need to check for new applicable rules

(mi state is changed when its multiset is changed or

it finalizes a rule execution)
– Storing the number of steps left for mi to postpone

the execution of r(mi) (in this case b(mi) ≥ 0)

6. For each arc e ∈ Ct from neuron m to m′ with e ≡ (m,m′)
the following information is stored:

• Let ni(e) be the number of spikes/anti-spikes

contained in the input buffer of e

• Let no(e) be the number of spikes/anti-spikes

contained in the output buffer of e

• Let o(e)← a the kind of object (spike/anti-spike)

contained in e

• Let inh(e)← false a boolean value indicating

if traffic in e is inhibited

• Let ast(e) be a boolean value indicating

if traffic in e is controlled by some astrocyte
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7. For each functional astrocyte fastj ∈ Ct the following information is stored:

• Let l(fastj) be the label of fastj
• Let op(fastj) = {soj,1, . . . , soj,rj}, rj ≥ 1, be the operand synapses set

• Let ct(fastj) = {scj,1, . . . , scj,qj}, qj ≥ 0 be the control synapses set

• Let ω(fastj) ∈ {true, false} be the control-as-operand flag

• Let T (fastj) = {Tj,1, . . . , Tj,kj
}, kj ≥ 1 be thresholds set

• Let F (fastj) = {fj,1, . . . , fj,kj}, kj ≥ 1 be the natural functions

finite multiset

• Let p(fastj) ∈ N be the potential

• Let γ(fastj) ∈ {true, false} be the potential update flag

• For each set S ∈ {op(fastj), ct(fastj), T (fastj), F (fastj)}
with S ≡ {s1, . . . , sz} Sx yields sx 1 ≤ x ≤ z

8. For each hybrid astrocyte hastj ∈ Ct the following

information is stored:

• Let l(hastj) be the label of hastj
• Let syn(fastj) be the synapses set influenced by hastj
• Let th(fastj) ∈ N be the threshold

9. Let b be the global bound that marks the number of steps

for neurons to postpone the execution of its selected rule;

(if asynch 6= 3 then b = 0, which means no bound)

10. Let Loc← {loc1, loc2, . . . , locl} ⊆ P({m1,m2, . . . ,mn}) be the family

of sets of locally synchronous neurons with P({m1,m2, . . . ,mn})
the power set of {m1,m2, . . . ,mn}

11. Let Rsel ← {} be the set that stores the selected rules to be

executed at the current execution step; each element of Rsel

has the form 〈mi, r(mi)〉
12. Let toF ireNotF iltered← {} be a set that stores the neurons having

a selected rule for the current computation step;

each of its elements has the form 〈id(mi),mi〉
13. Let toF ireF iltered← {} be a set that stores the neurons having

a selected rule for the current computation step

and that will be executed after applying a filtering

according to the sequential/asynchronous mode in which

the simulator is operating;

each of its elements has the form 〈id(mi),mi〉
14. Let justOpenNow ← {} be a set that stores the neurons becoming

open at the current computation step after being closed executing

a firing/forgetting rule;

each of its elements has the form 〈id(mi),mi〉
15. Let Division← {} be the set of neurons having a division rule

selected to start its execution at the current computation step
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16. Let Budding ← {} be the set of neurons having a budding rule

selected to start its execution at the current computation step

17. Let Spiking ← {} be the set of neurons having a spiking rule

selected to start its execution at the current computation step

II. Selection of rules

1. For each neuron mi ∈ Ct do

(a) If b(mi) = 0 ∧ d(mi) > 0 Then

• d(mi)← d(mi)− 1
• If d(mi) = 0 Then Add id(mi) to justOpenNow
• Add 〈mi, r(mi)〉 to Rsel

• Goto II.1 /* process next neuron */

(b) Clear neuron mi state:

• r(mi)← 〈〉
• d(mi)← 0

(c) If b(mi) = −1 Then Goto II.1 /* process next neuron */

(d) Let S ← {}
(e) For each spiking rule r′ ≡ E/sc → s′p; d ∈ Rl(mi) do

• If all the following statements are true:

– o(mi)
n(mi) ∈ L(E)

– o(mi) = s

– n(mi) ≥ c
Then Add r′ to S

(f) For each division rule r′ ≡ [E]l(mi) → [ ]j ||[ ]k ∈ Rl(mi) do

• If all the following statements are true:

– o(mi)
n(mi) ∈ L(E)

– 6 ∃m′ ∈ Ct : l(m′) ∈ {j, k} ∧
((l(m′), l(mi)) ∈ syn ∨ (l(mi), l(m

′)) ∈ syn)

Then Add r′ to S

(g) For each budding rule r′ ≡ [E]l(mi) → [ ]l(mi)/[ ]j ∈ Rl(mi) do

• If all the following statements are true:

– o(mi)
n(mi) ∈ L(E)

– 6 ∃m′ ∈ Ct : l(m′) = j ∧ (l(mi), l(m
′)) ∈ syn

Then Add r′ to S

(h) If S = {} Then

• b(mi)← −1
• Goto II.1 /* process next neuron */

Else

• Let r′ be a non-deterministically selected rule from S
• r(mi)← r′

• If r(mi) ≡ E/sc → s′p; d Then d(mi)← d Else d(mi)← −1
• If b 6= 0 Then
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– If b(mi) = 0 Then b(mi) = b− 1 Else b(mi) = b(mi)− 1

• Add 〈id(mi),mi〉 to toF ireNotF iltered
• Add 〈id(mi),mi〉 to toF ireF iltered
• Add 〈mi, r(mi)〉 to Rsel

III. Sequential fitering

1. If toF ireF iltered = {} Then Return

2. If seq = 0 Then Return

3. Let filtered← {}
4. Let min← min{n(mi) : 〈id(mi),mi〉 ∈ toF ireF iltered}
5. Let max← max{n(mi) : 〈id(mi),mi〉 ∈ toF ireF iltered}
6. Call decideSequential(min,max, filtered)

7. toF ireF iltered← filtered

Procedure decideSequential(min,max, filtered)

1. Let min,max, filtered be input/output arguments declared

consistently as specified above

2. If seq = 1 Then

(a) Let 〈id(mi),mi〉 be a non-deterministically

selected tuple from toF ireF iltered

(b) Add 〈id(mi),mi〉 to filtered

3. If seq = 2 Then

(a) For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

• If n(mi) = max Then Add 〈id(mi),mi〉 to filtered

4. If seq = 3 Then

(a) Let filteredAux← {}
(b) For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

• If n(mi) = max Then Add 〈id(mi),mi〉 to filteredAux

(c) Let 〈id(mi),mi〉 be a non-deterministically

selected tuple from filteredAux

(d) Add 〈id(mi),mi〉 to filtered

5. If seq = 4 Then

(a) For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

• If n(mi) = min Then Add 〈id(mi),mi〉 to filtered

6. If seq = 5 Then

(a) Let filteredAux← {}
(b) For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

• If n(mi) = min Then Add 〈id(mi),mi〉 to filteredAux
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(c) Let 〈id(mi),mi〉 be a non-deterministically

selected tuple from filteredAux

(d) Add 〈id(mi),mi〉 to filtered

IV. Asynchronous fitering

1. If toF ireF iltered = {} Then Return

2. If asynch = 0 Then Return

3. Let filtered← {}
4. For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

(a) If DecideAsynch(mi) = true Then Add 〈id(mi),mi〉 to filtered

5. If asynch = 3 Then

(a) Let filteredAux← {}
(b) Let locProcessed← {}
(c) For each tuple 〈id(mi),mi〉 ∈ filtered do

• Call addLocMembranes(id(mi), locProcessed, filteredAux)

(d) filtered = filteredAux

6. toF ireF iltered = filtered

Procedure decideAsynch(mi)

1. Let mi be an input/output argument declared consistently as

specified above

2. Let result← false

3. Let p be a boolean value non-deterministically

selected from {true, false}
4. If any of the following statements is true :

• asynch ∈ {1, 3} ∧ p = true

• asynch = 2 ∧ b(mi) = 0

• asynch = 2 ∧ b(mi) > 0 ∧ p = true

Then

• result← true

• b(mi)← 0

5. Return result

Procedure addLocMembranes(id(mi), locProcessed, filteredAux)

1. Let id(mi), locProcessed, filteredAux be input/output arguments

declared consistently as specified above

2. If id(mi) ∈ locProcessed Then Return

Else

(a) Add id(mi) to locProcessed

(b) If ∃ 〈id(mi),mi〉 ∈ toF ireNotF iltered Then
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• b(mi)← 0
• Add 〈idi,mi〉 to filteredAux

• Let S ← {id(mk) : mk ∈
⋃

1≤j≤l{locj : locj ∈ Loc ∧mi ∈ locj} \ {mi}}
• For each identifier id(mk) ∈ S do

– Call addLocMembranes(id(mk), locProcessed, filteredAux)

V. Remove left hand rule objects

1. For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

(a) If r(mi) ≡ E/sc → s′p; d (spiking rule) Then

• Remove c occurrences of s from mi

(b) If r(mi) ≡ [E]l(mi) → [ ]j ||[ ]k (division rule) Then

• Remove all of the objects from mi

(c) If r(mi) ≡ [E]l(mi) → [ ]l(mi)/[ ]j (budding rule) Then

• Remove all of the objects from mi

VI. Classify selected rules

1. For each tuple 〈id(mi),mi〉 ∈ toF ireF iltered do

(a) If r(mi) ≡ E/sc → s′p; d (spiking rule) Then

• Add mi to Spiking

(b) If r(mi) ≡ [E]l(mi) → [ ]j ||[ ]k (division rule) Then

• Add mi to Division

(c) If r(mi) ≡ [E]l(mi) → [ ]l(mi)/[ ]j (budding rule) Then

• Add mi to Budding

2. For each tuple 〈id(mi),mi〉 ∈ justOpenNow do

(a) Add mi to Spiking

VII. Execute division and budding rules

1. Let S ← {}
2. For each neuron mi ∈ Division with r(mi) ≡ [E]l(mi) → [ ]j ||[ ]k do

(a) l(mi)← j

(b) Let m′ be a newly created neuron such that:

• id(m′)← {a new identifier}
• l(m′)← k
• r(m′)← r(mi)
• o(m′)← a
• d(m′)← −1
• b(m′)← 0

(c) Add m′ to Ct

(d) For each arc e ∈ Ct with e ≡ (m′′,mi) do

• Let e′ ≡ (m′′,m′) be a newly created arc such that:
– ni(e

′)← 0
– no(e′)← 0



9.5. A unified algorithm for simulating SN P systems in P–Lingua 247

– o(e′)← a
– inh(e′)← false
– ast(e′)← false

• Add e′ to Ct

(e) For each arc e ∈ Ct with e ≡ (mi,m
′′) do

• Let e′ ≡ (m′,m′′) be a newly created arc such that:
– ni(e

′)← 0
– no(e′)← 0
– o(e′)← a
– inh(e′)← false
– ast(e′)← false

• Add e′ to Ct

(f) Add mi to S

(g) Add m′ to S

(h) Let sLoc← {locj : locj ∈ Loc ∧mi ∈ locj}
(i) For each locj ∈ sLoc do

• Add m′ to locj

3. For each neuron mi ∈ Budding with r(mi) ≡ [E]l(mi) → [ ]l(mi)/[ ]j do

(a) Let m′ be a newly created neuron such that:

• id(m′)← {a new identifier}
• l(m′)← j
• r(m′)← r(mi)
• o(m′)← a
• d(m′)← −1
• b(m′)← 0

(b) Add m′ to Ct

(c) For each arc e ∈ Ct with e ≡ (mi,m
′′) do

• Remove e from Ct

• Let e′ ≡ (m′,m′′) be a newly created arc such that:
– ni(e

′)← 0
– no(e′)← 0
– o(e′)← a
– inh(e′)← false
– ast(e′)← false

• Add e′ to Ct

(d) Let e′′ ≡ (m,m′) be a newly created arc such that:

• ni(e
′′)← 0

• no(e′′)← 0
• o(e′′)← a
• inh(e′′)← false
• ast(e′′)← false

(e) Add e′′ to Ct

(f) Add m′ to S
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(g) Let sLoc← {locj : locj ∈ Loc ∧mi ∈ locj}
(h) For each locj ∈ sLoc do

• Add m′ to locj

4. For each neuron m ∈ S do

(a) Let Ingoing ← {m′ : m′ ∈ Ct ∧ (l(m′), l(m)) ∈ syn}
(b) For each neuron m′ ∈ Ingoing do

• Let e ≡ (m′,m) be a newly created arc such that:
– ni(e)← 0
– no(e)← 0
– o(e)← a
– inh(e)← false
– ast(e)← false

• Add e to Ct

(c) Let Outgoing ← {m′ : m′ ∈ Ct ∧ (l(m), l(m′)) ∈ syn}
(d) For each neuron m′ ∈ Ingoing do

• Let e ≡ (m,m′) be a newly created arc such that:
– ni(e)← 0
– no(e)← 0
– o(e)← a
– inh(e)← false
– ast(e)← false

• Add e to Ct

VIII. Execute spiking rules

1. Let S ← {}
2. For each neuron mi ∈ Spiking with r(mi) ≡ E/sc → s′p; d ∈ Rl(mi) do

(a) For each arc e ∈ Ct with e ≡ (mi,m
′) do

• o(e)← s′

• ni(e)← p
• Add e to S

3. Call applyFunctionalAstrocytes(S)

4. Call applyHybridAstrocytes(S)

5. For each arc e ∈ S with e ≡ (m1,m2) do

(a) Let object← o(e)

(b) Let spikes←

 0 if inh(e) = true ∨ d(m2) 6= 0
ni(e) if ast(e) = false
no(e) if none of the above

(c) ni(e)← 0

(d) no(e)← 0

(e) o(e)← a

(f) inh(e)← false

(g) Add spikes occurrences of object to m2
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Procedure applyFunctionalAstrocytes(S)

1. Let S be an input/output argument declared consistently

as specified above

2. For each functional astrocyte fastj ∈ Ct do

• Let O ← {ni(e) : e ∈ ct(fastj)}
• Let spikes← ∑

x∈O
O

• Let selector ← spikes+ p(fastj)

• Let k ← |T (fastj)|
• Let r ← |op(fastj)|

• Let h←

 1 if selector < T (fastj)1
k if selector > T (fastj)k
e if e = max {x | 1 ≤ x ≤ k ∧ T (fastj)x ≤ selector}

• Let output← 0

• Let f∗ ← F (fastj)h
• If ω(fastj) = true Then output← f∗(selector)

• If ω(fastj) = false ∧ r = 1 Then output← f∗(0)

• If ω(fastj) = false ∧ r > 1 Then

output← f∗(ni(op(fastj)1), . . . , ni(op(fastj)r−1))

• For v = 1 to r − 1 do

– no(op(fastj)v)← 0
– o(op(fastj)v)← a
– inh(op(fastj)v)← true

• no(op(fastj)r)← no(op(fastj)r) + output

• o(op(fastj)r)← a

• If γ(fastj) = true Then p(fastj)← spikes

• S ← S ∪ op(fastj)

Procedure applyHybridAstrocytes(S)

1. Let S be an input/output argument declared consistently

as specified above

2. For each hybrid astrocyte hastj ∈ Ct do

• Let O ← {ni(e) : e ∈ syn(hastj)}
• Let sum← ∑

x∈O
O

• Let p be a boolean value non-deterministically

selected from {true, false}

• Let inh←

 false if sum < th(hastj)
true if sum > th(hastj)
p if sum = th(hastj)

• For each arc e ∈ syn(hastj) do

– Let inhibitArc← inh ∨ inh(e)
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– If inhibitArc = true Then

∗ inh(e)← true

∗ no(e)← 0

Else

∗ no(e)← ni(e)

– o(e)← a

• S ← S ∪ syn(hastj)

IX. Ending

1. If Rsel 6= {} Then

• Let Ct+1 ← Ct

• toF ireNotF iltered← {}
• toF ireF iltered← {}
• justOpenNow ← {}
• Division← {}
• Budding ← {}
• Spiking ← {}
• Rsel ← {}
• Goto II

2. End

9.6 P–Lingua example models

In this Section, some P–Lingua programs representing SN P system models
incorporating features of the variants discussed in this Chapter are shown.

9.6.1 Extended spiking, budding and division rules

The following P–Lingua program models a solution to SAT(n,m) by means
of a family of SN P systems, as discussed in [119].

/* instantiation of the family is made by means of MeCoSim */

@model<spiking_psystems>

def main()

{

call spiking_init_conf(n,m);

call spiking_rules(n,m);

call neuron_division_rules(n);

call neuron_budding_rules(n);
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}

def spiking_init_conf(n)

{

/* Encoding initial membranes */

@mu = in, out;

@mu += 0,1,2,3;

@mu += d{i} : 0<=i<=n;

@mu += Cx{i} : 1<=i<=n;

@mu += Cx{i,0} : 1<=i<=n;

@mu += Cx{i,1} : 1<=i<=n;

/* Encoding initial membrane spikes */

@ms(d{0}) = a;

@ms(0) = a;

@ms(2) = a;

@ms(3) = a;

@ms(d{1}) = a*6;

/* Encoding initial synapse graph (also updating synapse dictionary) */

@marcs = (d{i},d{i+1}):0<=i<=n-1;

@marcs += (d{n},d{1});

@marcs += (in,Cx{i}):1<=i<=n;

@marcs += (d{i},Cx{i}):1<=i<=n;

@marcs += (Cx{i},Cx{i,0}):1<=i<=n;

@marcs += (Cx{i},Cx{i,1}):1<=i<=n;

@marcs += ({i+1},{i}):0<=i<=2;

@marcs += (1,2);

@marcs += (0,out);

/* Encoding additional synapse dictionary updating */

@mdict = (Cx{i,1},t{i}):1<=i<=n;

@mdict+= (Cx{i,0},f{i}):1<=i<=n;

/* Encoding input neuron

@min = in;

/* Encoding input formula spike train */

@minst+= ((2*n+j)+(n*(i-1)),val{i,j}):1<=i<=m, 1<=j<=n;

/* Encoding output neuron */

@mout = out;

/* Encoding module spiking_rules() */

def spiking_rules(n,m)

{

[a --> a]’in;

[a*2 --> a*2]’in;

[a --> a]’d{0} :: 2*n+n*m;

[a*4 --> a*4]’d{i} : 1<=i<=n;

[a*5 --> #]’d{1};

[a*6 --> a*4]’d{1} :: 2*n+1;

[a --> #]’Cx{i} : 1<=i<=n;

[a*2 --> #]’Cx{i} : 1<=i<=n;

[a*4 --> #]’Cx{i} : 1<=i<=n;

[a*5 --> a*5]’Cx{i} :: n-i : 1<=i<=n;

[a*6 --> a*6]’Cx{i} :: n-i : 1<=i<=n;
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[a*5 --> a*4]’Cx{i,1} : 1<=i<=n;

[a*6 --> #]’Cx{i,1} : 1<=i<=n;

[a*5 --> #]’Cx{i,0} : 1<=i<=n;

[a*6 --> a*4]’Cx{i,0} : 1<=i<=n;

[a --> a]’t{i} "(a{4})+" : 1<=i<=n;

[a --> a]’f{i} "(a{4})+" : 1<=i<=n;

[a*(4*k-1) --> #]’t{i} : 1<=k<=n,1<=i<=n;

[a*(4*k-1) --> #]’f{i} : 1<=k<=n,1<=i<=n;

[a*m --> a*2]’cl;

[a --> a]’out "(a{2})+";

[a --> a]’{i} : 1<=i<=2;

[a*2 --> #]’2;

[a --> a]’3 :: 2*n-1;

}

/* Encoding module neuron_division_rules() */

def neuron_division_rules(n)

{

[]’0 --> []’t{1} || []’f{1} "a";

[]’t{i} --> []’t{i+1} || []’f{i+1} "a" : 1<=i<=n-1;

[]’f{i} --> []’t{i+1} || []’f{i+1} "a" : 1<=i<=n-1;

}

/* Encoding module neuron_budding_rules() */

def neuron_budding_rules(n)

{

[]’t{n} --> []’t{n} / []’cl "a";

[]’f{n} --> []’f{n} / []’cl "a";

}

9.6.2 Asynchronous modes

Let us consider the following SN P system working on limited asynchronous
mode, as depicted in Figure 9.5 and discussed in [88]:

a
a → a; 5

1

a
a → a

2

a → a
a2 → a

out

Figure 9.5: An example of a LASNPS Π1
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The following P–Lingua program models system Π1:

@model<spiking_psystems>

def main()

{

let b = 4;

call spiking_init_conf(b);

call spiking_rules(b);

}

def spiking_init_conf(b)

{

@mu = 1,2,out;

@ms(1) = a;

@ms(2) = a;

@marcs += (1,out);

@marcs += (2,out);

@mout = out;

@masynch = 3;

@mboundall = b;

}

def spiking_rules(b)

{

[a --> a]’1 :: 5;

[a --> a]’2 ;

[a --> a]’out ;

[a*2 --> a]’out ;

}

Let us consider the following SN P system working on asynchronous mode with
local synchronization, as depicted in Figure 9.6 and discussed in [88]:

The following P–Lingua program models system Π2:

@model<spiking_psystems>

def main()

{

let c = 4;

call spiking_init_conf(c);

call spiking_rules();

}

def spiking_init_conf(c)

{

@mu = 1,2,3,4,out;

@ms(1) += a;



Chapter 9. Extending the SN P systems framework 254

a
a → a

1
a

a → a

2

a → λ
a2 → a

3

a → a
a2 → a
a3 → a

4

a∗/a → a

out

Figure 9.6: An example of a LASNPS Π2

@ms(2) += a;

@marcs += (1,3);

@marcs += (1,4);

@marcs += (2,1);

@marcs += (2,3);

@marcs += (2,4);

@marcs += (3,out);

@marcs += (4,out);

@mout = out;

@masynch = 4;

@mlocset = {} : c <= i <= c, i <> 2, i <> 3, i <> 4;

@mlocset = {{1,2}} : c <= i <= c, i <> 1, i <> 3, i <> 4;

@mlocset = {{1,3}} : c <= i <= c, i <> 1, i <> 2, i <> 4;

@mlocset = {{1,2},{3,4}} : c <= i <= c, i <> 1, i <> 2, i <> 3;

}

def spiking_rules()

{

[a --> a]’1 ;

[a --> a]’2 ;

[a --> #]’3 ;

[a*2 --> a]’3 ;

[a --> a]’4 ;

[a*2 --> a]’4 ;

[a*3 --> a]’4 ;

[a --> a]’out "a*";

}
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9.6.3 Functional Astrocytes

The following P–Lingua program models an AND-gate by means of the SNPSFA
depicted in Figure 9.3:

@model<spiking_psystems>

def main()

{

call spiking_init_conf();

call spiking_rules();

}

def spiking_init_conf()

{

@mu = A,A1,B,B1,p,q;

@ms(A) = a*6; /* 6 times */

@ms(B) = a*6; /* 6 times */

@marcs += (A,A1);

@marcs += (B,B1);

@marcs += (p,q);

@mastfunc = (f(x1), "f(x1) = 0");

/* constant function 0 of arity one */

@mastfunc = (g(x1), "g(x1) = 1");

/* constant function 1 of arity one */

@mastb =

(ast1,{(p,q)},{(A,A1),(B,B1)},false,{1,2},{f(x1),g(x1)},0,false);

@mout = q;

}

def spiking_rules()

{

[a --> a]’A "a+" ;

[a --> #]’A "a+" ;

[a --> a]’B "a+" ;

[a --> #]’B "a+" ;

[a --> a]’q;

}
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9.6.4 Hybrid Astrocytes

The following P–Lingua program models a SNPSHA corresponding to the
ADD module of a register machine, as described in [123]:

@model<spiking_psystems>

def main()

{

call spiking_init_conf(n);

call spiking_rules();

}

def spiking_init_conf()

{

/* this machine has only one register r, and a pair of instructions, l0, inital add

instruction and lh, halt instruction */

@mu = l0,l01,l02,l03; /* instruction l0 */

@mu += lh,h1,h2,h3,h4,out; /* instruction lh */

@mu += r1,r2; /* register r */

@ms(r) = a*n; /* n is the initial value of r */

@ms(l0) = a; /* l0 is the initial instruction */

/* implementing l0 = ADD(r,lh,lh) */

@marcs = (l0,r1);

@marcs += (l0,r2);

@marcs += (l0,lh);

@marcs += (l0,l03);

@marcs += (l0,l01);

@marcs += (l0,l02);

@marcs += (l01,l03);

@marcs += (l01,l02);

@marcs += (l01,lh);

@marcs += (r1,r2);

@marcs += (r2,r1);

/* implementing astrocyte for l0 */

@mastw = (astl0,{(l0,lh),(l0,l03),(l01,l03),(l0,l01),(l01,l02),(l01,lh),(l02,lh)},3);

/* implementing lh */

@marcs += (lh,lh1);

@marcs += (lh,lh2);

@marcs += (lh1,out);

@marcs += (lh1,lh2);
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@marcs += (lh2,out);

@marcs += (lh2,lh3);

@marcs += (lh2,lh4);

@marcs += (lh3,lh2);

@marcs += (lh3,lh4);

@marcs += (lh4,lh2);

/* implementing astrocytes for lh */

@mastw = (astlh1,{(r1,r2),(r2,r1),(lh2,out),(lh2,lh3)},3);

@mastw = (astlh2,{(lh3,lh2),(lh3,lh4),(lh4,lh2),(lh2,lh4)},3);

/* setting up output neuron */

@mout = out;

}

def spiking_rules()

{

/* every neuron has one single firing rule of the form: [a --> a]’h :: "a*"; */

[a --> a]’l0 :: "a*";

[a --> a]’l01 :: "a*";

[a --> a]’l02 :: "a*";

[a --> a]’l03 :: "a*";

[a --> a]’lh :: "a*";

[a --> a]’lh1 :: "a*";

[a --> a]’lh2 :: "a*";

[a --> a]’lh3 :: "a*";

[a --> a]’lh4 :: "a*";

[a --> a]’out :: "a*";

[a --> a]’r1 :: "a*";

[a --> a]’r2 :: "a*";

}
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9.6.5 Anti-spikes

The following P–Lingua program models a SNPSAS corresponding to the ADD
module of a register machine, as described in [122]:

@model<spiking_psystems>

def main()

{

call spiking_init_conf(0);

call spiking_rules();

}

def spiking_init_conf(n)

{

/* this machine has only one register r, and a pair of instructions, l0, inital add

instruction and lh, halt instruction */

@mu = l0,l01,l02,l03,l04,l05; /* instruction l0 */

@mu += lh,h1,h2,h3,h4,h5,h6,1,out; /* instruction lh */

@mu += r; /* register r */

@ms(r) = a*(n+2); /* n is the initial value of r */

@ms(l0) = a; /* l0 is the initial instruction */

@ms(1) = a*2; /* l0 is the initial instruction */

/* implementing l0 = ADD(r,lh,lh) */

@marcs = (l0,r);

@marcs += (l0,l01);

@marcs += (l0,l02);

@marcs += (l0,l03);

@marcs += (l01,l04);

@marcs += (l01,l05);

@marcs += (l02,l05);

@marcs += (l03,l04);

@marcs += (l03,l05);

@marcs += (l04,lh);

@marcs += (l05,lh);

/* implementing lh */

@marcs += (lh,h1);

@marcs += (lh,h2);

@marcs += (h1,h4);

@marcs += (h2,h1);
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@marcs += (h2,h3);

@marcs += (h2,h5);

@marcs += (h3,h6);

@marcs += (h4,h1);

@marcs += (h4,h5);

@marcs += (h5,1);

@marcs += (h6,out);

@marcs += (1,h1);

@marcs += (1,h4);

@marcs += (1,h5);

@marcs += (1,out);

/* setting up output neuron */

@mout = out;

}

def spiking_rules()

{

/* implementing l0 = ADD(r,lh,lh) */

[a --> a]’l0;

[a --> a]’l01;

[a --> a]’l02;

[a --> a]’l03;

[a --> _a]’l03;

[a*2 --> a]’l04;

[a --> a]’l05;

[a*3 --> #]’l05;

/* implementing lh */

[a --> a]’lh;

[a --> a]’h1;

[a --> a]’h2;

[a --> a]’h3;

[a --> a]’h4;

[a --> _a]’h5;

[a --> a]’h6;

[a --> a]’1;

[a --> a]’out;

}
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10
Efficient simulation of Fuzzy Reasoning

SN P systems

10.1 Introduction

In Chapter 5 Fuzzy Reasoning SN P systems (FRSN P systems, for short)
were discussed. These systems incorporate fuzzy logic elements, as they are
intended to model the fuzzy diagnosis knowledge and reasoning associated to
tackling real-life problems involving uncertain knowledge. In this sense, FRSN
P systems have shown promising applications in the engineering field, address-
ing problems like fault diagnosis in electric power systems 5.

To date, five types of FRSN P systems have been proposed: fuzzy reasoning
spiking neural P systems with real numbers (rFRSN P systems, [130, 181]),
fuzzy reasoning spiking neural P systems with linguistic terms (lFRSN P sys-
tems, [175]), adaptive fuzzy reasoning spiking neural P systems with real num-
bers (AFRSN P systems, [176]), weighted fuzzy reasoning spiking neural P sys-
tems (WFRSN P systems, [177]) and fuzzy reasoning spiking neural P systems
with trapezoidal fuzzy numbers (tFRSN P systems, [179]).

Each of these variants have their own specificities and are suitable to ad-
dress different sets of problems. Nevertheless, they share an important feature:
their models semantics can be simulated by means of matrix-based algorithms.
As such, they are susceptible of being simulated on High Performance Com-
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puting platforms (HPC, for short, see Sections 6.5 and 6.6), specially intended
to simultaneously work with hundreds to millions of data stored in matri-
ces. In this way, simulation on these architectures can take advantage of the
corresponding execution speedup, thus fully exploiting the models maximally
parallel capacities and, consequently, enabling attacking real-life size instance
problems.

To the best knowledge of the author, no simulation tools for FRSN P sys-
tems, either of the sequential or parallel kind, have been made publicly avail-
able for the scientific community. Due to the potential interesting applications
related to these systems, specially in terms of tackling relevant problems, a key
goal of the work object of this dissertation has been providing a first public
parallel simulation tool for FRSN P systems, with a first version of such tool
successfully simulating rFRSN P systems instances on CUDA-enabled devices
[192].

The aforementioned tool has a rather special feature, since it consist in a
hybrid sequential/parallel simulator included into pLinguaCore library which,
while externally behaving as any other existing (sequential) simulator in the
library, has the ability of making calls to native CUDA kernels executed on an
underlying GPU architecture.

This Chapter deals the efficient simulation of rFRSN P systems by means
of the developed hybrid simulator. Section 10.2 details the design guidelines of
the simulator. Section 10.3 covers the syntax for specifying rFRSN P systems
in the P–Lingua programming language. Section 10.4 details the simulation
algorithm for rFRSN P systems implemented in the simulator. Finally, Section
10.5 discusses the simulator validation process as well as a brief performance
analysis.

10.2 Simulator design guidelines

As previously stated, providing a simulation tool for FRSN P systems has
been addressed as part of the work object of this dissertation. In order to
accomplish this task, the following challenges were identified:

(1) Selecting FRSN P systems variant(s) to consider.
(2) Available HPC platforms where the simulator could be developed for.
(3) Designing a proper software architecture for the simulator, providing

(a) integration mechanisms with existing Membrane Computing software
applications and (b) a friendly user interface.
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With respect to (1), an analysis of the different variants was conducted, re-
sulting in selecting rFRSN P systems as a suitable candidate for a first version
of the simulation tool, since (a) it is the simplest model and (b) the corre-
sponding matrix-based simulation algorithm is adequately well-specified [130].
An incremental development cycle was devised, considering the incorporation
of additional FRSN P systems variants in future versions of the simulator.

With respect to (2), GPU based simulation on CUDA [192] platform was
selected, since this technology provides a powerful HPC architecture built into
relatively cheap commercial graphic cards. Moreover, GPUs have been suc-
cessfully used to accelerate well-known linear algebra libraries, such as MKL

BLAS and LAPACK. Specifically, NVIDIA GPUs are able to execute scientific
applications through CUDA [74], harnessing the highly parallel architecture
within them (featuring up to 3000 computing cores). In this sense, CUDA
offers special linear algebra libraries such as cuBLAS and CULA tools, delivering
up to 17x of speedups for some applications [192]. Finally, it is worth mention-
ing the extensive amount of available documentation on CUDA programming
model, and specifically on optimization techniques (see [74, 202] for example).

With respect to (3), an architecture involving a hybrid JAVA-CUDA design
was devised, as depicted in Figure 10.1. In this way, parsing of rFRSN P sys-
tems is conducted by means of pLinguaCore library, thus enabling specification
of FRSN P systems in the well-known P–Lingua programming language. On
the other hand, simulation of rFRSN P systems is conducted in a JAVA-CUDA
hybrid way, as follows. A Java stub simulator is included into pLinguaCore
library, which in turn performs the matrix-based operations on the GPU by
making calls to kernel methods designed to be able to run on the majority of
CUDA-compatible devices. In order for the Java stub simulator to be able to
access the underlying CUDA hardware, an open source library called JCUDA

[196] is used. In this sense, JCUDA library provides binding methods that
allows calling CUDA kernels directly from JAVA code. JCUDA is available
for Windows, Linux, MacOS and other operating systems. Version 7.0 of the
library has been used to develop the rFRSN P systems simulator.

It is easy to see that this architecture fulfills the requirements regarding
connectivity with other software applications and the friendly user interface,
since the simulator is integrated within pLinguaCore library, which in turns
can be connected for instance with tools like MeCoSim [197].
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Figure 10.1: Architecture of the hybrid simulator

10.3 P–Lingua syntax for rFRSNP systems

Next, we detail the P–Lingua syntax for specifying rFRSN P systems in P–
Lingua. The starting point for this syntax is the one defined for SN P systems
(see Section 9.4), which is partially reused. Let us stress the fact that, with
respect to P–Lingua, rFRSN P system variant is considered as separate model
from SN P systems.

10.3.1 Reserved words

The set of reserved words has been updated by adding the following text
strings:

@fvariant, @frule, @fpin, @fpout, @fand, @for, @parallel

A detailed explanation about this set of reserved words is provided in what
follows.

10.3.2 Model specification

Although at present FRSN P systems support into P–Lingua only involves
rFRSN P systems, it is convenient to provide a general extensible method for



10.3. P–Lingua syntax for rFRSNP systems 265

defining any other kind of fuzzy model. This is accomplished as follows.

Firstly, any P–Lingua file defining a FRSN P system must begin with the
following sentence:

@model<fuzzy_psystems>

Secondly, in order to specify the kind of FRSN P system being defined, the
following sentence must written:

@fvariant = v;

where v is a non-negative integer specifying the variant. In the case of rFRSN
P systems, v must set to 1, hence @fvariant = 1;.

The @fvariant sentence must be the first instruction included into the main

module.

If the model is to be simulated in a hybrid sequential/parallel on a CUDA un-
derlying architecture, the following instruction must be written under the
@fvariant sentence:

@parallel

If this sentence is not included, a sequential simulation is performed.

10.3.3 Membrane structure

A rFRSN P system specification in P–Lingua must define a membrane struc-
ture, which is composed of a set of proposition neurons interconnected with
rule neurons. Also, input and output proposition neurons has to be specified.

Proposition neurons

In order to specify the proposition neurons present in the system, the following
sentence must be written:

@mu = p1,...,pi,...,pn;

where pi is the label of the i-th proposition neuron.
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Input proposition neurons

In order to specify the input proposition neurons present in the system, the
following sentence must be written:

@min = i1,...,iq,...,is;

where iq = (pq, nq) is an expression specifying the initial fuzzy value nq ∈ [0, 1]
for the input proposition neuron of label pq, which must be declared in the @mu
instruction.

Output proposition neurons

In order to specify the output proposition neurons present in the system, the
following sentence must be written:

@mout = o1,...,ow,...,od;

where ow is the label of the output proposition neuron of label pw, which must
be declared in the @mu instruction.

Rule neurons

In order to specify the rule neurons present in the system, the following sen-
tence must be written:

@frule(...);

This sentence format depends on the kind of fuzzy production rule being mod-
elled. The following cases are possible:

• Simple rules of the form:

– Ri : IF pj THEN pk (CF = τi)

are written as:

– @frule(Ri,taui,pj,pk);

• Type-1 composite rules (AND rules) of the form:

– Ri : IF p1 AND p2 AND ... AND pk−1 THEN pk (CF = τi)
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are written as:

– @frule(Ri,taui,@fand(p1,p2,...,pk-1),pk);

• Type-2 composite rules of the form:

– Ri : IF p1 THEN p2 AND p3 AND ... AND pk (CF = τi)

are written as:

– @frule(Ri,taui,p1,(p2,p3,...,pk));

• Type-3 composite rules (OR rules) of the form:

– Ri : IF p1 OR p2 OR ... OR pk−1 THEN pk (CF = τi)

are written as:

– @frule(Ri,taui,@for(p1,p2,...,pk-1),pk);

10.3.4 A simple example

Next we illustrate the syntax presented above with the specification the rFRSN
P system discussed in Section 5.5.

@model<fuzzy_psystems>

def main()

{

@fvariant = 1;

@parallel;

@mu = p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14;

@fpin = (p1,0.8),(p2,0.2),(p3,0.8),(p4,0.8),(p5,0.9),(p6,0.8),

(p7,0.2),(p8,0.9),(p9,0.1),(p10,0.2);

@fpout = p11,p12,p13,p14;

@frule(r1,0.8,@fand(p1,p2),p11);

@frule(r2,0.8,@fand(p3,p4,p5,p6),p12);

@frule(r3,0.8,@fand(p5,p7,p8,p9),p13);

@frule(r4,0.8,@fand(p4,p5,p10),p14);

}

In this example, a parallel simulation is performed.
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10.4 An algorithm for simulating rFRSN P

systems in P–Lingua

In what follows, we present a simulation algorithm for rFRSN P systems.
In general, simulation algorithms capture semantics of the simulated models,
reproducing one or many of the associated computations. In the case of rFRSN
P systems, since they are deterministic (and thus confluent), providing an
algorithm reproducing a single computation is enough. The algorithm that
we are presenting is a revised version of the one introduced in [130]. This
new version re-defines the matrix-based functions and operations as well as
provides an alternative way to compute fuzzy truth values for rule neurons
that fits semantics introduced for rFRSN P systems as defined in Chapter 5.
Let us recall that, since it is a matrix-based algorithm, it is specially suitable
to run on parallel platforms such a CUDA-enabled devices.

10.4.1 Required notation

Next we introduce some required notation, as well as functions and operations,
which derives from [130].

Let Π = (A, σ1, . . . , σn+k, syn, I, O) be a FRSN P system with real numbers
modelling all fuzzy production rules in a fuzzy knowledge base. Then, we can
consider the following:

1. The set of neurons σ = {σ1, . . . , σn+k}, composed of n proposition neu-
rons and k rule neurons;

2. The set of n proposition neurons σp = {σp1, . . . , σpn};

3. The set of k rule neurons σr = {σr1, . . . , σrk}, each of them being either
an AND-type or OR-type rule neuron;

4. The set I = {σi1 , . . . , σis} of input proposition neurons, corresponding
to fuzzy proposition neurons which fuzzy truth values are known;

5. The set O = {σo1 , . . . , σod} of output proposition neurons, corresponding
to fuzzy proposition neurons which fuzzy truth values are unknown and
to be determined;

Let us consider the following vector and matrix notations:
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1. U = (ui,j)n×k is a binary matrix, where ui,j ∈ {0, 1}, defined as follows:

ui,j =

{
1 if there is a directed arc from σpi to σrj;
0 otherwise;

2. V = (vi,j)n×k is a binary matrix, where vi,j ∈ {0, 1}, defined as follows:

vi,j =

{
1 if there is a directed arc from σrj to σpi;
0 otherwise;

3. Λ = diag(τr1, . . . , τrk) is a diagonal real matrix, where τrj represents the
confidence factor of the j -th production rule, which is associated with
rule neuron σrj;

4. H1 = diag(h1, . . . , hk) is a diagonal binary matrix, defined as follows:

hj =

{
1 if the j -th rule neuron σrj is an AND-type neuron;
0 otherwise;

5. H2 = diag(h1, . . . , hk) is a diagonal binary matrix, defined as follows:

hj =

{
1 if the j -th rule neuron σrj is an OR-type neuron;
0 otherwise;

6. αp = (αp1, . . . , αpn)T is a truth value vector, where αpi ∈ [0, 1] represents
the truth value of i -th proposition neuron σpi;

7. αr = (αr1, . . . , αrk)
T is a truth value vector, where αrj ∈ [0, 1] represents

the truth value of j -th rule neuron σrj;

8. ap = (ap1, . . . , apn)T is an integer vector, where api represents the number
of spikes received by the i -th proposition neuron σpi;

9. ar = (ar1, . . . , ark)
T is an integer vector, where arj represents the number

of spikes received by the j -th rule neuron σrj;

10. λp = (λp1, . . . , λpn)T is an integer vector, where λpi represents the number
of spikes required to fire the i -th proposition neuron σpi;

11. λr = (λr1, . . . , λrk)
T is an integer vector, where λrj represents the number

of spikes required to fire the j -th rule neuron σrj;
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12. βp = (βp1, . . . , βpn)T is a truth value vector, where βpi ∈ [0, 1] represents
the truth value exported by the i -th proposition neuron σpi after firing;

13. βr = (βr1, . . . , βrk)
T is a truth value vector, where βrj ∈ [0, 1] represents

the truth value exported by the j -th rule neuron σrj after firing;

14. bp = (bp1, . . . , bpn)T is an integer vector, where bpi ∈ {0, 1} represents the
number of spikes exported by the i -th proposition neuron σpi after firing;

15. br = (br1, . . . , brk)
T is an integer vector, where brj ∈ {0, 1} represents the

number of spikes exported by the j -th rule neuron σrj after firing;

16. op = (op1, . . . , opn)T is a binary vector, where opi ∈ {0, 1}, defined as
follows:

opi =

{
1 if outdegree(σpi) > 0;
0 otherwise;

17. or = (or1, . . . , ork)
T is a binary vector, where orj ∈ {0, 1}, defined as

follows:

orj =

{
1 if outdegree(σrj) > 0;
0 otherwise;

Let us consider the following matrix functions:

1. diag: D = diag(b), where D = (di,j) is a f × f diagonal real matrix and
b = (b1, . . . , bf ) a real vector, such that

di,j =

{
bi if i = j
0 if i 6= j

, 1 ≤ i, j ≤ f ;

2. fire: β = fire(α, a, λ, o), where β = (β1, . . . , βf )
T , α = (α1, . . . , αf )

T ,
a = (a1, . . . , af )

T , λ = (λ1, . . . , λf )
T , o = (o1, . . . , of )

T , such that

βi =


0 if ai < λi
αi if ai = λi ∧ oi = 0
0 if ai = λi ∧ oi = 1

, 1 ≤ i ≤ f ;

3. update: β = update(α, a, λ, o), where β = (β1, . . . , βf )
T , α = (α1, . . . , αf )

T ,
a = (a1, . . . , af )

T , λ = (λ1, . . . , λf )
T , o = (o1, . . . , of )

T , such that

βi =


0 if ai = 0
αi if 0 < ai < λi
0 if ai = λi ∧ oi = 0
αi if ai = λi ∧ oi = 1

, 1 ≤ i ≤ f ;
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Let us consider the following matrix operations:

1. ⊕ : C = A ⊕ B, where A,B,C are f × g matrices whose elements are
non-negative real numbers, such that

ci,j =


0 if ai,j = 0 ∧ bi,j = 0
bi if ai,j = 0 ∧ bi,j > 0
ai if ai,j > 0 ∧ bi,j = 0
max{ai,j, bi,j} if ai,j > 0 ∧ bi,j > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ g;

2. 	 : C = A 	 B, where A,B,C are f × g matrices whose elements are
non-negative real numbers, such that

ci,j =


0 if ai,j = 0 ∧ bi,j = 0
bi if ai,j = 0 ∧ bi,j > 0
ai if ai,j > 0 ∧ bi,j = 0
min{ai,j, bi,j} if ai,j > 0 ∧ bi,j > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ g;

3. ⊗ : C = A⊗B, where A,B,C are f×g, g×h, f×h, matrices respectively,
whose elements are non-negative real numbers, such that

Si,j = {ai,l · bl,j, 1 ≤ l ≤ g} \ {0}, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

ci,j =

{
0 if |Si,j| = 0
maxSi,j if |Si,j| > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

4. � : C = A�B, where A,B,C are f×g, g×h, f×h, matrices respectively,
whose elements are non-negative real numbers, such that

Si,j = {ai,l · bl,j, 1 ≤ l ≤ g} \ {0}, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

ci,j =

{
0 if |Si,j| = 0
minSi,j if |Si,j| > 0

, 1 ≤ i ≤ f, 1 ≤ j ≤ h;

10.4.2 Simulation algorithm

Finally, we introduce the matrix-based simulation algorithm for FRSN P sys-
tems with real numbers.

• INPUT:

– U, V,Λ, H1, H2, λp, λr;
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– α0
p = (α0

p1, . . . , α
0
pn), with α0

pi =

{
τpi if σpi ∈ I, τpi is the CF of σpi;
0 otherwise;

– a0
p = (a0

p1, . . . , a
0
pn), with a0

pi =

{
1 if σpi ∈ I;
0 otherwise;

• OUTPUT:

– αout = (αi1 , . . . , αis)
T , the vector containing the fuzzy truth values

of proposition neurons in O.

Step 1. Let α0
r = (0, . . . , 0)T , a0

r = (0, . . . , 0)T .

Step 2. Let t = 0.

Step 3. Do:

(1) Prepare firing of proposition neurons.

∗ βtp = fire
(
αtp, a

t
p, λp, op

)
.

∗ btp = fire
(
1, atp, λp, op

)
.

∗ αtp = update
(
αtp, a

t
p, λp, op

)
.

∗ atp = update
(
atp, a

t
p, λp, op

)
.

∗ Bt
p = diag

(
btp
)
.

(2) Prepare firing of rule neurons.

∗ βtr = fire
(
αtr, a

t
r, λr, or

)
.

∗ btr = fire
(
1, atr, λr, or

)
.

∗ αtr = update
(
αtr, a

t
r, λr, or

)
.

∗ atr = update
(
atr, a

t
r, λr, or

)
.

∗ Bt
r = diag

(
btp
)
.

(3) Update truth values and received spikes for proposition neurons.

∗ αt+1
p = αtp ⊕

(
(V ·Bt

r)⊗ βtr
)

.

∗ at+1
p = atp +

(
(V ·Bt

r) · btr
)

.

(4) Update truth values and received spikes for rule neurons.

∗ αt+1
r = H1 ·

[
αtr	

(
(Bt

p ·U)T�βtp
)]

+H2 ·
[
αtr⊕

(
(Bt

p ·U)T⊗βtp
)]

.

∗ at+1
r = atr +

(
(Bt

p · U)T · btp
)

.
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Step 4. Check termination condition. If the following conditions hold:

a) at+1
r = (0, 0, . . . , 0)T ;

b) ap = (ap1, . . . , apn)T , with: api =

{
1 if opi = 1
0 otherwise

, 1 ≤ i ≤ n;

then HALT, otherwise go to Step 3.

10.5 Validation and performance analysis

In what follows, validation and performance analysis of the developed sim-
ulator are discussed. As usual when developing CUDA based applications,
validation of the hybrid simulator involves checking simulation results of con-
crete rFRSN P systems instances against pure sequential simulators captur-
ing these variants semantics. Consequently, besides of the hybrid simulator,
that we denominate rFRSNPS-hybrid, two sequential simulators for rFRSN P
systems has been developed, a JAVA based one included into pLinguaCore,
named rFRSNPS-JAVA, and a C++ based one, named rFRSNPS-C++, deployed
as a stand-alone application. Additionally, due to the special hybrid nature
of the rFRSNPS-hybrid architecture, a fourth pure CUDA simulator, named
rFRSNPS-CUDA has been developed, also as a stand-alone application, for fur-
ther validation purposes. All the aforementioned simulators implement the
simulation algorithm described in Section 10.4.

10.5.1 Simulator validation

The validation process has involved the following:

(1) Consider a set of rFRSN P systems a test cases.
(2) Validate rFRSNPS-C++.
(3) Validate rFRSNPS-JAVA against rFRSNPS-C++.
(4) Validate rFRSNPS-CUDA against rFRSNPS-C++.
(5) Validate rFRSNPS-hybrid against rFRSNPS-CUDA.
(6) Validate rFRSNPS-hybrid against rFRSNPS-JAVA.

With respect of the test cases referred in (1), literature examples such as
the example model considered in Section 10.3 have been used.

Due to the use of JCUDA library, setting a suitable execution environment
for rFRSNPS-hybrid differs from the usual way of simulating other P systems
variants by means of pLinguaCore library.
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10.5.2 Simulation environment for rFRSNPS-JAVA

Invoking rFRSNPS-JAVA simulator requires for the system to host a Java run-
time environment properly installed and configured. The Java runtime can be
found at [195]. Also, the following directory structure must be created:

plingua/

plinguacore.jar

input.pli

The plingua directory contains all the required files to run the simulation.
Files description follows:

• plinguacore.jar file hosts the pLinguaCore library.
• input.pli file hosts the rFRSN P systems model to simulate.

Once the files are ready, to invoke the simulator a system console must be
opened and the following command has to be executed from the plingua

directory:

java -jar plinguacore.jar plingua_sim -pli input.pli -o output.txt

This will produce an output file named output.txt in plingua directory where
information about the parser process and the generated computation is stored.

10.5.3 Simulation environment for rFRSNPS-hybrid

Invoking the parallel simulator requires for the system to host both a Java run-
time environment and a CUDA-enabled GPU device, with the corresponding
NVIDIA driver with CUDA support and the CUDA Toolkit properly installed
and configured. The NVIDIA software can be found at [198].
In order to interface the Java pLinguaCore library with the CUDA platform,
a JAVA-CUDA binding is required, which is provided by the JCUDA library.
In this work, version 0.7 of such library is used, as well as version 0.0.4 of
JCudaUtils library, which contains a series of utility methods used by JCUDA
library. Both of them can be found at [196]. Also, the following directory
structure must be created:
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plingua/

plinguacore.jar

input.pli

kernelReal.cu

jcudaUtils-0.0.4.jar

jcuda-0.7/

*** jcuda-0.7 library files ***

The plingua directory contains all the required files to run the simulation.
Files description follows:

• plinguacore.jar file hosts the pLinguaCore library.
• input.pli file hosts the rFRSN P systems model to simulate.
• kernelReal.cu file hosts the CUDA kernel corresponding to the parallel

implementation.
• jcudaUtils-0.0.4.jar file hosts JCudaUtils library.
• jcuda-0.7 folder hosts the contents of the zip file corresponding to the

0.7 version of JCUDA library.

Once the files are ready, to invoke the simulator a system console must be
opened and the following command has to be executed from the plingua

directory:

java -Djava.library.path=jcuda/

-cp "pLinguaCore.jar;jcudaUtils-0.0.4.jar;jcuda/jcuda-0.7.jar"

org.gcn.plinguacore.applications.AppMain

plingua_sim -pli input.pli -o output.txt

This will produce an output file named output.txt in plingua directory where
information about the parser process and the generated computation is stored.
Note: the -cp parameter uses the symbol ";" as element separator in Win-
dows platforms. Other platforms use different separators. For example, Unix
platforms use the symbol ":".

10.5.4 Performance analysis summary

When developing the parallel hybrid simulator, one of the design constraints
was to make it able to run on the majority of CUDA-compatible devices,
while handling arbitrary matrix size instances. Such constraints have involved
making some conservative choices in the implementation, which may affect the
overall expected speedup in certain situations.



Chapter 10. Efficient simulation of Fuzzy Reasoning SN P systems 276

In this way, a standard block size equal to 256 (16*16) has been used, which is a
good average value for most of cases, but may be unsuitable in some cases [74].
On the other hand, with respect to optimization techniques, the tiling/memory
coalescing technique has been applied, which requires a relatively low amount
of shared memory for blocks (see [74] for more details). It is worth pointing
out that no matrix handling optimized libraries such as cuBLAS has been used,
since the simulator is intended to run on bare execution environments.
Nevertheless, it is rather difficult at present to evaluate the real performance
of the developed simulator. To date, model instances corresponding to real-
life problems have not been available, preventing obtaining a reliable speedup
value. Consequently, further collaboration efforts have to been taken with
experts in the field of fault diagnosis in order to access the required data.
Once this data is obtained and the corresponding speedup calculated, further
optimization of the simulator can be also considered. For instance, fixing
matrix size instances and minimum requirements for the CUDA-compatible
device would enable implementing more complex optimization techniques, such
as loop unrolling, data prefetching and thread granularity as well as a fine
grained performance analysis.
The appropriate combinations of performance tuning techniques can make
tremendous difference in the performance achieved by the simulator; however
the programming efforts to manually search through these combinations is
quite large [74]. Automation tools to reduce such efforts such as CUDA-lite
[172] and others become indispensable.
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11
Conclusions and future work

This chapter puts an end to the this dissertation by summarizing the overall
conclusions taken from the main contributions provided as a result of this
work, as well as outlining analyzing future work and open research lines.

11.1 Antecedents

Membrane Computing, introduced by Gh. Păun at the end of 1998, is a rel-
atively young branch of Natural Computing providing non-deterministic dis-
tributed parallel computing models whose computational devices are called
membrane systems or P systems. These systems are inspired by some basic
biological features, specifically by the structure and functioning of the living
cells, as well as from the way the cells are organized in tissues, organs, and
organisms.
There are basically three ways to categorize membrane systems: cell-like P sys-
tems ([148]), tissue–like P systems ([92, 93]) and neural-like P systems ([67]),
also called Spiking Neural P systems (SN P systems, for short). Cell-like P sys-
tems arrange a series of membranes in a hierarchical way, inspired by the inner
structure of the biological cells. Tissue-like P systems arrange elemental mem-
branes in nodes of a directed graph, inspired from the cell inter-communication
in tissues. Similarly, Spiking Neural P systems also arrange elemental mem-
branes in nodes of a directed graph, while taking inspiration from the way in
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which neurons exchange information by the transmission of electrical impulses
(spikes) along axons.
In general, P systems operate by applying rewriting rules defined over multi-
sets of objects associated to the different membranes, in a synchronized non-
deterministic maximally parallel way. P systems show a double level of par-
allelism: a first level comprises parallel application of rules within individual
membranes, while a second level comprises all the membranes working simulta-
neously, that is, in parallel. These features make P systems powerful comput-
ing devices. In particular, the double level of parallelism allows a space-time
tradeoff enabling the generation of an exponential workspace in polynomial
time. As such P systems are suitable to tackle relevant real-life problems, usu-
ally involving NP-complete problems. Moreover, P systems are excellent tools
to investigate on the computational complexity boundaries, in particular tack-
ling the P versus NP problem. In this way, by studying how the ingredients
relative to their syntax and semantics affect to their ability to efficiently solve
NP-complete problems, sharper frontiers between efficiency and non-efficiency
can be discovered.
Despite of their attractive properties, working with P systems immediately
drives to an important inconvenient: due to constraints of current technol-
ogy, P systems are yet to be fully implemented in vivo, in vitro, or even in
silico, because of their massively parallel, distributed, and non-deterministic
nature. Thus, practical computations of P systems are driven by silicon-based
simulators, and hence their potential results are compromised by the physical
limitations of silicon architectures. They are often inefficient or not suitable
when dealing with some P system features, such as the exponential workspace
creation, non-determinism and massive parallelism.
Consequently, developing efficient simulation tools for P systems becomes an
indispensable task in order to both assist in the computational complexity
study involving such systems, as well as in the development and verification
of solutions to relevant real-life problems.

11.2 Contributions summary

The main contributions derived from the work object of this dissertation are
the following:

• Finding sharper computational complexity boundaries by modelling so-
lutions to NP-complete problems in terms of cell-like P systems in CDC
and CSC.
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• Developing a simulation tools for membrane systems in CDC and CSC
within the P–Lingua framework. These tools have played a major role
as assistants in the specification and formal verification of the aforemen-
tioned solutions.

• Defining new SN P systems variants and the corresponding simulation
tools, within the P–Lingua framework. Also, simulation support for a
wide range of existing SN P systems variants has been included into that
framework.

• Defining efficient simulation tools for Fuzzy Reasoning SN P systems
working on High Performance Computation platforms, namely CUDA-
enabled devices.

11.3 Conclusions

The following main conclusions derive from the conducted research to produce
the aforementioned contributions:

• Developing efficient solutions to NP-complete problems by means of P
systems involves handling computational models designs of such com-
plexity that a manual process of design and verification proves an unaf-
fordable task. Consequently, suitable simulation tools are indispensable
for debugging and experimental validation purposes.

• A significant lack of simulation tools for SN P systems has been a major
drawback in the research on these variants in recent years, when they
have become a hot topic. As such, developing simulators addressing as
many SN P systems variants as possible greatly favours the development
of this field in the near future.

• Fuzzy Reasoning P systems hold a relevant position within the mem-
brane systems variants ecosystem, since they have shown promising ap-
plications related to tackling real-life fault diagnosis problems in indus-
trial systems. Furthermore, these variants are suitable to be naturally
simulated on High Performance Computation platforms, due to their
associated matrix-based simulation algorithms. Consequently, develop-
ing efficient simulation tools working on parallel devices such as graphic
cards enable addressing medium size instances of real-life problems at a
relatively cheap cost.
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11.4 Future work and open research lines

The following future work and open research lines can be identified in relation
to the tasks accomplished within the object of this dissertation:

• Furher work has to be conducted in the quest for finding complexity
boundaries, possibly by means of other computational devices, since this
may lead to significant achievements with an impact in many aspects of
our society.

• Design and validation process of complex computational models is still
a very unpleasant and time-consuming task. Consequently, a rather in-
teresting research line would involve developing specific Integrated De-
velopment Environments to address that problem. A suitable degree of
sophistication is required, involving features such as a rich Graphic User
Interface, modular design support and connections to popular simulation
frameworks (e.g. P–Lingua).

• The unavailability of public-access data regarding real-life fault diagnosis
problems in industrial systems constitutes a major drawback when con-
ducting modelling research on such type of problems. Moreover, that is-
sue has prevented a suitable measurement of the speedup achieved for the
developed rFRSN P system parallel simulator related to the work object
of this dissertation. Consequently, a further effort has to be conducted
to set joint collaboration ventures with experts from the aforementioned
domain.
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[43] M. Garćıa-Quismondo. Modelling and simulation of real-life phenomena
in Membrane Computing. PhD thesis, University of Seville, 11 2013.
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nel P systems: Applications and implementations. In Z. Yin, L. Pan,



BIBLIOGRAPHY 291

and X. Fang, editors, Proceedings of The Eighth International Confer-
ence on Bio-Inspired Computing: Theories and Applications (BIC-TA),
2013, volume 212 of Advances in Intelligent Systems and Computing,
pages 1081–1089. Springer Berlin Heidelberg, 2013.

[69] M. Ito, C. Mart́ın-Vide, and G. Păun. A Characterization of Parikh Sets
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S. Yu, editors, Words, Semigroups, and Transductions, pages 239–253.
World Scientific, 2001.
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[71] M. J. P. Jiménez, A. R. Jiménez, and F. S. Caparrini. Complexity classes
in models of cellular computing with membranes. Natural Computing,
2(3):265–285, 2003.

[72] R. A. Juayong, F. Cabarle, H. Adorna, and M. A. M. del Amor. On the
simulations of evolution-communication P systems with energy without
antiport rules for GPUs. In Tenth Brainstorming Week on Membrane
Computing, volume I, pages 267–290, Seville, Spain, 2012. Fenix Editora.

[73] M. S. C. Keeler, B. Goodale, and J. M. B. C. Reed. Modelling the
impacts of two exotic invasive species on a native butterfly: top-down
vs. bottom-up effects. Journal of Animal Ecology, 75(3):777–788, 2006.

[74] D. B. Kirk and W. W. Hwu. Programming massively parallel processors:
a hands-on approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2010.
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L. Valencia-Cabrera, A. Riscos-Núòez, and M. J. Pérez-Jiménez. Simu-
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Simulating Population Dynamics P Systems with Proportional Object
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Colomer, and A. Riscos-Núñez. Mecosim: A general purpose software
tool for simulating biological phenomena by means of p systems. In Bio-
Inspired Computing: Theories and Applications (BIC-TA), 2010 IEEE
Fifth International Conference on, pages 637–643. IEEE, 2010.
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knapsack problem using p systems with active membranes. In C. Mart́ın-
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sion control using P systems: The Lac Operon, a case study. Biosystems,
91(3):438 – 457, 2008.

[162] E. Sanchez. Bio-Inspired Computing Machines: Toward Novel Compu-
tational Machines, chapter An Introduction to Digital Systems, pages
13–48. Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1998.



BIBLIOGRAPHY 301

[163] S. Sedwards and T. Mazza. Cyto-Sim: a formal language model and
stochastic simulator of membrane-enclosed biochemical processes. Bioin-
formatics Applications Note, 23(20):2800–2802, 2007.

[164] G. P. Silva and J. S. Aude. Evaluation of a sparc architecture with
Harvard bus and branch target cache. Microprocessing and Micropro-
gramming, 34(1-5):157 – 160, 1992.

[165] T. Song, L. Pan, and G. Păun. Asynchronous spiking neural P systems
with local synchronization. Information Sciences, 219:197–207, 01/2013
2013.
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