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ABSTRACT 

Response for the static, modal and dynamic problem corresponding to a stress ribbon footbridge is 
studied. The equilibrium equations describing the problem are coupled nonlinear differential 
equations which are numerically solved using the finite element method. The objective of this work is 
to present a proper computational model for such a structure and to check its applicability in 
predicting not only the static behaviour but also modal parameters and estimate its dynamic 
response. As the footbridge is continuously monitored, it has been possible to measure the sag and 
to identify natural modes. This experimental data has been used for updating the finite element 
model. 
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1. INTRODUCTION

Cables are common structural members in civil engineering. Although in most of the cases cables are 
working together with other structural members (beams, plates …), in the application studied in this 
paper (stress ribbon footbridge) cables lead (together with the abutments) the structural strength 
and stability. The simple idea of installing ropes and wooden slabs for crossing a river has evolved in 
modern bridge designs like the ones of U. Finsterwalder in mid-20th century followed by J. Strasky, 
among others. Most of the stress ribbon footbridges are built in reinforced concrete using post-
stressing techniques. With that typology, the concrete deck contributes with mass and transversal 
stability but the active tendons are the responsible for the static and dynamic behaviour. Other 
building alternative is to place precast concrete slabs over the main cables or plates, once 
pretensioned properly. In the footbridge under study (see figure 1), the plate is 85 m long and is 
made of steel, being its cross section 3.6 m wide and 30 mm thick. 

Despite the wide use of catenary-like structures, its analytical or computational modelling is not 
straight forward. The main drawback for its study is the geometrical non-linearity associated to the 
large displacements that appear, so the equilibrium must be established on the deformed 
configuration. Under certain simplifications (uniform mass distribution, inextensibility …) there is 
analytical solution for determining the deformed shape (catenary) and also the natural frequencies 
and the modal shapes. Note that the solution depends on internal parameters as the weight or the 
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initial tension that cannot be easily identified once the structure is in use. Besides, real cases are 
affected by elongation due to the axial force, thermal expansion due to the temperature changes and 
in some cases unequal mass distribution along the structure. For these cases, the solution to the 
analytical formulation must be obtained by numerical techniques or using computational approaches 
based on the finite element method. In real applications, internal unknown parameters prevent 
initial analytical or numerical models to match with experimental results. Standard trail-and-error 
techniques must be used to estimate proper values of those parameters in a logical range so 
simulation response can be close to the real one. 

Figure 1. Stress ribbon footbridge under study 

The objective of this work is to present a proper finite element model for such a non-linear structure 
and to check its applicability in predicting not only the static behaviour but also the modal and 
dynamic ones. For that, two different models have been created, one using cable-type elements (1D) 
and other with shell-type elements (2D). Both models have been updated by numerical iterative 
methods employing data measured from the actual footbridge. Finally the accuracy of each method 
is evaluated. 

2. MECHANICS OF A SUSPENDED CABLE

The mathematic expressions describing the mechanical behaviour (static and dynamic) of a 
suspended cable are an ensemble of non-linear coupled differential equations. These equations can 
only be analytically solved after linearization (Irvine’s suspended cable linear theory [1]) and 
assuming certain simplifications otherwise the solution can only be obtained by numerical analysis.  

For hanging plates, the behaviour in the vertical plane is similar considering the plate is working as a 
membrane. Additionally, transverse and torsional modes can appear. To evaluate these modes 
general shell theory [3] must be applied. The resulting equations are solved employing numerical 
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techniques which demand spatial discretization and interpolation in a similar way finite element 
methods do. 

3. APPLICATION TO THE STRESS RIBBON FOOTBRIDGE

The Pedro Gómez Bosque footbridge case is analysed. This pedestrian bridge, sited in Valladolid 
(Spain), is a slender and lightweight steel stress ribbon structure built in 2011 with only one span of 
approximately 85 m that provides minimal impact on the surroundings. It mainly consists of a Corten 
steel sheet 94 m long, 3.6 m wide and only 30 mm thick, which is pretensioned and anchored to the 
two abutments, which are 2 m not on level. The complete steel sheet is fabricated by 8 m long plates 
welded. A number of 110 precast concrete slabs 5.2 m long, 0.75 m wide and 120 mm thick, lay on 
the steel sheet. The structure is completed by rubber pavement and stainless steel and glass 
handrail. All these structural and functional parts suppose around 23.6 kN/m. Initial pretension on 
the steel sheet was adjusted so the displacement in the middle were limited to L/50 which means 
1.7 m. 

3.1. Experimental 
3.1.1. Static measurements 

Surveying techniques combined with photogrammetry ones were used for determining the 
deformed shape. First, two pairs of reference points were chosen in the abutments. Then, 8 
intermediate pairs of points were selected along the deck. Each pair of points is 2.4 m apart in the 
transversal direction of the deck. All the resulting 10 upstream points were aligned, and also all the 
downstream ones. Setting the base in the higher abutment, a total station (theodolite integrated 
with an electronic distance meter) was used to read, with the help of a direct reading optical rod, the 
distance and elevation of the remaining 9 pair of points. Three measurements rounds were made 
and mean values obtained. After the statistical analysis, and according to the accuracy of the 
instrumentation, the maximum error was estimated in 6 mm. Note that the footbridge is prone to 
oscillate and amplitudes around 10 mm are usual even though the technician using the rods moves 
carefully. Finally, mean values in each pair of points were used as the reference coordinates for the 
subsequent adjustment of the finite elements models. This procedure was carried out in two 
different days with ambient temperatures of 18 °C and 28 °C. Results are shown in figure 2. 

Figure 2. Measured elevations along the deck 
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Additionally to the topographic data, several photographs were taken and the corresponding 3D 
virtual model was built. Once adjusted using some reference points, the 3D model can be used 
(photogrammetry) to check distances and elevations of the selected pairs of points and to measure 
in any other point. 

3.1.2. Modal and dynamic measurements 

Since this footbridge was monitored with several accelerometers, the recordings were used to 
perform an Operational Modal Analysis to determine its free vibration modes. Table 1 presents the 
seven natural frequencies identified by FFD and SSI techniques at 20 °C. Corresponding modes are 
shown in figure 4. The notation used is BZ-I for bending modes in the vertical XZ plane, BY-I for 
bending modes in the horizontal XY plane and TX-I for torsional modes around X axis. i is the number 
of antinodes of the corresponding mode. No longitudinal modes have been observed and horizontal 
bending modes observed are always coupled with the torsional ones. 

Additionally a dynamic test was carried out using and electrodynamical shaker placed in point S (see 
figure 2). Adjusting different parameters, a sinusoidal vertical force F(t) = 230·Sin(2·π ·1.780·t) [N] 
was generated during 90 s, as shown in figure 3, being 1.780 Hz the frequency of the fourth vertical 
bending mode. Resulting vertical accelerations in the same point S (x = 28 m) were also registered. 

Table 1. Experimental frequencies 

vertical transversal + torsional 
Tref = 20°C fV,i (Hz) fHT,i (Hz) 

mode 1 1.020 BZ-1 1.050 BY-1+TX-1 
mode 2 0.868 BZ-2 1.530 BY-2+TX-2 
mode 3 1.410 BZ-3 2.230 BY-3+TX-3 
mode 4 1.780 BZ-4 

Figure 3. Dynamic test: Forced and free response of the footbridge 
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Figure 4. Experimental mode shapes for the first seven modes 

3.2. Computational 
3.2.1. FE Modelling and Model Updating 

The computational part of this work has been done with the finite element software ANSYS® 15.0. 
Two footbridge models have been created. The first one is made of 200 cable-type elements 
(LINK180) while the other uses 2400 shell-type elements (SHELL181) instead. 

The lack of knowledge of certain internal parameters of the footbridge (like the precise position of 
the extremes or the elastic properties of the structure as a whole) makes impossible to build a model 
able to reproduce the actual footbridge’s behaviour using only data from the initial design project. 
Part of this work is setting those parameters to match the experimental static deformed shapes 
(measured at 18°C and 28°C) and the free vibration modes (measured at 20°C). 
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The parametric model updating has been carried out by numerical iterative techniques using the 
ANSYS® DesignXplorer application. The parameters selected for updating were the axial and torsional 
rigidity, the distributed load, the initial length and the horizontal distance between supports. 

3.2.2. Static and modal results 

After several goes, considering together the static and modal available data, the values of the 
governing parameters were fixed according with table 2. The maximum displacements obtained in 
each updated model are presented in Table 3. The matching achieved between each model and the 
experimental data is shown in figure 5. 

Table 2. Updated parameter’s values 

Initial length 82.363 m 
Horizontal distance 82.280 m 

Mass distribution 2417 kg/m 
Axial stiffness 4.573E8 N/m 

Torsional stiffness 1.982E9 N·m/rad 

Table 3. Comparison of sags for different temperatures 

EXPERIMENTAL 
FINITE ELEMENT ANALYSIS 

Cable-type model Shell-type model 
Temperature δmax δmax Error δmax Error 

°C m m % m % 
18 1.993 1.956 1.89 1.958 1.78 
28 2.107 2.054 2.49 2.057 2.37 

Figure 5. Static deformed shapes for different temperatures 

Table 4 shows the natural frequencies for each updated model with a temperature of 20°C. The 
modal shapes of the cable model and the shell model are shown in figures 6 and 7. 
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Table 4. Comparison of natural frequencies at 20 °C 

EXPERIMENTAL 
FINITE ELEMENT ANALYSIS 

Cable-type model Shell-type model 

Mode 
fi fi Error fi Error 

Hz Hz % Hz % 
BZ-2 0.868 0.867 0.11 0.876 0.92 
BZ-1 1.020 1.063 4.20 1.071 4.95 

BY-1+TX-1 1.050 - - 1.168 11.20 
BZ-3 1.410 1.425 1.08 1.432 1.58 

BY-2+TX-2 1.530 - - 1.475 3.58 
BZ-4 1.780 1.736 2.47 1.758 1.24 

Figure 6. First four modal shapes of the cable FE model 

3.2.3. Dynamic results 

The structural damping has been introduced using the Rayleigh damping procedure. The damping 
coefficients alpha and beta have been set to achieve an approximate damping of 0.25% for all the 
considered modes. This damping ratio has been obtained adjusting the exponential free-decay curve 
in the structural response shown in figure 4 in the range 100 to 134 s. 

In order to simulate the real measuring conditions, the force has been applied at the same point in 
the model and in the test. The force was a harmonic-type force with amplitude of 236 N and the 
frequency of the fourth mode of vertical bending that was applied during 100s. After that, the 
structure was left in free response for another 34 s. The experimental temperature was unknown, so 
the modal adjustment temperature was taken instead (20°C). 
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Figure 7. First six modal shapes of the shell FE model 

3.2.4. Dynamic results 

The structural damping has been introduced using the Rayleigh damping procedure. The damping 
coefficients alpha and beta have been set to achieve an approximate damping of 0.25% for all the 
considered modes. This damping ratio has been obtained adjusting the exponential free-decay curve 
in the structural response shown in figure 4 in the range 100 to 134 s. 

In order to simulate the real measuring conditions, the force has been applied at the same point in 
the model and in the test. The force was a harmonic-type force with amplitude of 236 N and the 
frequency of the fourth mode of vertical bending that was applied during 100 s. After that, the 
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structure was left in free response for another 34 s. The experimental temperature was unknown, so 
the modal adjustment temperature was taken instead (20°C). 

The figures 8 and 9 show the vertical acceleration data at the force application point. It can be noted 
that the response in both models match the one of a system at resonance, but the experimental data 
doesn`t. This happens because the shaker doesn’t have the accuracy of the numerical models, being 
unable to keep the actual structure at resonance. To make the models show this behaviour the 
force`s frequency was modified with a small divert from the resonance (<1%). 

Figure 8. Dynamic response (Cable-type model): black - experimental; pale red - FEA at resonance; red - FEA 
slightly out of resonance 

Figure 9. Dynamic response (Shell-type model): black - experimental; pale red - FEA at resonance; red - FEA 
slightly out of resonance 

4. CONCLUSIONS

Cable and shell mathematical models have been developed to simulate the mechanical behaviour of 
a footbridge. Using the cable model, static and modal response in the vertical direction has been 
adjusted. But in order to incorporate the behaviour outside the vertical plane it is necessary to 
formulate the shell model. Once adjusted to static and modal experimental data, both models agree 
in the vertical direction. Shell model is additionally able to adjust the coupled modes that appear in 
the horizontal bending and torsional directions. 
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Using the updated models, the dynamic response matches with the loading test, showing the 
applicability of the numerical approach to study geometrical non-linear pedestrian structures. 
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