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Abstract

In this paper we introduce a new type of single facility location problems
on networks which includes as special cases most of the classical criteria in the
literature. Structural results as well as a finite dominating set for the optimal

locations are developed. Also the extension to the multi-facility case is discussed.
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1 Introduction

One of the most important and well-developed branches in location theory is location
problems on networks. Numerous surveys and textbooks (see [3], [12], [13], [11] and
references therein) give evidence for this fact. The starting point of this development
might be considered the node-dominance result of Hakimi [4] which we will show to
be essential in this paper. In the existing literature mainly three types of objective
functions are used: the median objective (sum objective), the centre objective (max
objective) and the cent-dian objective (a convex combination of sum and max) (see [8]
and the references therein for a description of these and many other facility location
problems).

In this paper we will introduce a new type of objective function which will be shown
to be a generalization of the most popular objective functions (mentioned above). The

advantage of this new objective function will be the possibility of reproving a lot of

*Fachbereich Mathematik. Universitat Kaiserslautern. Germany

tDepartamento de Estadisitca e Investigacién Operativa. Universidad de Sevilla. Spain



known results in a much easier way and getting more insight in the geometrical structure
of the network with respect to different criteria.

More formally, let N’ = (G, 1) denote a network with underlying graph G = (V, &),
where the node set V = {v1,...,vy} and the edge set & = {e1,...,en}. We restrict
ourselves to undirected graphs. Therefore, we write every edge e € £ as [v;,v;] =
[vj,vi], vi, v; € V.

Each edge e € £ has associated a positive length by means of the function [ : £ —
IR . By d(v;,v;), we denote the length of the shortest path between v; and v; measured
by I. Through w:V — IR, every vertex is assigned a non negative weight.

A point z on an edge e = [v;, v;] is defined as a pair z = (e, t), t € [0,1], with
d(vg, x) = d(x, vg) := min{d(vg, v;) + tl(e), d(vg, vj) + (1 —t)l(e)}.

The set of all the points of a network (G, 1) is denoted by P(G). It should be noted
that this set also contains the nodes V.

Let
d(z) := (wid(v1, x), . .., wyd(var, T))

and

a permutation of the elements of d(x) verifying
wmyd(vay, z) < weyd(ve), ) < ... < wand(vm, ).

For the sake of simplicity, let d;)(z) := w d(ve), ©)-
The ordered median problem on A is defined as
min My(z) == > Ndg(z)  with A= (\,...,An) € RY, (1)
ieM
where M :={1,..., M}.

The function M, (x) is called from now on the ordered median function. Note that
the ordered median function is defined point-wise.

In this paper we consider the problem of finding a point z € P(G) minimizing the
ordered median function M. According to the classification scheme introduced in [5]
this problem will be referred to in the following as 1/G/ e /d(V,G)/ > ora-

The reader may note that 1/G/ e /d(V,G)/ > ,.4 is somehow similar to the well-
known median problem (1/G/ e /d(V,G)/ ). We will show in this paper that 1/G/ e
/d(V,G)/ > as well as other classical network location problems are special cases of

1/G/ & [d(V,G)/ Lora



The rest of the paper is organized as follows. In the next section we show some
fundamental properties of 1/G/e /d(V,G)/ > ,ra- After that the extension to the multi-
facility case (IN/G/e/d(V,G)/ > orq) is discussed. The paper ends with some conclusions

and an outlook to further research.

2 Properties of 1/G/ e [d(V,G)/ Sora

In this section we state the fundamental properties of the problem 1/G/e/d(V,G)/ > ,ra-
We will present a localization result which generalizes the well-known Hakimi theorem
[4] and gives some insight in the connection between median and center problems. In
addition, we show how most of the location problems previously considered on networks

can be seen as particular instances of this new problem.
For all v;, v; € V, © # j define

EQij == {z € P(G) : wid(vi, ¥) = w;d(vj, z)} (2)

and let £Q := | ] EQ;;.

.’L,‘].
i#]

It is well-known that the points in £Q are the so called bottleneck points of N
[8]. These points establish a partition on N with the property that for two consecutive
elements a,b € £Q the permutation which gives the order to the vector d<(x) is the
same for all z € [a,b]. Here consecutive means, that there is no other ¢ € £Q on the

shortest path between a and b.

Theorem 2.1 An optimal solution for 1/G/ e [d(V,G)/ > pra can always be found in
the set Cand :=EQ U V.

Proof. Starting from the original graph G, build a set of new graphs Gi,...,Gk by
inserting all points of £Q as new nodes. Now every subgraph §; is defined by either

1. Two consecutive elements of £Q on an edge or
2. An element v; € V and the adjacent elements of £Q

and the corresponding edges. In this situation for every subgraph G; the permutation
of d<(z) is constant (by definition of £Q). Therefore for all x € P(G;) we have

Z )\Zd(z)(.f) = Z )\iww(i)d(vw(i),m:x) )
1EM 1EM



where 7 € II(M), where II(M) is defined as the set of all permutations of M. There-
fore we can replace the objective by a classical median-objective. Now we can apply

Hakimi’s node dominance result in every G, and the result follows. O

Theorem 2.1 gives raise to some geometrical subdivision of the network N . Like
indicated in the proof of Theorem 2.1 we can assign every subgraph G;,7 =1,...,k a
M-tuple giving in the i-th position the i-th nearest vertex to all points in G;. As an
example we have in Figure 1 a graph with 3 nodes and all weights w; and all lengths

are 1.

w
—_

Figure 1: A 3-node network with bottleneckpoints and the geometrical subdivision.

This partition can be seen as a kind of higher order Voronoi diagram of N quite
related to the Voronoi partition of networks introduced in[7].
We will now show on the basis of Theorem 2.1 that many well-known location prob-

lems on networks are particular instances of 1/G/ - /d(V,G)/ > ,rq for specific choices
of the set of A\-weights.

Theorem 2.2

1. 1/G/An = /A, 6)/ Tora = 1/G/%2/d(V,G)/ T
2. 1/G/ A =1, Am = 0,m £ M/dV,G)) Sora = 1/G/ ® Jd(V,G)/ max.

8. 1/G/Aar 1= 3 5 A = M0 14(V,6)/ 50
= 1/G/ e /d(V,G)/cent — dian.

4. 1/G/ M o1 =0, Ao = %/d(V; G)) >ora = 1/G/ e /d(V,G)/k — centra.



Proof. Let x € P(G) and let Gy,...,Gk be the subgraphs as defined in the proof of
Theorem 2.1. Therefore z € P(Gy) for some k € {1,..., K} and we can write
1

1 1
i) () = Y —Weyd(n(), ) = — Y wid(vi, )
M iem M M

My(z) =)
iEM
with 7 € II(M). Since the value of the sum does not depend on the permutation 7 we
can choose m = 7d and get the classical median function, which concludes the proof for
Part 1.
Starting with the A-weights of Part 2 we get

M, (z) = ZEZM Xidgy(x) = Apdon (z) = max w;d(v;, x)
and Part 2 is shown.
The proofs for the remaining two parts are analogous to the parts shown and are
therefore omitted here. O
Lots of known results follow directly from Theorem 2.2. Although this formulation
has been related to some well-known models, it is also possible to formulate many other
models which have not been addressed yet. An example for a problem which is not

addressed yet is the following

min%)\id(i)(v) with \; =1, i <k, X\ =0, 1>k,
i=1
which is the contrary to the k-centra problem introduced by Andreatta and Mason [1]
because the distance to the nearest k facilities is minimized.
For algorithmic purposes one should note that the set £Q coincides with the set
L M;; introduced by Kariv and Hakimi [9]. In that paper they prove that their algorithm
(which is shown to be optimal) determines £Q in O(|V||€|1log(|V|)) time.

3 Extension to N/G/e /[dV,G)/ Zoa

In this section we deal with the multi-facility extension of the ordered median problem.
In the previous section we proved that the set VUE Q always contains the set of optimal
solution of the problem. It might seem natural to expect that the same result holds
for the N-facility case as it happens for the N-center problem. However, the following

example taken from Perez-Brito et al. [2] shows that this property fails to be true.

Counterexample. Consider the tree network drawn in Figure 2
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Figure 2: Counterexample

We want to consider the 2 — A cent-dian with A = 0.8. All the weights are equal to
1. It is very easy to see that two clusters of nodes appear; the first one with vertices
1,2,3,4 and the second one with vertices 5 and 6. The best solution considering the
different local centers and vertices combinations is given by X = {EQ1 4, EQ56} with
objective value of 8.6. However, if we consider the point z* at distance 5 from v; which
is neither a vertex nor an EQ point, the set X* = {z*, EQs¢} has as objective value
8.0.

The rest of this section is devoted to deal with the N-facility weighted ordered
median problem N/G/ e [d(V,G)/ > pra- N/G/ ® /A(V,G)/ > ,rq is & problem which
consists of finding a set Xy = {z1,...,2y} that minimizes the following objective

function "
S

where we impose additionally that Ay > Ay > ... > Ay
The main result of this section establishes a theorem similar to the well-known

Hakimi’s theorem which states that always exists an optimal solution X; C V.

Theorem 3.1 N/G/A\ > Ay > ... Ay /d(V,G)/ X orq has always an optimal solution

Xy contained in V.

Proof. Since by hypothesis Ay > Ay > ... > Ay we have that

M

M
| weIl(M) i—1



Assume that Xy ¢ V.

Then there must exist z; € Xy with x; € V. Let e = [v, w] the edge containing z;
and [(e) its length. Denote by Xy(s) = Xn \ {z;:} U{z(s)} where z(s) is the point on
e with d(v,z(s)) = s, s € [0,(e)].

The function g defined as g(s) = Y, Aid(;)(Xn(s)) is concave for all s € [0,(v)]
because it is the composition of a concave and a linear function, i.e.

g(s) = min {Z)\idﬁ(i)(XN(S))}

weIl(M)

and each
dr(j) (XN (8)) = min{d(vr), 1), - - -, min{d(vr(j), a)+5, d(vrs), b)+L(v) =5}, . .., d(va(), T)

is concave.
Hence, g(s) = F(Xn(s)) > min{F(Xy(0)), F(Xn({(v))} and the new solution set
Xn(s) contains instead of x; one vertex of V.

Repeating this scheme a finite number of times the result follows. O

Although this result is new similarities can be found with the correction given by
Hooker et al. [8] to the dominance result (see Result 7 in [8]) of Weaver and Church

[14] for the so called vector assignment N-median model.

4 Conclusions

In this paper we have introduced a new class of network location problems which we
have shown to contain many of the classical problems as special cases. This approach
helps to get more insight in the differences and the common properties of center and
median location problems.

A classification scheme has been used for simplifying the understanding of the
relation between the different classes of problems. Also a lot of new problems can be
modeled and solved in polynomial time using this approach.

Finally the frontiers of this approach are shown by a counterexample for the multi-
facility case. Therefore the future research will include an appropriate extension to
multi-facility problems. Besides this, also multi-criteria ordered Weber problems are

under research.
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